Perturbation, Computation and Refinement of Invariant Pairs for Matrix Polynomials

by

Timo Betcke and Daniel Kressner
Perturbation, Computation and Refinement of Invariant Pairs for Matrix Polynomials

Timo Betcke∗ Daniel Kressner†

July 10, 2009

Abstract

Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of invariant subspaces needs to be replaced by the concept of invariant pair. Little is known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures.

1 Introduction

Given a matrix polynomial

\[P(\lambda) = A_0 + \lambda A_1 + \lambda^2 A_2 + \cdots + \lambda^\ell A_\ell \]

with \(n \times n \) matrices \(A_0, \ldots, A_\ell \), a vector \(x \neq 0 \) is called an eigenvector belonging to some eigenvalue \(\lambda_0 \) of \(P \) if \(P(\lambda_0)x = 0 \). Generalizing the notion of an eigenpair \((x, \lambda)\), a pair \((X, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}\) is called invariant if the relation

\[P(X, S) := A_0X + A_1XS + A_2XS^2 + \cdots + A_\ell XS^\ell = 0. \]

is satisfied. One could regard the space \(X \) spanned by the columns of \(X \) as an invariant subspace for \(P \). However, as we will see in the course of this paper, the notion of invariant subspaces is rather inconvenient when dealing with polynomial eigenvalue problems and the notion of invariant pairs should be preferred.

∗t.betcke@reading.ac.uk, Department of Mathematics, University of Reading, UK. Timo Betcke acknowledges support by Engineering and Physical Sciences Research Council grant EP/D079403/1.
†kressner@math.ethz.ch, Seminar for applied mathematics, ETH Zurich, Switzerland.
For linear eigenvalue problems, it is well known that working with invariant subspaces instead of eigenvectors offers conceptual and numerical benefits [16]. For example, eigenvectors associated with a multiple eigenvalue are unstable under perturbations, that is, an arbitrarily small change in the matrix may cause some of the eigenvectors to disappear. In contrast, the corresponding invariant subspace remains stable under perturbations, provided that all copies of the eigenvalue are included in the subspace. It will be seen that similar statements hold for matrix polynomials: working with invariant pairs generally increases the robustness of numerical methods in the presence of (nearly) multiple eigenvalues.

For \(k = n\ell \), invariant pairs are closely connected to the notion of standard pairs developed by Gohberg, Lancaster, and Rodman [15]. For \(k < n\ell \), invariant pairs could therefore be seen as local versions of standard pairs. As the focus of this paper is on numerical aspects, we shall not discuss this connection in more detail.

For \(k = n \), any matrix \(S \) satisfying (2) is called a solvent. We refer to Higham and Kim [19] for existing results on solvents for \(\ell = 2 \). Currently, it is not clear to us how solvents can be put to good use in the context of invariant pairs. One emphasis of this paper is that it is best, both from a theoretical and numerical point of view, to treat the matrices \(X \) and \(S \) not as independent entities but only jointly in an invariant pair \((X, S)\).

For \(k = 1 \), invariant pairs coincide with eigenpairs (provided that \(X \neq 0 \)). Numerical aspects of eigenpairs for matrix polynomials have been studied quite intensively in the last decade. A number of theoretical results concerning the sensitivity of eigenvalues and eigenvectors of matrix polynomials under (structured) perturbations are available [5, 11, 1].

The polynomial eigenvalue problem (1) is usually solved via linearization and a large class of linearizations particularly suitable for computing eigenpairs has been introduced in Mackey et al. [29]. The effects of linearization on the (structured) eigenvalue sensitivity and backward error have been studied in [20, 21, 1], leading to clear recommendations which linearization is to preferred from a numerical point of view. Scaling and balancing are preprocessing steps that aim at improving the accuracy of computed eigenpairs, see [6, 13, 22].

The purpose of this paper is to discuss numerical aspects of invariant pairs for general \(k \). Little is known in this direction so far, with the notable exception of the work by Beyn and Thömmel [9] on the continuation of invariant pairs for monic quadratic matrix polynomials. In fact, the work on this paper was very much inspired by the results in [9] and we will point out connections whenever possible.

The rest of this paper is organized as follows. Section 2 is concerned with basic properties of invariant pairs and introduces the notions of minimality and simplicity. In Section 3, we study the first-order behavior of an invariant pair under perturbations of the matrix polynomial. In particular, Theorem 7 reveals that simple invariant pairs combined with a suitable normalization condition are well-posed. Section 4 investigates computational aspects and presents several approaches to extracting invariant pairs from the solution of the linearized eigenvalue problem. Numerical experiments suggest that a novel approach based on the generalized singular value decomposition is the preferred one. In Section 5, we describe a Newton iteration for refining invariant pairs and investigate the solution of the corresponding linearized equations in some detail. Section 6 contains some numerical experiments demonstrating the use of the presented concepts and algorithms in applications. Appendix A serves to illustrate the relation between Jordan chains for matrix polynomials and invariant pairs.

Remark 1 Recent numerically oriented work on polynomial eigenvalue problems, see for example [20, 21], has shifted towards the use of a homogeneous formulation \(P(\alpha, \beta) = \beta^k A_0 + \)
\[\alpha^{\ell-1}A_1 + \alpha^2 \beta^{\ell-2}A_2 + \cdots + \alpha^\ell A_\ell \text{ in place of } (1), \text{ partly because it elegantly allows for the simultaneous treatment of finite and infinite eigenvalues. At least for } \ell = 1, \text{ it is known how to put invariant subspaces in a homogeneous framework: by using pairs of deflating subspaces [34, 35]. In this work, we will refrain from using such a homogenous formulation as it would significantly increase the level of technicality. Moreover, one of the advantages of deflating subspaces, their direct connection to the factors of the generalized Schur form, is lost when going to } \ell > 1. \text{ Infinite eigenvalues contained in an invariant subspace can still be covered in (2) by simply reversing the order of the polynomial coefficients. The only restriction imposed by the inhomogeneous formulation, it cannot handle zero and infinite eigenvalues simultaneously.} \]

2 Preliminaries

In this section, we provide basic theoretical results on invariant pairs for matrix polynomials. Throughout this paper, we mainly consider matrix polynomials that are regular: \(\det(P(\lambda)) \neq 0. \)

First, let us emphasize that the definition of an invariant pair (2) is independent of the choice of basis. Let \(T \in \mathbb{C}^{k \times k} \) be an invertible matrix and consider \(\tilde{X} = XT. \) Then multiplying (2) with \(T \) from the right yields

\[A_0 \tilde{X} + A_1 \tilde{X} \tilde{S} + A_2 \tilde{X} \tilde{S}^2 + \cdots + A_\ell \tilde{X} \tilde{S}^\ell = 0, \quad \tilde{S} = T^{-1}ST, \]

and hence \((\tilde{X}, \tilde{S})\) is also an invariant pair. If \(S \) is diagonalizable then \(T \) can be chosen such that

\[\tilde{S} = T^{-1}ST = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_k). \]

In this case the relation (3) implies that the columns \(\tilde{x}_1, \ldots, \tilde{x}_k \) of the transformed basis \(\tilde{X} \) are eigenvectors of \(P: P(\lambda_i)\tilde{x}_i = 0, \) provided of course that \(\tilde{x}_i \neq 0. \) This shows that the eigenvalues of \(S \) form a subset of the eigenvalues of \(P. \) More generally, if \(\tilde{S} \) is in Jordan canonical form then the columns of \(\tilde{X} \) contain Jordan chains for \(P [15, \text{Proposition 1.10}], \) see also Appendix A.

2.1 Simple invariant pairs and deflating subspaces

In contrast to linear eigenvalue problems, eigenvectors belonging to mutually distinct eigenvalues are not necessarily linearly independent. For example, the matrix polynomial [12]

\[P(\lambda) = \begin{bmatrix} 0 & 12 \\ -2 & 14 \end{bmatrix} + \lambda \begin{bmatrix} -1 & -6 \\ 2 & -9 \end{bmatrix} + \lambda^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

has the same eigenvector \([1]\) belonging to the eigenvalues 3 and 4. Hence, a given full rank matrix \(X \) that is known to be part of an invariant pair may not uniquely determine the matrix \(S \) such that \((X, S)\) is an invariant pair. It is not even reasonable to require \(X \) to have full rank. These limitations raise doubts whether the concept of an invariant subspace (i.e., the space spanned by the columns of \(X \)) is appropriate at all for polynomial eigenvalue problems and we therefore favor the concept of an invariant pair.

To allow for rank deficiencies in \(X, \) the following notion of minimality will be used, which has first been proposed in [9] for \(\ell = 2. \)
Definition 2 (Minimal pair) A pair \((X, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}\) is called minimal if there is \(m \in \mathbb{N}\) such that
\[
V_m(X, S) := \begin{bmatrix}
X S^{m-1} \\
\vdots \\
X S \\
X
\end{bmatrix}
\]
has full column rank. The smallest such \(m\) is called minimality index of \((X, S)\).

By the Cayley-Hamilton theorem, the minimality index of a minimal pair cannot exceed \(k\), see also [28, Lemma 5]. Moreover, it will be shown in Lemma 5 below that the minimality index cannot exceed the degree of the matrix polynomial.

The following theorem shows that it is always possible to extract a minimal invariant pair with minimality index at most \(\ell\) from a non-minimal one. This allows us to restrict most of the discussion in this paper to minimal invariant pairs.

Theorem 3 Let \((X, S)\) be an invariant pair for a matrix polynomial \(P\) of degree \(\ell\). Then there is a minimal invariant pair \((\tilde{X}, \tilde{S})\) with minimality index at most \(\ell\) such that
\[
\text{span}\ V_\ell(\tilde{X}, \tilde{S}) = \text{span}\ V_\ell(X, S),
\]
with \(V_\ell(X, S)\) and \(V_\ell(\tilde{X}, \tilde{S})\) defined as in (4).

Proof. Let \(\tilde{k}\) denote the rank of \(V_\ell(X, S)\). If \((X, S)\) is not minimal, \(\tilde{k} < k\) and after a change of basis we may assume that the null space of \(V_\ell(X, S)\) is spanned by the unit vectors \(e_{\tilde{k}+1}, \ldots, e_k\). This implies that the last \(k - \tilde{k}\) columns of \(X, XS, \ldots, XS^{\ell-1}\) are zero. Let us partition
\[
X = \begin{bmatrix} \tilde{X} & 0 \end{bmatrix}, \quad S = \begin{bmatrix} \tilde{S} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}
\]
with \(\tilde{X} \in \mathbb{C}^{n \times \tilde{k}}\) and \(\tilde{S} \in \mathbb{C}^{\tilde{k} \times k}\). Then, by induction,
\[
\begin{align*}
XS &= \begin{bmatrix} \tilde{X} \tilde{S} & 0 \end{bmatrix} \\
XS^2 &= \begin{bmatrix} \tilde{X} \tilde{S} & 0 \end{bmatrix} S = \begin{bmatrix} \tilde{X} \tilde{S}^2 & 0 \end{bmatrix} \\
&\vdots \\
XS^{\ell-1} &= \begin{bmatrix} \tilde{X} \tilde{S}^{\ell-2} & 0 \end{bmatrix} S = \begin{bmatrix} \tilde{X} \tilde{S}^{\ell-1} & 0 \end{bmatrix} \\
XS^{\ell} &= \begin{bmatrix} \tilde{X} \tilde{S}^{\ell-2} & 0 \end{bmatrix} S = \begin{bmatrix} \tilde{X} \tilde{S}^{\ell-1} & * \end{bmatrix}.
\end{align*}
\]
Hence, the first \(\tilde{k}\) columns of the relation \(P(X, S) = 0\) amount to \(P(\tilde{X}, \tilde{S}) = 0\), showing that \((\tilde{X}, \tilde{S})\) is an invariant pair for \(P\). By construction, \(V_\ell(\tilde{X}, \tilde{S})\) has full column rank and thus \((\tilde{X}, \tilde{S})\) is minimal. \(\square\)

An eigenvector \(x\) of \(P\) is called simple if the corresponding eigenvalue \(\lambda_0\) is a simple root of \(\det(P(\lambda))\). The following definition provides an appropriate extension of this concept to invariant pairs, see also [9].

Definition 4 (Simple invariant pair) An invariant pair \((X, S)\) for a regular matrix polynomial \(P\) of degree \(\ell\) is called simple if \((X, S)\) is minimal and the algebraic multiplicities of the eigenvalues of \(S\) are identical to the algebraic multiplicities of the corresponding eigenvalues of \(P\).
The definition of invariant pairs is motivated by their connection to standard and generalized eigenvalue problems via the companion form linearization

$$C(\lambda) = C_A + \lambda C_B = \begin{bmatrix} A_{\ell-1} & A_{\ell-2} & \cdots & A_0 \\ -I_n & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & -I_n & 0 \end{bmatrix} + \lambda \begin{bmatrix} A_\ell & 0 & \cdots & 0 \\ 0 & I_n & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & I_n \end{bmatrix}. \tag{5}$$

The eigenvalues of $C_A + \lambda C_B$ are identical with the eigenvalues of P. In particular, the regularity of P implies the regularity of $C_A + \lambda C_B$. Moreover, if (X, S) is an invariant pair and A_ℓ is invertible then it is easy to see that $\text{span}(V_\ell(X, S))$ is an invariant subspace for $C_B^{-1}C_A$. For the more general case, where A_ℓ may be singular, we note that

$$C_A V_\ell(X, S) = \begin{bmatrix} \sum_{j=0}^{\ell} A_j X S^j \\ -X S^\ell \\ \vdots \\ -X S^2 \\ -X S \end{bmatrix}, \quad C_B V_\ell(X, S) = \begin{bmatrix} A_\ell X S^{\ell-1} \\ X S^{\ell-2} \\ \vdots \\ X S \\ X \end{bmatrix}. \tag{6}$$

This shows $C_A V_\ell(X, S) + C_B V_\ell(X, S) S = 0$ and hence $(V_\ell(X, S), S)$ is a minimal invariant pair for the matrix pencil $C_A + \lambda C_B$. Note that Lemma 5 below implies that actually $V_\ell(X, S)$ itself has full rank and therefore its minimality index is 1. Later on, in Section 4, we will see that the opposite direction of the above derivations is also possible; we can always extract invariant pairs for P from simple invariant pairs for $C_A + \lambda C_B$.

Lemma 5 Let (X, S) be a minimal invariant pair of a regular matrix polynomial of degree ℓ. Then the minimality index of (X, S) does not exceed ℓ.

Proof. Suppose that the minimality index is larger than ℓ. Then there is $v \neq 0$ such that $X v = X S v = \cdots = X S^{k-1} v = 0$ and $X S^k v \neq 0$ for some $k \geq \ell$. By the invariance of (X, S),

$$\sum_{j=0}^{\ell} A_j X S^{j+k-\ell} = 0 \quad \Rightarrow \quad \sum_{j=0}^{\ell} A_j X S^{j+k-\ell} v = 0, \quad \Rightarrow \quad A_\ell X S^{k} v = 0,$$

and hence $A_\ell X S^k v = 0$. This implies that the vector

$$y = V_\ell(X, S) S^{1+k-\ell} v = \begin{bmatrix} X S^k v \\ 0 \\ \vdots \\ 0 \end{bmatrix} \neq 0$$

satisfies $C_By = 0$ and hence y is an eigenvector belonging to the eigenvalue ∞ of the companion matrix pencil $C_A + \lambda C_B$. On the other hand, by its definition y is also contained in the deflating subspace $\text{span}(V_\ell(X, S))$ belonging to all or some eigenvalues of S. Hence, the intersection of the deflating subspaces belonging to the eigenvalue ∞ and the deflating subspaces belonging to the eigenvalues of S is nontrivial. By standard results for matrix pencils [35] this is not possible since $C_A + \lambda C_B$ is regular according to the assumption. \qed

\footnote{In the usual language of matrix pencils [35], one would call $\text{span}(V_\ell(X, S))$ a right deflating subspace belonging to the eigenvalues of S. To stay notationally consistent we will use the concept of invariant pairs also in the linear case.}
Lemma 6 A minimal invariant pair \((X, S)\) for a regular matrix polynomial is simple if and only if \((V_\ell(X, S), S)\) is a simple invariant pair for the corresponding companion linearization.

Proof. This follows directly from the one-to-one correspondence between the eigenvalues of \(C_A + \lambda C_B\) and \(P\).

3 First-order Perturbation Theory

Given a matrix polynomial \(P\) of the form (1), let us consider the nonlinear matrix operator

\[
P : \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k} \to \mathbb{C}^{n \times k},
\]

\[
(X, S) \mapsto A_0 X + A_1 X S + \cdots + A_\ell X S^\ell.
\]

By definition, a simple invariant pair \((X, S)\) satisfies \(P(X, S) = 0\). As this condition is not sufficient to characterize \((X, S)\) we add the condition \(W^\ast V_m(X, S) = I_k\), where \(m \leq \ell\) is not smaller than the minimality index of \((X, S)\) and the columns of \(W = [W_m, \ldots, W_0]^\ast\) form an orthonormal basis of \(\text{span}(V_m(X, S))\).

In the following, we study the change of \((X, S)\) under small perturbations of the coefficients of the polynomial:

\[
(P + \triangle P)(\lambda) = (A_0 + E_0) + \lambda(A_1 + E_1) + \cdots + \lambda^\ell(A_\ell + E_\ell)
\]

for general matrices \(E_0, \ldots, E_\ell \in \mathbb{C}^{n \times n}\). In other words, we look for a nearby pair \((\hat{X}, \hat{S})\) that satisfies the equations

\[
(P + \triangle P)(\hat{X}, \hat{S}) = 0, \quad W^\ast V_m(\hat{X}, \hat{S}) - I = 0,
\]

with \(P + \triangle P\) defined as in (7) but with perturbed coefficients.

Stewart [33, 34] analyzed perturbations of invariant and deflating subspaces associated with linear eigenvalue problems by solving the corresponding quadratic matrix equations (9) with a fixed point iteration. Apart from pioneering the study of perturbed invariant subspaces for non-normal matrices, Stewart’s approach has the additional merit of admitting exact bounds, provided that the norm of the perturbation stays below a certain specified threshold. Although an extension of this approach to polynomial eigenvalue problems is certainly possible we restrict ourselves to first-order effects by linearizing (9), in the spirit of Sun’s perturbation expansions for linear eigenvalue problems [36]. By its nature, such an approach only yields local first-order perturbation bounds but it has the advantage of being significantly simpler and less technical.

3.1 Solvability of the linearized matrix equations

For the linearization of the nonlinear matrix equations (9), we set \(\hat{X} = X + \Delta X, \hat{S} = S + \Delta S\) and consider \(|E_j|_F \leq \varepsilon, ||\Delta X||_F \leq \varepsilon, ||\Delta S||_F \leq \varepsilon\) for some sufficiently small \(\varepsilon > 0\). Omitting terms of order \(O(\varepsilon^2)\) as \(\varepsilon \to 0\) the linearized equations read as follows:

\[
\mathbb{L}_P(\Delta X, \Delta S) = -\Delta P(X, S), \quad \mathbb{L}_V(\Delta X, \Delta S) = 0,
\]

(10)
Invariant Pairs for Matrix Polynomials

with

\[
L_P : (\triangle X, \triangle S) \mapsto P(\triangle X, S) + \sum_{j=1}^{\ell} A_j X \mathbb{D}S^j(\triangle S),
\]

\[
L_V : (\triangle X, \triangle S) \mapsto W_0^n \triangle X + \sum_{j=1}^{m-1} W_j^n (\triangle X S^j + X \mathbb{D}S^j(\triangle S)),
\]

where \(\mathbb{D}S^j \) denotes the Fréchet derivative of the map \(S \mapsto S^j \):

\[
\mathbb{D}S^j : \triangle S \mapsto \sum_{i=0}^{j-1} S^i \triangle S \triangle S^j - i \triangle S.
\]

For example, for \(\ell = m = 2 \), the linear matrix operators (11)–(12) amount to

\[
L_P(\triangle X, \triangle S) = A_0 \triangle X + A_1 \triangle X S + A_2 \triangle X S^2 + A_1 X \triangle S + A_2 X (\triangle S S + S \triangle S),
\]

\[
L_V(\triangle X, \triangle S) = W_0^n \triangle X + W_1^n (\triangle X S + X \triangle S).
\]

Theorem 7 Let \((X, S)\) be a minimal invariant pair for a regular matrix polynomial \(P\). Then the linear system of matrix equations (10) has a unique solution \((\triangle X, \triangle S)\) if and only if \((X, S)\) is simple.

Proof. For the case \(\ell = 2\) and invertible \(A_\ell\), this result is proven in [9, Thm 2.2] based on results from [8]. The extension of the proof to \(\ell \neq 2\) is relatively easy but the extension to singular \(A_\ell\) requires a more significant change.

We first note that \(m = \ell\) can be assumed without loss of generality. If \(m < \ell\) we simply define \(\hat{W}\) to be \(W\) padded with zeros such that \(W^m \hat{V}_m(\hat{X}, \hat{S}) = \hat{W}^m \hat{V}_\ell(\hat{X}, \hat{S})\) and work with the latter formulation.

By Lemma 6, \((X, S)\) is simple if and only if \((V_\ell(X, S), S)\) is a simple invariant pair for the companion linearization \(\mathcal{C}_A + \lambda \mathcal{C}_B\) defined in (5). By existing results on generalized eigenvalue problems [27, 35], the latter condition is equivalent to the condition that the only solution to the linear matrix equations

\[
\mathcal{C}_A \triangle V + \mathcal{C}_B \triangle V S + \mathcal{C}_B V \triangle S = 0, \quad W^m \triangle V = 0,
\]

is \((\triangle V, \triangle S) = (0, 0)\). Thus, to prove the statement of the theorem we need to show that (14) has a nonzero solution if and only if (10) has a nonzero solution in the homogeneous case \(\triangle P \equiv 0\).

Assume there exists \((\triangle X, \triangle S) \neq (0, 0)\) satisfying (10), i.e., \(L_P(\triangle X, \triangle S) = 0\) and \(L_V(\triangle X, \triangle S) = 0\). Define

\[
\triangle V = \begin{bmatrix}
\triangle X S^{\ell-1} + X \mathbb{D}S^{\ell-1}(\triangle S) \\
\vdots \\
\triangle X S^1 + X \mathbb{D}S^1(\triangle S) \\
\triangle X
\end{bmatrix}.
\]
Then, directly by definition, $\mathbb{L}_V(\Delta X, \Delta S) = 0$ implies $W^n \Delta V = 0$. Moreover,

$$
C_A \Delta V + C_B \Delta V S = \begin{bmatrix}
\mathbb{P}((\Delta X, S) + \sum_{j=1}^{\ell-1} A_j X \mathbb{D} S^j(\Delta S) + A_\ell X (\mathbb{D} S^{\ell-1}(\Delta S)) S
\end{bmatrix}
$$

By (13),

$$(\mathbb{D} S^{j-1}(\Delta S)) S - \mathbb{D} S^j(\Delta S) = -S^{j-1} \Delta S. \tag{15}$$

Together with $\mathbb{L}_P(\Delta X, \Delta S) = 0$, this shows

$$
C_A \Delta V + C_B \Delta V S = \begin{bmatrix}
-A_\ell X S^{\ell-1} \Delta S
-X S^{\ell-2} \Delta S
\vdots
-X \Delta S
\end{bmatrix} = -C_B V \Delta S,
$$

and hence the constructed $(\Delta V, \Delta S)$ is a nontrivial solution of (14).

For the other direction, assume that there exists $(\Delta V, \Delta S) \neq (0,0)$ satisfying (14). Partition $\Delta V = [\Delta X_1^{\ell-1}, \ldots, \Delta X_\ell] \in \mathbb{C}^{n \times k}$. Then the condition $C_A \Delta V + C_B \Delta V S + C_B V \Delta S = 0$ implies

$$
\sum_{j=1}^{\ell-1} A_j \Delta X_j + A_\ell \Delta X_{\ell-1} S + A_\ell X S^{\ell-1} \Delta S = 0, \tag{16}
$$

$$
-\Delta X_j + \Delta X_{j-1} S + X S^{j-1} \Delta S = 0, \quad \text{for } j = 1, \ldots, \ell. \tag{17}
$$

First, note that either $\Delta X_0 \neq 0$ or $\Delta S \neq 0$, since otherwise (17) implies $(\Delta V, \Delta S) = 0$. By induction, (17) combined with (15) yields

$$
\Delta X_j = \Delta X_0 S^j + X S^j(\Delta S). \tag{18}
$$

Inserted into (16) and using (15) for $j = \ell$, this gives $\mathbb{L}_P(\Delta X_0, \Delta S) = 0$. Moreover, (18) immediately implies $\mathbb{L}_V(\Delta X_0, \Delta S) = 0$ from $W^n \Delta V = 0$, which concludes the proof. \hfill \Box

3.2 First-order perturbation expansions

In the following, we use Theorem 7 to derive first-order perturbation expansions. The overall Fréchet derivative of the nonlinear equations (9) is given by

$$
\mathbb{L} : \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k} \to \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}
$$

$$(\Delta X, \Delta S) \mapsto (\mathbb{L}_P(\Delta X, \Delta S), \mathbb{L}_V(\Delta X, \Delta S)), \tag{19}$$

where \mathbb{L}_P and \mathbb{L}_V are defined as in (11)–(12). By Theorem 7, \mathbb{L} is invertible for a simple invariant pair (X, S). By the implicit function theorem [26], there are uniquely determined analytic functions $f_X : U(0) \to \mathbb{C}^{n \times k}$ and $f_S : U(0) \to \mathbb{C}^{k \times k}$ such that

$$
f_X(0) = X, \quad f_S(0) = S, \quad f_X(\Delta P) = X + \Delta X, \quad f_S(\Delta P) = S + \Delta S,
$$
for all $\Delta P \in U(0)$ and some open neighborhood $U(0) \subset (\mathbb{C}^{n \times k})^{\ell+1}$ around zero. Moreover, the Fréchet derivatives of these functions satisfy

$$ (Df_X(\Delta P), Df_S(\Delta P)) = -L^{-1}(\Delta P(X, S), 0). $$

Defining

$$ \|\Delta P\| := \|[E_0, E_1, \ldots, E_\ell]\|_F, $$

this shows that the perturbed polynomial $P + \Delta P$ has an invariant pair (\hat{X}, \hat{S}) close to (X, S), satisfying

$$ (\hat{X}, \hat{S}) = (X, S) - L^{-1}(\Delta P(X, S), 0) + \mathcal{O}(\|\Delta P\|_2^2), $$

where the addition of pairs is understood elementwise. Note that the first-order correction term may contain components in the “direction” of (X, S). Since invariant pairs are only determined up to a basis transformation, there is a whole manifold \mathcal{M} of invariant pairs generated by (X, S):

$$ \mathcal{M} = \{ (XT, T^{-1}ST) : T \in \mathbb{C}^{k \times k} \text{ invertible} \} \subset \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}. $$

To assess the sensitivity of (X, S) under perturbations, it is sensible to neglect components of the error term $(\hat{X}, \hat{S}) - (X, S)$ that are contained in \mathcal{M}. In first-order, this can be achieved by considering the tangent space of \mathcal{M} at (X, S),

$$ T_{(X,S)}\mathcal{M} = \{ (XM, SM - MS) : M \in \mathbb{C}^{k \times k} \}, $$

and projecting out components of $L^{-1}(\Delta P(X, S), 0)$ contained in $T_{(X,S)}\mathcal{M}$. To summarize, we have the following result characterizing the first-order sensitivity of (X, S).

Theorem 8 Let (X, S) be a simple invariant pair for a regular matrix polynomial P. For sufficiently small $\|\Delta P\|$ the perturbed polynomial $P + \Delta P$ has a simple invariant pair (\hat{X}, \hat{S}) satisfying

$$ (\hat{X}, \hat{S}) = (X, S) - (I - \text{Proj}) \circ L^{-1}(\Delta P(X, S), 0) + \mathcal{O}(\|\Delta P\|_2^2), $$

where Proj is the orthogonal projector onto the tangent space $T_{(X,S)}\mathcal{M}$ defined in (23).

Proof. By (22),

$$ (\hat{X}, \hat{S}) - (X, S) = -L^{-1}(\Delta P(X, S), 0) + \mathcal{O}(\|\Delta P\|_2^2) $$

$$ = -\text{Proj} \circ L^{-1}(\Delta P(X, S), 0) - (I - \text{Proj}) \circ L^{-1}(\Delta P(X, S), 0) + \mathcal{O}(\|\Delta P\|_2^2). $$

Setting $(\hat{X}_0, \hat{S}_0) := (\hat{X}, \hat{S}) - \text{Proj} \circ L^{-1}(\Delta P(X, S), 0)$ and defining $L_{P+\Delta P}$ similarly as L_P in (11), we obtain

$$ (P + \Delta P)(\hat{X}_0, \hat{S}_0) = \underbrace{(P + \Delta P)(\hat{X}, \hat{S}) - L_{P+\Delta P}(\text{Proj} \circ L^{-1}(\Delta P(X, S), 0))}_{=0} $$

$$ = -L_P(\text{Proj} \circ L^{-1}(\Delta P(X, S), 0)) + \mathcal{O}(\|\Delta P\|_2^2), $$

Note that P is zero on \mathcal{M} and hence its Jacobian L_P vanishes on $T_{(X,S)}\mathcal{M}$. In particular, $L_P(\text{Proj} \circ L^{-1}(\Delta P(X, S), 0)) = 0$, implying $(P + \Delta P)(\hat{X}_0, \hat{S}_0) = \mathcal{O}(\|\Delta P\|_2^2)$. Therefore, for sufficiently small ΔP there exists an invariant pair (\hat{X}, \hat{S}) of $P + \Delta P$ such that $(\hat{X}, \hat{S}) - (\hat{X}_0, \hat{S}_0) = \mathcal{O}(\|\Delta P\|_2^2)$. Combined with the definition of (\hat{X}_0, \hat{S}_0), this concludes the proof. \square

We remark that Theorem 8 could be used to define a suitable condition number for an invariant pair (X, S) as the norm of $(I - \text{Proj}) \circ L^{-1}(\cdot, 0)$ induced by the norm (21).
3.3 The case \(k = 1 \)

It is instructive to specialize the result of Theorem 8 to the case of eigenvectors, \(k = 1 \). In this case, \(X \equiv x \in \mathbb{C}^n \setminus \{0\}, S \equiv \lambda \in \mathbb{C} \). Without loss of generality, we may assume \(\|x\|_2 = 1 \) and consider the normalization vector \(W = x \). Then the nonlinear matrix equations (9) amount to

\[
(P + \Delta P)(\hat{\lambda}) \cdot \hat{x} = 0, \quad x^H \hat{x} - 1 = 0,
\]

and the Fréchet derivative (19) can be written in matrix form as

\[
\mathbb{L} = \begin{bmatrix}
P(\lambda) & P'(\lambda)x \\
x^H & 0
\end{bmatrix}.
\]

Theorem 7 states that \(\mathbb{L} \) is invertible for a simple eigenvalue; which is in accordance with results from [2]. For \(k = 1 \), the tangent space \(T_{(X,S)}\mathcal{M} \) defined in (23) and featuring prominently in Theorem 8 reduces to the one-dimensional linear space \(\{ (x\mu,0) : \mu \in \mathbb{C} \} \) and hence the projector takes the form \(\text{Proj} = \begin{bmatrix} xx^H & 0 \\ 0 & 0 \end{bmatrix} \). A straightforward calculation shows that

\[
(I - \text{Proj}) \circ \mathbb{L}^{-1} \text{ is given by }
\]

\[
(I - \text{Proj}) \circ \begin{bmatrix} X_\perp (Z^H P(\lambda) X_\perp)^{-1} Z^H_n x \\
y^H/(y^H P'(\lambda)x) & 0
\end{bmatrix} = \begin{bmatrix} X_\perp (Z^H P(\lambda) X_\perp)^{-1} Z^H_n & 0 \\
y^H/(y^H P'(\lambda)x) & 0
\end{bmatrix},
\]

where the columns of \(X_\perp, Z_\perp \) form orthonormal bases of \(\text{span}(x)^\perp, \text{span}(P'(\lambda)x)^\perp \), respectively, and \(y \) denotes a normalized left eigenvector belonging to \(\lambda \). Hence, Theorem 8 implies the perturbation expansions

\[
\hat{x} = x - X_\perp (Z^H P(\lambda) X_\perp)^{-1} Z^H_n \Delta P(\lambda)x + \mathcal{O}(\|\Delta P\|^2),
\]

\[
\hat{\lambda} = \lambda - \frac{1}{y^H P'(\lambda)x} y^H \Delta P(\lambda)x + \mathcal{O}(\|\Delta P\|^2),
\]

which is again in accordance with results from [2, 5].

4 Computation via Linearization

In this section, we discuss the computation of invariant pairs. In principle, it is possible to construct invariant pairs by combining several eigenvalue/eigenvector pairs. However, such a construction runs into conceptual and numerical difficulties as soon as some of the eigenvalues are (nearly) multiple. In contrast – as shown by the perturbation analysis in the previous section – invariant pairs remain well-posed objects in the presence of multiple eigenvalues as long as all multiple copies of an eigenvalue are included in the invariant pair.

4.1 Linearization of Matrix Polynomials

The standard way to solve a polynomial eigenvalue problem (1) of degree \(\ell \geq 2 \) is to convert \(P(\lambda) \) into a linear \(\ell n \times \ell n \) pencil

\[
L(\lambda) = \mathcal{A} + \lambda \mathcal{B}
\]
having the same spectrum as $P(\lambda)$ and then solve this linear eigenvalue problem by a standard solver, e.g., the QZ algorithm [16, 25, 31]. A frequently used linearization is the companion form (5). This linearization has the property that

$$C_B \oplus C_A := \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & I_n & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & I_n \end{bmatrix} + \begin{bmatrix} 0 & A_{\ell-1} & A_{\ell-2} & \cdots & A_0 \\ 0 & -I_n & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & -I_n & 0 \end{bmatrix} = e_1 \otimes \begin{bmatrix} A_1 & A_{\ell-1} & \cdots & A_0 \end{bmatrix}.$$

Here, following the notation introduced in [29], the so-called column shifted sum $X \oplus Y$ adds zero block columns to the right of the matrix X and to the left of the matrix Y and then adds up the enlarged matrices.

Using the column shifted sum it is possible to define a whole space of potential linearizations of P by

$$\mathcal{L}_1(P) = \left\{ A + \lambda B : \mathcal{B} \oplus A = v \otimes \begin{bmatrix} A_1 & A_{\ell-1} & \cdots & A_0 \end{bmatrix}, v \in \mathbb{C}^\ell \right\}.$$

In [29] it was shown that almost all pencils in $\mathcal{L}_1(P)$ are linearizations of P. Furthermore, if $L(\lambda) = A + \lambda B \in \mathcal{L}_1(P)$ then

$$A = [W + (v \otimes [A_{\ell-1} \ldots A_1]), v \otimes A_0], \quad B = [v \otimes A_{\ell}, -W],$$

where $W \in \mathbb{C}^{(\ell-1)n}$ is chosen arbitrarily [29, Theorem 3.5].

If (X, S) is an invariant pair for P then for any potential linearization $L(\lambda) = A + \lambda B \in \mathcal{L}_1(P)$ it holds that

$$A \begin{bmatrix} XS^{\ell-1} \\ X \end{bmatrix} + B \begin{bmatrix} XS^{\ell-1} \\ X \end{bmatrix} S = (B \oplus A) \begin{bmatrix} XS^{\ell} \\ XS^{\ell-1} \\ X \end{bmatrix} = v \otimes \begin{bmatrix} A_1 & A_{\ell-1} & \cdots & A_0 \end{bmatrix} \begin{bmatrix} XS^{\ell} \\ XS^{\ell-1} \\ X \end{bmatrix} = 0. \quad (24)$$

This generalizes (6) and shows that every invariant pair (X, S) of P can be used to construct an invariant pair of $L(\lambda) = A + \lambda B$. The converse question, whether an invariant pair (Y, S) of the linearization can be used to construct an invariant pair (X, S) of P, is answered in the following theorem. This is an extension of the eigenvector recovery property for $\mathcal{L}_1(P)$ shown in [29, Theorem 3.8].

Theorem 9 Let $L(\lambda) = A + \lambda B \in \mathcal{L}_1(P)$ be a linearization of a regular matrix polynomial P. Then for every simple invariant pair $(Y, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}$ of L there exists $X \in \mathbb{C}^{n \times k}$ such that $Y = V_1(X, S)$ and (X, S) is a simple invariant pair of P.

Proof. An invariant pair (Y, S) satisfies

$$\mathcal{L}(Y) := AY + BYS = 0. \quad (25)$$

In the following, we consider S fixed and will show that the relation $\mathcal{L}(Y) = 0$ implies $Y = V_1(X, S)$ for some $X \in \mathbb{C}^{n \times k}$. It then readily follows from (24) combined with $v \neq 0$ (otherwise, L would not be a linearization) and Lemma 6 that (X, S) is a simple invariant pair of P.

Let S have f mutually different eigenvalues $\lambda_1, \ldots, \lambda_f$ with algebraic multiplicities k_i partitioned into partial multiplicities $k_{i,1}, \ldots, k_{i,g_i}$, where g_i denotes the geometric multiplicity of λ_i. To classify all elements in the null space of L we first transform S to Jordan canonical form: $T^{-1}ST = J$ where T is invertible and $J = \text{diag}(J_1, \ldots, J_f)$ with $J_i \in \mathbb{C}^{k_i \times k_i}$ containing the Jordan blocks for λ_i. Setting $\hat{Y} = YT$, (25) becomes equivalent to

$$AY + BYJ = 0. \quad (26)$$

Since (Y, S) is assumed to be simple, the partial eigenvalue multiplicities of $A + \lambda B$ match those of S and J. We can therefore choose $Y_i = [Y_{i,1}, \ldots, Y_{i,g_i}] \in \mathbb{C}^{n \times k_i}$ such that $Y_{ij} \in \mathbb{C}^{n \times k_{ij}}$ contains the jth Jordan chain of $A + \lambda B$ belonging to λ_i. A result by Košir [24, Theorem 4] implies that \hat{Y} satisfies (26) if and only if it takes the form

$$\hat{Y} = \left[Y_1 H_1, \ Y_2 H_2, \ldots, \ Y_f H_f \right], \quad (27)$$

where $H_i \in \mathbb{C}^{k_i \times k_i}$ commutes with J_i (i.e., H_i is a block matrix partitioned conformally with J_i and each block is an upper triangular Toeplitz matrix [14, Pg. 221]). The discussion in Appendix A reveals that there is $X_i \in \mathbb{C}^{n \times k_i}$ such that $Y_i = V_i(X_i, J_i)$. Setting

$$\tilde{X} = [X_1, \ldots, X_f], \quad H = \text{diag}(H_1, \ldots, H_f)$$

the relation (27) can therefore be written as

$$\hat{Y} = V_i(\tilde{X}, J)H = V_i(\tilde{X}H, J),$$

where we used the fact that J commutes with H. The proof is concluded by observing $Y = \hat{Y}T^{-1} = V_i(\tilde{X}HT^{-1}, S)$ and setting $X = \tilde{X}HT^{-1}$. \Box

4.2 Extraction

In the following, we put the result of Theorem 9 into practice and discuss computational approaches to extracting an approximate invariant pair (\tilde{X}, \tilde{S}) for $P(\lambda)$ from a computed invariant pair (\hat{Y}, \hat{S}) of the linearization $L(\lambda)$.

Consider first the single vector case. Let (\bar{y}, \bar{x}) be an approximate eigenpair for $L(\lambda) \in \mathbb{L}_1(P)$ and partition $\bar{y} = [\bar{y}_t^1, \ldots, \bar{y}_t^n]^T$ with $\bar{y}_j \in \mathbb{C}^n$. In [20] it was shown for the companion linearization that a good choice for an approximate eigenvector of P is $\tilde{x} := \tilde{y}_0$ if $|\lambda| > 1$ and $\tilde{x} := \tilde{y}_1$ otherwise. The motivation behind this idea is that in exact arithmetic we have

$$y = \begin{bmatrix} \lambda^{-1}x \\ \vdots \\ x \end{bmatrix}$$

for an eigenvector x of P associated with λ. Hence, we can expect that – depending on the magnitude of λ – either the first or the last components of y will suffer least from cancellation in floating point arithmetic.

If (Y, S) is a simple invariant pair of $L(\lambda) \in \mathbb{L}_1(P)$ we can extend the ideas above and attempt to extract an invariant pair for $P(\lambda)$ from one of the block components $Y_j \in \mathbb{C}^{n \times k}$ of $Y = [Y_t^1 \ldots, Y_t^n]^T$. In fact, for the block Y_1 of Y the feasibility of such an approach follows already from Theorem 9. For the other block components of Y the following lemma provides a necessary and sufficient condition.
Lemma 10 Let \((Y, S)\), \(Y \in \mathbb{C}^{\ell n \times k}\), \(S \in \mathbb{C}^{k \times k}\) be a simple invariant pair of \(L(\lambda) \in \mathbb{L}_1(P)\) and let \(Y\) be partitioned as \(Y = [Y_1^n \ldots Y_\ell^n]^n\) with \(Y_j \in \mathbb{C}^{n \times k}\), \(j = 1, \ldots, \ell\). Then, for any \(j \in [2, \ell]\), \((Y_j, S)\) is a simple invariant pair of \(P(\lambda)\) if and only if \(S\) is nonsingular.

Proof. Theorem 9 implies that \((Y_1, S)\) is a simple invariant pair and \(Y_j = Y_1 S^{j-1}\). We obtain

\[
P(Y_j, S) = A_n Y_j S^\ell + \cdots + A_1 Y_j S + A_0 Y_j = P(Y_1, S)S^{j-1} = 0.
\]

If \(S\) is nonsingular then this relation implies that \((Y_j, S)\) is an invariant pair. Moreover,

\[
\text{rank} \left(V_\ell(Y_j, S) \right) = \text{rank} \left(V_\ell(Y_1, S)S^{j-1} \right)
\]

shows that \((Y_j, S)\) is minimal and therefore a simple invariant pair. If \(S\) is singular then, by (28), \((Y_j, S)\) is not minimal and is therefore not a simple invariant pair.

Lemma 10 reveals that every block component of a computed simple and minimal invariant pair of \(L(\lambda)\) is a candidate for approximating a simple invariant pair of \(P(\lambda)\), provided that \(S\) is nonsingular. In the following we discuss four different strategies for extracting invariant pairs.

Extraction I (normwise) A heuristic choice for \(\tilde{Y}_j\) is to choose the first block component of \(\tilde{Y}\) if \(\|S\| > 1\) and the last block component of \(\tilde{Y}\) if \(\|S\| < 1\). This is a direct generalization of the extraction strategy proposed in [20] for the single vector case.

Extraction II (polyeig) A more refined choice, inspired by the current extraction procedure in MATLAB’s `polyeig`, is obtained by choosing \(j\) such that the residual

\[
R(\tilde{Y}_j, \tilde{S}) := \frac{\|P(\tilde{Y}_j, \tilde{S})\|_F}{\|\tilde{Y}_j\|_F}
\]

(29)

is minimized.

Extraction III (GSVD) The above strategy can be further refined by minimizing among arbitrary \(n \times k\) matrices. For a given \(\tilde{S} \in \mathbb{C}^{k \times k}\) the optimal residual is obtained for \(\tilde{X} \in \mathbb{C}^{n \times k}\) satisfying

\[
R(\tilde{X}, \tilde{S}) = \min_{X \in \mathbb{C}^{n \times k} \setminus \{0\}} R(X, \tilde{S}),
\]

with \(R\) defined as in (29). It follows that the vector \(\text{vec}(\tilde{X})\) is a right singular vector associated with the smallest singular value of the matrix \(K := \sum_{j=0}^{\ell} (\tilde{S}^j)^T \otimes A_j \in \mathbb{C}^{kn \times kn}\). However, the cost for solving this dense \(kn \times kn\) SVD problem grows proportionally with \(k^3n^3\) and is therefore not practicable for larger problems. To avoid this excessive computational cost, we therefore propose the following strategy based on the generalized singular value decomposition (GSVD) [16]. An approximate minimizer of \(R(\cdot, \tilde{S})\) can be obtained by restricting \(\tilde{X}\) to be a linear combination of the block components of \(\tilde{Y}\), that is

\[
\tilde{X} = \gamma_1 \tilde{Y}_1 + \cdots + \gamma_\ell \tilde{Y}_\ell, \quad c = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_\ell \end{bmatrix} \in \mathbb{C}^\ell.
\]
Since \(P(\tilde{X}, \tilde{S}) = \gamma_1 P(\tilde{Y}_1, \tilde{S}) + \cdots + \gamma_\ell P(\tilde{Y}_\ell, \tilde{S}) \) it follows that

\[
R(\tilde{X}, \tilde{S}) = \frac{\| \gamma_1 P(\tilde{Y}_1, \tilde{S}) + \cdots + \gamma_\ell P(\tilde{Y}_\ell, \tilde{S}) \|_F}{\| \gamma_1 \tilde{Y}_1 + \cdots + \gamma_\ell \tilde{Y}_\ell \|_F} = \frac{\| [(\text{vec}(P(\tilde{Y}_1, \tilde{S})), \ldots, \text{vec}(P(\tilde{Y}_\ell, \tilde{S}))) c]_2}{\| [(\text{vec}(\tilde{Y}_1), \ldots, \text{vec}(\tilde{Y}_\ell)) c]_2} =: \frac{\|Mc\|_2}{\|Nc\|_2}
\]

Hence, the vector \(c \) that minimizes \(R(\tilde{X}, \tilde{S}) \) is the generalized singular vector associated with the smallest generalized singular value of the pair \((M, N)\), where \(M, N \in \mathbb{C}^{kn \times \ell} \) [16]. The cost of computing this vector is \(O(kn\ell^2) \), which is usually small compared to the cost of computing the approximate invariant pair \((\tilde{Y}, \tilde{S})\) of \(L(\lambda) \).

\[\textbf{Extraction IV (structured)} \]
A rather different strategy to extract an approximate invariant pair \((\tilde{X}, \tilde{S})\) for \(P \) from \((\tilde{Y}, \tilde{S})\) is to consider structured projections of \(\tilde{Y} \). In this approach, we choose \(\tilde{X} \) as the solution to the minimization problem

\[
\min_{\tilde{X} \in \mathbb{C}^{n \times k} \setminus \{0\}} \left\| \begin{bmatrix} \tilde{X} S^{\ell-1} & \cdots & \tilde{X} S_{\ell-1} \\ \vdots & \ddots & \vdots \\ \tilde{X} & \cdots & \tilde{X} \end{bmatrix} - \begin{bmatrix} \tilde{Y}_\ell \\ \vdots \\ \tilde{Y}_1 \end{bmatrix} \right\|_F.
\]

The following theorem provides an explicit solution to this problem.

\[\textbf{Theorem 11} \]
The unique solution \(X \in \mathbb{C}^{n \times k} \) that minimizes (30) is given by

\[
X = \left(\sum_{j=0}^{\ell-1} \tilde{Y}_{j+1}(\tilde{S}^j)^H \right) \left(\sum_{j=0}^{\ell-1} (\tilde{S}^j)^H \tilde{S}^j \right)^{-1}
\]

\[\textbf{Proof.} \]
Vectorizing (30) leads to the linear least-squares problem

\[
\min_{x \in \mathbb{C}^{nk}} \left\| \begin{bmatrix} (\tilde{S}^{\ell-1})^T \otimes I_n \\ \vdots \\ I_n \end{bmatrix} x - \begin{bmatrix} \text{vec}(\tilde{Y}_\ell) \\ \vdots \\ \text{vec}(\tilde{Y}_1) \end{bmatrix} \right\|_2,
\]

The corresponding normal equations are given by

\[
\sum_{j=0}^{\ell-1} \left((\tilde{S}^j)^T \otimes I_n \right)^H \left((\tilde{S}^{\ell-1})^T \otimes I_n \right) x = \sum_{j=0}^{\ell-1} \left((\tilde{S}^j)^T \otimes I_n \right)^H \text{vec}(\tilde{Y}_{j+1}),
\]

leading to

\[
\left[\left(\tilde{S}^{\ell-1} (\tilde{S}^{\ell-1})^T \otimes I_n \right) + \cdots + \left(\tilde{S}^1 (\tilde{S}^1)^T \otimes I_n \right) + I_{kn} \right] x = \sum_{j=0}^{\ell-1} \left(\tilde{S}^j \otimes I_n \right) \text{vec}(\tilde{Y}_{j+1}).
\]

Reformulation in terms of matrices gives

\[
X \left[\tilde{S}^{\ell-1} (\tilde{S}^{\ell-1})^H + \cdots + \tilde{S} (\tilde{S})^H + I_k \right] = \tilde{Y}_\ell (\tilde{S}^{\ell-1})^H + \cdots + \tilde{Y}_2 (\tilde{S})^H + \tilde{Y}_1.
\]

Since the sum in the square brackets is positive definite and therefore nonsingular the result follows. \(\square \)
4.3 Numerical comparison of the extraction strategies

To numerically compare the four different extraction strategies described above we use the NLEVP collection of polynomial and nonlinear eigenvalue problems [7], from which we selected the 24 polynomial test problems with \(n \leq 500 \). The test problems are linearized using the companion form (5). Approximate eigenvalues and eigenvectors are then computed using MATLAB’s \texttt{eig} function. To obtain approximate invariant pairs of the linearization we select for each problem 4 approximate eigenvalues and the corresponding invariant pair according to one of the following three criteria: (1) the 4 smallest eigenvalues in magnitude, (2) the 4 largest eigenvalues in magnitude, (3) the 2 smallest and 2 largest eigenvalues in magnitude.

The results of the comparisons are presented in the form of performance diagrams in Figures 1, 2 and 3. For a given factor \(\alpha \) the performance is defined as the percentage of test cases for which the residual of the extracted invariant subspace does not exceed \(\alpha \) times the lowest residual achieved by any of the tested methods. In all three test cases the GSVD based extraction (Extraction III) turns out to be the method with the best performance followed by the \texttt{polyeig} approach (Extraction II). Since the additional cost of the GSVD computation is small compared to the solution of the overall polynomial eigenvalue problem, this strategy is therefore the one we recommend among the tested extraction methods. Interestingly, the norm based method (Extraction I) performs well for large eigenvalues but only poorly for small eigenvalues. The structured approach (Extraction IV) always performs badly compared to the winner. This is expected due to the fact that the structured extraction does not perform any kind of residual minimization.

5 Refinement

In this section we discuss efficient iterative refinement strategies for approximate invariant pairs of a matrix polynomial \(P \). Refinement is a crucial ingredient for the development of robust polynomial eigenvalue solvers that are based on linearizing the matrix polynomial \(P \)
Figure 2: Performance diagram for the extraction of the largest eigenvalues.

Figure 3: Performance diagram for the extraction of a block of small and large eigenvalues.
since these methods are not always backward stable [20]. Another interesting application arises in numerical continuation of eigenvalues for matrix polynomials as discussed by Beyn and Thümmler in [9].

5.1 Basic Algorithm

Given an approximation \((X_0, S_0)\) to a simple invariant pair \((X, S)\) \(\in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}\) our aim is to compute a correction that brings \((X_0, S_0)\) closer to \((X, S)\). By Theorem 7, \((X, S)\) is a regular value of the nonlinear matrix equations

\[
\mathcal{P}(X, S) = 0, \quad \mathcal{V}(X, S) = 0, \tag{30}
\]

where \(\mathcal{P}(X, S) = XA_0 + XA_1S + \cdots + XA_pS^p\) and \(\mathcal{V}(X, S) = W^*V_m(X, S) - I\) for some normalization matrix \(W^* = [W_{m-1}^*, \ldots, W_0^*] \in \mathbb{C}^{k \times mn}\). Newton’s method applied to (30)

\[
(X_{p+1}, S_{p+1}) = (X_p, S_p) - L_p^{-1}(\mathcal{P}(X_p, S_p), \mathcal{V}(X_p, S_p)), \tag{31}
\]

where \(L_p\) is the Jacobian of \((\mathcal{P}, \mathcal{V})\) at the current iterate \((X_p, S_p)\):

\[
L_p(\Delta X, \Delta S) = \left(\mathcal{P}(\Delta X, S_p) + \sum_{j=1}^{\ell} A_jX_pD_jS_p^j(\Delta S), \sum_{j=0}^{m-1} W_j^*(\Delta X S_p^j + X D_jS_p^j(\Delta S))\right),
\]

see also (19). The invertibility of \(L_p\) and the local quadratic convergence of Newton’s method is guaranteed by Theorem 7, provided of course that \((X_0, S_0)\) is sufficiently close to \((X, S)\).

In our implementation of (31) we keep the columns of \(V_m(X_p, S_p)\) orthonormal and adapt \(W\) correspondingly in the course of the iteration. For this purpose, we compute a (compact) QR decomposition

\[
V_m(X_p, S_p) = QR
\]

with \(Q \in \mathbb{C}^{mn \times k}\) such that \(Q^*Q = I\). It then follows directly that \(Q\) takes the form

\[
Q = \begin{bmatrix}
Q_0RS_p^{m-1}R^{-1} \\
\vdots \\
Q_0RS_pR^{-1} \\
Q_0
\end{bmatrix},
\]

for \(Q_0 \in \mathbb{C}^{n \times k}\). Hence the replacement \((X_p, S_p) \leftarrow (Q_0, RS_pR^{-1})\) results in orthonormal \(V_m(X_p, S_p)\). Moreover, by choosing \(W = V_m(X_p, S_p)\) we have \(V(X_p, S_p) = 0\). Algorithm 1 summarizes the Newton method combined with this procedure.

Algorithm 1 Newton method for computing invariant pairs

Input: Initial pair \((X_0, S_0) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}\) such that \(V_m(X_0, S_0)^*V_m(X_0, S_0) = I_k\).

Output: Approximate solution \((X_{p+1}, S_{p+1})\) to (9).

1: \(p \leftarrow 0, W \leftarrow V_m(X_0, S_0)\)
2: repeat
3: \(\text{Res} \leftarrow \mathcal{P}(X_p, S_p)\)
4: Solve linear matrix equation \(L_p(\Delta X, \Delta S) = (\text{Res}, 0)\).
5: \(\hat{X}_{p+1} \leftarrow X_p - \Delta X, \quad \hat{S}_{p+1} \leftarrow S_p - \Delta S\)
6: \(p \leftarrow p + 1, W \leftarrow L_p^{-1}(\mathcal{P}(X_p, S_p), \mathcal{V}(X_p, S_p))\)
7: until \(p = k\) or convergence criterion is met

\[
\mathcal{P}(X, S) = 0, \quad \mathcal{V}(X, S) = 0,
\]
6. Compute compact QR decomposition $V_m(X_{p+1}, S_{p+1}) = WR$.
7. $X_{p+1} \leftarrow \tilde{X}_p R^{-1}$, $S_{p+1} \leftarrow R S_{p+1} R^{-1}$
8. until convergence

An extension of Algorithm 1 to nonlinear eigenvalue problems can be found in [28].

5.2 Solution of the correction equation

In the following, we discuss 3 approaches to solving the correction equation in Step 4 of Algorithm 1.

I. Kronecker products Vectorization and Kronecker products allow us to rewrite the linear matrix equation $L_p(\Delta X, \Delta S) = (\text{Res}, 0)$ as the $(nk + k^2) \times (nk + k^2)$ linear system

$$
\begin{bmatrix}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{bmatrix}
\begin{bmatrix}
\text{vec}(\Delta X) \\
\text{vec}(\Delta S)
\end{bmatrix}
=
\begin{bmatrix}
\text{vec}(\text{Res}) \\
0
\end{bmatrix},
$$

where

$$
K_{11} = \sum_{j=0}^{\ell} ((S_p^j)^T \otimes A_j), \quad K_{12} = \sum_{j=1}^{\ell} (I_k \otimes A_j X_p) K^{S_j}_p,
$$

$$
K_{21} = \sum_{j=0}^{\ell} ((S_p^j)^T \otimes W_j^0), \quad K_{22} = \sum_{j=1}^{m-1} (I_k \otimes W_j^0 X_p) K^{S_j}_p,
$$

with $K^{S_j}_p$ denoting the Kronecker product formulation of the Fréchet derivative $D S_p^j$ (13):

$$
K^{S_j}_p = \sum_{i=0}^{j-1} ((S_p^{j-i-1})^T \otimes S_p^i).
$$

Solving (32) requires $O((nk+k^2)^3)$ flops (floating point operations) and $O((nk+k^2)^2)$ storage. This approach should therefore only be used for tiny values of k.

Remark 12 For $k = 1$ and $m = 1$, the linear system (32) simplifies to

$$
\begin{bmatrix}
P(\lambda) & P'(\lambda)x \\
W_0^n & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta \lambda
\end{bmatrix}
=
\begin{bmatrix}
P(\lambda)x \\
0
\end{bmatrix},
$$

where we set $x \equiv X_p, \lambda \equiv S_p$.

II. Forward substitution By the Schur decomposition of S_p and an appropriate unitary transformation of (X_p, S_p), we may assume without loss of generality that S_p is in upper triangular form. The triangular structure of S_p allows to determine the columns of ΔX and ΔS successively in a forward substitution process. This was shown in [9] for quadratic eigenvalue problems and in [28] for nonlinear eigenvalue problems. We include the derivation of this forward substitution process for the sake of completeness, as it is needed in Approach III below.
In the following, we will drop the subscript \(p \) and simply write \((X, S)\). The triangular structure of \(S \) implies that the equation \(L(\Delta X, \Delta S) = (\text{Res}, 0) \) simplifies considerably for the first columns \(\Delta x_1 \) and \(\Delta s_1 \) of \(\Delta X \) and \(\Delta S \), respectively. In fact, it is not hard to see that

\[
P(s_{11}) + \sum_{j=1}^{\ell} A_j X [D S^j]_{11} \begin{bmatrix} \Delta x_1 \\ \Delta s_1 \end{bmatrix} = \begin{bmatrix} r_1 \\ 0 \end{bmatrix},
\]

(33)

where \(r_1 \) denotes the first column of \(\text{Res} \) and \(s_{11} \) is the first diagonal entry of \(S \). The \(k \times k \) matrix \([D S^j]_{11}\) denotes the Fréchet derivative of the first column of \(S^j \) with respect to the first column of \(S \). By (15), we have the recursion

\[
[D S^1](\Delta S) = \Delta S, \quad [D S^j](\Delta S) = ([D S^{j-1}](\Delta S)) S + S^{j-1} \Delta S, \quad j \geq 2,
\]

implying

\[
[D S^1]_{11} = I_k, \quad [D S^j]_{11} = s_{11}[D S^{j-1}]_{11} + S^{j-1}, \quad j \geq 2.
\]

(34)

Besides providing an efficient means for computing \([D S^j]_{11}\), this also shows that \([D S^j]_{11}\) is upper triangular.

Similar to the forward substitution process for solving lower triangular systems, we can derive an equation of the form (33) also for the second columns of \(\Delta X \) and \(\Delta S \), provided that the right hand side is updated accordingly. To describe this update, partition

\[
\Delta X = [\Delta x_1, \Delta X_2], \quad \Delta S = [\Delta s_1, \Delta S_2], \quad \text{Res} = [r_1, \text{Res}_2],
\]

and

\[
S = \begin{bmatrix} s_{11} & s_{12} \\ 0 & S_{22} \end{bmatrix}, \quad S^j = \begin{bmatrix} s_{11}^j & [S^j]_{12} \\ 0 & S_{22}^j \end{bmatrix}.
\]

Inserted into \(L(\Delta X, \Delta S) = (\text{Res}, 0) \), we obtain the following linear matrix equation for the pair \((\Delta X_2, \Delta S_2) \in \mathbb{C}^{n \times (k-1)} \times \mathbb{C}^{k \times (k-1)}:\)

\[
P(\Delta X_2, S_{22}) + \sum_{j=0}^{\ell} A_j X \, [D S^j([0, \Delta S_2])] \begin{bmatrix} 0 \\ I_{k-1} \end{bmatrix} = \widetilde{\text{Res}}_2,
\]

(35)

\[
\sum_{j=0}^{m-1} W_j^m \left(\Delta X_2 S_{22}^j + X \, [D S^j([0, \Delta S_2])] \begin{bmatrix} 0 \\ I_{k-1} \end{bmatrix} \right) = \widetilde{\text{Ort}}_2.
\]

(36)

with updated right-hand sides

\[
\widetilde{\text{Res}}_2 := \text{Res}_2 - \sum_{j=0}^{\ell} A_j \left(\Delta x_1 [S^j]_{12} + X \, [D S^j([\Delta s_1, 0])] \begin{bmatrix} 0 \\ I_{k-1} \end{bmatrix} \right),
\]

\[
\widetilde{\text{Ort}}_2 := - \sum_{j=1}^{m-1} W_j^m \left(\Delta x_1 [S^j]_{12} + X \, [D S^j([\Delta s_1, 0])] \begin{bmatrix} 0 \\ I_{k-1} \end{bmatrix} \right).
\]
Letting \(r_2 \) and \(q_2 \) denote the first columns of \(\mathbf{Res}_2 \) and \(\mathbf{Ort}_2 \), respectively, this shows that the second columns \(\triangle x_2, \triangle s_2 \) of \(\Delta X, \Delta S \) satisfy the linear system

\[
\begin{bmatrix}
P(s_{22}) & \sum_{j=1}^{m-1} A_j X \llbracket D S^j \rrbracket_{22} \\
\sum_{j=0}^{m-1} s_{22}^j W_j^n & \sum_{j=1}^{m-1} W_j^n X \llbracket D S^j \rrbracket_{22}
\end{bmatrix}
\begin{bmatrix}
\triangle x_2 \\
\triangle s_2
\end{bmatrix} =
\begin{bmatrix}
 r_2 \\
 q_2
\end{bmatrix},
\tag{37}
\]

where \(s_{22} \) denotes the first diagonal element of \(S_{22} \) and \(\llbracket D S^j \rrbracket_{22} \) satisfies the recursion (34) with \(s_{11} \) replaced by \(s_{22} \).

The described process can be continued in an analogous manner to compute all columns of \(\Delta X \) and \(\Delta S \). The cost of the overall algorithm is dominated by the solution of \(k \) linear systems of the form (33) and (37). Since each of these systems has order \(n + k \), the overall cost is \(\mathcal{O}(k(n + k)^3) \) flops, which compares favorably with the \(\mathcal{O}((nk + k^2)^3) \) flops needed by the Kronecker product formulation. If the coefficients \(A_j \) of the matrix polynomial are sparse then (33) is a bordered sparse system and a sparse direct solver for bordered matrices [4] could be used. Moreover, it might be possible to extend ideas on Krylov subspace methods for parametrized systems [32] to design a Krylov subspace method that handles the \(k \) systems of the form (33), (37) for \(s_{11}, \ldots, s_{kk} \) simultaneously.

III. Linearization

Given a matrix polynomial \(P \), the efficient solution of linear systems of the form \(P(s)x = b \) for many different parameters \(s \in \mathbb{C} \) and right-hand sides \(b \) by means of linearizing \(P \) has been discussed in [17, 32]. In the following, we extend these ideas to solve bordered systems of the form

\[
\begin{bmatrix}
P(s) & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\tag{38}
\]

for many different values of \(s \in \mathbb{C} \). The border matrices \(A_{12} \in \mathbb{C}^{n \times k}, A_{21} \in \mathbb{C}^{k \times n}, A_{22} \in \mathbb{C}^{k \times k} \), and the right-hand side are different for each \(s \), in some non-specified fashion.

Given a linearization \(\mathcal{A} + \lambda \mathcal{B} \in \mathbb{L}_1(P) \), we have

\[
(\mathcal{A} + s \mathcal{B}) V_{t}(x_1, s) = v \otimes P(s)x_1
\]

for arbitrary \(s \in \mathbb{C} \), \(x_1 \in \mathbb{C}^n \), and some fixed nonzero vector \(v \in \mathbb{C}^t \) describing the linearization [29]. Note that \(v \otimes P(s)x = v \otimes b \) if and only if \(P(s)x = b \). This allows us to rewrite (38) as

\[
\begin{bmatrix}
\mathcal{A} + s \mathcal{B} & v \otimes A_{12} \\
w^h \otimes A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
V_{t}(x_1, s) \\
x_2
\end{bmatrix} =
\begin{bmatrix}
v \otimes b_1 \\
b_2
\end{bmatrix}
\tag{39}
\]

where \(w \in \mathbb{C}^t \) is any vector satisfying \([s^{t-1}, \ldots, s, 1]^h w = 1 \). Once the solution \(\tilde{y} \in \mathbb{C}^{tn + k} \) to (39) is computed, we can extract \(x_2 \) from its trailing \(k \) entries and \(x_1 \) from its leading \(tn \) entries using any of the extraction strategies discussed in Section 4.2. Note that the conditioning for (39) might be significantly worse than for (38), but a full discussion of this effect is behind the scope of this paper. Instead, we refer to [17] for a related discussion and remark that there is no need to solve (39) very precisely thanks to the forgivingness of the outer Newton iteration [37].

To solve (39) efficiently for many different \(s \) we first compute a generalized Schur decomposition

\[
Q^h (\mathcal{A} + \lambda \mathcal{B}) Z = T_A + \lambda T_B
\tag{40}
\]
with unitary matrices $Q, Z \in \mathbb{C}^{\ell n \times \ell n}$ and upper triangular matrices $T_A, T_B \in \mathbb{C}^{\ell n \times \ell n}$. Note that if the initial approximation (X_0, S_0) to the invariant pair was computed by solving the linearized eigenvalue problem combined with one of the extraction methods described in Section 4 then this decomposition is usually readily available. Setting
\[\tilde{A}_{12} = Q^H (v \otimes A_{12}), \quad \tilde{A}_{21} = (w^u \otimes A_{21}) Z, \quad \tilde{x}_1 = Z^H V_\ell (x_1, s), \quad \tilde{b}_1 = Q^H (v \otimes b_1), \] (41)
the linear system (39) becomes equivalent to
\[\begin{bmatrix} T_A + sT_B & \tilde{A}_{12} \\ \tilde{A}_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \tilde{b}_1 \\ b_2 \end{bmatrix}, \] (42)
which is a bordered triangular system and can be solved, e.g., via a slightly modified QR or LU decomposition [10] that takes the structure into account. This requires $O(k(\ell n + k)^2)$ flops for computing the decomposition and $O((\ell n + k)^2)$ flops for solving the resulting upper triangular system. Setting up the transformed system (42) requires another $O(k(\ell n)^2)$ flops.

In total, the overall cost of this approach for refining an invariant pair is $O(\ell^3 n^3)$ flops for computing the generalized Schur decomposition (which needs to be performed only once throughout the entire Newton iteration or might already be available) plus $O(k^2 (\ell n + k)^2)$ flops for solving the k linear systems. This compares well with the $O(k(n + k)^3)$ flops needed by the second approach, provided that ℓ stays small and n is sufficiently large.

Performance comparison To gain insight into the actual performance of the three approaches we measured the execution times needed for
- solving the linear system (32) in Approach I;
- solving k linear systems of the form (37) in Approach II;
- setting up (41) once and solving k linear systems of the form (42) in Approach III.

We run experiments in MATLAB 7.5 on a 2.20 GHz Intel Core2 Duo CPU with 2 GiB RAM. All approaches have been implemented in MATLAB in a rather straightforward fashion, with the exception that we have used a MEX interface to a slightly modified variant of the LAPACK routine ZGETRF for computing the LU decomposition of (42) within $O(k(\ell n + k)^2)$ flops. The following two tables contain the obtained execution times in seconds for $n = 500, 1000, 2000$:

<table>
<thead>
<tr>
<th>$n = 500$</th>
<th>$n = 1000$</th>
<th>$n = 2000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>2</td>
<td>0.57</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>3.9</td>
<td>0.33</td>
</tr>
<tr>
<td>32</td>
<td>∞</td>
<td>3.2</td>
</tr>
<tr>
<td>128</td>
<td>∞</td>
<td>20</td>
</tr>
</tbody>
</table>

An entry ∞ indicates an out of memory error. As expected, Approach I is rather expensive and should only be used for tiny k and n. With the exception of $n = 500, k = 128$, Approach III is always faster than Approach I. However, it is important to note that these figures assume the availability of a Schur decomposition for the linearization. If this decomposition is not available (because, for example, the initial approximation to the invariant pair has been obtained by some other means), Approach III becomes much less attractive. The current
implementation [31] of the QZ algorithm requires about 160 seconds for \(n = 500 \) and about 1450 seconds for \(n = 1000 \). Even taking into account that the new implementation of the QZ algorithm described in [25] (which is not yet included in MATLAB) may reduce these numbers by a factor \(4 \rightarrow 8 \) it would require an excessive number of iterations to make Approach III competitive.

6 Numerical Examples

In this section, we illustrate the use of the presented concepts for two examples from [38, 7].

![Figure 4: Power plant example from [7]. Left plot: Location of eigenvalues (crosses) and selected eigenvalues (circles). Right plot: Absolute error of the 10 selected eigenvalues after (i) extraction from the linearization, (ii) 1 Newton iteration, (iii) 2 Newton iterations.](image)

Example 13 The simplified dynamical model of a nuclear power plant from [7] leads to an \(8 \times 8 \) quadratic matrix polynomial that has been noted [38] to have rather ill-conditioned eigenvalues, mainly due to the bad scaling of the coefficient matrices. Using Extraction III based on the GSVD, we compute the invariant pair for the 10 rightmost eigenvalues from the linearization. “Exact eigenvalues” are obtained from a high precision arithmetic computation. As shown in Figure 4, the computed eigenvalues are rather inaccurate, with absolute errors of order \(10^{-2} \) to \(10^{-4} \). Two Newton iterations applied to the extracted invariant pair reduce these errors down to almost machine precision. This indicates that iterative refinement for invariant pairs cures the effects of bad scaling, similarly as for linear systems [18].

Example 14 In [38] the following matrix polynomial was discussed:

\[
P(\lambda) = \lambda^2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \lambda \begin{bmatrix} -2 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

It has an eigenvalue \(\lambda = 1 \) with algebraic multiplicity 3. A corresponding invariant pair is given by

\[
X = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.
\]
We perturb \(X\) and \(S\) by setting \(X(3,3) = 1\) and \(S(3,2) = 10^{-8}\). The perturbed matrix \(\tilde{S}\) has eigenvalues \(\lambda_1 = 1\), \(\lambda_2 \approx 1.0001\), \(\lambda_3 \approx 0.9999\). The initial residual of \((\tilde{X}, \tilde{S})\) is \(R(\tilde{X}, \tilde{S}) \approx 0.73\). After three refinement steps using approach II (Forward Substitution) we have \(R(\tilde{X}, \tilde{S}) \approx 3.89 \cdot 10^{-16}\). The refined eigenvalues of \(\tilde{S}\) are

\[
\begin{align*}
\tilde{\lambda}_1 &= 1, \\
\tilde{\lambda}_2 &= 0.999999999945053 + 7.654628153552778 \times 10^{-9}i, \\
\tilde{\lambda}_3 &= 1.00000000005495 - 7.654628059339143 \times 10^{-9}i.
\end{align*}
\]

The refined matrix \(\tilde{X}\) is given by (displayed to three decimal digits accuracy)

\[
\begin{bmatrix}
0 & 7.07 \cdot 10^{-1} - 5.79 \cdot 10^{-4}i & 7.07 \cdot 10^{-1} + 1.10 \cdot 10^{-5}i \\
7.07 \cdot 10^{-1} & 1.27 \cdot 10^{-17} - 1.04 \cdot 10^{-20}i & -2.98 \cdot 10^{-17} - 4.65 \cdot 10^{-22}i \\
0 & 5.91 \cdot 10^{-36} + 2.25 \cdot 10^{-35}i & 6.75 \cdot 10^{-32} + 8.14 \cdot 10^{-32}i
\end{bmatrix}.
\]

The third row is close to zero and hence the span of this matrix is almost identical to the span of the original matrix \(X\) demonstrating that the invariant pair \((X, S)\) was very well recovered even though \(S\) contains a Jordan block.

7 Conclusions

One aim of this paper is to promote the concept of invariant pairs for polynomial eigenvalue problems as a suitable way of handling several eigenvalues simultaneously. Several theoretical results, algorithms, and numerical experiments have been presented to support this concept. The benefits of using invariant pairs in applications are not fully explored yet. The experiments in Section 6 suggest that extracting and refining invariant pairs might have a positive impact on the accuracy in any polynomial eigenvalue computation. Also, we believe that invariant pairs can be a useful framework in the design and analysis of Krylov subspace and Jacobi-Davidson methods for solving large-scale polynomial eigenvalue problems [3, 23, 30]. Finally, we remark that some of the results presented in this paper can be extended to genuinely nonlinear eigenvalue problems [28].

References

A Construction of Jordan chains

In the following we demonstrate how Jordan chains of a regular matrix polynomial P can be turned into Jordan chains of a linearization $A + \lambda B \in L_1(P)$. This result is needed in the proof of Theorem 9, but might also be of independent interest. The construction is rather similar to the ones given in [15, 38].

Let λ be a finite eigenvalue of P and consider an arbitrary vector $x \in \mathbb{C}^n$. Then

$$(A + \lambda B)V_\ell(x, \lambda) = v \otimes P(\lambda)x$$ (43)

see [29] or the relation (24) for $k = 1$. Differentiating (43) with respect to λ yields

$$(A + \lambda B)V_\ell'(x, \lambda) = v \otimes P'(\lambda)x - BV_\ell(x, \lambda),$$ (44)

where

$$V_\ell'(x, \lambda) = \begin{bmatrix} (l - 1)\lambda^{l-2}x \\ \vdots \\ 2\lambda x \\ x \\ 0 \end{bmatrix}.$$

Chains of length 2: Let us first consider a Jordan chain $x_1, x_2 \in \mathbb{C}^n$ of length 2 for P:

$$P(\lambda)x_1 = 0, \quad P(\lambda)x_2 + P'(\lambda)x_1 = 0.$$

Set

$$y_1 := V_\ell(x_1, \lambda), \quad y_2 := V_\ell(x_2, \lambda) + V_\ell'(x_1, \lambda).$$

Then (43) yields $(A + \lambda B)y_1 = 0$ and (44) yields

$$(A + \lambda B)y_2 = v \otimes P(\lambda)x_2 + v \otimes P'(\lambda)x_1 - By_1 = -By_1.$$

This shows that y_1, y_2 is a Jordan chain for $(A + \lambda B)$. Note that we can write

$$[y_1, y_2] = V_\ell \left([x_1, x_2], \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \right).$$

Chains of arbitrary length: Let us now consider a Jordan chain $x_1, \ldots, x_k \in \mathbb{C}^n$ of length k for P:

$$\sum_{i=1}^{j} \frac{1}{(i - 1)!} P^{(i-1)}(\lambda)x_{j-i+1} = 0, \quad \text{for } j = 1, \ldots, k.$$

Set

$$y_j := \sum_{i=1}^{j} \frac{1}{(i - 1)!} V_\ell^{(i-1)}(x_{j-i+1}, \lambda).$$

Repeated differentiation of (44) gives

$$(A + \lambda B)V_\ell^{(i-1)}(x, \lambda) = v \otimes P^{(i-1)}(\lambda)x - (i - 1)BV_\ell^{(i-2)}(x, \lambda)$$
and hence
\[(\mathbf{A} + \lambda \mathbf{B})y_j = \sum_{i=1}^{j} \frac{1}{(i-1)!} (\mathbf{A} + \lambda \mathbf{B}) V_{\ell}^{(i-1)}(x_{j-i+1}, \lambda) \]

\[= \sum_{i=1}^{j} \left(v \otimes \frac{1}{(i-1)!} P^{(i-1)}(\lambda)x - \frac{(i-1)}{(i-1)!} BV_{\ell}^{(i-2)}(x, \lambda) \right) \]

\[= - \sum_{i=1}^{j} \frac{1}{(i-2)!} BV_{\ell}^{(i-2)}(x, \lambda) = -By_{j-1}. \]

This shows that \(y_1, \ldots, y_k\) is a Jordan chain for \((\mathbf{A} + \lambda \mathbf{B})\). Moreover, we can write
\[[y_1, \ldots, y_k] = V_{\ell}([x_1, \ldots, x_k], J_k(\lambda)), \]

where \(J_k(\lambda)\) is a \(k \times k\) Jordan block belonging to \(\lambda\).