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Abstract: We show that data assimilation using four-dimensionalatemn (4DVar) can be interpreted as a form of Tikhonov
regularisation, a very familiar method for solving ill-pEsinverse problems. It is known from image restoration fgots thatl; -
norm penalty regularisation recovers sharp edges in thgémaore accurately than Tikhonov, bs-norm, penalty regularisation.
We apply this idea from stationary inverse problems to 4D&atynamical inverse problem and give examples foamorm
penalty approach and a mixed Total Variation (T¥)-L2-norm penalty approach. For problems with model error an@reh
fronts are present the mixed TV; - L2-norm penalty, which promotes sparsity, performs mucheodiian the standarfz-norm or
L1-norm regularisation in 4DVar. Copyrigi®) 2010 Royal Meteorological Society
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1 Introduction the regularisation term and hende,-norms for the reg-
ularisation terms give a better result in image restoration

Data assimilation is a method for combining model forghis is the motivation behind our approach for variational

cast data with observational data in order to forecast mekgta assimilation.

accurately the state of a system. One of the most popu- The edge-preserving property bf-norm regularisa-

lar data assimilation methods used in modern numerigal, can he used for models that develop shocks, which is
weather pred|ct-|on is four-dimensional data a§S|m|Iat|q>He case for moving weather fronts. In numerical weather
(4DVar) (Sgsak|(1979;_ Talagrangl(l98]); Lewiset al. eprediction and ocean forecasting, it is recognized that the
(2006), which seeks initial conditions such that the for ADVar assimilation method may not give a good analy-

cast bESt, fits' both the obsgrvations and the packgro%riy where there is a sharp gradient in the flow, such as
state (which is usually obtained from the previous fored— front Bennett(2002; Lorenc (1981). If the front is

(C::?Jsrtr)er\?;:thl?n arrr:c;gtteowzlrz:t?cl)lrfgl t/r\]/:a?szlrnyg[;g?swslsng?e isplaced in the background estimate, then the assimila-
Y, b » SY 5h algorithm may smear the front and also underesti-

. : - . .
and states of dimensiafi(10”) or higher are conS|dered,mate the true amplitude of the shockofinson(2003).

whereas there are considerably fewer observations, uIsnut'hese cases the error covariances propagated implicitly
6 NIi H
ally O(10%) (seeDaley(1991); Nichols(201Q) for reviews by 4DVar are not representative of the correct error struc-

on data assimilation methods). .
Li iced 4DV be sh o b val tL{res near the front. If model error is present, then theze ar
-inearise ar can be snown 1o be equiva e:rs]ystematlc errors between the incorrect model trajectorie
to Tikhonov, or Le-norm regularisation, a well-known :
g and the observed data and therefore the strong constraint
method for solving ill-posed problemslidhnsoret al. . :
' . . 4DVar, which assumes a perfect model, is not able to rep-
(2009). Such problems appear in a wide range of applica-

tions Englet al. (1996) such as geosciences and imagé%sent these errors correctly. Here we apply/amorm

. e L enalty approach to several numerical examples contain-
restoration, the process of estimating an original imagée sharp fronts for cases with model error. We show that
from a given blurred image. From the latter work it i?hg P '

known that by replacing thé&,-norm penalty term with

e Li-norm penalty approach applied to the gradient of
an L;-norm penalty function, image restoration becom

%%e analysis vector (we call this mixed Total Variation
edge-preserving as the process does not penalise h\Q L1-Lo-norm penalty regularisation) performs better
edges of the image. The;-norm penalty regularisation

than the standard,-norm regularisation in 4DVar. With
then recovers sharp edges in the image more precistg

use of the gradient operator and thenorm, local-
than theL.-norm penalty regularisatiorH@gnsen(1998;

isation of the gradient is enforced, which is important in
Hanseret al. (2008). Edges in images lead to outliers ilﬁ'rackmg fronts. As an example we use the linear advec-

ion equation where sharp fronts and shocks are present.

o g o Department of Mathematical Sci _ UWe use a numerical scheme that introduces some form of
orrespondence 1o: epartment o athematical clences; . . .

versity %f Bath, C|avert%n Down BA2 7AY, UK.E-rmail : model errorinto the systems and find that, using A

m frei t ag@nat hs. bat h. ac. uk norm regularisation term, applied to the gradient of the
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2 M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

solution, fronts are resolved more accurately than with tlimes and locations of the observations) and errors in the
standardL,-norm regularisation of 4DVar. observation operator. Provided the background and obser-
The aim of this paper is to examime the potentightion errors have Gaussian distributions with mean zero,
benefits of usingL;-norm regularisation in variationalthen minimisingJ (zo) is equivalent to finding thenax-
data assimilation. It presents a preliminary study showimgum a posteriori Bayesian estimaté the true initial
that the method has potential to give improvement ovawndition (orenc(1986).
existing approaches. Further investigation remains to be We apply a Gaul3-Newton method
done in order to evaluate the technique in an operatio@ennis and Schnabe(1983) in order to solve the
setting. minimisation problem 1). From a starting guessj,
Section2 gives an introduction to 4DVar and show#lewton’s method for solving the gradient equation is
its relation to Tikhonov regularisation. In Secti@we
introduce the new algorithm and in Sectiémwe explain = VVJ (2§)Azf = =V T (2f), 2™ = zf + Az, (3)
how we solve thd.;-norm regularisation problem and the )
mixed TV L;-L,-norm regularisation problem. In Sectiofor ¥ > 0. In the Gaul-Newton method, the Hessian
5 we state the model equations. Sectiquresents numer-1S eplaced by an approximate HessigJ (zf) that
ical examples, where the nef;-norm regularisation is neglects all the terms involving seconc! derivatives of
compared to standard 4DVar. In our examples we intrddi+1,; @andH;. We leti;,, ; be the Jacobian ot 1.
duce several kinds of model error. Under these conditidfi§"® We only consider problems where the observation
it can be seen thak;-norm regularisation outperformsoPerator is linear, that i§¢;(x;) = H;xz;. Furthermore,
4DVar when sharp fronts are present (see Sectiyrigle POth R; = R and H; = H, are assumed to be unchanged

conclude with a section on future work. overtime. _ ,
The gradient of I) is then given by

2 4DVar and itsrelation to Tikhonov regularisation VI (z0) =B~ (xo — xb)

In nonlinear 4DVar we aim to minimise the objective _ (4)
function — > Mio(xo)"H" R (yi — Huy),

=1

1
J (o) 25(300 — 2B g — ) where M; o(zo) is the Jacobian ofM; o(z). The chain
1) rule gives

N

1

5 i — M) Ry — Halws

* 2 ;(y ()" B (y (@) M o(zo) = My i—1(xim1)Mi—1 i—2(xi—2) - - - My o(20).
- (5)
subject to the system equations Taking the gradient of4) and neglecting terms involving
the gradient of\/; o(z¢) gives
Tit1 = Mi+1,i(xi)7 1= 0, ceey N —1. (2)

N
This is a nonlinear constraint minimisation problem wher& V.7 (z0) = B~ + > M; o(x0)" H" R~ HM; o(x0).
the first term in {) is called the background termy is the =1 ©6)

background state at tinie= 0 andz; € R™, i =0,..., N . . h
are the state vectors at time The function M;, 1 ; : Both the sumr_nat|on term.s mﬁ)(and_ 6) can be obtained
’ ﬁ%curswely using the adjoint equations

R™ — R™ denotes the nonlinear model that evolves t

state vector; at timet; to the state vector;; at time

ti+1. In weather forecasting the state vectgre R™ is

the best estimate from the previous assimilation cycle ofti-1

the state of the system at the start of the window. The . . ' .

vectorsy; € R?, ¢ :yl, ..., N contain the observations a Oré=N,...,1,in order to find the gradient

timest; and H; : R™ — RP? is the observation operator _ pe1 b

that maps the model state space to the observation space. VI (@o) = B~ (w0 = 25) = o, Q)
Minimising (1) is a weighted nonlinear least-squaregnq similarly

problem. By minimising7(xo) we find an initial state

zo € R™, known as thenalysis such that the model tra- v\, = 0

jectory is close to thg background trajectory and to tlgg)\i_1 = M (2io1) (VA — HTRVHM, o(x0)),

observations in a suitable norm. The symmetric matrix

B eR™™ and the symmetric matriceR; € R"”, i = for; = N, ... 1,leads to

1,..., N are assumed to represent the covariance matri-

ces of the errors in the background and the observa- ﬁj(xo) =B~ — V). (8)

tions respectively. The matricdg describe the combined

effects of measurement errors, representativity errddsing these adjoint equations we avoid having to compute

(arising from the need to interpolate state vectors to thé ;,_; (z;,—1) several times. We note thaf,i =0,..., N

Av = 0,
M i1 (zi) " (N + HTR™ Y (y; — Huy)),

Copyright© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-14 (2010)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 3

are vectors whereag)\;,7 = 0, ..., N are square matricesis hard to solve exactly, that is, the solutierdoes not

of the dimension of the system state. continuously depend on the data. In data assimilation
The approximate Hessianv 7 (o) andV.7 (zo) are  the matrixG = C,'/>HC}/? is generally ill-conditioned,

then used inJ), which is equivalent to a linearised leasivhich means it has singular values that decay rapidly and

square problem. Here we solve this system directly. Thisany are very small or even zero. This problem occurs if

approach is mathematically equivalent to the incrementagre are not enough observations in the system, which is

4DVar method as described ihgwlesset al. (2005ab));  typical for numerical weather prediction. Furthermore th

in the incremental method, however, the inner equatiogisen observations are subject to errors, leading to errors

(3) are solved iteratively. in the vectorf. Hence, we can see that the minimisa-
We may rewrite the objective functiorl)(in 4DVar tion problem (4) with an ill-conditioned system matrix
as G and an unreliable data vectgmwill lead to an unstable
1 solution and some form of regularisation is required (for
J (wo) = 5(x0 — )T B~ (xg — ) example preconditioning, Tikhonov regularisation, singu
1 (9) lar value filtering, etc.). We consider Tikhonov regulari-
+2 (9 — H(x0)) 'R (§ — H(xo)), sation where a regularisation termi||z|3 is introduced,
2 which leads to the objective functiofy(z) in (13). The
where minimisation of the Tikhonov functiorl@) gives the reg-
ularised solution
HMji 0(x0) Y1 —_—
. HMso(z 2 minp,m 2 T
Fi(wo) 2.,0( 0) Cand §= y ' 2= (GTG+ 121G f = Z 2UJ _ u]—vj,
: : = % +pc oy
HMy (o) YN (15)

A (see, for exampleHanseret al, 2006 Chapter 5) for
In general™(xo) is a nonlinear operatog € R”Y is a details). The vectors;; and v; are the singular vec-
vector andR € RPV-PV is a block diagonal matrix with tors of G belonging to the singular values;, where
diagonal blocks equal t&. If we lineariseM; o aboutr, G has the singular value decompositich= UXV7,
then the Jacobian of the augmented mattiis given by with U € RPNV and V € R™™ orthonormal matri-
ces andX is a pN x m matrix whith entrieso;, j =
) 1,...,min(pN,m) > 0 on the leading diagonal and zeros
. . : elsewhere. Hence the factof /(o2 + ?) acts as a filter
H = H(xp) = : (10)  factor for small singular valu};/sjf-.J )
HMN-()(IZ?(%) It is knqwn from imgge processingHanseret al.
’ (2000) that instead of taking thé,-norm for the regu-

which is essentially the observability matrix. Now writlarisation termy?(|z[|3 (that is the background term) the
ing B =02Cp and k = 62Cy and performing a vari- L1-norm gives a better performance when sharp edges
—1/2 need to be recovered. The reason for the edge-preserving

able transformz := C /" (2o — 2f) we may write the .
linearised objective function that we aim to minimise asProperty of theL,-norm is that thel,-norm enforces a
sparse solutionffonoho(2006). 4DVar performs poorly

P O Y200 — T (b)) — Y2 Y22 for the recovery of fronts. For shocks and fronts the gra-
() =l|Cr T = Hleg)) = Cp Cf 21z 1 dient of the solution is sparse and hence we introduce a
201112 2 _ 0g (1) mixed Total VariationL;-Ls-norm approach which aims
+uollell, et =3
b

to recover fronts.

o . . . Hence we introduce and test two new approaches
This is equivalent to a linear least-squares problem wiifkich are motivated by thé,-norm regularisation and

) S 5
Tikhonov regularisation Kngletal. (1999), where i°  compare them to standard 4DVar: These arenorm
acts as the regularisation parameter. If we set regularisation and a mixed Total Variatiah, -L,-norm

“1)2 fy 1/2 12, b regularisation. Both are described in the next section.
G:=CLp '"HCY" and f:=CL " "(y—H(zg)),

12)
whereG € RPN and f € RPY, then equation](1) may 3 L;-norm and mixed L;-L,-norm regularisation

be written as i o S .
With the notation in {2), the minimisation problem in

(11) can be written asl3) - known as standard Tikhonov
regularisation - where the second term is a regularisa-
(13) tion term andy? is the regularisation parameter. In the
If G is an ill-posed operator, or in the discrete setting diterature, there has been a growing interest in using
ill-conditioned matrix, then the minimisation problem norm regularisation for image restoration, see, for exam-
ple,Fuet al.(2009; Agarwalet al.(2007); Schmidtet al.
min{||f — Gz[|3} (14) (2007.

min Jy(z) = min{| f — Gz[3+ w2213}, 1 =

Q‘QL\? | oqw

Copyright(© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-14 (2010)
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4 M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

min Jy(2) = min]|f — G=[3 + p[2ll1}, 1* = 5.
z z b

[SEN]

Firstly, in this paper we consider the effects bf- be chosen. The size éfdetermines how much sparsity
norm regularisation for variational data assimilation bg enforced on the gradient of the solution (see Tdble
replacing the squareflo-norm in the regularisation termfor examples with different choices ¢j. We will see in
u?2||z||3 of (13) by the L;-norm to obtain Section6 that minimisingJry (z) in (19) gives a much

better resolution of the fronts than minimising(z) or
Ji(z) in (17) or (16).
We find that, for fronts and shocks, regularisation
(16) with an addedL;-norm on the derivative of the initial
Equation (3) can be written as condition in 4DVar gives much better results than the
) standardL,-norm approach in the presence of model
min J5(z) = min H[ f ] — { G }Z = %0 error. Whe_n anL;-norm penalty term with a grad_|ent
z z 0 pl 9 02" asin (19) is added one often speaks of total variation
(17) (TV) regularisation $trong and Char(2003). We call
The minimisation problemsig) and (L7) aim to produce a the problem in {9) mixed TV L;-L,-norm regularisation
solutionz and hence, with := C;"/?(zy — «4), an initial Problem. _ _ '
statexg = C;/Qz + % such that the solution trajectory is In the f'oI.Iov'vmg section we gxplaln how we solve the
both close to the background (the previous forecast) agnorm mlnlmlgat.lon'problem |n1(§) and the mixed TV
the observations in some weighted norm. The solutiona~L2-10rm minimisation problem ini().
problems {6) promotes sparsity in the solution, hence it
promotes a sparse vectorWe will see that this is not so4 | east mixed norm solutions
useful for the computations.

Both the Ly-norm and theL;-norm minimisation Consider the minimisation problem46) and (9). In
can be interpreted from a Bayesian point of view. Forder to solve these least mixed norm solutions we use an
the Lo-norm approach - which is equivalent to standaapproach introduced by-( et al. (2006). Both problems
4DVar - a Gaussian distribution is assumed for the err@®) and (L9) are solved in a similar way. We explain
in the prior, that is, for the background error. For the- the algorithm using the minimisation problerhd, the
norm, the background error is assumed to have a Laplagplication of the algorithm to problem ) is similar.
(double-sided exponential) distribution. (For detailse s First, with zo = C;/QZ + 28, problem (9) can be
the Appendix.) formulated as

The advantage of using thé&;-norm is that the
solution is more robust to outliers. It has been observed . f G
that a small number of outliers have less influence of'™ H{ 0 } - [ ul ] z

2
+8|D(CY*z + w8>|1} :
2

the solution Fuet al. (2006). Edges in images lead to (20)
outliers in the regularisation term and, henég;norms We let
for the regularisation terms give a better result in image v — 5D(Cl/22 +a)
restoration. This is the motivation behind our approach for B o
variational data assimilation. and splitv into its non-negative and non-positive parts
However, if it is known that fronts are present in thandv—, that is
solution then the gradient of the solution will be sparse - v=v"—v”
hence the gradient of the initial statg will be sparse. If and
we approximate the gradient by a matfixgiven by
1 0 ... vt = max(v,0), v~ = max(—wv,0).
-1 1 0
p—| 0 -1 1 o0 (18) Problem 20) can then be written as
. . 2
L e 4] o)
Z, 0T, v 2
then the minimisation problem for a sparse initial state and . (21)
hence a sharp front becomes subject to the constraints
o ) f a 2 5D(C}B/2,z +2f) = ot —wv7, (22)
min Jry (2) =min H[ 0 } - [ pl ] “Il, 1 vtouT > 0. (23)
, (19 o
+0||Daoll1}, p? = ‘7_;, Here 1 denotes the vector of all ones of appropriate size.
T This problem can then be written as
where 2o = C}/%z + b, D is given by (8) and 4 is N (24)
another so-called regularisation parameter which needs to ming gw Hwacw
Copyright© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-14 (2010)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 5

subject to 6 Linear advection equation
Fw=g and Fw >0, (25) . . . .
Consider the linear advection equation
where
2 2GTG + ) 0 0 Ut + Uz =0, (30)
— + — . . . .
w=1v | H= 0 001, on the intervalz € [0, 1], with periodic boundary condi-
v 0 00 tions. The initial solution is a square wave defined by
Gt 0.5, 025<z<05
c=| 1 |, E=[épcy> -1 1], u(z,0) =4 T ETST (31)
1 —-0.5, £<0.25 or z>0.5.
0 0 0 This wave moves through the time interval; the true
F=|0 —I 0|, g=—0Dux, solution is obtained by the method of characteristics
0 0 I (by advecting the inital condition at speed that is

and the block matrices and 0 as well as the vectorsu(z,t) = u(z —t,0)) and the model equations are defined
1 of all ones in the matrices?, E, F' and ¢ are of Py the upwind scheme2g) with bounldary conditions
appropriate size. The objective function @4 is convex Ug' = Uy, wheren =1,...,80, Az = 55 andn is the
asH is symmetric positive semi-definite. In order to solvBumber of time steps. The same example is used in
the quadratic programming probler®4) with constraints Criffith and Nichols (2000. For this example we take
(25) we use the MTLAB in-built functionquadpr og. m At = 0.005.
In the following section we consider a square wave
advected using the linear advection equation as an ex@m- A standard experiment
ple. We use a ‘true’ model (from which we take the obse\;\-/ . oo . .
. SRR e consider an assimilation window of length time

vations) and another model, which is different from thet o .

) ifterenEPS: After the assimilation period we compute the fore-
truth and hence introduces a model error. The differen . )

st for another0 time steps, and hencg( time steps

models we use are introduced in the next section. Inéﬂe considered in total. For the background and obser-

examples we observe that the new edge-preserving mixe . .
P ge-p 9 lon error covariance matrices we take= 0.01/ and

TV Li-Ls-norm regularisation indeed gives better resul}g_ 0.011; hence we put equal emphasis on the observa-
:\h;rr;t:]ee Ls“t:rri]g;ri(grg]-norm approach and the simpla- ;24 the background. Moreover, for the background
g ' e choosé/ to be equal to the truth perturbed by Gaus-

In all the examples we keep the regularisation p ian noise with mean zero and covariari¢eThe back-
ametery fixed, as we are only investigating the influencd : : .
Found thus contains errors with variance of or@eril.

of the norm in the regularisation term, but not the size
the regularisation parameter e test several cases.
1. Perfect observations are taken everywhere in time
5 Modds and space.
2. Perfect observations are taken evefypoints in
In this section we consider the problem space and everytime steps.
3. Imperfect observations are taken evedypoints in
ut + [f(w)ls =0, (26) space and every time steps; for the observations
wheref (u) is given by we introduce Gaussian noise with mean zero and
variance(.01.
flu) =u, (27)

for the linear advection equation.
This general problem can be discretised using the
upwind scheme

For all cases we test

e standard 4DVar (minimisation problerh?)),
e Ly-norm regularisation (minimisation problem

(16)), and
At e mixed TV L;-Ls-norm regularisation (minimisa-

n+l _ rm =% ny n 1=L2

Uit =Y Az (AU 1) (28) tion problem (L9)).
~ Allequations are valid foj = 1,..., N, wheref is  Figures1 - 9 show the results for this example where the

given by 7). The CFL condition linear advection equation is used as a model.

max(f (u)) At In the pIc_)ts the true §0Iuti?n is represented by_a thick
— A, | St (29) dot-dashed line (called 'Truth’ in the legend). This true

solution is unknown in practice. We take (noisy) observa-
needs to be satisfied for stabilityviorton and Mayers tions from that true trajectory. The model solution (which
(2009; LeVeque(1992). For the linear advection equais derived from the upwind method) is shown as a dashed
tion (27) this condition just reduces tht < Az. For more line (called 'Imperfect model’ in the legend). This solu-
details on the above methods we refet&/eque(1992). tion represents the model solution, that is the solutioh tha

Copyright(© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-14 (2010)
Prepared usingjjrms3.cls DOI: 10.1002/qj



6 M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

15 —1s
GE] 6z GE) aa o5 e 67 on G CE) e oa o s e o7 on )

Figure 1. Results fodDVar applied to the linear advection equation where the init@hdition is a square wave. We talerfect
observations at each point in time and space over the assimilation interval which 0 time steps. The four plots show the initial
conditions at = 0 and the result afte20, 40 and80 time steps. 4DVar leads to oscillations in the initial cdiuati.

o XY o2 o3 c.a o5 o6 o.7 o8 X 1 ) o1 oz o3 o.a o5 X3 o7 EE) EE) 1

the same data as in Figute

o XY o2 o3 c.a o5 o6 o.7 o8 o 1 ) o1 oz o3 o.a o5 X3 o7 EE) EE) 1

Figure 3. Results fomixed TV L;-L2-norm regularisation for the same data as in FiguteMixed TV L1 -L2-norm regularisation gives
the best possible result for the initial condition.

Copyright© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-14 (2010)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 7

—15 15
CE) e oa o s e o7 on e e 6z GE) aa o5 e 7 on G

Figure 4. Results fodDVar for the same data as in Figutebut with perfect observations every 20 pointsin space and every 2 time
steps. 4DVar leads to oscillations in the initial condition.

—1s 15
CE) e oa o s e o7 on e e 6z GE) aa o5 e 7 on G

larisation for the same data as in Figufe

—1s 15
o1 oz oa o s e o7 on e e 6z oa aa o5 e 7 on G

Figure 6. Results fomixed TV Li-Ls-norm regularisation for the same data as in FigugeMixed TV L1-L2-norm regularisation gives
the best possible result for the initial condition.

Copyright(© 2010 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-14 (2010)
Prepared usingjjrms3.cls DOI: 10.1002/qj



8 M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

15 —1s
GE] 6z GE) aa o5 e 67 on G CE) e oa o s e o7 on )

Figure 7. Results fodDVar for the same data as in Figutdut withimperfect observationsevery 20 pointsin spaceand every 2 time
steps. 4DVar leads to bad oscillations in the initial conditiordaadso to a misplaced discontinuity in the forecast.

osf

—o.s p—

15 —1s
GE] 6z oa aa o5 e 67 on G CE) e oa o4 s e o7 on )

Figure 8. Results fof; regularisation for the same data as in Figure

15 —1s
GE] 6z oa aa o5 e 67 on G o1 e oa o s e o7 on )

Figure 9. Results fomixed TV L1-Ls-norm regularisation for the same data as in FigureMixed TV L1 -L2-norm regularisation gives
the best possible result for the initial condition.

Copyright© 2010 Royal Meteorological Society Q. J. R. Meteorol. So®0: 1-14 (2010)
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RESOLUTION OF SHARP FRONTS IN 4DVAR 9

is obtained if we use the correct initial conditions and thken investigate a change in the size of the assimilation
(imperfect) model. It represents the best solution that wendow in Sectiort.3.
are able to achieve (if data assimilation gives us the perfec

initial condition), as the model error is always preseneTlg 2 Changing the background error covariance matrix
solution obtained from the assimilation process by incor-

porating the (perfect/partial/noisy) observations isegiv We take'preci‘sely the same experiment as in the previous
by the solid line (called 'Final solution’ in the legend). Subsectiors.; however, we change the background error
govariance matrix from the identity matrix to a Gaussian

For perfect observations the result for 4DVar i . . . .
covariance matrixB with entries

shown in Figurel (minimisation problem 17)), that
for Ll—regularisation. in Figure@ (minimisation prpblt_em By; = afe*‘%‘, where L =5, (32)

(16)) and that for mixed TVL,-Ls-norm regularisation

in Figure 3. The analysis obtained by 4DVar and- and o2 = 0.01. Hence B is a symmetric matrix with
regularisation is very inaccurate, with many oscillationfiagonal entries equal tb01 and off-diagonal entries that
and large over/undershoots near the discontinuities (fi@tcay exponentially. This background error covariance
plots in Figuresl and2). When L;-norm regularisation matrix spreads the information from the observations
with the gradient is used, the initial condition more accynore adequately and the error variance is 6tilll. Note

rate (first plot in Figure3). The same result is true forthat for this matrix the inverse is a tridiagonal matrix. For
partial observations (Figuresand5 for 4DVar andL;- the background we choose Gaussian noise with covariance
regularisation versus Figufefor mixed TV L;-Lo-norm B and a mean value which is given by the truth. These
regularisation) and for imperfect partial observationg{F errors are consistent with the choice®f

ures?7 and8 for 4DVar andL;-norm regularisation versusWe only present the results forimperfect and partial obser-
Figure 9 for mixed TV L;-L,-norm regularisation). The vations, as this represents the most realistic case; simila
second rowB = 0.017 of Table| quantifies the errors inresults are achieved in the cases of perfect observations
the initial conditions for this situation for 4DVak;-norm and partial observations without noise. Further cases are
regularisation and thé;-norm total variation approach.summarised in Tablein Subsectior6.4. We also do not

We see that for all types of observations we investigatpesent the results fat; norm regularisation here as we
(partial, full, perfect and noisy observations),-norm TV have seen in Subsecti@nl that this approach is not bet-
regularisation gives the smallest initial condition error ter than standard 4DVar. The more interesting case is the

Traditional strong constraint 4DVar does not tak@ixed TV L;-Lo-norm regularisation.
model error into account. Hence 4DVar's attempts to Figures10and1l show the results where the back-
compensate for the initial condition error are obstructéfiound error covariance matrig is given by @2). For
by the use of an imperfect forecast model and it therefdhtiS choice of3, the results for 4DVar (FigureO) are bet-
does not produce an accurate estimate of the truth!&ftthan the results for the diagonal matik(Figure 7)
the initial time. The errors in the initial state estimate@®cause information is spread via thematrix, and we
by 4DVar act to force the trajectory propagated by trf¢€ that the oscillations in the analysis are significantly
incorrect model to match the observed data from the t{gduced. However, mixed TV, -Lz-norm regularisation
model and hence act to compensate, on average, for figure 11) still behaves consistently better than stan-
model error. From the final plots in Figurdsand7 for dardLz-norm regularisation (Figurg0). In particular, the
4DVar we also see that the forecast is inaccurate due to$h@Pe of the wave is distorted and there are small under-
incorrect estimate produced at the end of the assimilatfgPOts and overshoots in the 4DVar analysis (first plot
window. We also observe that the forecast in 4DVar lealfsF19ureé 10), which lead to small errors and the wrong

to a slight phase shift and the wrong amplitude in ymplitude in the forecast (final plot in Figui®). For the

forecast, as well as overshooting and undershooting.""ﬁalys'S using mixed T\L,-L,-norm regularisation, the

noisy observations are taken (see first plot in Fig(l|reInltal t(;]ondtl::on (I!th plo(;_tl_n F!gu;ellé Sgc;v‘[l)sva sfr_natllelr
vs first plot in Figure7), the oscillations in the initial i?]rrlgirguraenlo)eellrr]ll dla'thceo?orlelcogsltniz 2Ir;gr?trly bettgi(trlwrznﬁf?e
condition are more frequent. For mixed T -Ly-norm forecast in 4DVar (final plot in Figuré1). The quantities

regularisation (Figure$ and 9) these problems do not . L . . X
. ' . of the errors in the initial conditions for this particulaase
occur. We see in the first plot of Figurésand 9 that . . X
are summarised in the fifth row of Tablevhere we see

the initial condition obtained from mixed TY/;-L-norm . . .
N thatt the errors using mixed T¥;-Ls-norm regularisation
regularisation is the most accurate and hence the bes

possible forecast (see final plots of Figu@snd9) is are the smallest.

obtained (subject to model error). This behaviour is due ) S )

to the property of mixed TVL,-L,-norm regularisation 6-3 Changing the length of the assimilation window

enforcing sparsity on the gradient of the solution. Again, we take the same experimental data as in Subsec-
In the next two subsections we change the expsibn 6.1; this time, however, we reduce the size of the

mental design of the problem slightly, in order to check ttassimilation window fromi0 time steps td time steps

robustness of regularisations. We first check a more realsd carry out the following test: we take imperfect obser-

tic background error covariance matrix in Sect@@and vations evenp points in space and evetime steps with
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Figure 12. Results fodDVar applied to the linear advection equation where the init@idition is a square wave. We takaperfect

observationsevery 5 pointsin space and every 2 time steps over the assimilation interval which fstime steps. The four plots show the

initial conditions att = 0 and the result aftef, 20 and45 time steps. 4DVar leads to oscillations in the initial cdiwai and a misplaced
discontinuity in the forecast.
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Figure 13. Results fomixed TV Li-Ls-norm regularisation for the same data as in Figut@. Mixed TV L;-L>-norm regularisation
gives the best possible result for the initial condition.

Gaussian noise of mean zero and variaf¢g. For the We have also given results for different values af
background we again take the truth perturbed by Gaussfaf). The emphasis on the sparsity of the gradient of the
noise with covarianc®& = 0.011. initial condition depends on this regularisation paramete
Figures12and13show the results for a reduced siz&Ve have looked at three different values écand the best
of the assimilation window. The first observation that wef all three results (that is the smallest error in the ihitia
can make is that again the regularisation using the mixaghdition) is underlined in the table. The regularisation
TV L;-Lo-norm (Figurel3) is consistently better than thatdepends on the regularisation parameter but investigating
using theL,-norm (Figurel?). Standard 4DVar producesghe influence of this parameter and finding the optimal
oscillations, in particular in the initial conditions, wies choice ofs is beyond the scope of this paper. We remark
the mixed TV L;-Ls-norm regularisation does not showthat for the plots in the previous subsections we used the
any oscillations. The oscillations in the initial condit® value ofé which gave the smallest initial condition error.
in standard 4DVar then lead to errors in the forecast (see We see from the entries in the table that the errors
plots fort =5, t = 20 and¢ = 45 in Figure 12). Again, in the analysis at time = 0 are consistently smaller
for 4DVar, the forecast of the analysis does not keep tfeg mixed TV L;-Ls-norm regularisation than for stan-
amplitude correctly (final plot in Figur&2), wheread.,- dard 4DVar orL;-norm regularisation. Mixed T\;-Lo-
norm regularisation provides a more accurate amplituderm regularisation gives an error of about one magnitude
in the forecast (final plot in Figur&3), a property of the smaller than for standard 4DVar. We also observe from
underlying imperfect model. the table that, for both standard 4DVdr;-norm regu-
larisation and mixed TVL:-Ly-norm regularization, the
errors in the initial condition (analysis) decrease as the
variance in the background error is reduced, that is, as the
In Table! we summarise the analysis errors (the errorgtio of the background to observation variance decreases.
between the analysis and the truthtat 0), measured This is consistent with the results bfabenet al. (2010,
in the L, vector norm, for several scenarios. We chooséhich show that the standard 4DVar assimilation problem
observation errors with covariande= 0.017 and assim- becomes more well-conditioned (well-posed) as this ratio
ilation windows of length40. The general experimen-decreases. These examples demonstrate that, even where
tal design is as in Sectiofi.1. We consider two typesthe noise in the background and observations is Gaussian
of covariance matrices for the background error, namefyth known covariances, the standard 4DVar approach
B =o0?1, and the double-sided exponential covariandees not produce as accurate an analysis as mixef; ¥V
matrix B given by @2). For both types of matrices weL,-norm regularisation in the presence of model error.
consider three different variances; = 1, o7 = 0.01 and
of = 0.005. For each matrix we use either perfect obsek-¢ hifteq background
vations everywhere in time and space, perfect observa-
tions every20 points in space and evegytime steps or Finally, we consider the same problem as in Subsection
imperfect observations evedy points in space and every6.1 - with the same setup and error covariance matrices.
2 time steps, where the observations are taken as pertutbawever, here we shift the square wave in the background
tions from the truth with Gaussian noise of mean zero abg 0.02 to the right, so that shock is displaced. The
covarianceB. Finally, the last three rows of Tableshow reason for this shift is a practical one; fronts are often
the results for a smaller assimilation window of length resolved correctly in numerical weather forecasting, but

6.4 Summary of initial condition errors
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Table I. Comparison between errors in the analysis in stahdl@Var, ;-norm regularisation and mixed T¥-L2-norm regularisation

M. A. FREITAG, N. K. NICHOLS, C. J. BUDD

measured in thé.o-norm

Standard L1i-norm mixed TV L1-Ls-norm
4DVar | regularisation regularisation

§=10] 6 =100 [ § = 1000
full perfect observations 2.3674 2.4392 1.1585| 0.7674 0.2998
B=1 partial perfect observations 12.8039 13.6598 9.3621 | 0.4643 2.7286
partial imperfect observations | 13.6182 14.4389 7.7128 | 0.4790 2.9110
full perfect observations 1.0609 1.4780 0.8963 | 0.6998 0.2531
B =0.011 partial perfect observations 1.3791 10.0589 1.0935| 0.2866 1.2440
partial imperfect observations 1.4614 9.9083 1.0060 | 0.1719 1.3910
full perfect observations 0.9012 1.4567 07987 | 0.6417 0.2272
B =0.0051 partial perfect observations 0.8651 9.3547 0.6887 | 0.2260 0.8014
partial imperfect observations 0.8979 8.5296 0.6566 | 0.1500 0.9141
B with entries full perfect observations 1.1892 1.3703 0.9801| 0.7391 0.2807
B, = e ai% partial perfect observations 27845 | 11.6647 | 2.2421| 0.3832 | 2.7031
whereL =5 partial imperfect observations 3.1041 11.1133 2.2780| 0.5552 2.8524
B with entries full perfect observations 0.4921 1.0184 0.4857 | 0.4346 0.1696
Bi; = 0.016_% partial perfect observations 0.3150 2.0667 0.2938 | 0.1633 0.9128
where =5 partial imperfect observations 0.4161 1.5400 0.3997 | 0.3057 0.8456
B with entries full perfect observations 0.4023 0.9396 0.3981 | 0.3636 0.1567
Bij = 0.00567% partial perfect observations 0.2304 0.6327 0.2171| 0.1455 0.6922
whereL =5 partial imperfect observations 0.3225 0.5489 0.3139 | 0.2680 0.5686
B =1Tand full perfect observations 2.1595 2.1858 0.5812 | 0.3406 0.6591
smaller length of | partial perfect observations 8.0773 8.2133 1.3201 | 0.5327 3.7108
assimilation window | partial imperfect observations 11.2487 11.4258 1.6075| 0.6121 3.6611
B =10.011 and full perfect observations 0.6881 0.9963 0.4130 | 0.1996 0.4832
smaller length of | partial perfect observations 0.9441 1.7047 0.6182 | 0.2129 1.6974
assimilation window | partial imperfect observations 1.2017 2.5580 0.7971| 0.1795 2.7750
B =0.0051 and full perfect observations 0.5463 0.8378 0.3677 | 0.1553 0.3939
smaller length of | partial perfect observations 0.6809 1.4938 0.4903 | 0.1795 1.0246
assimilation window | partial imperfect observations 0.8293 2.0489 0.6132 | 0.1510 1.1469

the front is often predicted to be in the wrong positio. Conclusionsand future work
We simulate this situation in our simplified model bY i i
assuming a slightly shifted background. We add noise!fbthiS paper we have presented mixed Ty-L,-norm

this background, taken from a normal distribution witf9ularisation, a new approach for variational data assim-
covariance matri3 — 0.017 which is consistent with the 'tion. We have given numerical examples where shock
error in the shifted background fronts are present in order to demonstrate that mixed TV

. . . . L1-Lo-norm regularisation gives better results than the
We only consider the case with partial noisy Observefandard 4DVar technique.
tions, since this is the most interesting and realistic one. £+ re work will be to apply this technique to higher
The results for this example are shown in the plots §imensional and possibly multi-scale problems. Because
Figuresl4and15. The initial condition in 4DVar is clearly the minimisation process for the mixed TM-L,-norm
recovered very badly, with many oscillations (see first plggularisation approach in9) is more involved than that
in Figure 14). Furthermore, at the end of the assimilatiofor the standard approach in3), practical implementa-
window the solution gives undershoots (see second plotiths will also have to be investigated together with the
Figure14). We also see that the amplitude of the front casfficiency of this new approach.
is reduced in (see second and third plot in Figidg

However, the solution using the mixed TV;-Lo- endix
norm regularisation provides a much better initial c:ondiafIOIO
tion, with no oscillations present (see first plot in Figurghe solution to the the data assimilation problem can be
15). Moreover, there are no undershoots in the solutioniaterpreted in statistical terms, where certain assumgtio
the end of the assimilation window (see second plotin Figbout the errors hold\(ichols (2010). For the standard
ure 15). Therefore mixed TVL:-L,-norm regularisation 4DVar problem, Gaussian errors are assumed for both the
gives a better initial condition for the forecast than stabackground and the observations, so the minimisation of
dard 4DVar. Furthermore, mixed T¥;-L,-norm regular- the objective function) is equivalent to maximising the
isation retains the amplitute of the front more accuratedy posteriori likelihood estimate of the state, given the
than 4DVar (see second and third plot in FiguEs. observations and the prior. A similar derivation can be
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Figure 15. Results fomixed TV Li-La-norm regularisation for the same data as in Figuté.

made forL-norm regularisation1(6) (which we are going We remark that the solution of the minimisation prob-
to do here for the single variate case). lem using the least mixed norm solution described in sec-
The addition of the penalty term?||z||; in (16) to tion 4, (see alsdfuet al. (2008)) is more expensive than
the least squares term is sometimes also referred tostandard 4DVar as the problem size is increased. More
Lasso regression in statisticSiljshirani (1996). Now, efficient methods need to be found for the minimisation;
|zi|, where z; is the ith entry of z, is proportional to the details are beyond the scope of this paper.
the negative log-density of the Laplace (or double-sided We note that traditional 4DVar is not designed to
exponential) distribution. Hence, the;-norm regulari- deal with model error. Hence, for future work, a fairer
sation can be derived as a Bayesian posterior estimatnparison would be weak-constraint 4DVar (see, for
where the priors are independently distributed variablesampleTremolet(2006) with L,-regularisation.
with Laplace probability density function
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