MTMA33 - A Reminder About Matrices

Many programming tasks will require the manipulation of arrays or matrices. With that in mind, this is a short reminder (hopefully) about basic matrix manipulation via some simple examples.

Addition: simply addition of corresponding elements: $\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]+\left[\begin{array}{ll}7 & 6 \\ 9 & 8\end{array}\right]=\left[\begin{array}{cc}8 & 9 \\ 13 & 10\end{array}\right]$

Subtraction: similar to addition: $\left[\begin{array}{ll}7 & 6 \\ 9 & 8\end{array}\right]-\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}6 & 3 \\ 5 & 6\end{array}\right]$

Multiplication: More complicated, if doing $A B$ (A times B), the number of columns of A must be equal to the number of rows of B, the result will have the same number of rows as A and columns as B. It is important to be aware than $A B$ is different to $B A$ (not commutative).

Examples:

$$
\begin{gathered}
{\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=(4 \times 2)+(5 \times 3)+(6 \times 1)=[29]} \\
{\left[\begin{array}{ccc}
1 & 4 & 2 \\
2 & -5 & 1 \\
3 & 3 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
(1 \times 1)+(4 \times 0)+(2 \times-1) \\
(2 \times 1)+(-5 \times 0)+(1 \times-1) \\
(3 \times 1)+(3 \times 0)+(-1 \times-1)
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
4
\end{array}\right]} \\
{\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right] \times\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
(1 \times 1)+(0 \times 2) & (1 \times 4)+(0 \times 3) \\
(2 \times 1)+(-1 \times 2) & (2 \times 4)+(-1 \times 3)
\end{array}\right]=\left[\begin{array}{ll}
1 & 4 \\
0 & 5
\end{array}\right]}
\end{gathered}
$$

Note there is a difference between matrix maths and element wise maths.

$$
\text { So if } A=\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right] \quad \& \quad B=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right]
$$

$$
A^{*} B \text { in matrix maths is }\left[\begin{array}{ll}
1 & 4 \\
0 & 5
\end{array}\right] \quad \text { but in element wise maths is }\left[\begin{array}{cc}
1 & 0 \\
4 & -3
\end{array}\right]
$$

Transpose: This is essentially a reflection through the main diagonal... writing the rows as columns and columns as rows... this can be very handy in programs.

$$
A=\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right] \text { hence } n p . t r a n s p o s e ~(A)=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]
$$

