Interested in a career in Archaeology or Environmental Archaeology?

Why not consider studying at Reading University where Quest funded internships, funded dissertation placements and career opportunities are available.

www.reading.ac.uk

Further details are available from Professor Martin Bell, Professor in Archaeological Science: m.g.bell@reading.ac.uk
A4 complex template is a well-established commercial enterprise within the School of Archaeology, Geography and Environmental Science (SAGES) at the University of Reading.

We provide an expert environmental archaeological service to archaeological companies, environmental consultancies and government organisations. Since 1996, the business has expanded to include a network of specialist and technical staff that services all aspects of environmental archaeological contract work. Utilising this and the extensive range of analytical equipment, laboratory facilities and technical expertise QUEST endeavours to become the leading environmental archaeological contract service facility in Europe.

FACILITIES

Field equipment for ground investigations, such as conventional sampling sampwells, corers, column, bulk and Kubiena sampling, and drilling equipment using an Atlas Copco 2-stroke percussion engine and Eijkelkamp window/windowless samplers.

Computer graphics suite supporting PC systems, ArcView geographical information systems (GIS), Rockworks 2006, Endes Imagine landscape analysis and visualisation, and remote sensing.

Palaeoecological laboratories for analysis of pollen, diatoms, insects, waterlogged wood and seeds, charcoal and charred seeds. Ostracods and Foraminifera, Mollusca, phytoliths, fungal spores and testate amoebae.

Sedimentology and soil science laboratories, for sediment description, soil micromorphology, particle size analysis, peat humification and organic matter determinations.

Geochemistry laboratories with facilities for atomic absorption spectrometry and XRD, WRF-ICP-OES, EP-MS, GCMS, CN isotopes and D/H isotopes.

Strong links with geochronology laboratories offering facilities for radionuclide, Pb210, U-series, OSL and T-L dating, tephrochronology and dendrochronology.

EXPERIENCE

Members of QUEST have been involved in a wide range of projects, both in the UK and abroad. The projects have involved providing a full range of desktop studies, field-based investigations and sampling, laboratory assessment, laboratory analysis, and reporting services.

Geoarchaeology

Review of existing geological, sedimentological, pedological and hydrological data derived from RGS records, geological reports, and archives held by public and private organisations.

Creation of deposit models using Rockworks and/or ArcView GIS, which are fully integrated with archaeological, palaeoenvironmental and palaeoeconomic records.

Collection of new borehole data using in-house equipment or cable percussion (USSD) to provide samples suitable for assessment and/or analysis.

Description and assessment, analysis of sediments to record changes in sub-surface environmental conditions.

Geochronology

Production of high-resolution temporal frameworks using a wide range of geochronological markers.

Modelling of single or multi-method dated sedimentary sequences to compile age-depth and time sliced models, enabling age related visualisation of long-term processes and single events, and assisting in the determination of targeted dating programmes to address specific age related archaeological problems.

Geoarchaeology

Analysis of microfossils, especially pollen, diatoms and phytoliths, from a range of sedimentary contexts to reconstruct natural vegetation succession and quantify the impact of human groups on the natural environment, and record changes in pH, salinity and water quality.

Analysis of macrofossils, especially charcoal, charred seeds and by-products of cultivation (staff), waterlogged wood and seeds, to reconstruct natural changes in the environment, and past economies and diet.

Geoarchaeology

Analysis of microfossils, especially Ostracoda and Foraminifera, from a range of sedimentary contexts to reconstruct environmental histories, in particular sea level change, water quality, depth and pH.

Analysis of macrofossils, especially insects, Mollusca and animal bones, to reconstruct natural changes in the environment, and past economies and diet.

Zooarchaeology

Analysis of microfossils, especially pollen, diatoms and phytoliths, from a range of sedimentary contexts to reconstruct environmental histories, in particular sea level change, water quality, depth and pH.

Analysis of macrofossils, especially insects, Mollusca and animal bones, to reconstruct natural changes in the environment, and past economies and diet.

Archaeobotany

Analysis of microfossils, especially pollen, diatoms and phytoliths, from a range of sedimentary contexts to reconstruct environmental histories, in particular sea level change, water quality, depth and pH.

Analysis of macrofossils, especially insects, Mollusca and animal bones, to reconstruct natural changes in the environment, and past economies and diet.

Mollusca

have the potential to provide broad palaeoenvironmental reconstructions and may provide useful information on woodland clearance, land-use, human economy and diet.

Insects

provide valuable information on regional and local environmental conditions, human and animal diet, and the function of archaeological features.

Polyn

 provides valuable information on vegetation composition, structure and succession, plant migration, climate change, human modification of the natural vegetation cover and land-use and diet.

Waterlogged wood

provides data on woodland composition, vegetation history, woodland management, agricultural practices, woodland exploitation, natural wild fires and material culture.

Waterlogged seeds and their stems, leaves and buds

may provide valuable information on climate change, vegetation history, human economy and diet.

Charcoal

can provide useful information on natural wildfires (including climate history), human-induced woodland clearance, agricultural practices and woodland management.

Ostracods

are highly sensitive to changes in salinity, rainfall, temperature and alkalinity.

Phytoliths

may provide valuable information on grassland, cultivation of crops and the presence of herbicides.