Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics

by

Jan Giesselmann and Tristan Pryer
Abstract. We give an a posteriori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in [Giesselmann 2014]. This framework allows energy type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions [Makridakis and Nochetto 2006] and a set of elliptic reconstructions [Makridakis and Nochetto 2003] to apply the reduced relative entropy framework in this setting.

Key words. discontinuous Galerkin finite element method, a posteriori error analysis, multiphase elastodynamics, relative entropy, reduced relative entropy.

AMS subject classifications. 65M60, 65M12, 65M15, 74B20.

1. Introduction. Our goal in this work and that of our companion paper [GP14] is to introduce the reduced relative entropy technique as a methodology for deriving both apriori and a posteriori estimates to finite element approximations of a problem arising in elastodynamics. In particular, this work is concerned with providing a rigorous a posteriori error estimate for a semi (spatially) discrete discontinuous Galerkin scheme approximating a model for shearing motions of an elastic bar undergoing phase transitions between phases which correspond to different (intervals of) shears, e.g., austenite and martensite. In this model the energy density depends not only on the strain but also on the strain gradient. Such models are often referred to as models of “first strain gradient” or “second gradient” type [JTB02; Jam+01]. The latter is due to the fact that the strain gradient is the second gradient of the deformation.

The relative entropy technique is the natural stability framework for problems in nonlinear elasticity. Introduced, for hyperbolic conservation laws, in [Daf79; DiP79], this technique is based on the fact that systems of conservation laws are usually endowed with an entropy/entropy flux pair. For conservation laws describing physical phenomena this notion of entropy follows from the physical one. The entropy/entropy flux pair also gives rise to an admissibility condition for weak solutions which leads to the notion of entropy solutions. It can also be used to define the notion of relative entropy between two solutions. In case of a convex entropy the relative entropy is equivalent to the square of the L^2 distance. In hyperbolic balance laws and related problems stability estimates based on the relative entropy framework are by now standard if the entropy is at least quasi or polyconvex, see [Daf10] and references therein.

The model we consider in this work does not fall into this framework however. It describes a multiphase process and, therefore, the energy density is expected to have a multi-well shape and, in particular, is neither quasi nor polyconvex. Indeed, the first order part of the model is no longer hyperbolic but of hyperbolic/elliptic type. It is well known that in this situation entropy solutions (to the first order problem) are not unique [LeF02] and either kinetic relations have to be introduced or regularisations need to be considered. We follow the second approach and consider a model including a second gradient/capillarity regularisation which also allows for viscosity.

To account for the non-convexity of the energy, we will employ the reduced relative entropy technique which is a modification of the classical arguments used in the relative entropy framework in which we only consider the convex contributions of the entropy [Gie14a]. Roughly speaking it
uses the higher order regularizing terms in order to compensate for the non-convexity of the energy. The reduced relative entropy technique is only applicable when studying continuous solutions to the problem, as such, is not immediately applicable to discontinuous Galerkin approximations. Our methodology consists of applying appropriate reconstructions of the discrete solution into the continuous setting, then using the reduced relative entropy technique to bound the difference of the reconstruction and the exact solution. A feature of the reduced relative entropy framework is that it is based on estimating a quantity which contains the H^1 norm of the strain difference, but only the L^2 norm of the velocity difference. Therefore, there is an intrinsic suboptimality of the derived error estimate for the velocity.

The numerical analysis of schemes approximating regularized hyperbolic/elliptic problems, like the model at hand or the Navier-Stokes-Korteweg system in compressible multiphase flows, is rather limited [CL01; Die07; BP13; GMP14; JTB02; Gie14b; Jam+01], and the available works mainly focus on the stability of schemes. Previous works on discontinuous Galerkin methods for scalar dispersive equations can be found in [CS08; Bon+11; XS11].

A benefit of our approach is that we are able to derive both apriori, assuming sufficient regularity on the solution [GP14], and a posteriori error estimates based on similar techniques. In the first instance, we apply this methodology to a regularisation of the equations of nonlinear elastodynamics including both viscous and dispersive regularising terms. We make the important observation that the error bounds we derive are applicable as the viscous parameter tends to zero but blow up when the dispersion parameter tends to zero. In the case that dispersion regularisation is small, solutions to the equations display thin layers which are physically interpreted as phase boundaries. We also believe this methodology is extendable to a wider class of problems.

In this work, for clarity, we study the one dimensional setting. Our analysis is fully extendable to the multi dimensional setting discussed in the second part of [Gie14a], assuming an appropriate discrete reconstruction operator can be constructed (see Remark 4.16). We also expect that our results can be extended to the (multi-dimensional) Navier-Stokes-Korteweg equations, although in that case certain technical restrictions will be necessary; e.g., all involved functions need to be bounded away from vacuum.

The rest of the paper is organised as follows: In §2 we introduce the model problem together with some of its properties and formalise our notation. In §3 we give a summary of the relative entropy technique and the reduced relative entropy which we use to prove a stability result in Theorem 3.3. In §4 we state the discretisation of the model problem, some of its properties and introduce the operators which we require for the a posteriori analysis. In §5 we state our main result, which is a computable a posteriori indicator for the error in the natural entropy norm.

2. Model description and properties. The specific class of problem which we consider here models the shearing motion of an elastic bar undergoing phase transitions between say austenite and martensite phases [AK91]. These models are based on the isothermal nonlinear equations of elastodynamics. In one spatial dimension, they are

\[\partial_t u - \partial_x v = 0 \]
\[\partial_t v - \partial_x W'(u) = 0, \] (2.1)

where u is the strain, v, the velocity and $W = W(u)$ is the energy density, which is given by a constitutive relation. Notice that this may also be rewritten as a nonlinear wave equation

\[\partial_t y - \partial_x W'(\partial_x y) = 0, \] (2.2)

for the displacement field y which satisfies $\partial_x y = u$. If (2.1) describes a multiphase situation W has a multi-well shape and, in particular, is not convex. This makes (2.1) a problem of mixed hyperbolic/elliptic type. For such problems entropy solutions, which are standard in the study of hyperbolic conservation laws, are not unique. There are two methods in order to regain uniqueness of solutions: Either a kinetic relation, singling out the correct phase transitions, [AK91, c.f.] can be imposed or the problem can be regularized [Sle83; Sle84, c.f.].
In this work we focus on the problem
\begin{align}
\partial_t u - \partial_x v &= 0 \\
\partial_t v - \partial_x W'(u) &= \mu \partial_{xxx} v - \gamma \partial_{xxxx} u \\
u(x, 0) &= u_0(x) \\
v(x, 0) &= v_0(x),
\end{align}
(2.3)
where \(\mu \geq 0\) and \(\gamma > 0\) denote the strength of viscous and capillarity effects. We will not make any precise assumptions on the convex and concave parts of \(W\) but simply assume \(W \in C^4(\mathbb{R}, [0, \infty))\), allowing for all kinds of (regular) multi-well shapes.

Remark 2.1 (State space). We could also apply our theory in case \(W\) is only defined on some open interval \(I \subset \mathbb{R}\), as would be the case if (2.3) were to describe compressible fluid flows in a pipe or longitudinal motions of an elastic bar. However, in that case we would have to impose the condition that the solutions only take values inside a compact subset of the interval \(I\).

We couple (2.3) with periodic boundary conditions. With that in mind we will denote \(S^1\) to be the one sphere, i.e., the unit interval with coinciding end points. Again, note that under sufficient regularity assumptions (2.3) is equivalent to the wave like equation
\[
\partial_{tt} y - \partial_x W'(\partial_x y) = \mu \partial_{xxt} y - \gamma \partial_{xxxx} y.
\]
(2.4)

We will use standard notation for Sobolev spaces [Cia78; Eva98]
\[
H^k(S^1) := \{ \phi \in L_2(S^1) : D^\alpha \phi \in L_2(S^1), \text{ for } \alpha \leq k \},
\]
(2.5)
which are equipped with norms and semi-norms
\[
\|u\|_k^2 := \|u\|_{H^k(S^1)}^2 = \sum_{\alpha \leq k} \|D^\alpha u\|_{L_2(S^1)}^2
\]
(2.6)
and
\[
|u|_k^2 := \|u\|_{H^k(S^1)}^2 = \sum_{\alpha = k} \|D^\alpha u\|_{L_2(S^1)}^2
\]
(2.7)
respectively where derivatives \(D^\alpha\) are understood in a weak sense. In addition, let
\[
H^k_m(S^1) := \left\{ \phi \in H^k(S^1) : \int_{S^1} \phi = 0 \right\}.
\]
(2.8)
We also make use of the following notation for time dependent Sobolev (Bochner) spaces:
\[
C^i(0, T; H^k(S^1)) := \left\{ u : [0, T] \rightarrow H^k(S^1) : u \text{ and } i \text{ temporal derivatives are continuous} \right\}.
\]
(2.9)

Theorem 2.2 (Existence of strong solutions [Gie14a, Cor 2.4]). Let \(u_0 \in H^3_m(S^1)\), \(v_0 \in H^2_m(S^1)\) and \(T, \mu, \gamma > 0\), then (2.3) admits a unique strong solution
\[
(u, v) \in C^0(0, T; H^3_m(S^1)) \cap C^1(0, T; H^2_m(S^1)) \times C^0(0, T; H^2_m(S^1)) \cap C^1(0, T; H^0_m(S^1)).
\]
(2.10)

Remark 2.3 (Viscosity). For the semi-group techniques employed in the proof of Theorem 2.2 it is required that \(\mu > 0\). In contrast, all our subsequent estimates also hold in case \(\mu = 0\) provided sufficiently regular solutions exist.

Lemma 2.4 (Energy balance). Let \((u, v)\) be a strong solution of (2.3), \(T, \gamma > 0\) and \(\mu \geq 0\) then
\[
d_t \left(\int_{S^1} W(u) + \frac{\gamma}{2} |\partial_x u|^2 + \frac{1}{2} |v|^2 \right) = - \int_{S^1} \mu |\partial_x v|^2.
\]
(2.11)
Upon integrating by parts we have
\[0 = \int_{S^1} \partial_t u W'(u) - \gamma \partial_{xx} u \partial_t u - W'(u) \partial_x v + \gamma \partial_x v \partial_{xx} u + v \partial_t v - v \partial_x W'(u) - \mu v \partial_{xx} v + \gamma v \partial_{xxx} u. \] (2.12)

Upon integrating by parts we have
\[0 = \int_{S^1} \partial_t u W'(u) + \gamma \partial_x u \partial_t x u + v \partial_t v + \mu (\partial_x v)^2, \] (2.13)
which yields the desired result. □

Remark 2.5 (Strain gradient dependent energy). Note that the energy density, i.e., the integrand in the left hand side of (2.11), consists of three terms. The kinetic energy \(\frac{1}{2} v^2 \) and the potential energy (density) which is decomposed additively into a strain dependent nonlinear part \(W \) and a part depending on the strain gradient. This latter term is the reason why this type of potential energy (density) which is decomposed additively into a strain dependent nonlinear part \(W \) and a part depending on the strain gradient. This latter term is the reason why this type of model is called “first strain gradient” or “second (deformation) gradient” model.

Remark 2.6 (L∞ bound for u). Lemma 2.4 and the fact that the mean value of \(u \) does not change in time imply that \(\| u \|_{L_\infty(0, \infty; H^1(S^1))} \) is bounded in terms of the initial data. As \(H^1(S^1) \subseteq L_\infty(S^1) \) we may immediately infer that \(\| u \|_{L_\infty(S^1 \times (0, \infty))} \) is bounded in terms of the initial data.

3. Reduced relative entropy. In this section we briefly introduce the reduced relative entropy technique. Using this we prove the natural stability bounds for the problem.

Lemma 3.1 (Gronwall inequality). Given \(T > 0 \), let \(\phi(t) \in C^0([0, T]) \) and \(a(t), b(t) \in L_1([0, T]) \) all be nonnegative functions with \(b \) non-decreasing and satisfying
\[\phi(t) \leq \int_0^t a(s) \phi(s) \, ds + b(t). \] (3.1)

Then
\[\phi(t) \leq b(t) \exp \left(\int_0^t a(s) \, ds \right) \quad \forall \, t \in [0, T]. \] (3.2)

Definition 3.2 (Reduced relative entropy). The reduced relative entropy technique is a reduction of the classical relative entropy technique in the sense that it only accounts for the convex part of the entropy. We define
\[\eta_R(t) := \frac{1}{2} \int_{S^1} (\nu(\cdot, t) - \hat{\nu}(\cdot, t))^2 + \gamma (\partial_x u(\cdot, t) - \partial_x \hat{u}(\cdot, t))^2. \] (3.3)

Theorem 3.3 (Reduced relative entropy bound). Let \((u, v) \) be strong solutions to (2.3) and suppose \((\hat{u}, \hat{v}) \) are strong solutions to the perturbed problem
\[\begin{align*}
\partial_t \hat{u} - \partial_x \hat{v} &= 0, \\
\partial_t \hat{v} - \partial_x W'(\hat{u}) &= \mu \partial_{xx} \hat{v} - \gamma \partial_{xxx} \hat{u} + \mathcal{R}
\end{align*} \] (3.4)
where \(\mathcal{R} \) is some residual and \(\gamma > 0, \mu \geq 0 \). Assume that \(\hat{u}(\cdot, 0) = u(\cdot, 0), \hat{v}(\cdot, 0) = v(\cdot, 0) \) and that
\[\mathcal{M} := \max \left(\| u \|_{L_\infty(S^1 \times (0, \infty))}, \| \hat{u} \|_{L_\infty(S^1 \times (0, \infty))} \right) < \infty. \] (3.5)

Then, the reduced relative entropy between \((u, v) \) and \((\hat{u}, \hat{v}) \) satisfies
\[\eta_R(t) \leq \left(\eta_R(0) + \mathcal{R}^2_{L_2(S^1 \times (0, t))} \right) \exp \left(\int_0^t K[\hat{u}](s) \, ds \right) \quad \forall \, t, \] (3.6)
\[K[\tilde{u}](t) := \max \left(\frac{2C_p^2 W^2}{\gamma} \| \partial_x \tilde{u}(-, t) \|_{L_\infty(S^1)}^2, \frac{2W^2}{\gamma}, \frac{3}{2} \right) \quad \text{and} \quad W = \| W \|_{C^3([-\overline{\mathcal{M}}, \overline{\mathcal{M}}])}. \]

Proof. Explicitly computing the time derivative of \(\eta_R \) yields

\[
d_t \eta_R(t) = \int_{S^1} (v - \tilde{v})(\partial_t v - \tilde{v}) + \gamma \partial_x (u - \tilde{u}) \partial_x (u - \tilde{u}).
\]

Using the problem (2.3) and the perturbed problem (3.4) we see that

\[
d_t \eta_R(t) = \int_{S^1} (v - \tilde{v})(\partial_t W'(u) - \partial_x W'(\tilde{u}) - \gamma \partial_x x u + \gamma \partial_x x \tilde{u} + \mu \partial_x v - \mu \partial_x \tilde{v} - \mathcal{R})
\]

\[
+ \gamma \partial_x (u - \tilde{u}) (\partial_x v - \partial_x \tilde{v}).
\]

Cancellation occurs upon integrating by parts and we have

\[
d_t \eta_R(t) = \int_{S^1} (v - \tilde{v})(\partial_t W'(u) - \partial_x W'(\tilde{u}) - \mathcal{R}) - \mu (\partial_x v - \partial_x \tilde{v})^2
\]

\[
\leq \int_{S^1} (v - \tilde{v})(\partial_t W'(u) - \partial_x W'(\tilde{u}) - \mathcal{R}).
\]

Making use of Young’s inequality we have

\[
d_t \eta_R(t) \leq W^2 \| \partial_x \tilde{u} \|_{L_\infty(S^1)}^2 \| u - \tilde{u} \|_{L_2(S^1)}^2 + W^2 \| \partial_x u - \partial_x \tilde{u} \|_{L_2(S^1)}^2
\]

\[
+ \| \mathcal{R} \|_{L_2(S^1)}^2 + \frac{3}{4} \| v - \tilde{v} \|_{L_2(S^1)}^2.
\]

Invoking a Poincaré inequality yields

\[
d_t \eta_R(t) \leq W^2 \left(C_p^2 \| \partial_x \tilde{u} \|_{L_\infty(S^1)}^2 + 1 \right) \| \partial_x u - \partial_x \tilde{u} \|_{L_2(S^1)}^2 + \| \mathcal{R} \|_{L_2(S^1)}^2 + \frac{3}{4} \| v - \tilde{v} \|_{L_2(S^1)}^2
\]

\[
\leq \max \left(W^2 \left(C_p^2 \| \partial_x \tilde{u} \|_{L_\infty(S^1)}^2 + 1 \right) \frac{2}{\gamma}, \frac{3}{2} \right) \eta_R(t) + \| \mathcal{R} \|_{L_2(S^1)}^2.
\]

The conclusion follows by invoking the Gronwall inequality given in Lemma 3.1. \(\square \)

Corollary 3.4 (Uniqueness of solution). Under the conditions of Theorem 3.3 we have that if \((\tilde{u}, \tilde{v})\) solves (2.3) with no residual term we may infer uniqueness of solution.

Remark 3.5 (Exponential dependence on problem data). Note that the entropy bound in Theorem 3.3 depends exponentially (in time) on the Lipschitz constant of the perturbed solutions. This is the main motivation for using reconstructions of the discontinuous Galerkin approximations of (2.3).

In addition the bound depends exponentially on \(\frac{1}{\gamma} \). We may use another argument to achieve a bound independent of \(\gamma \) but exponentially dependent on \(\frac{1}{\mu} \).

Theorem 3.6 (Alternative reduced relative entropy bound). Let the conditions of Theorem 3.3 hold, with the exception that \(\mu > 0 \). We define the modified reduced relative entropy as

\[\eta_M(t) := \eta_R(t) + \frac{1}{2} \| u - \tilde{u} \|_{L_2(S^1)}^2, \]

then

\[\eta_M(t) \leq \left(\eta_M(0) + \| \mathcal{R} \|_{L_2(S^1 \times (0,t))}^2 \right) \exp \left(\int_0^t K[\tilde{u}](s) \, ds \right), \]

\[(3.14) \]
where
\[
\tilde{K}[\tilde{u}](t) := \max\left(\frac{1}{\mu} \left(\|W\|^2 + 1\right), 2\right)
\] and \(\|W\|_{C^2(-\overline{M},\overline{M})}\), \(3.15\)

with \(\overline{M}\) defined as in (3.5).

Proof. The equality of (3.10) shows that
\[
d_t \eta_R(t) = \int_{S^1} (v - \tilde{v})(\partial_x W'(\tilde{u}) - \partial_x W'(u) - \mathcal{R}) - \mu(\partial_x \tilde{v} - \partial_x v)^2 \\
= \int_{S^1} (\partial_x v - \partial_x \tilde{v})(W'(u) - W'(\tilde{u})) + (\tilde{v} - v) \mathcal{R} - \mu(\partial_x \tilde{v} - \partial_x v)^2
\]
upon integrating by parts. We also see that
\[
\frac{1}{2} d_t \|u - \tilde{u}\|^2_{L^2(S^1)} = \int_{S^1} (u - \tilde{u})(\partial_t u - \partial_t \tilde{u}) = \int_{S^1} (u - \tilde{u})(\partial_x v - \partial_x \tilde{v})
\]
where we used (3.4). Taking the sum of (3.16) and (3.17) we have that
\[
d_t \eta_M(t) \leq \int_{S^1} (\partial_x v - \partial_x \tilde{v})(W'(u) - W'(\tilde{u})) + (\tilde{v} - v) \mathcal{R} \\
- \mu(\partial_x \tilde{v} - \partial_x v)^2 + (u - \tilde{u})(\partial_x v - \partial_x \tilde{v})
\]
Applying Young’s inequality (with \(\epsilon > 0\)) we see that
\[
d_t \eta_M(t) \leq \int_{S^1} (2\epsilon - \mu)(\partial_x \tilde{v} - \partial_x v)^2 + \frac{1}{4\epsilon} \left(W'(\tilde{u}) - W'(u))^2 + (u - \tilde{u})^2\right) \\
+ (v - \tilde{v})^2 + \mathcal{R}^2.
\]
Choosing \(\epsilon = \frac{\mu}{2}\) we have
\[
d_t \eta_M(t) \leq \frac{1}{2\mu} \left(\|W\|^2 + 1\right)\|u - \tilde{u}\|^2_{L^2(S^1)} + \|\mathcal{R}\|^2_{L^2(S^1)} + \|	ilde{v} - v\|^2_{L^2(S^1)}
\]
\[
\leq \max\left(\frac{1}{\mu} \left(\|W\|^2 + 1\right), 2\right) \eta_M(t) + \|\mathcal{R}(\cdot, t)\|^2_{L^2(S^1)}
\]
(3.20)

Applying the Gronwall inequality from Lemma 3.1 yields the desired result. \(\square\)

4. Discretisation and a posteriori setup. In this section we describe the discretisation which we analyse for the approximation of (2.3). We show that the scheme has a monotonically decreasing energy functional and that solutions to the scheme exist and are bounded in terms of the initial datum. In addition we introduce the necessary reconstruction operators on which our a posteriori analysis relies.

DEFINITION 4.1 (Finite element space). We discretise (2.3) in space using a dG finite element method. To that end we let \(S^1 := [0, 1]\) be the unit interval with matching endpoints and choose \(0 = x_0 < x_1 < \cdots < x_N = 1\). We denote \(K_i = [x_i, x_{i+1}]\) to be the \(i\)-th subinterval and let \(h_i := |K_i|\) be its length with \(\mathcal{T} = \{K_i\}_{i=0}^{N-1}\). We impose that the ratio \(h_n / h_{n+1}\) is bounded from above and below for \(n = 0, \ldots, N - 1\). We set \(\mathcal{E}\) to be the set of common interfaces of \(\mathcal{T}\). For \(x_n \in \mathcal{E}\) we define \(h^\mathcal{E}_n(x_n) := h_{n-1}\), \(h^\mathcal{E}_n(x_n) := h_n\) and \(h_e(x_n) := \frac{1}{2}(h_{n-1} + h_n)\) such that \(h^\mathcal{E}_n, h^\mathcal{E}_n, h_e \in L_\infty(\mathcal{E})\). Let \(P^p\) be the space of polynomials of degree less than or equal to \(p\), then we introduce the finite element space
\[
\mathbb{V}_p := \{\Phi : I \to \mathbb{R} : \Phi|_{K_i} \in P^p(K_i)\}.
\]
\(4.1\)
\textbf{Definition 4.2 (Broken Sobolev spaces, trace spaces).} We introduce the broken Sobolev space \[H^k(\mathcal{T}) := \{ \phi : \phi|_K \in H^k(K), \text{ for each } K \in \mathcal{T} \}. \] (4.2)

We also make use of functions defined in these broken spaces restricted to the skeleton of the triangulation.

\textbf{Definition 4.3 (Jumps and averages).} We define average, jump operators for arbitrary scalar functions \(v \in H^k(\mathcal{T}) \) as
\[
\llbracket v \rrbracket := \frac{1}{2} (v^+ + v^-) := \frac{1}{2} \left(\lim_{s \searrow 0} v(\cdot + s) + \lim_{s \searrow 0} v(\cdot - s) \right),
\]
\[
\llbracket v \rrbracket := (v^- - v^+) := \lim_{s \searrow 0} v(\cdot - s) - \lim_{s \searrow 0} v(\cdot + s).
\]

(4.3)\hspace{1cm} (4.4)

\textit{Note that} \(\llbracket v \rrbracket , \llbracket v \rrbracket \in L^2(\mathcal{E}) \).

We will often use the following Proposition which we state in full for clarity but whose proof is merely using the identities in Definition 4.3.

\textbf{Proposition 4.4 (Elementwise integration).} For generic functions \(p, \phi \in H^1(\mathcal{T}) \) we have
\[
\sum_{K \in \mathcal{T}} \int_K (\partial_x p)\phi = \sum_{K \in \mathcal{T}} \left(- \int_K p \partial_x \phi + \int_{\partial K} \phi n_K \right),
\]
where \(n_K \) is the outward pointing unit normal to \(\partial K \). Furthermore the following identity holds
\[
\sum_{K \in \mathcal{T}} \int_{\partial K} \phi n_K = \int_{\mathcal{E}} \llbracket \phi \rrbracket + \int_{\mathcal{E}} \llbracket p \rrbracket = \int_{\mathcal{E}} \llbracket p \phi \rrbracket .
\] (4.5)\hspace{1cm} (4.6)

\textbf{Definition 4.5 (Discrete norm).} We introduce the broken \(H^1(\mathcal{T}) \) norm as
\[\| u_h \|_{H^1(\mathcal{T})}^2 := \sum_{K \in \mathcal{T}} \| \partial_x u_h \|_{L^2(K)}^2 + \| \sqrt{h^{-1}} \llbracket u_h \rrbracket \|^2_{L^2(\mathcal{E})}. \] (4.7)

\textbf{Definition 4.6 (Discrete gradient operators).} We define the discrete gradient operator \(G^\pm : H^1(\mathcal{T}) \rightarrow \mathbb{V}_p \) as the unique element of \(\mathbb{V}_p \) such that
\[\int_{S^1} G^\pm[v] \Phi = \sum_{K \in \mathcal{T}} \int_K \partial_x v \Phi - \int_{\mathcal{E}} \llbracket v \rrbracket \Phi^\pm \quad \forall \Phi \in \mathbb{V}_p. \] (4.8)

\textit{Note that} if \(v \in H^1(S^1) \) then \(G[v] \) is the \(L^2 \) projection of \(\partial_x v \) onto \(\mathbb{V}_p \).

\textbf{Proposition 4.7 (Discrete integration by parts).} Given \(G^\pm : H^1(\mathcal{T}) \rightarrow \mathbb{V}_p \) we have that
\[\int_{S^1} G^\pm[v_h] \Phi = - \int_{S^1} v_h G^\mp[\Phi] \quad \forall v_h, \Phi \in \mathbb{V}_p. \] (4.9)

\textit{Proof.} The proof follows immediately from the definition of \(G^\pm[\cdot] \) and the elementwise integration formulae in Proposition 4.4. Indeed,
\[
\int_{S^1} G^\pm[v_h] \Phi = \sum_{K \in \mathcal{T}} \int_K \partial_x v_h \Phi - \int_{\mathcal{E}} \llbracket v_h \rrbracket \Phi^\pm
= \sum_{K \in \mathcal{T}} - \int_K v_h \partial_x \Phi + \int_{\mathcal{E}} \llbracket \Phi \rrbracket v_h^\mp
= - \int_{S^1} v_h G^\mp[\Phi],
\]

as required. \(\square \)
4.8. Discrete scheme. We will examine the following class of semi-discrete numerical schemes where we seek \((u_h, v_h, \tau_h) \in C^1(0, T; V_p) \times C^1(0, T; V_p) \times C^0(0, T; V_p)\) determined such that

\[
0 = \int_{S^1} \partial_t u_h \Phi - G^-[v_h] \Phi \quad \forall \Phi \in V_p
\]
\[
0 = \int_{S^1} \partial_t v_h \Psi - G^+[\tau_h] \Psi + \mu G^-[v_h]G^-[\Psi] \quad \forall \Psi \in V_p
\]
\[
0 = \gamma \mathcal{A}_h(u_h, Z) + \int_{S^1} \tau_h Z - W'(u_h)Z \quad \forall Z \in V_p,
\]

where \(\mathcal{A}_h : V_p \times V_p \to \mathbb{R}\) is a consistent, symmetric bilinear form representing a discretisation of the Laplacian. We impose that it is coercive with respect to the \(dG\) seminorm on \(V_p\).

The initial data for the semi-discrete scheme are given as follows: \(u_h(\cdot, 0)\) is the Riesz projection of \(u_0\) with respect to \(\mathcal{A}_h\), that is, \(u_h\) satisfies

\[
\mathcal{A}_h(u_h(\cdot, 0), \Phi) = \mathcal{A}_h(u_0, \Phi) \quad \forall \Phi \in V_p,
\]

with the additional constraint of having the same mean value. We also define \(v_h(\cdot, 0)\) to be the \(L_2\) projection of \(v_0\), that is,

\[
\int_{S^1} v_h(\cdot, 0)\Psi = \int_{S^1} v_0\Psi \quad \forall \Psi \in V_p.
\]

Proposition 4.9 (Energy consistency). The discretisation (4.11) is energy consistent in the sense that there is a monotonically decreasing energy functional [GMP13; GP13]. Let \((u_h, v_h, \tau_h)\) be a solution of (4.11), then the following equality holds for \(0 < t < T\)

\[
d_t \left(\int_{S^1} W(u_h) + \frac{1}{2} |v_h|^2 + \gamma \mathcal{A}_h(u_h, u_h) \right) = -\mu \int_{S^1} |G^-[v_h]|^2.
\]

Proof. Taking \(\Phi = \tau_h\) in (4.11)1, \(\Psi = v_h\) in (4.11)2 and taking the sum yields

\[
0 = \int_{S^1} \partial_t u_h \tau_h - G^-[v_h] \tau_h + \partial_t v_h v_h - G^+[\tau_h] v_h + \mu G^-[v_h]G^-[v_h].
\]

Taking \(Z = \partial_t u_h\) in (4.11)3 and substituting into (4.15) we see

\[
0 = \int_{S^1} W'(u_h) \partial_t u_h + \partial_t v_h v_h + \mu G^-[v_h]G^-[v_h] + \gamma \mathcal{A}_h(u_h, \partial_t u_h),
\]

which gives

\[
0 = d_t \left[\int_{S^1} W(u_h) + \frac{1}{2} v_h^2 + \gamma \mathcal{A}_h(u_h, u_h) \right] + \mu \int_{S^1} |G^-[v_h]|^2,
\]

yielding the desired result. \(\Box\)

Remark 4.10 (\(L_\infty\) bound of \(u_h\)). Proposition 4.9 shows that the energy functional

\[
\int_{S^1} W(u_h) + \frac{1}{2} |v_h|^2 + \gamma \mathcal{A}_h(u_h, u_h)
\]

is non-increasing in time. Due to the coercivity of \(\mathcal{A}_h\) this implies \(\|u_h(\cdot, t)\|_{dG}^2\) is uniformly bounded in time, in terms of the initial data \(u_0, v_0\). Thus we have that \(\|u_h\|_{L_\infty(S^1 \times (0, T))}^2\) is bounded (in terms of the initial data).

Lemma 4.11 (Existence of solutions of (4.11) [GP14, Lem 3.7]). Solutions of (4.11) with initial data defined in (4.12)–(4.13) exist for arbitrarily long times \(T\).
Theorem 4.12 (Apriori estimates for the scheme [GP14, Thm 6.1]). Let the exact solution \((u, v)\) of (2.3) satisfy
\[
\begin{align*}
&u \in C^1(0, T; H^{q+3}(S^1)) \cap C^0(0, T; C^{q+3}(S^1)) \\
&v \in C^1(0, T; H^{q+2}(S^1)) \cap C^0(0, T; H^{q+3}(S^1))
\end{align*}
\tag{4.19}
\]
and let \(W \in C^{q+3}(\mathbb{R}, [0, \infty))\). In addition suppose \(u_h, v_h, \tau_h\) are solutions of the semidiscrete scheme (4.11). Then there exists \(C > 0\) independent of \(h\), but depending on \(q, T, \gamma, \frac{h}{\min_n h_n}, u, v\) such that
\[
\sup_{0 \leq t \leq T} \left(\|u_h(\cdot, t) - u(\cdot, t)\|_{dG} + \|v_h(\cdot, t) - v(\cdot, t)\|_{L_2} \right)
\leq C h^q \left(\|u\|_{L_\infty(0, T; C^{q+3}(S^1))} + \|v\|_{L_\infty(0, T; H^{q+3}(S^1))} + \|\partial_t v\|_{L_\infty(0, T; C^{q+2}(S^1))} \right) \tag{4.20}
\]

Remark 4.13 (Notation convention). To avoid the proliferation of constants, unless otherwise specified, we will henceforth use the convention that \(a \preceq b\) means \(a \leq C b\) for a generic constant \(C\) that may depend on the domain, triangulation or polynomial degree, but is independent of the meshsize \(h\), problem parameters \(\mu\) and \(\gamma\) and exact or discrete solutions \((u, v), (u_h, v_h, \tau_h)\). In view of this our final result will be an a posteriori indicator, however an estimator can be achieved by explicitly tracking the constants, for clarity of exposition we will not do this here.

To set up the a posteriori analysis we require access to two families of reconstruction operators.

Definition 4.14 (Discrete reconstruction operators). We define \(D^\pm : \mathbb{V}_p \to \mathbb{V}_{p+1}\) to be the discrete reconstruction operator satisfying for \(v_h \in \mathbb{V}_p\)
\[
0 = \int_{S^1} \partial_
u D^\pm [v_h] \Phi - G^\pm [v_h] \Phi \quad \forall \Phi \in \mathbb{V}_p \tag{4.21}
\]
with
\[
(D^\pm [v_h])^\pm = v_h^\pm \quad \text{on} \ \mathcal{E}.
\]

Remark 4.15 (Continuity of \(D^\pm [\cdot]\)). Note that \(D^\pm\) are constructed such that for any \(v_h \in \mathbb{V}_p\) we have that \(D^\pm [v_h] \in \mathbb{V}_{p+1} \cap C^0(S^1)\). In addition we have the following approximation properties, proofs of which can be found in [MN06, c.f.]
\[
\begin{align*}
\|v_h - D^\pm [v_h]\|_{L_2(S^1)}^2 &\lesssim \left\| \sqrt{h_{x_0}^2} \| v_h \|_{L_2(\mathcal{E})} \right\|^2 \tag{4.22} \\
\|v_h - D^\pm [v_h]\|_{dG}^2 &\lesssim \left\| \sqrt{h_{x_0}^{-1}} \| v_h \|_{L_2(\mathcal{E})} \right\|^2. \tag{4.23}
\end{align*}
\]

Remark 4.16 (Multidimensional extension). The analysis which we present in this work is fully extendable to the multi dimensional setting with the exception of the discrete reconstruction operators \(D^\pm\). The construction of appropriate generalisations of \(D^\pm\) is the topic of ongoing research.

Remark 4.17 (Orthogonality). Note that \(D^\pm\) are constructed such that for any \(v_h \in \mathbb{V}_p\) and \(\Phi \in \mathbb{V}_{p-1}\) we have that
\[
\int_{S^1} (D^\pm [v_h] - v_h) \Phi = 0.
\]
A proof can be found in [GMP14, c.f.]

A proof can be found in [GMP14, c.f.]

9
Definition 4.18 (Continuous projection operator). We define \(P_p^C : L_2(\mathcal{F}) \rightarrow \mathcal{V}_p \cap C^0(S^1) \) to be the \(L_2(S^1) \) orthogonal projection operator satisfying

\[
\int_{S^1} P_p^C w \Phi = \int_{S^1} w \Phi \quad \forall \Phi \in \mathcal{V}_p \cap C^0(S^1).
\]

It is readily verifiable that \(P_p^C \) is stable in \(L_2(S^1) \), that is, \(\| P_p^C w \|_{L_2(S^1)} \leq \| w \|_{L_2(S^1)} \) and has optimal approximation properties

\[
\| P_p^C w - w \|_{L_2(S^1)} \lesssim h^{p+1} \| w \|_{H^{p+1}(S^1)}.
\]

Definition 4.19 (Continuous reconstruction operators). We define three continuous reconstruction operators, \(\mathcal{R}_1[u_h] \in H^1(S^1), \mathcal{R}_2[u_h] \in H^2(S^1) \) and \(\mathcal{P}[v_h] \in H^2(S^1) \) to be solutions of

\[
0 = \gamma \partial_{xx} \mathcal{R}_1[u_h] - P_{p+1}^C W'(u_h) + D^+ [\tau_h]
\]

\[
0 = \gamma \partial_{xx} \mathcal{R}_2[u_h] - W'(u_h) + \tau_h
\]

\[
0 = \partial_{x} \mathcal{P}[v_h] - \partial_{x} \mathcal{R}_1[u_h],
\]

respectively, such that each of the problems has matching mean value with the discrete solution, that is

\[
0 = \int_{S^1} \mathcal{R}_1[u_h] - u_h = \int_{S^1} \mathcal{R}_2[u_h] - u_h = \int_{S^1} \mathcal{P}[v_h] - v_h.
\]

Lemma 4.20 (Reconstructed PDE system). The reconstructions given in Definition 4.19 satisfy the following perturbation of (2.3)

\[
\partial_t \mathcal{R}_1[u_h] - \partial_x \mathcal{R}_1[u_h] = 0
\]

\[
\partial_x \mathcal{R}_1[u_h] - \partial_x W'(\mathcal{R}_1[u_h]) + \gamma \partial_{xx} \mathcal{R}_1[u_h] - \mu \partial_{xx} \mathcal{R}_1[u_h] = E,
\]

where

\[
E := \partial_t (\mathcal{R}_1[u_h] - v_h) - \partial_t (W'(\mathcal{R}_1[u_h]) - P_{p+1}^C W'(u_h)) - \mu \partial_{x} \mathcal{R}_1[u_h] - D^+ [\partial_t u_h] - D^+ [\partial_t u_h].
\]

Proof. Using the smoothness of the reconstruction \(\mathcal{R}_1[u_h] \) we see that

\[
0 = \gamma \partial_{xx} \mathcal{R}_1[u_h] - \partial_x P_{p+1}^C W'(u_h) + \partial_x D^+ [\tau_h].
\]

Using the semi-discrete scheme (4.11) we have that \(G^- [v_h] = \partial_t u_h \), substituting this into (4.11) we see

\[
0 = \int_{S^1} \partial_t v_h \Psi - G^+ [\tau_h] \Psi + \mu G^- [v_h] G^- [\Psi]
\]

\[
= \int_{S^1} \partial_t v_h \Psi - G^+ [\tau_h] \Psi + \mu \partial_t u_h G^- [\Psi].
\]

Making use of the discrete integration by parts in Proposition 4.7 we have that

\[
0 = \int_{S^1} \partial_t v_h \Psi - G^+ [\tau_h] \Psi - \mu \partial_x D^+ [\partial_t u_h] \Psi.
\]

Now in view of the discrete reconstruction operator given in Definition 4.14 we see

\[
0 = \int_{S^1} \partial_t v_h \Psi - G^+ [\tau_h] \Psi - \mu \partial_x D^+ [\partial_t u_h] \Psi.
\]
As \(\partial_t v_h(t, \cdot), G^+[\tau_h](\cdot, t), \partial_x D^+[\partial_t u_h](\cdot, t) \in \mathcal{V}_p \) we may write (4.33) pointwise as
\[
0 = \partial_t v_h - G^+[\tau_h] - \mu \partial_x D^+[\partial_t u_h].
\] (4.34)

Using (4.30) and (4.34) together with the definition of \(\mathcal{R}[v_h] \) we see that
\[
0 = \partial_t \mathcal{R}[v_h] - \partial_x W'(\mathcal{R}_1[u_h]) + \gamma \partial_{xxx} \mathcal{R}_1[u_h] - \mu \partial_{xx} \mathcal{R}[v_h] - \partial_t \mathcal{R}[v_h] - \partial_x \left(W'(\mathcal{R}_1[u_h]) - P_{P+1} W'(u_h) \right) + \mu \partial_x \mathcal{R}_1[u_h] - D^+[\partial_t u_h],
\] (4.35)

showing the second equation of the Lemma, the first is obtained using the definition of \(\mathcal{R}[v_h] \), concluding the proof. \(\square \)

Remark 4.21 (Regularity bounds for the reconstructions). Note that the problems which define the reconstruction operators in Definition 4.19 are well posed in view of the elliptic problem’s unique solvability, moreover, thanks to elliptic regularity, we have
\[
\| \mathcal{R}_1[u_h] \|_{H^{k+1}(S_1)} \lesssim \frac{1}{\gamma} \| P_{P+1} W'(u_h) - D^+[\tau_h] \|_{H^{k-1}(S_1)} \quad \forall k \in \{0, 1, 2\}
\]
\[
\| \mathcal{R}_2[u_h] \|_{H^{k+1}(S_1)} \lesssim \frac{1}{\gamma} \| W'(u_h) - \tau_h \|_{H^{k-1}(S_1)} \quad \forall k \in \{0, 1\} \text{ and}
\]
\[
\| \mathcal{R}[v_h] \|_{H^{k+1}(S_1)} \lesssim \| \partial_x \mathcal{R}_1[u_h] \|_{H^{k-1}(S_1)} \quad \forall k \in \{0, 1\}.
\] (4.36)

Assumption 4.22 (Aposteriori control on \(\mathcal{R}_h(\cdot, \cdot) \)). The reconstruction \(\mathcal{R}_2[u_h] \) is the elliptic reconstruction of \(u_h \). We will make the assumption that there exists an optimal order elliptic a posteriori estimate controlling \(\| u_h - \mathcal{R}_2[u_h] \|_{dG} \), that is, there exists a functional \(H_1 \) depending only upon \(u_h \) and the problem data such that
\[
\| u_h - \mathcal{R}_2[u_h] \|_{dG} \leq H_1[u_h, \frac{1}{\gamma}(\tau_h - W'(u_h))] \sim O(h^p).
\] (4.37)

Example 4.23 (Aposteriori control for the IP discretisation). Taking \(f = \tau_h - W'(u_h) \), if \(\mathcal{R}_h(\cdot, \cdot) \) takes the form of an interior penalty discretisation
\[
\mathcal{R}_h(u_h, Z) = \int_{S_1} \partial_x u_h \partial_x Z - \frac{1}{h} \| \partial_x u_h \| \| \partial_x Z \| + \frac{1}{h} \| \partial_x u_h \| [Z] - \frac{\sigma}{h} \| u_h \| [Z],
\] (4.38)

where \(\sigma \) is the penalty parameter and is chosen large enough to guarantee coercivity, we may use estimates of the form
\[
H_1[u_h, f] = \sum_{K \in \mathcal{T}} h_K^2 \| f - \partial_{xx} u_h \|_{L^2(K)}^2 + \sum_{e \in \mathcal{E}} \left[h_e \| \partial_x u_h \|_{L^2(e)}^2 + \sigma^2 h_e^{-1} \| u_h \|_{L^2(e)}^2 \right].
\] (4.39)

See for example [KP03].

5. **Aposteriori analysis.** We begin this section by stating some technical Lemmata required for the main result.

Lemma 5.1 (Reduced relative entropy bound). Let \((u, v) \in C^4(0, T; H^3(S^1)) \times C^1(0, T; H^2(S^1)) \) solve the model problem (2.3) and \((u_h, v_h, \tau_h) \in C^1((0, T), \mathcal{V}_p) \times C^1((0, T), \mathcal{V}_p) \times C^0((0, T), \mathcal{V}_p) \) be the semidiscrete approximations generated by the scheme (4.11) then given the reduced relative entropy
\[
\eta_R(t) := \int_{S^1} \frac{\gamma}{2} (\partial_x u - \partial_x \mathcal{R}_1[u_h])^2 + \frac{1}{2} (v - \mathcal{R}[v_h])^2,
\] (5.1)

we have that
\[
d_t \eta_R(t) \leq K[\mathcal{R}_1[u_h(\cdot, t)]][\eta_R(t) + \| E(\cdot, t) \|_{L^2(S^1)}^2],
\] (5.2)
with $E = E_1 - E_2 - E_3$ and

$$E_1 := \partial(\mathcal{R}[v_h] - v_h)$$
$$E_2 := \partial_x(W'(\mathcal{R}[u_h]) - P^{C}_{p+1}W'(u_h))$$
$$E_3 := \mu \partial_x(\partial_t \mathcal{R}[u_h] - D^+ \partial_t u_h).$$

\textbf{Proof.} The proof consists of taking $\tilde{u} = \mathcal{R}[u_h]$ and $\tilde{v} = \mathcal{R}[v_h]$ in Theorem 3.3. Noting that from Lemma 4.20 the reconstructions satisfy the correct PDE with residual $R = E$. \qed

\textbf{Lemma 5.2 (Modified reduced relative entropy bound).} Let the conditions of Lemma 5.1 hold. Given the modified reduced relative entropy

$$\eta_M(t) := \int_{S^1} \gamma^2 \left(\partial_x u - \partial_x \mathcal{R}[u_h]\right)^2 + \frac{1}{2} (u - \mathcal{R}[u_h])^2 + \frac{1}{2} \left(v - \mathcal{R}[v_h]\right)^2,$$

we have that

$$d_t \eta_M(t) \leq K([\partial_t \mathcal{R}[u_h] - \partial_t \mathcal{R}[v_h]]) \eta_M(t) + \|E(\cdot, t)\|_{L^2(S^1)}^2,$$

with E given in Lemma 5.1.

\textbf{Lemma 5.3 (Bound on the reconstruction of u_h).} Let u_h, v_h, τ_h be given by (4.11) and $\mathcal{R}[u_h]$ be the reconstruction given in Definition 4.19, then

$$\|\mathcal{R}[u_h] - u_h\|_{L^2(S^1)} \lesssim \|\mathcal{R}[u_h] - u_h\|_{d_G} \lesssim \|H[1, \frac{1}{\gamma}(\tau_h - W'(u_h))] + \frac{1}{\gamma} \|P^{C}_{p+1}(W'(u_h)) - W'(u_h)\|_{H^{-1}(S^1)} + \frac{1}{\gamma} \|\partial_t \mathcal{R}[u_h] - \partial_t \mathcal{R}[v_h]\|_{H^{-1}(S^1)}.$$ (5.8)

\textbf{Proof.} Using the triangle inequality we have that

$$\|\mathcal{R}[u_h] - u_h\|_{d_G} \lesssim \|\mathcal{R}[u_h] - \mathcal{R}[u_h]\|_{d_G} + \|\mathcal{R}[u_h] - u_h\|_{d_G}. $$

Using the elliptic regularity of the problem we have that

$$\|\mathcal{R}[u_h] - \mathcal{R}[u_h]\|_{d_G} \lesssim \|\partial_t \mathcal{R}[u_h] - \partial_t \mathcal{R}[v_h]\|_{H^{-1}(S^1)} + \frac{1}{\gamma^2} \|P^{C}_{p+1}(W'(u_h)) - W'(u_h)\|_{H^{-1}(S^1)} + \frac{1}{\gamma} \|\partial_t \mathcal{R}[u_h] - \partial_t \mathcal{R}[v_h]\|_{H^{-1}(S^1)}.$$ (5.10)

The result then follows from Assumption 4.22 and the discrete Poincaré inequality. We have that

$$\|\mathcal{R}[u_h] - u_h\|_{d_G} \lesssim \|H[1, \frac{1}{\gamma}(\tau_h - W'(u_h))].$$

Substituting (5.10) and (5.11) into (5.9) concludes the proof. \qed

\textbf{Lemma 5.4 (Bound on the reconstruction of v_h).} Let u_h, v_h, τ_h be given by (4.11) and $\mathcal{R}[v_h]$ be the reconstruction given in Definition 4.19, then

$$\|\mathcal{R}[v_h] - v_h\|_{L^2(S^1)} \lesssim \|\partial_t \mathcal{R}[u_h] - \partial_t \mathcal{R}[v_h]\|_{H^{-1}(S^1)} + \frac{1}{\gamma} \|P^{C}_{p+1}(\partial_t W'(u_h)) - \partial_t W'(u_h)\|_{H^{-1}(S^1)} + \frac{1}{\gamma} \|\partial_t \mathcal{R}[u_h] - \partial_t \mathcal{R}[v_h]\|_{H^{-1}(S^1)} + \frac{1}{\gamma} \|\mathcal{R}[v_h]\|_{H^1(S^1)}.$$ (5.12)
Proof. Using the triangle inequality we have that
\[
\|D[v_h] - v_h\|_{L^2(S^1)} \lesssim \|D[v_h] - D^-[v_h]\|_{L^2(S^1)} + \|D^-[v_h] - v_h\|_{L^2(S^1)}.
\] (5.13)

Using a Poincaré inequality and the approximation properties of D^- given in Remark 4.15, we see
\[
\|D[v_h] - v_h\|_{L^2(S^1)} \lesssim \|\partial x(D[v_h] - D^-[v_h])\|_{L^2(S^1)} + \sqrt{h} \|v_h\|_{L^2(\mathcal{E})}.
\] (5.14)

Invoking the result of Lemma 5.3 gives
\[
\|\partial(\mathcal{P}_l[u_h] - u_h)\|_{L^2(S^1)} \lesssim H_1[\partial_t u_h, \frac{1}{\gamma}(\partial_t \tau_h - W'(u_h))] + \frac{1}{\gamma^2} \|\partial_t (P_{p+1}W'(u_h)) - W'(u_h)\|_{H^{-1}(S^1)} \]
\[
+ \frac{1}{\gamma} \|\partial(D^+[\tau_h] - \tau_h)\|_{H^{-1}(S^1)}.
\] (5.15)

Substituting (5.15) into (5.14) gives the desired result. □

Lemma 5.5 (Upper bound on E_1). Let the conditions of Lemma 5.1 hold, then
\[
\|E_1\|_{L^2(S^1)}^2 \lesssim H_1[\partial_t u_h, \frac{1}{\gamma}(\partial_t \tau_h - \partial_t W'(u_h))]^2
\]
\[
+ h \left(\frac{1}{\gamma^2} \|\partial_t \tau_h\|_{L^2(\mathcal{E})}^2 + \|\partial_t v_h\|_{L^2(\mathcal{E})}^2 + \frac{1}{\gamma^2} \|\partial_t u_h\|_{L^2(\mathcal{E})}^2 \right)
\]
\[
+ \frac{1}{\gamma^2} \sum_{K \in \mathcal{F}} h_K^{2p+3} \|\partial_t W'(u_h)\|_{H^{p+1}(K)}^2.
\] (5.16)

Proof. Using the triangle inequality we have that
\[
\|E_1\|_{L^2(S^1)}^2 = \|\partial(\mathcal{P}[v_h] - v_h)\|_{L^2(S^1)}^2
\]
\[
\lesssim \|\partial(\mathcal{P}[v_h] - D^-[v_h])\|_{L^2(S^1)}^2 + \|\partial(D^-[v_h] - v_h)\|_{L^2(S^1)}^2.
\] (5.17)

Using a Poincaré inequality and the approximation properties of $D^-[-]$ given in Remark 4.15, we see
\[
\|E_1\|_{L^2(S^1)}^2 \lesssim \|\partial(xD[v_h] - D^-[v_h])\|_{L^2(S^1)}^2 + h \|\partial v_h\|_{L^2(\mathcal{E})}^2
\]
\[
\lesssim \|\partial(D^+[u_h] - u_h)\|_{L^2(S^1)}^2 + h \|\partial v_h\|_{L^2(\mathcal{E})}^2.
\] (5.18)

In view of Lemma 5.3 we have that
\[
\|E_1\|_{L^2(S^1)}^2 \lesssim \frac{1}{\gamma^2} \|\partial(W'(u_h) - P_{p+1}^-W'(u_h))\|_{H^{-1}(S^1)}^2 + h \|\partial v_h\|_{L^2(\mathcal{E})}^2
\]
\[
+ H_1[\partial_t u_h, \frac{1}{\gamma}(\partial_t \tau_h - \partial_t W'(u_h))]^2 + \frac{h}{\gamma^2} \|\partial t \tau_h\|_{L^2(\mathcal{E})}^2.
\] (5.19)

Notice the bound is already a posteriori computable, however to avoid the computation of $P_{p+1}^-W'(u_h)$ we give a bound for this term. To that end let $S_p : H^1(\mathcal{F}) \to \mathcal{V}_p$ be a projection operator defined such that
\[
\int_{S^1} S_p w \Phi = \int_{S^1} w \Phi \quad \forall \Phi \in \mathcal{V}_{p-2}
\]
\[
S_p w(x_\pm) = w(x_\pm).
\] (5.20)
Note that \(S_p \) exactly projects piecewise polynomials of degree \(p \), hence we have the approximation result
\[
\|w - S_p w\|_{L_2(S^1)}^2 \lesssim \sum_{K \in \mathcal{K}} h_K^{2p+3} |w|_{H^{p+1}(K)}^2
\] (5.21)
and
\[
\|w - S_p w\|_{dG}^2 \lesssim \sum_{K \in \mathcal{K}} h_K^{2p+1} |w|_{H^{p+1}(K)}^2.
\] (5.22)
Now
\[
\|\partial_u(W'(u_h) - P_{p+1}^C W'(u_h))\|_{H^{-1}(S^1)}^2 \leq \|\partial_u(W'(u_h) - S_p W'(u_h))\|_{L_2(S^1)}^2
\]
\[+ \|\partial_u(S_p W'(u_h) - P_{p+1}^C S_p W'(u_h))\|_{L_2(S^1)}^2
\] (5.23)
\[+ \|\partial_u(P_{p+1}^C S_p W'(u_h) - P_{p+1}^C W'(u_h))\|_{L_2(S^1)}^2 = E^{1.1} + E^{1.2} + E^{1.3}.
\]
In view of the stability of the \(L_2 \) projection we have that
\[E^{1.3} \leq E^{1.1}.
\] (5.24)
From the approximation properties of \(S_p \) given in (5.21) we have
\[E^{1.1} \lesssim \sum_K h_K^{2p+3} \|\partial_u W'(u_h)\|_{H^{p+1}(K)}^2.
\] (5.25)
Moreover, we see that
\[E^{1.2} \lesssim h \|\|\partial_u W'(u_h)\|_{L_2(\mathcal{E})}^2 \lesssim h \|\partial_u u_h\|_{L_2(\mathcal{E})}^2,
\] (5.26)
hence
\[\|\partial_u(W'(u_h) - P_{p+1}^C W'(u_h))\|_{H^{-1}(S^1)} \lesssim h \|\partial_u u_h\|_{L_2(\mathcal{E})}^2
\] (5.27)
\[+ \sum_K h_K^{2p+3} \|\partial_u W'(u_h)\|_{H^{p+1}(K)}^2.
\]
Combining (5.19) with (5.27) yields the desired result. □

Lemma 5.6 (Upper bound on \(E_2 \)). Let the conditions of Lemma 5.1 hold, then
\[
\|E_2\|_{L_2(S^1)}^2 \lesssim H_1 |u_h\| \left(\frac{1}{\gamma} (\tau_h - W'(u_h))^2 \right) + \frac{h}{\gamma^2} \left(\|\tau_h\|_{L_2(\mathcal{E})}^2 + \|u_h\|_{L_2(\mathcal{E})}^2 \right)
\] (5.28)
\[+ \sum_{K \in \mathcal{K}} h_K^{2p+1} \|W'(u_h)\|_{H^{p+1}(K)}^2 + \frac{1}{\gamma^2} \sum_{K \in \mathcal{K}} h_K^{2p+3} \|W'(u_h)\|_{H^{p+1}(K)}^2.
\]
Proof. To begin we note that in view of the triangle inequality
\[
\|E_2\|_{L_2(S^1)}^2 = \|\partial_u(W'(\mathcal{A}[u_h]) - P_{p+1}^C W'(u_h))\|_{L_2(S^1)}^2
\]
\[\lesssim \|W'(\mathcal{A}[u_h]) - W'(u_h)\|_{dG}^2 + \|W'(u_h) - P_{p+1}^C W'(u_h)\|_{dG}^2
\] (5.29)
\[=: E^{2.1} + E^{2.2}.
\]
To control the term $E^{2,1}$ we note

$$E^{2,1} = \|W'(\mathcal{A}_1[u_h]) - W'(u_h)\|_{\delta G}^2 \lesssim \|\mathcal{A}_1[u_h] - u_h\|_{\delta G}^2. \quad (5.30)$$

Applying Lemma 5.3 and the same principles as in the proof of Lemma 5.5 we arrive at

$$E^{2,1} \lesssim H_1[u_h, \frac{1}{\gamma}(\tau_h - W'(u_h))]^2 + \frac{h}{\gamma^2} \left(\|\tau_h\|_{L_2(\mathcal{E})^2}^2 + \|u_h\|_{L_2(\mathcal{E})^2}^2 \right) + \frac{1}{\gamma^2} \sum_{K} h_K^{2p+3} \|W'(u_h)\|_{H^{p+1}(K)}^2. \quad (5.31)$$

To bound the term $E^{2,2}$ we reuse the methodology used to control $E^{1,1}$ given in the proof of Lemma 5.5. We have

$$E^{2,2} = \|W'(u_h) - P_{p+1}^c W'(u_h)\|_{\delta G}^2 \lesssim \|W'(u_h) - S_{p} W'(u_h)\|_{\delta G}^2 + \|S_{p} W'(u_h) - P_{p+1}^c S_{p} W'(u_h)\|_{\delta G}^2$$

$$+ \|P_{p+1}^c S_{p} W'(u_h) - P_{p+1}^c W'(u_h)\|_{\delta G}^2$$

$$\lesssim \left\| \sqrt{h_{\delta}^{-1}} \|u_h\|_{L_2(\mathcal{E})}^2 \right\| + \sum_{K \in \mathcal{S}} h_K^{2p+1} \|W'(u_h)\|_{H^{p+1}(K)}^2, \quad (5.32)$$

in view of the stability of the L_2 projection in $H^1(\mathcal{S})$ and inverse inequalities. Inserting (5.31) and (5.32) into (5.29) concludes the proof. \square

Lemma 5.7 (Upper bound on E_3). Let the conditions of Lemma 5.1 hold, then

$$\|E_3\|_{L_2(S^{1})}^2 \lesssim \mu \left[H_1[\partial_t u_h, \frac{1}{\gamma}(\partial_t \tau_h - \partial_t W'(u_h))]^2 + \frac{h}{\gamma^2} \left(\|\partial_t \tau_h\|_{L_2(\mathcal{E})^2}^2 + \|\partial_t u_h\|_{L_2(\mathcal{E})^2}^2 \right) \right. + \left. \frac{1}{\gamma^2} \sum_{K \in \mathcal{S}} h_K^{2p+3} \|\partial_t W'(u_h)\|_{H^{p+1}(K)}^2 \right]. \quad (5.33)$$

Proof. In view of the triangle inequality we have

$$\|E_3\|_{L_2(S^{1})}^2 = \mu \|\partial_t \mathcal{A}_1[u_h] - D^+[\partial_t u_h]\|_{L_2(S^{1})}^2$$

$$\lesssim \mu \left(\|\partial_t \mathcal{A}_1[u_h] - \partial_t u_h\|_{\delta G}^2 + \|\partial_t u_h - D^+[\partial_t u_h]\|_{\delta G}^2 \right) \quad (5.34)$$

$$=: E^{3,1} + E^{3,2}.$$

Applying Lemma 5.3 to $E^{3,1}$ and the approximation properties of D^+ concludes the proof. \square

Theorem 5.8 (Aposteriori control of the reduced relative entropy). Let the conditions of Lemma 5.1 hold, then

$$\eta_R(t) \lesssim \left(\eta_R(0) + \int_0^t \mathcal{E}_S[u_h(s), v_h(s), \tau_h(s)]^2 \, ds \right) \exp \left(\int_0^t K[\mathcal{A}_1[u_h]](s) \, ds \right) \quad (5.35)$$
with

\[E_t[u_h, v_h, \tau_h] := H_1[u_h, u_h, \frac{1}{\gamma}(\tau_h - W'(u_h))]^2 + \mu H_1[\partial_t u_h, \frac{1}{\gamma}(\partial_t \tau_h - \partial_t W'(u_h))]^2 + H_1[\partial_t u_h, \frac{1}{\gamma}(\partial_t \tau_h - \partial_t W'(u_h))]^2 + \left\| \sqrt{h_{\gamma}} u_h \right\|_{L_2(\mathcal{E})}^2 + \left\| \sqrt{h_{\gamma}} v_h \right\|_{L_2(\mathcal{E})}^2 + \left\| \sqrt{h_{\gamma}} w_h \right\|_{L_2(\mathcal{E})}^2 + \left\| \sqrt{h_{\gamma}} \tau_h \right\|_{L_2(\mathcal{E})}^2 \]

and

\[E_{t_1}[u_h, v_h, \tau_h] := \left(\sum_{K \in \mathcal{F}} h_{\gamma}^2 \right) \left(\left\| \sqrt{h_{\gamma}} u_h \right\|_{L_2(\mathcal{E})}^2 + \left\| \sqrt{h_{\gamma}} v_h \right\|_{L_2(\mathcal{E})}^2 + \left\| \sqrt{h_{\gamma}} w_h \right\|_{L_2(\mathcal{E})}^2 + \left\| \sqrt{h_{\gamma}} \tau_h \right\|_{L_2(\mathcal{E})}^2 \right) \]

\[\text{Lemmas 5.5, 5.6 and 5.7.} \]

Proof. The result follows from applying the Gronwall inequality to Lemma 5.1 and using the bounds provided from Lemmata 5.5, 5.6 and 5.7. \[\square \]

Lemma 5.9 (Aposteriori control of the initial entropy error). Let the conditions of Lemma 5.1 hold, then

\[\eta_R(0) \lesssim \left\| (u - u_h)(\cdot, 0) \right\|_{dC}^2 + \left\| (v - v_h)(\cdot, 0) \right\|_{L_2(S^1)}^2 + \gamma H_1[u_h, u_h, \frac{1}{\gamma}(\tau_h^0 - W'(u_h^0))]^2 \]

\[+ \left\| \frac{h}{\gamma} (\left\| \sqrt{h_{\gamma}} u_h^0 \right\|_{L_2(\mathcal{E})}^2 + \left\| \sqrt{h_{\gamma}} v_h^0 \right\|_{L_2(\mathcal{E})}^2) \right\|_{L_2(\mathcal{E})}^2 \]

\[=: E_0[u_h^0, v_h^0, \tau_h^0] \]

with \(u_h^0 := u_h(\cdot, 0), v_h^0 := v_h(\cdot, 0), \tau_h^0 := \tau_h(\cdot, 0). \)

Proof. Recall that

\[\eta_R(t) = \frac{1}{2} \int_{S^1} (v(\cdot, t) - \mathcal{R}[v_h(\cdot, t)])^2 + \gamma (\partial_u u(\cdot, t) - \partial_x \mathcal{R}[u_h(\cdot, t)])^2, \]

then in view of the triangle inequality we have that

\[\eta_R(t) \lesssim \left\| (v - v_h)(\cdot, t) \right\|_{dC}^2 + \left\| \mathcal{R}[v_h](\cdot, t) - v_h(\cdot, t) \right\|_{L_2(S^1)}^2 \]

\[+ \gamma \left(\left\| u(\cdot, t) - u_h(\cdot, t) \right\|_{dC}^2 + \left\| \mathcal{R}[u_h](\cdot, t) - u_h(\cdot, t) \right\|_{dC}^2 \right) \]

To compute \(\eta_R(0) \) we follow analogous arguments as in Lemmata 5.3 and 5.4, taking the one sided limit as \(t \to 0^+ \), concluding the proof. \[\square \]

Theorem 5.10 (Aposteriori control of the reduced entropy error). Let the conditions of Lemma 5.1 hold and define

\[e_R(t) := \sqrt{\gamma} \left\| (u - u_h)(\cdot, t) \right\|_{dC} + \left\| (v - v_h)(\cdot, t) \right\|_{L_2(S^1)} \]

(5.40)
then

\[
e_R(t) \lesssim \left[E_0[u_h^0, v_h^0, \tau_h^0] + \int_0^t E_s[u_h, v_h, \tau_h] \, ds \right]^{1/2} \times \exp \left(\frac{1}{2} \int_0^t K[\mathcal{R}_1[u_h]](s) \, ds \right) \\
+ \sqrt{\gamma} \left[H_1[u_h, \frac{1}{\gamma}(\tau_h - W'(u_h))]^2 + \frac{h}{\gamma^2} \left(\| \tau_h^0 \|^2_{L^2(\Omega)} + \| u_h^0 \|^2_{L^2(\Omega)} \right) \right]^{1/2} \\
+ \frac{1}{\gamma^2} \sum_{K \in \mathcal{T}} h_{K}^{2\alpha + 3} \| W'(u_h) \|^2_{H^{\alpha+1}(K)} \right]^{1/2}. \tag{5.41}
\]

Proof. The proof follows by combining Theorem 5.8, Lemma 5.9 and noting that

\[
\gamma \| u(\cdot, t) - u_h(\cdot, t) \|^2_{dG} + \| v(\cdot, t) - v_h(\cdot, t) \|^2_{L^2(S^1)} \\
\lesssim \| \mathcal{R}[v_h](\cdot, t) - v_h(\cdot, t) \|^2_{L^2(S^1)} + \gamma \| \mathcal{R}_1[u_h](\cdot, t) \|^2_{dG} + \eta_R(t),
\tag{5.42}
\]

concluding the proof. \(\square \)

Remark 5.11 (Optimality of the estimator). Given the apriori convergence result of Theorem 4.12 we may infer that the indicator proposed in Theorem 5.10 is of optimal order in the case of smooth initial datum. Indeed, the leading order terms are given in the first three lines of (5.36). These are all \(O(h^{2p}) \) in view of Assumption 4.22, the boundedness of the solution, hence giving control of \(W(u_h) \), and inverse inequalities. As such the full estimator in Theorem 5.10 will be \(O(h^p) \). We refer the reader to [MN06, Rem 3.6] for a more detailed explanation of some of the terms.

Corollary 5.12 (Aposteriori control of the modified reduced entropy error). Let the conditions of Lemma 5.1 hold and define

\[
e_M(t) := \sqrt{\gamma} \| u - u_h(\cdot, t) \|^2_{\mathcal{D}} + \| u - u_h(\cdot, t) \|^2_{L^2(S^1)} + \| v - v_h(\cdot, t) \|^2_{L^2(S^1)} \tag{5.43}
\]

then

\[
e_M(t) \lesssim \left[E_0^M[u_h(0), v_h(0), \tau_h(0)] + \int_0^t E_s[u_h(s), v_h(s), \tau_h(s)] \, ds \right]^{1/2} \times \exp \left(\frac{1}{2} \int_0^t K[\mathcal{R}_1[u_h]](s) \, ds \right) \\
+ \sqrt{\gamma} \left[H_1[u_h, \frac{1}{\gamma}(\tau_h - W'(u_h))]^2 + \frac{h}{\gamma^2} \left(\| \tau_h(0) \|^2_{L^2(\Omega)} + \| u_h(0) \|^2_{L^2(\Omega)} \right) \right]^{1/2} \\
+ \frac{1}{\gamma^2} \sum_{K \in \mathcal{T}} h_{K}^{2\alpha + 3} \| W'(u_h) \|^2_{H^{\alpha+1}(K)} \right]^{1/2}. \tag{5.44}
\]

Remark 5.13 (Comparing the bounds of Theorem 5.10 and Corollary 5.12). The main difference of the final a posteriori bounds in Theorem 5.10 and Corollary 5.12 is the exponential accumulation in time. In both results, the estimator is only valid for \(\gamma > 0 \), but in Corollary 5.12 it does not depend exponentially on \(\gamma \). The result for the reduced relative entropy (Theorem 5.10) is valid in the case \(\mu = 0 \), however that of the modified reduced relative entropy blows up as \(\mu \to 0 \) as \(K \sim \frac{1}{\mu} \). Note, however, that the \(K[\mathcal{R}_1[u_h]] \) contains the Lipschitz constant of \(\mathcal{R}_1[u_h] \) whereas \(K[\mathcal{R}_1[u_h]] \) behaves like \(\| \mathcal{R}_1[u_h] \|_{L^\infty} \).

References.

