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1. INTRCDUCTION

For the problem of eigenvalue assignment by feedback in a
multi-input linear control system, a solution is robust, or

well-conditioned, if the assigned eigenvalues are as insensitive as

possible to perturbations in the coefficient matrices of the closed loop
system [ 11. It is known that eigenvalue sensitivity is inversely
proportional to the cosine of the smallest "canonical angle” between

the right and left invariant subspaces corresponding to distinct
eigenvalues [31, [4]. The sensitivity, or conditioning, of the
eigenvalues is, therefore, determined by the choice of the corresponding

eigenvectors of the closed loop system.

Recently we have developed a reliable numerical method for
constructing robust solutions to the pole assignment problem [ 11 [ 21].
In this procedure the feedback is obtained by selecting from known
subspaces linearly independent eigenvectors, corresponding to the
assigned poles of the closed loop system matrix, such that the modal
matrix of eigenvectors is as well-conditioned as possible in the Frobenius
norm. In the case of simple eigenvalues, the eigenvectors determining
each invariant subspace are unique, up to scaling, and we can show that
the square of the Frobenius condition number of the modal matrix is equal
to a weighted sum of the squares of the condition numbers of the
eigenvalues., Therefore, minimizing the Frobenius conditioning of the
modal matrix guarantees that the assigned poles are as insensitive to
perturbations in the system and gain matrices as is feasible. It can
be shown, using norm equivalences, that the resulting feedback gains and
corresponding transient response of the closed loop system are also
guaranteed, then, to be as reasonably bounded as may be expected and that

a lower bound on the stability margin is maximized [ 11.



In the case of multiple eigenvalues the bases of the invariant

subspaces are not uniquely defined. We show here that, provided the
eigenvectors spanning each subspace are chosen to be orthonormal, then
the Frobenius condition of the modal matrix remains invariant under
changes of basis. Explicitly, we show that, under this assumption, the
Frobenius condition number is equal to the sum of the inverse sqguares

of the cosines of all the canonical angles between the right and left
invariant subspaces corresponding to distinct eigenvalues and that for
same scaling of the eigenvectors, this measure is exactly equal to a
weighted sum of the squares of the condition numbers of the eigenvalues.
Minimizing the Frobenius conditioning of the modal matrix, therefore,
also guarantees good conditioning of the assigned poles in the multiple
eigenvalue case and again leads to other desirable properties of the

closed loop system.

A technique for selecting complete orthonormal bases for the
invariant subspaces corresponding to the assigned eigenvalues, such as to
minimize the Frobenius conditioning of the modal matrix, is also
described here. This procedure is a modification of the method we have

previously developed ?or sglving the robust pole placement problem.

In the next section we examine conditioning, or robustness measures,
and in Section 3 the numerical algorithm for determining a robust
solution is described. Results and conclusions are given in

Sections 4 and 5.



Zie MEASURES OF ROBUSTNESS

We define a closed loop, linear, dynamic system with n x n
coefficient matrix M to be robust if its eigenvalues, or poles, are
as insensitive to perturbations in M as possible. For non-defective
systems, the sensitivity, or condition number, of a distinct eigenvalue,
Aj, of multiplicity pj, is given by the inverse of the cosine of the

smallest "canonical angle” between its right and left invariant

~ ~

subspaces, Xj and Yj' We let Xj’ Yj give orthonormal bases for

X., Y. such that

J J
AT ~ _ .
Y. X. = %, = diag{o, ,0, ,...0, 1}, (2.1]
J J J J17 32 JDj

where 1 2 0., 2 0.5 2 .. 2 0, > 0, V.. (To construct X., Y.,

J1 Jj2 P, J jvd

we take any orthonormal bases, given by Xj' Yj’ of the invariant

subspaces, find the singular value decomposition (SVD) given by

* ~ ~
YT X. =U, £, V., and choose X, = X,V, and Y, =Y.,U,.] Then
J J J J J J J J J J
Ojk’ k = ’l,2,..pj are the cosines of the canonical angles associated

with the subspaces Xj’ Yj and are independent of the choice of bases.

If M is non-defective and a perturbation O(e) dis made in the

coefficients of the matrix M, then the corresponding first order
perturbation in the eigenvalue Aj of M is of the order of encj,

where the sensitivity, or condition number, Cj‘ is given by

cC. =0 z 1, (2.2)

that is, the inverse of the cosine of the smallest corresponding
canonical angle. If M is defective, then the corresponding
perturbation in some eigenvalue is at least an order of magnitude worse
in e, and, therefore, defective system matrices are necessarily less

robust than those which are non-defective.



We note that in the case Aj is a simple eigenvalue, (pj = 1),

then Cj may be written directly as

.
. = . . X 2.
oy = lyyly Ixgly 7 Tyl (2.3)

where zj, Xj are right and left eigenvectors corresponding to Aj.

We now assume, without loss of generality, that X = [X1,X2,..Xq],

and Y = [Yq’Yz"'Yq] are the modal matrices of right and left
eigenvectors of (non-defective) matrix M, respectively, where Xj' Yj

give full bases for the right and left invariant subspace corresponding

J

scaled such that all the columns Ek of X have unit length
["-EKHZ = 1) and YTX = I, Different scalings of the eigenvectors

q
to eigenvalue Aj of multiplicity pj, Z p. =n, and X, Y are
3=

are then given by XD_/I and DYT, respectively, where D 1s a block

diagonal matrix given by

D = diag{d,I_ ,d.I_ ,...d I 1. (2.4)
1Py 27p, 9Pq
We consider now three measures of the robustness of M. The
first is
Vv, = max c, = max 0T1 ) (2.5)
1 . JP.
J J J
the maximum of the condition numbers of the eigenvalues. Alternatively,

we have as a measure of robustness

-1, _ -1 -1
v, (D) = k,(xp" ) =[x [, [ bx . (2.8)
the 22 condition number of the scaled modal matrix. It can be shown
that
<
1 £ v1 s vZ[D], (2.7)



sQ vz[D] gives an upper bound on Vg, and that both measures attain
their (common) minimal value simultaneously, when the eigenvalues of M

are perfectly conditioned (cj =1, Vj].

The third measure is proportional to the Frobenius condition number,

discussed in the introduction, and is given by

vy = k(07 ( = [ x07 Ilox”" s Ioldo (2.8)
Under the assumptions,

[0 = 107" = (2 JEH o lox” "l = oYl . (2.9)
and, hence,

v (0) = |ov'| 7 Io]._= (z d2 I YTu) /(z . (2.10)

We remark that the first two measures are of interest theoretically [1],

but it is the third measure which is used in practice.

We now establish the relationship between the measure VS(D) and
the condition numbers Cj of the eigenvalues. We make the assumption
that the bases, given by Xj’ of the invariant subspaces Xj are
orthonormal. Then, letting ij‘ qj denote the particular orthonormal
bases satisfying (2.1), we may write Xj 23 e where Z, is unitary.
By the assumptions, Yg Xj = I and, therefore, Yj = G. A It

follows that

J
T 42 ~1 ~15T 42 -2
Y, = DL, = . 2.
Ivyl = 1z 25y 0 qu o (2.11)
and, therefore,
T 12 P R
lov' |2 = ¥ (@5 )} o.0). (2.12)
Fg2 ey K



We have also

Pj
¢ g g2 ) 7% < p g% =
J Py K2y Jk 3 3py
and we may, thus, write
= p_j . 1
I3l = CL o) = oy,

where

g g g
) d%e? s Jov' ni ) d%6%c% < ) 25 &2
321 JJ i=1 J 33 2, 3 J
This proves the following theorem.
Theorem 1 Let M be a non-degenerate matrix with eigenvalues

of multiplicity pj and complete orthonormal bases, given by Xj’ for

the corresponding invariant subspaces, J = 1,2,.
X o= [Xg.Xg, X 1, D= diag{d1Ip1,d2%p2..depj}.
E ] e,
321 JJ
where

From (2.12) we obtain directly

ne~1.0

v (D) = (
3 .
3 J

and we observe that vB(D] takes its minimal value, unity, if and only

if Cj = 03;
J

BT B
d* f o.5) /(Y p,d9) .,
14 k=g I

.g,

Then

and let

=1, Vj’ or, equivalently, X 1is unitary.

(2.13)

{(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.18)



furthermore, from (2.16) that

v3[DJ

IA

g
, , :
Cqu P9} J) / C_Z deJ) < max o, = v, (2.20)

Using (2.8) and norm equivalences, we also find
_/l B
v3[D] z KZ(XD )/KF(D) = v2[D]/KF[D]. (2.21)
We conclude then that

1 £ vS(D] < v, < vZ(DJ < KF[DJvS(D]. (2.22)

and, therefore, the measures Vo vz[D] and v3[D] are mathematically
equivalent and take their minimal values simultaneously, when the closed
loop system is perfectly robust.

From (2.18) it also follows that

g
va(D) 2 Cz (2.23)

and, thus, for a particular choice of the weights dj minimizing any
of the three robustness measures minimizes an upper bound on the
correspondingly weighted sum of squares of the condition.numbers.
In the next section we describe a procedure for constructing the modal

matrix X of eigenvectors such as to minimize vs[D).
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3. ROBUST POLE ASSIGNMENT

We now consider the time invariant linear multivariable system

n

described by the matrix pair (A, B), where A€ R" ", Be rR™™

and B is of full rank. The robust pole assignment problem is

defined as follows [ 1:].

nxn nxm
Problem 1 Given matrix pair (A, B), ACR , BER , and set

) — ) ) mXn
L = {Aj €, j =1,2,..n} where Aj €L ﬁ'xj € £, find matrix F €R

X
and non-singular matrix X € mn n, satisfying

(A + BF)X = XA, (3.1)

where A = diag{kj}, such that some measure v of the conditioning of
the eigenproblem is optimized.
o
We remark that the measure v could be chosen to be any of the
three measures defined in §2, but here we are mainly interested in

the measure v,(DJ, (as given by (2.10)).

We remark also that no assumption on the controllability of
(A, B) is made. Although the uncontrollable modes of the system
cannot be affected by the feedback F, as long as these modes are
included in the set £ to be assigned, a solution to the feedback
problem may exist [ 5] and eigenvectors corresponding to these modes
can be modified. Therefore the conditioning of wmcontrallable modes can

be improved by an appropriate choice of F.

We remark finally that in the robust pole placement problem
(Problem 1), the choice of eigenvectors which may be assigned is
restricted such that the closed loop system matrix M = A + BF 1is

non-defective. This restriction implies a simple limitation on the

multiplicity of the poles which may be assigned.



Conditions under which a given non-singular matrix X of eigen-

vectors may be assigned are given by the following.
Theorem 2 Given A and non-singular X, then there exists F, a

solution satisfying (3.1) if and only if
T
U1[AX - XA) = 0,

where
B = [UO' U1] Z|
0

with U = [UU’ U1] orthogonal and Z non-singular. Then F 1is

given explicitly by

F = z'“ug(xAx'1 - A)

The proof is given elsewhere [11].

An immediate consequence of Theorem 2 is the following

Corollary 2.1 The eigenvector Ej of M= A + BF corresponding

to the assigned eigenvalue Aj € £ must belong to the space
s, = m{ulca - A1)},
J 1 J

where the dimension of S, is given by

J

dim(s,) = m + dim(W{[B|A - AjI]T}J.
m|
(Here MN{+<} denotes right null space). The proof is again given
in [17.
The robust pole assignment problem now reduces to the problem
of selecting independent vectors ij € Sj’ j=1, 2, «.., N, such
that the closed loop system matrix is as robust as possible. From

the corollary we deduce that any mode can be assigned arbitrarily

(3.2)

(3.3)

(3.4)

(3.5)

{3.6)
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with multiplicity at most m. (In the case of a controllable mode,
dim(Sj) = m, and, therefore, m is the maximum number of independent
eigenvectors which can be chosen to correspond to the pole. For an
uncontrollable mode of multiplicity Kk, dim[Sj] = m + k, and essentially
the same result holds [1].

Theorem 2 has a number of further conseguences. From the theorem
it can be shown that minimizing the conditioning of the modal matrix
X 1leads to other desirable properties in the closed loop system. In
particular, it can be shown that the feedback matrix F, the transient
response of the closed loop system and the maximum stability margin
can all be bounded in terms of the robustness measure vZ[D] S KZ(XD_1)
and the given data of the problem [1]. From the equivalence of the
measures, as derived in §2, it follows that minimizing any of the measures
Vs i=1, 2, 3, then minimizes upper bounds on the gain matrix and
transient response, and maximizes a lower bound on the stability margin.
We remark that the optimal robustness which can be achieved is limited,
however, and a lower bound on the attainable conditioning can be given
in terms of the poles to be assigned [1].

We now present a procedure for constructing a solution to the robust
pole assigrnment problem (Problem 1) which minimizes the robustness measure
vB(D) under the assumptions of §2. Three steps are required.

Step A: Determine the decomposition of matrix B, given by (3.3),
and construct orthonormal bases, given by Sj' for the spaces Sj’
corresponding to distinct eigenvalues Aj cLl j=1, 2, «v., Q.

Step X: Select submatrices X, = S.W, < 5, such that X*X, =1
. J J J Y| |

and X = [Xq‘ X2, S5, Xq] is well-conditioned, in the sense of the

Frobenius measure v

5(B).
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Step F: Determine the matrix M by solving MX = XA and find
F explicitly from (3.4).

The first and third steps, Step A and Step F are easily accomplished

using QR or SVD (Householder or Singular Value) decompositions of

matrices and standard techniques for the soclution of linear equations.

The key step, Step X, is accomplished by an iterative process in which

each choice of basis, given by Xj’ is updated in turn, for Jj = 1,

2, «.ss 4, 1in such a way that the measure VS[D] is minimized by each

update. The procedure is a modification of Method 1, described in

[1], in which a rank-one up-date to matrix X 1s made at each step

of the iteration. Here rank—pj updates to matrix X are made and at

each step a non-linearly constrained least square problem must be solved.

We show here that this problem can be solved explicitly. The iteration

may be initialized using any set of independent bases Xj c Sj such

that X;Xj = 1. The process is stopped when the reduction in the measure

vB[D] after a full sweep (j =1, 2, «.., g) 1s less than a given tolerance.
The technique for determining the update is described here for

the case D = I and Aj real, j =1, 2, «.., Q. (A detailed description

of the complete method is given in [2].) The problem is to find wj

with WS, = I to minimize Ix7" . where X; = S and X_ = (X,

F 1

X X X 'h Xq] is assumed known. We may write

21 AL j_,l.v j+,]:

= -1
Ix1 H

. . T T
=[x, s W1 ¢ —||[Y_,Yj]l|F -||Y1|F. (3.7)

F
By QR decomposition we obtain

X_ = @, Q][R (3.8)

1 ]
0

and then YTX = I implies
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-1 -1y o

T = -
v = IRy Ry RRg s (3.9)
-1
0 R3
where
AT _ AT
R2 = Qquwj, R3 = QZSjo. (3.10)
To minimize vS(IJ it is thus necessary to minimize
-1 -1 -1
HR1 R Ry HF + IIR3 HF. (3.11)
We now determine, by a further QR decomposition, a unitary matrix
V = [V1, V2] such that
Qs = [R,, 01LV,, V1% = R,V (3.12)
273 4’ 17 72 471
and let
r -1
= = * = * = :
U= U1 V Wj = quj , U3 U2U1 (3.13)
*
U2 V2wj

Then U*U = I, since wgwj = I, and we may complete U such that
1 L
[U, U] is unitary and U*[U, U] = [I, O]. From (3.10), (3.12) and

(3.13) it then follows that R3 = R4U1, and we have

-1 -1,-1 L1 -1,-1 -1
% P T P [ (TR U TR S NS L e (3.14)
US
We also have
= =1 oz oL AT -4 -1 _ _-1:T r -1 3.15
Ry RRg = Ry QuS,VUU R, = RQS.VIT IR, ( )
U3
and denoting Q - USR;q, it follows that to minimize (3.11) it is necessary
to minimize
1T = _ =1.T N
I (R, 0,5,V][1 | =1 [R, 0,8;] 1V, + VZW]"F, (3.16)

I 1w V¥
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which takes the form of a standard least square problem for W. The

solution W 1s determined by a further @R decombosition and the required

ij;is obtained from

Wj = [V,l + VZWR4]Z s (3.17)

where Z 1is constructed by a Cholesky (or Schur) decomposition using

Z*Z = 1 + RZW*WRZ . . (3.18)

The up-date minimizing vSED] with respect to the choice of Xj is
thus obtained explicitly using three @GR and one Cholesky decompositions,
which can all be computed efficiently and stably using standard library

software.
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4. RESULTS
To illustrate the form of the robust solutions determined by the
method described in §3 we give here the results obtained for a simple

test problem.

Test Example n =3 m= 2

A= 10 1 o] . B = |1 0
0 8 1 0 1
6 -11 B 1 1

The eigenvalues of A are {1.0, 2.0, 3.0}. We assign the stable
eigenvalue set £ = {-0.2, -0.2, -10.0}. The assigned eigenvectors

are selected to be such that

X = |0.84284 -0.35924 0.93741],
0.49283 0.21617 .-0.28576

0.21617 0.90786 -0.18381

and the feedback F 1s calculated to.be

F = |-6.7866 12.855 -5.8053

2.0781 -4.5713 0.86316

We observe that the first two columns of X form an orthonormal basis
for the two-dimensional invariant subspace gorresponding to the assigned

eigenvalue A = -0.2, of multipldicity two, and the third column gives
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the single eigenvector corresponding to the assigned simple eigenvalue
A = -10.0, selected such as to minimize the robustness measure v3[I].
The solution has robustness vS[I] = 2.7208/73.

With a different set of initial vectors, the solution

X = |-0.818621 0.00000 0.93741
-0.36861 0.39210 -0.29576

0.15711 0.81882 -0.18381

is obtained. Here the first two vectors of X form a different orthonormal
basis for the (same) invariant subspace corresponding to the multiple
eigenvalue, and the third vector, selected to minimize the conditioning

of the simple eigenvalue with respect to this subspace, is the same

as that chosen previously. The robustness measure takes the same

value vB(I] = 2.7209/Y3 and the same feedback F is determined.

To demonstrate the effects of perturbations in the system coefficients,
we round the feedback matrix F to three significant figures and calculate
the eigenvalues of the resulting closed loop system matrix. Rounding
the feedback matrix here corresponds to introducing maximum absolute
errors of about +0.05 dinto the system matrix. For robust solutions
such perturbations should only cause errors of the same order of magnitude
in the poles of the closed loop system. For this test example the
absolute errors in the assigned eigenvalues due to these perturbations
are {0.00284, 0.01269, 0.0225}, respectively. A maximum relative
error of about 6% is thus obtained in the assigned poles, well within

the predicted perturbation for a robust system.
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Sr, CONCLUSIONS

A closed loop system design for pole placement is robust if the
assigned eigenvalues are as insensitive as possible to perturbations
in the system and feedback matrices. We show here that in the case
of multiple eigenvalue assignment a robust design can be achieved by
selecting the corresponding invariant subspaces such as to minimize
the Frobenius condition of the modal matrix of eigenvectors spanning
the subspaces, subject to the subspace bases being orthonormal. A
reliable numerical technigue for determining a feedback which minimizes
this measure of rcbustness is described, and an illustration is presented.
The results derived are extensions of earlier work [1] applicable to
simple eigenvalue assignment. Generalizations of this approach to
robust pole assignment for problems of feedback in degenerate (descriptor)

systems and for output feedback problems are now being developed.
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