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Abstract

In this report we study the extension of some variational methods of
interest to the numerical analyst to include the numerical generation of
grids as well as approximation of solutions.

1. Introduction

Variational problems of interest to the numerical analyst include that of min-
imising errors in the approximation of functions as well as minimising an energy
in the approximate solution of elliptic PDEs [1]. Variational principles also ex-
ist in fluid mechanics and gasdynamics whereby the equations of motion can be
generated by finding stationary points [2]. In this report methods of obtaining
optimal approximate solutions and meshes for variational problems are discussed
together with properties of associated differential equations. The main interest
is in the generation of optimal meshes for steady problems.

In Section 2 some standard variational analysis is given together with exam-
ples. The analysis is then repeated with stretching of the abscissa is allowed. In
the subsequent section the finite-dimensional case is considered including weak
forms and finite element approximations. Matrix-vector forms are displayed
which show clearly the structure of the analysis. Section 4 is concerned with grid
adaptivity in the finite-dimensional case, including weak forms, matrix-vector
forms and adaptive finite elements. The relationship with the Moving Finite
Element method [4] is brought out in Section 5.

In Section 6 the argument is repeated in the context of finite differences. The
functionals are then augmented in Section 7 to include iteration of the solution
(in pseudo-time) of implicit time stepping methods.

In Section 8 algorithms are developed for exploiting the error reduction prop-
erty studied in the previous sections. Finally, in Section 9 the relationship be-
tween the methods described here and equidistribution is discussed.



2. Background

2.1. Variational analysis

Let u(z,t) be a function twice differentiable in the space variable z and once
differentiable in the timelike variable ¢ (here used as an iteration variable) and
let F(z,u,u;) be a once differentiable function of its arguments. Define the
functional

b
I(u) =/ F(z,u,uz)dz (2.1)
whose value at time ¢ is

I(t) = Lb F(z,u(z,t),us(z,t))dz. (2.2)

Two examples are the quadratic functions

F(o,u,us) = 3h(e) (u = F@) + 3D6) (e = go(@),  (29)
where k(z) > 0, D(z) > 0, and
F(z,u,u;) = % (p(w)ui + q(x)u2) —r(z)u, (2.4)

where p(z) > 0,¢9(z) > 0,r(z) > 0. A non-quadratic example from Shallow
Water flow in a channel (in which v is the depth) is

F(z,u) = B(x) (2—: et E(m)u) (2.5)

where @), g are positive constants and B(z), E(z) are given (breadth and energy)
functions. The function F' is convex if u® — Q*/g > 0 (supercritical) and concave
if ud — Q*/g < 0 (subcritical) but switches when this quantity passes through
Zero.

Differentiating I(t) we have

(O, IR,
dt N a 3u e Guxum ¢

b(O0F d OF
= /a (% — %auz’) Utd.’E, (26)

using integration by parts and assuming that u.(a) = us(b) = 0. (Note that % is

a function of u and u, which are both differentiable with respect to z.) If 4L = 0
for all u; then u satisfies the PDE

o _ d o
Ou ~ dz Ou,’

(2.7)
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We consider situations in which the integral (2.6) is non-positive so that I(t)
is non-increasing. In particular this is true if u satisfies the time-dependent PDE

OF d OF
e o (2:8)
with u(a) = A, u(b) = B, constants. Then, from (2.6),
dI b,
L =
= / uldz <0 (2.9)

with equality only if u; = 0, i.e. when u satisfies (2.7). Hence I decreases strictly
with time unless (2.7) holds, in which case it is stationary. If F' is bounded below
then so is I which must therefore tend to a limit. At a limit point % =0 and
u; = 0; we are at steady state and (2.7) holds. These statements are also true
when the right hand side of (2.8) is multiplied by a positive constant.

The argument parallels the derivation of the Euler equation for the stationary
value of Z(u), for which the first variation

ST / (—5u-|— Fub E) dz (2.10)

d OF
—— dud
/ (0u dw@um) e
assuming that du(a) = éu(b) = 0. By Lagrange’s lemma, if 67 = 0 for all 6u then
(2.7) holds. Moreover, selecting the u variation such that

oF d OF

where 67 is a positive constant, gives
b
6T = —57’/ (6u)?dz <0 (2.12)

with zero only if §u = 0, i.e. only if (2.7) holds. The two arguments are identical
if the displacements in the functions are thought of as being brought about in an
infinitesimal time 6t (or 67).

These properties also hold in higher dimensions. If u(x,t) is a function twice
differentiable in the components of the vector space variable x and once differen-
tiable in ¢, and F(x,u,Vu) is a once differentiable function of its arguments in
some domain ) of x space, then

1(t) = /Q F(x,u(x,t), Vu(x, t))dQ



and

dI oF oF
=/ (a_ * —avuV“t) i

- / (— -V.5 ) udQ (2.13)

provided that u; = 0 on the boundary 0 of Q. If % = 0 for all u; then the
stationary function u satisfies

oF oF
5 = V-aor (2.14)
Also, if u satisfies the time-dependent PDE
oF OF
Up = —a—u-I-V.m- (2.15)

in Q, then I is a non-increasing function of ¢, stationary only when (2.14) holds.

Assuming that the functional F' is bounded below then I approaches a limit as

t — oo at which % = 0 corresponding to a solution of the steady state equation

(2.14). An example is

1 |
F(e,u, Vu) = h(x) (u— f(0) 4 3D() (Vlu— g0, (216)
In a similar way the variation
_OF 8F

(where 67 is positive) induces a non-positive variation of Z(u), zero only when

(2.14) holds.

2.2. Examples

(i) An example of a function F' which is bounded below in this way is the convex
functional

P(x,u, Vi) = % (u? + (Vu)?) (2.18)
for which Z(u) is the Sobolev norm
T(w) = 7 (a(u,u) + b(u, ) (2.19)

where

a(u,v) = /Q Vu.Vod, by, v) = /Q wvd.



In terms of ¢, Z(u) takes the value

= / 24 Vu(t)?) dO
and from (2.14) the stationary value of u when 4 = 0 satisfies
Viu = u. (2.20)

Moreover, if u satisfies the PDE u; = V2u — u, I(t) is a non-increasing function,
stationary only if u; = 0 when (3.2) holds. (In this particular case, if u satisfies
u; = —cu where ¢ is a positive constant, so that Vu; = —cVu, we have

Z—i = /Q (uus + Vu.Vu,) dQ = —c/Q (u2 + (VU)Z) d) = —2cl

in which case I(t) decreases exponentially with t.)
In the more general case

F(x,u,Vu) = %p(x) (Vu)? + (J( Ju? — r(x)u (2.21)
(cf.(2.4)) the equation for the stationary value of u is
V. (p(x)Vu) = ¢(x)u — r(x) (2.22)
and the PDE for which I(¢) is non-increasing is
u; = V. (p(x)Vu) — ¢(x)u + r(x). (2.23)
(ii) A similar example is (2.16) for which the stationary value satisfies
Kox)(w — Fx)) = V. (DO (u — 9(x)) (224
and the PDE for which I(t) is a non-increasing function of ¢ is
ur = —k(x)(v — f(x))+ V. (D(x)V(u — g(x)) . (2.25)

(iii) In the case of the shallow water example (2.5) the stationary function u
satisfies the algebraic equation
2

and the differential equation for Whlch I(t) is non-increasing is
2
u; = B(z) (% + gu — E(:v)) (2.27)

in the supercritical case where u® > Q3/g).
p
(iv) Another nonlinear example is

F(x,u, Vu) = iu‘l + % (Vu)? (2.28)

for which the stationary function satisfies V?u = u?®

= V32u — us.

and [ is non-increasing if



2.3. Stretching of the abscissae

Suppose now that the z variable participates in the variation through dependence
on t. We make the transformation

z=z(& 1), t =1, u(z,t) =u(Z( 1), 7) =uT) (2.29)

where ¢ is an unstretched reference variable and 7 is also timelike. By the use of
the chain rule

Ur = Ut + UgZy, (2.30)

Ug = Uy Tg. (2.31)

(An interpretation of the first of these equations is that u; is a Lagrangian deriva-
tive which is converted into the Eulerian derivative 4, by the addition of the Z,

term.)
Replacing z,u by Z,u in the function F' of (2.2) gives

t. _
I(r) = f ‘F (aa %Z—) Fede. (2.32)

Then it can be shown that

dl bfOF d OF
— = —_— - — L —ug ) d :
dr /a, (au dx (?uz) (4 —ue 3) dz (2%285)
where 4= u, and z= z,, i.e.
dl b(OF d OF
— = —_—— — dz. 5
dr /a. (au dz aux) . \2:34)
It j—,{- = 0 V u, ¢ then the stationary values of 4 and Z satisfy
oF d OF
e = dz ou. (2.35)

twice, suggesting higher-order contact at the stationary point. Moreover, if % and
z satisfy the 7-dependent PDEs

. OF d OF
= OF  d OF

then from (2.33) I(t) is a non-increasing function, zero only if u=z= 0 when
(2.35) holds. If F'is bounded below I tends to a limit as 7 — co. In a similar
way the corresponding increment version gives

oF d oF R ~
61 = / (—a— + ) (6T — uy0%) dz.

dz Oug
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If F' contains an isolated discontinuity at x = s, say, but is otherwise differ-

entiable as before, then 4L will also contain terms from the variation of s of the
form

dr

‘ ar or
lf — u;va_%]ﬁbr -+ l'&:lsuf (238)

where [[], denotes the jump in /' in passing from z = s— to ¢ = s+. The jump
notation becomes important when we consider piecewise continuous functions in
the numerical investigation which follows.

In higher dimensions it can be shown in the same way that

dl or ar '\ . ~ B ar or
7 = ‘[“ (61#, — v(’)V‘u) (G; — Vux,) dQ = L (a'u. - Vﬁ) wdS) (2.39)

(cf. (2.33),(2.34)). If &£ = 0 V&,,X, then the the stationary values of @& and Z
satisfy

oF oF

— =V.

ou 0Vu
at least twice, once again suggesting higher-order contact at the stationary point.
Moreover, if 4,X satisfy the 7-dependent PDEs

(2.40)

: oF oF
u= -t V.avu (2.41)
= oF _ oF

then I is a non-increasing function of 7, zero only if 4=x= 0 when (2.40) holds.
For F' bounded below we again have I tending to a limit as 7 — oo.

3. The Finite-Dimensional Case and Finite Elements

Suppose now that in one dimension the function u(z,t) is written in terms of a
finite number of basis functions ¥(z) (j =1,2,...,J) as

u(z,t) = U(z,t) = ; U;(t)i(x) (3.1)

where Uy(a) = Uy(b) = 0. Then, assuming that ;(x) is piecewise twice differen-
tiable and that Uj(t) is differentiable, and with F, I and 7 defined as in section
2.1 with u replaced by U,

dl L oT - . pp(O0F d OF
E_Za_Uj Uj—]z::lUj/a (@_EO_U) j(z)de (3.2)

i=1

fl



(cf. (2.6)), where the notation 5 stands for £ o 4l i5 zero V U/; then for

each j the stationary value of the approximation U satlsﬁes

b(OF d OF
/a (@' - %8U ) ’I,/)J( )d:I) =0. (33)

If every term in the sum in (3.2) is non-positive then I(¢) is a non-increasing
function of ¢ and this will be true if for example

. b( OF d OF
50 = [ (-0 + o) (o) 5.4)
V4, in which case
dI Jo.2
—— <
a ; U;= 0,

zero only if [/;= 0 Vj when (3.3) holds. Alternatively, if in a finite element
context U satisfies the Galerkin form of the differential equation (2.8) in the form

b b oF d OF
[ vt = [ (<55 + o7 ) e (35)
Vi, then since (from(3.1))

Ui = Z UJ' (t);(z)

equation (3.2) becomes

=11i=1

J
%:_;Uj (t / Ut"f)g d:v— ZZU] Uz /¢J "/’1 )dw (36)

so that I(t) is again a non-increasing function provided that the quadratic form
in (3.6) is non-negative definite.

3.1. Weak Forms

Similar results hold if U is only once differentiable in z, in which case % (%)

may not exist. In that case we refrain from integrating by parts in deriving 2%

au;?
or b oF
o7, = | ( iy ‘”a‘) &

so that (3.2) becomes

J ) J ' b
Z‘Zaag ZU/( pi(z) + g§¢()>dm (3.7)

i=1

giving instead
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-y us), 38)

say, where

() == [ (S50s00) + 20 . (3.9

If % =0V U; then from (3.7) the stationary function U must satisfy

b (OF oF |,
/a (ﬁ%(w) + %:@b](a:)) dz = 0. (3.10)
If we suppose that U; satisfies the time-dependent PDE
U= b;(U) (3.11)

Vs or if, in the Galerkin form,

/a ' Ushs(2)dz = bs(U) (3.12)

V3, then from (3.8) (provided that the resulting mass matrix in (3.12) is positive

definite) I(t) is a non-increasing function of ¢, stationary only when U;= 0 when
the weak form (3.10) holds. With F' bounded below I tends to a limit as t — oo
at which U satisfies (3.10).

3.2. Algebraic Forms

To see these results in matrix-vector form, denote by U(t) the vector of coeflicients
U;(t) and by b(U) the vector of coeflicients b;(U). Then equation (3.10) may be
written

b(U) = 0. (3.13)

(see (3.9)). Also equation (3.11) takes the form

U= b(U) (3.14)
in which case, defining I(U) = Z(U) = I(t), equation (3.8) becomes

d(U) g
S =—UTh(U). (3.15)

A feature of equations (3.15) is that b(U) is a search direction for the minimisa-
tion of I(U) by the technique of steepest descent.

If U is given by (3.11),
di(u) “U 2
dt

(3.16)
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then I(U) is a non-increasing function of ¢, stationary only if U= 0. Alternatively,
denoting by A the matrix with elements

A= [ wi@i(a)ds, (3.17)

equation (3.12) may be written

A U= b(U) (3.18)
(cf. (3.14)), so that in this case
d(U s Y
%z—U b(U)=-U AU (3.19)

and again, provided that A is positive definite, I(U) is a decreasing function of
t, stationary only if U= 0 when (3.13) holds. If F is bounded below, I(U) tends

in both cases to a limit as t — oo at which U= 0, i.e. U is a solution of (3.13).

If we are only interested in convergence as t — oo, (3.16) and (3.19) are
equally valid as equations which possess the correct limit. Indeed, all we need is
an equation of the form of (3.18) with a positive definite A. In practice A will
need to be inverted to obtain a convergent sequence of [J’s, so it makes sense to
choose a matrix A which is easily invertible. The unit matrix is the one used in
(3.16) but this choice lacks any useful scaling properties which are possessed by
(3.19). A good compromise is therefore to choose the diagonal of the matrix A
in (3.19). We shall therefore also consider the discretisation for which

D U (t) = b(U) (3.20)

where D = diag{A}, which may be thought of as being brought about by tam-
pering with the test function on the left hand side of (3.12).

An important special case is where ¥;(z) are the once differentiable piece-
wise linear finite element hat functions, a;(z) say, and U is the Galerkin linear
finite element approximation (with nodal values U;(t)), satisfying (3.12) with ¢
replaced by a. Then A is the tridiagonal positive definite finite element mass
matrix A, = {A;;} with

S /ab ai(z)aj(z)dz (3.21)

which may readily be inverted using preconditioned conjugate gradients (the
matrix D~! being a useful preconditioner).

3.3. Higher Dimensions

The results extend to higher dimensions as in Section 2.1. If F' = F(x,U, VU)
and

un~ U =23 Ui(t);(x)

i=1

10



then, as in (3.7),

S i i [ (ot g e
J
= - Z=:1 U; b;(U) (3.23)
where J
bi(U) = — /Q (2—5%@) + aav—FU.wj(x)) do. (3.24)
If (3.22) vanishes for all {J; then the stationary function satisfies
/ (g—gzpj(x) T %.V%(x)) 40 = 0. (3.25)

Moreover, if U;(%) is chosen to satisfy

U= b;(U) (3.26)

or the weak form

/Q Uph; (x)dQ2 = b;(U) (3.27)
V4, then, provided that the matrix A = {A;;} where

Ay = /Q i(X)h;(x)dN (3.28)

is positive definite, the function I(¢) is a non-increasing function of ¢, stationary
only if [7;= 0 so that U; = 0 and (3.25) holds. If F' is bounded below, then so is
I which therefore tends to a limit as ¢ — oo at which U is a solution of (3.25).
Linear finite elements again provide the main example, for which the matrix A
is readily inverted in a similar manner to the one-dimensional case.

The matrix-vector forms of Section 3.2 hold as before.

4. Adaptivity in the Finite-Dimensional Case

The adaptive mesh methods we consider are finite-dimensional versions of the
variational methods with stretched abscissae considered in Section 2. It is conve-
nient to expand each of the functions u ~ U and z ~ X in two frames of reference,
in terms of the physical and computational coordinates = and ¢ respectively, as

U= ;Uj(t)%(x) = Ui(r);(8) (4.1)

7 i=1

11



and

X =Y X(t0i(z) = Y Xy (D)di(6). (1.2)

Then, assuming that the ¢, and ;,b-; functions are piecewise twice differentiable
and that the U; and U; functions are differentiable, and with I(7) defined as in
Section 2.3 with u, z replaced by U, X, then as in the derivation of (3.2),

dl b (0F d OF : ,
E:/a (8U dz am) 2_(U; —Us X;);(z)de (4.3)

. oiih
where U/ ;= —UJ-XJ =

If % = 0 for all UJ,X], then the stationary values of U and X satisfy the
weak forms

/(g—g ot )%() (4.4)
[ (5 - )(—Uzwj(w)dw:o. (w5)
Moreover, putting
5= [ (~55+ s ) #ieis (4.6)
XF/:(?S dcig(i)(—Uz)@bj(w)dw (4.7)

ensures that I(t) is a non-increasing function of ¢, stationary only if /;=X;= 0
when (4.4) and (4.5) hold. Hence, if F' is bounded below, I tends to limit as

t — oco. Alternatively, the Galerkin forms

[ vssonta = [ (55 + o) wiw)as (48)

/a b Ui(—=Us)(z)dz = / b (3—5 = % aa(i ) (—=Us)pj(z)dz (4.9)

have the same property, provided that the resulting mass matrix is positive defi-
nite.

4.1. Weak Forms
If U is only once differentiable in = then iﬂ may not exist but it can still be

< 3U,
shown [3] that

dl & [ forF oF oF
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—/Z(aF ' 25 ‘ )zbj d“/z(aU UJ+FXJ)¢( dz

-3 [ { (G5t + @) 0+ (Gt + o) i s
(4.10)
== (03 550, X)+ X5 050, %)) (4.11)
where
8,00 = - [ (Z0s(a) + S (412
05030 = [ (2o) + o)) o (4.13)

In this case, if % =0 for all X N U ; the stationary functions U, X satisfy

/ab (2—5%@ i g[i }(m)) dz = /: (g—i%(@ + sz;(a:)) dz =0. (4.14)

Moreover, if we define

U;= b;(U, X), (4.15)
Xi=0;(U, X), (4.16)

Vj, then from (4.11) I(t) is a non-increasing function of 7, stationary only if

U;=X;=0 when (4.14) holds. Similarly, the Galerkin forms

/ab Uni(z)dz = Z/b <Uj ~U, X,-) pi(z)pi(z)de = b;(U, X),  (4.17)

/ab U(=Usz);(z)dz = Z /ab (Uj —U, Xj> (=Up)i(z);(z)dz = 6;(U, X),
(4.18)

have the same property, provided that the corresponding mass matrix is positive
definite. In each of these cases, if F' is bounded below I tends to a limit as
T — 00.

If F does not depend on U, equation (4.11) reduces to

dr Z/ {a(ﬂbf . (g—f(%(m)Jer);(w)) Xj}dw.
_Z{ (U; ~Us X;3)i(2)ds + [Pipy(e)); Xj} (4.19)

13



since

oF _dF _oF
0X dX oU
The boundary terms in (4.19) arise from the integration by parts when F' and/or

1 are discontinuous, which is allowable in this case. The stationary functions
satisfy the weak forms

Us. (4.20)

bOF
g Wﬂ)](w)dm =0 (4.21)
(c.£.(3.10)) and
boF
O g, by(oia + [P = . (4.22)
If, on the other hand, F' is independent of U, the corresponding weak forms
are
b OF

and the second of (4.14) again.

4.2. Algebraic Forms

In matrix-vector form, writing X(7) as the vector of coefficients X;(7) and
I(U,X) = Z(U,X) = I(t), equation (4.11) of the previous section takes the

form U.X
% =-b(U,X)" U-8(U,X)" X, (4.24)

where X= (X1, X2,..., Xs) and b(U,X) = {b;(U, X)},®(U,X) = {6;(U, X)}.

It % = 0 then the algebraic forms of the equations for the stationary values are
b(U,X) =0(U,X) =0. (4.25)
Introducing the composite notation

Y = {Uq, X1, Uz, Xa, ..., Us, X537,

Y: {Ul,Xl,UZ)X%---)UJ7Xj}T7

g(Y) . {bl)el)b%e%'-'abJan}Ty (426)

and writing I(U, X) =1(Y), equation (4.24) may be written concisely in the form
dI(Y x4

;T ) ¥ gv) (4.27)

Equation (4.27) shows that g(Y) may be regarded as a search direction for the
minimisation of J(Y) by the method of steepest descent.
Defining
Y = g(¥) (4.28)

14



ensures that il )
I _Jf <o

Alternatively we may use the Galerkin forms (4.17),(4.18) which lead to the
matrix system

A(Y) Y=g(Y), (4.29)
where A(Y) is a mass matrix {A;;} in which each A;; is a block 2 x 2 submatrix
Lo pipide [o(=Us)ditpda
b b 2 - (430)
Lo (=Un)pipsdz [ (Us)*bipsdx
Then we have from (4.27)
dI(Y | .
ét )y Ay (4.31)

Provided that A(Y) is positive definite, I(Y) is a non-increasing function of
7 which is zero only if Y= 0, i.e. at steady state. If F' is bounded below then
I(Y) tends to a limit as 7 — oo, at which g(Y) =0, i.e. from (4.26), (4.12) and
(4.13), which is equivalent to (4.14).

A third alternative to (4.28) and (4.29) is (cf. (3.20))

D(Y) Y=g(Y), (4.32)

where D(Y) is the 2 x 2 (block) diagonal of A. This matrix is generally trivial
to invert.

If the v;(z) are the once differentiable piecewise linear finite element hat
functions «;(z) and U, X are the corresponding Galerkin linear finite element
approximations, then A is a block tridiagonal positive semi-definite mass matrix,
the so-called MFE matrix (see [4]) with D as its diagonal. Both A and D may
be made positive definite by adding regularisation terms to the left hand side of
(4.18) (under the appropriate test function).

4.3. Higher Dimensions

In higher dimensions the forms of b; and 6; and the stationary values are given
by the equations

oF

bj(U, X) = —/Q (g—g%(x) + WV¢J(X)> dQ =10 (4.33)

and

oF

0,(U,X) = — /Q {(vxF) i + FVep; — (ﬁ.wj) VU} A =0, (4.34)

15



(cf. (4.12),(4.13)). The PDEs corresponding to (4.15) and (4.16) are
UJ-: bJ(U,X) and Xj: GJ(U,X) (435)

while the Galerkin weak forms corresponding to (4.17) and (4.18) are
/Q Unh;d9 = b;(U, X) (4.36)

and

/Q U(—=VU)dQ = 8;(U, X). (4.37)

In either case I(t) is non-increasing provided that the corresonding mass matrix
is positive definite. In the present case A = {A;;} where the blocks A;; are

fQ ¢i¢jdﬂ fg(—VU)lﬁi’([deQ (4 38)
Ja(=VU)Yip;idQ [o(VU)igp;dQ ) -

If F' is bounded below I(Y) again tends to a limit as t — oo at which U satisfies
(4.33), (4.34).

If the 1; are the piecewise linear finite element basis functions «; (pyramid
functions in two dimensions) then A is the positive semi-definite MFE matrix.
It may again be made positive definite by adding regularisation terms to the left

hand side of (4.37).
The algebraic forms of the previous section hold.

4.4. Examples
(i) If F is given by (2.18), the weak forms (4.33) and (4.34) become

/Q (Uh;dQ2 + VU.Vep;) d2 = 0 (4.39)

and

J [% {U* + (YUY} Vb, — (VU.V;) VU] 02 = 0. (4.40)
(ii) If F' is given by (2.16) they are
—ljuﬂw—f@»%@O+D&XVU—Vﬂﬂ)V%@Dﬂ%=0 (4.41)
and
— [ 1(VxF) 5+ {EG)(u = ()2 + D(x)(VU = Vg(x))*} Vibs—

{(D)(VU — Vg(x)).Vih;} . VU] d = 0. (4.42)
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If k(z) = 1 and D(z) = 0 equations (4.33) and (4.34) reduce to
/Q(U — f(x));d2 = 0, (4.43)
showing that U is the best fit to f(x) with adjustable nodes in the Ly norm, and
[ =0 = 769) (V565 + (U — Fx))Vs;] dgr = 0
which in one dimension becomes from (4.22)
[V~ SV + (U~ F@ @) =0, (444)
If k() = 0 and D(x) = 1 equations (4.33) and (4.34) reduce to
/Q (VU — Vg(x)).Vip;(x)dQ = 0, (4.45)
i.e. U is the best it to g(x) with adjustable nodes in the H' semi-norm, and

| (VU = Vg(x)). Vg(x)ups+

{(VU = Vg(x))*Vp; — (VU — Vg(x)).Vi;} . VU] dQ = 0. (4.46)
(ii1) If F is given by (2.5) then (4.21) and (4.22) give
/ab B(z) (% +gU — E(x)) Y;(z)dz =0 (4.47)
and ) 0
/a B(z) (—2722 +qU — E(w)) Ugi(z)dz+
(& -390+ B wi0)] =0 (449

J

Iterations for the solutions of these pairs of equations, based upon I(t) being
a non-increasing function, are considered in Section 8. First we discuss the link
between the Galerkin forms above and the Moving Finite Element method [4].

5. Moving Finite Elements

In contrast to the method used in Section 4, in the moving finite element approach
to adaptation a;(z, X(t)) denotes the piecewise linear finite element hat functions
on the moving grid

X(t) = {Xu1(), Xa(t), ..., Xu ()},
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so that p
ZUaJ z, X(¢ (5.1)

Then it can be shown that
U= (U; oz, X(0)+ X; Bi(=, X(t))) (5.2)
where the §;(z,X(t)) are so-called second type basis functions satisfying
B; = —Usa; (5.3)

which are also piecewise linear with the same support as «;(z,X(t)) but are
discontinuous at node j. Then

dI [b oF _d or\
— = —_— | u
dt ~ J. \au ~ dzou, ) “**

b (OF  d OF \ . |
- / (}97 N EW) >_(U; et X B;)dz (5.4)
. 20U, ) &

so that % = 0 implies that

bror d OF v (OF  d OF
I (ﬁ“aaﬁ) oyie = | (@—mu )ﬁf‘“*“ 153

If L HU " does not exist (which will generally be the case with linear finite ele-
ments) we cannot obtain (5.4) but equivalence with the weak forms (4.14) (with )
replaced by «) has been demonstrated by Jimack [5] using the standard smooth-
ing of U (see [4]). The algebraic forms for (5.5) and the associated PDEs which
make I(t) a non-increasing function are therefore the same as before, namely
(4.24) - (4.31) where 1 is now replaced by a.

In the two-dimensional case the elements are linears on triangles and the
[unction f; is a vector which takes the form

Bi = —(VU)a; (5.6)

where «; is the standard linear finite element basis function (the ”pyramid”
function in two dimensions) and f; again has the same support as «; but is
discontinuous at the point j. Once again, equivalence with (4.33) and (4.34) has
been shown in [5].

The algebraic form of the MFE equations are again the same as in (4.29) with
) replaced by «, namely

Av=g(Y) (5.7)
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with A modified accordingly. If only the steady limit is of interest, A(Y) may
be replaced by D(Y) = drag{A(Y)}. The matrices A and D are only positive
semi-definite because two rows may be identical if the VU’s coincide in adjacent
elements.

Jimack [5] has used a regularised version of (4.29) to drive g(Y) to zero, ob-
taining locally optimal solutions and meshes in a particular example. Although
the MFE solution is generally altered by regularisation the steady limit is un-
affected. He has also shown that (in the unregularised case) the gradient of
I(Y) =I(U, X) with respect to Y has the property

VyI(Y) = —g(Y) (53)
so that, as long as A is positive definite, from (4.27) and (4.29)
dI(Y T ol T _
%—):—Y gY)=-Y VyI(Y)=-Y A'Y <0 (5.9)

It follows that the rate of change of I(Y) is non-positive and also that its mag-

nitude is largest when Y is aligned with g(Y). Jimack uses (5.8) to prove that a
stable steady solution of (4.33),(4.34) is optimal in the sense that the Hessian of
7 is positive definite.

It is instructive to rewrite the method as an iterative method in terms of
increments. Instead of (5.2) write

8U =3 (8Uja;(z, X(1)) + 6X;8,(z, X(2)))
where § indicates a small increment (cf. (2.17)). Then (4.27) becomes
§1(Y) = —-6YTg(Y) (5.10)

where

6Y - (6U1, 6X1, 5U2, (st, ceey (SUJ, 6X_])
The Galerkin weak forms associated with (5.5) in the version of (4.17) and

(4.18) become
b b(OF oF
/a Uajde = —/a (ﬁ OU )dm&' (5.11)

/ SU(-Uy)ajdr = / (gf(aj + Fa ) dzéT (5.12)

(cf. (4.12),(4.13)) with similar equations in higher dimensions (cf. (4.36),(4.37)).
In algebraic terms these can be written as

A(Y)8Y = g(Y)ér, (5.13)
(cf. (5.7)) so that, from (5.10),
SI(Y)=—-6YTg(Y) = —6YTA(Y)§Yér71 <0 (5.14)
provided that A(Y) is positive definite (see (2.11) and (4.31)).
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5.1. Two-Stage MFE

An alternative formulation of the MFE method is to express the unknown func-
tion in the discontinuous linear form

Z_: (Wra(t)pr1(z) + Wia(t)dr,2(z)) (5.15)

where ¢x—_1,2, ¢r,1 are the two halves of the linear basis function a; of the previous
section, to be regarded as fixed in time, instantaneously coincident with the half
a; functions. Then
Ur=3" (We1 $rat Wiz ér2) (5.16)

k
and, comparing (5.16) with (5.2), there exists a relationship between the W’s and
the [J’s, X’s of the form

Ui — (Us)p Xi=WL

Ui —(Us)g X;=Wr
where suffices L, R refer to elements to the left and right of node j.

(5.17)

The mapping from Wio U } X (essentially a coordinate change) has an obvious
singularity (referred to above) when (U;); = (Us)p which occurs naturally and
may lead to infinite speeds.

The rate of change of I(t) is now

_ Z/ [ Wk1 bra+ Wi ¢k 2) 885 (Wk,l b1t Whe ¢;,2)l dz

(5.18)
which vanishes if
bOF
/ 8U (ka ¢k vt ka Pk v) dr =0 (519)
(v =1,2). In vector form this is
dI(W -
Elt ) =—- W d(W), (5.20)
where
W e (W117 Wl?) W217 W227 ceey WI\"I, WK2)
and d(W) is the vector with components
bOF
di = / 8U (ka ¢k ’U+ ka ¢k 'U) . (521)
Equation (5.20) shows that W is a search direction for
dW)=0 (5.22)
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by the method of steepest descent.
As argued in previous sections, the rate of change of /(W) is non-positive

when W= d(W) or, in Galerkin form,

EW=d(W), (5.23)
so that, from (5.20),
dI(W : .
fjt ) W EW (5.24)

(cf. (4.31)). Equation (5.24) converts to (5.9) using (5.17) via a square assembly
matrix.

As before, assuming that the matrix F is positive definite (true if the element
areas are positive and there is no mesh tangling), I is a non-increasing function,
stationary only at steady state at which (5.19) holds.

Evaluation of the integrals involving U, requires a similar smoothing tech-
nique as that for MFE. Thus the function F(z,U,U,) is in effect replaced by
F(z,U, R(U,)) where R is a recovery operator (typically Hermite cubic interpo-
lation).

Algebraically, (4.29) is replaced by
E W= d(W) (5.25)
where F is a local elementwise mass matrix having diagonal blocks

( fab ¢kv¢lud$ f:(_Uz)(ﬁku(b[ﬂd.’E ) (5 26)
P(~U)brobinde  [2(Us)?brodruda -

W= (W1, Wer, Wi, Wity -y Wit, Wr1)T, while we can write (5.17) as
XY=W (5.27)

where X is a block diagonal matrix whose blocks are the coefficients of (5.17).
This leads to
XTEXY=X"W

from which we can identify
A= XTEX and g(Y) = XTd(W) (5.28)
(see (5.7)). Moreover D, the diagonal of A, is given by
D = XTdiag{E}X. (5.29)

This formulation of MFE has a correspondence with the approach taken in Section
4, which we now discuss.
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5.2. The MBF approach

A variant of the MFE approach used as an iterative method is to again represent
U as a discontinuous function, expressing it in terms of the half basis functions
ér.(z) in the projection stage, as in (5.15), but instead of using continuity of
U to define the adaptation through (5.17), allowing the minimisation itself to
position the nodes [3]. The price of the extra freedom is the possibility of a
discontinuous U on the adapted grid but this is less serious than it appears and
there are positive advantages.
To describe the approach (in increment form) let §U be

K
6U = Z (6Wk,1¢k11($, X) + 5Wk'2¢k'2($, X)) 5 (530)

k=1
(cf. (5.16). Then it can be shown [3] that
K& b (OF oF J

k=1v=1"2 j=1

where [F]; denotes the jump in F* at node j (cf. (2.38) and (4.19)) and where
8U variations are constrained along the graph of U as X; varies. Hence 61 = 0
implies that U, X satisfy

b (OF oF
/a (%@’“ + 5@@,0) de =0 and [F], = 0. (5.32)
Note that if F" is independent of U, one solution of [F]; = 0 is [U] = 0 (returning

continuity of U).
If the 6Wj,, are chosen such that

» (OF oF
§W,, = / (a—qul,U + qu,ﬂ,) dz, (5.33)

or, in Galerkin form,

b b (OF or
/ oW ¢y ndz =/ (@‘ﬁl,u + W¢l,’u) dz (5.34)

and 6X; is chosen such that
6X; = [F]; b0, (5.35)

where 6o is positive, then 67 in (5.31) is non-increasing, zero only when (5.32)
holds. The non-increasing property of I also holds if

b (OF oF .,
. S > . - > 0. .
/a ( R m) §Wdz > 0 and/or [F],6X; >0 (5.36)
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The algebraic form of (5.31) is

§I = —d.6W — ©.6X (5.37)
where d is given by (5.21), ® = {0,}, with
0; = [F; (5.38)

and

W = (§Wha, Wiy, §Wia, 6Wha, ..., SWia, Wi )T
If (5.36) holds, then

J
§1 = —6WTESWér~ — 3" [FI’ éa, (5.39)
=1

where E is the same matrix as in (5.26). The 61 of (5.39) is nonpositive, zero
only at the steady state at which §W = 0,[F]; = 0 holds (provided that the
matrix F is positive definite).

The same properties hold if E is replaced by any positive definite matrix such
as D = diag{E}.

In higher dimensions
d+1

§U =3 6Wi, k., (5.40)

v=1
where d is the number of dimensions, and, as in the derivation of (5.31), the
stationary values satisfy the local problems

oF
/nk (%qﬁkﬂ, Wquk U) §Wi,dS = 0 (5.41)

Vk,v=1to (d+1) and
K;

B, Fajnk.édes = 0, (542)
k=1

Vj where §X; = (6X;,8Y;). Here ny is a unit vector along the outward normal to
the sides 9Q of the K; triangles ; surrounding node j, with the U variation
in (5.42) constrained to move on the graph (i.e. the planes) of U as X is varied
[3]. Moreover, by choosing

K;

§Wi, = — 2 / ( o aqukv)dnk (5.43)

or, in Galerkin form,

Z/ §W r,ud = — Z/( Bho + 8VU¢’“’) (5.44)
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as well as
K;

5Xj = — Z Fozjnkds, (545)
=1 9%
I is a non-increasing function, stationary only when éWj, = 0, 6X; = 0 in which
case (5.41) and (5.42) hold.
In Section 8 we show how this approach can be made the basis of an iterative
algorithm. In the next two sections, however, we consider two related issues.
These can be skipped without affecting the argument.

6. A Finite Difference Version

Consider replacing the integral in (2.1) by a sum, giving

J
1)=%F, (6.1)
7=1
where
AU(t
F; —F(wju),UJ(t),( Ai))) (62)
in which
(A00) _L(Z00=U, O-Ual)) gy
Az ] 2\ X (t) = X;(t)  X5(t) — Xja(2)
Then
d_ Aok o 1 (Um(t) ~U(D) | Uilh) - U,?-_l(z))
dt = |oU; 77 8(%ﬂ)j2 Xip () = X5(t) — X5(t) — X (2)
T 10F; A OF; ;
= e | e U; 6.4
j; v, " Az 8(%2% j j (6.4)
u_sing_rearra,ngement or summation by parts, where it has been assumed that
Uo=Us= 0.
Hence, % = 0 implies that
or, A [ or )
—t — | = =0. (6.5)
, - AU(?)
ou;  Ax (3( - )_7' .
Moreover, if
. _0_F+18F
YT 0w | de Oug
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is semi-discretised in a finite difference manner as

. or, A o
Vi= =50, " Az (a(ﬂgt) ) ()
(see (6.3) then
dI .2
T e— U S 0,

and T is a non-increasing function of ¢ vanishing only when ;= 0 V7, i.e. at a
steady state where (6.5) holds. Introducing a vector b with components equal to
the expression in square brackets in (6.4), then we again have

a(u) T
== =-TU b(U) (6.7)

1y
(cf. (3.16)) which is greatest in magnitude when U is in the same direction as
b(U).

In two dimensions we write

F;=F (ffj(t)ayj(t)’Uj(t)’ (AAL;it))j’ (Agi;t)),)

where
AU(t) S Uk ( Y Y, )
AU(t) Il = 35l (X;—Xm)
(" ) :_EZYII:(XI—Xm) (£8)

in which the main sums run over the vertices of each of the K; triangles sur-
rounding the point j. Then

dI . | oF; OF; T Uk (Vi = Vo)
i Z l:dU U; +8(Agz(t)) sz:lzxk( —Y,)

_OF | ’ZJ 3 0. oy
o (2Z8) K; & T Y% (Xi— Xm)
A

+

oF;
or; 1 & Tapesm (- T

=250, K2 X (YY)

7 I k=1

k=j
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&zm%yw—&g

1 &y

Ko TV (X - Xa)

Uj (6.9)
k=j
where [,m in the inner sums are the second and third vertices of the triangle in
which k or j is the first. It has been assumed that [/;= 0 at the boundary nodes.
Clearly % = 0 implies that

- 1&2W%Wm‘n) &zmggwwxo
J J J

Az 1 e In
LLE S — = 0. (6.10
oU;  K; k; Y Xk (Y1 = Yn) K; kz=:1 Y (X — Xim) (6:10)

If the differential equation

dI I 2
.d_tz—ZUjSO

with zero only when ;= 0 Vj, i.e. at steady state where (6.10) holds. If F'is a
positive function then I tends to a limit as t — oo at which U; is a steady state
solution satisfying (6.10).

For example, if

AU, 1 AUN?
F(z,U: 5= 3 (W +(%0) ) (6.11)
(6.10) becomes

1 g’: Z%(Ym—yks) 1 & Zi—g(Xm—st) :| —0
il =

J
Ui — — U
jz=:1 g Ki k=1 > Xk (Y;ﬂ - Y}€3) I{j k=1 Y Yn (sz = Xk3)

(see (6.8)) and the norm

is minimised locally.
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7. Time Discretisation

Although it is not possible to generate PDEs with first derivatives from the
minimisation in Section 2, it is possible to generate discretisations of such PDEs.
Suppose that we consider the discretised version of (2.15) using implicit finite
differences in time, giving

urHl — gy aF oF \"*'
= (—% + V.—aVU) . (7.1)
Write u(z,7) = u™*? and extend the function F'(x,u, Vu) to
— u™)?
G(x,u,Vu) = F(x,u, Vu) + %%, (7.2)

defining also the functional J as

J(u) = /Q G(x,u, Vu)dQd = /QF(X, u, Vu)dQ + ﬁ A (u—u™)?dQ  (7.3)

whose value at time 7 as

Differentiating J(7) we have

L/ / (—a—quT + a—G.VuT) df)
Q

dr ou oVu
0G 0G
’%J%‘V(Rﬁﬂmm'
% = 0 implies that
G 0G

which is equivalent ot (7.1).
If u satisfies the differential equation

__?g_*_v ﬁ
U= T "\ 0Vu

_ (u—w") OF oF
T At Ou tV. oVu (7o)
then i
-~ 2 <
= Amm_o
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with zero only if u, = 0, i.e. when

(u—w")  OF oF
At Ou LA 0Vu (76)

where u is the required solution of (7.1). From (7.2)if F'is a non-negative function
then so is G and therefore J. Hence J tends to a limit as ¢ — oo at which u, =0

and (7.6) holds.

For example, if

F(x,u,Vu) = (u2 + (Vu)2)

| —

then

(uz + (Vu)z) + et (uw — u™)?

G(x,u,Vu) = T

£
2
and the differential equation is

(u —u")

At

—u+ Vi (7.7)

Uy = —

which has the steady limit

(u =)

At

= —u+ Vu

This differential equation gives no information about the way in which to dis-
cretise (2.15) in time but simply concerns the convergence of the solution of the
implicit equation resulting from the a given time-stepping. The approach is easily
generalised to Crank-Nicolson.

The independent nature of this extension allows all previous cases to be in-
corporated, including both fixed and moving finite elements as well as finite
differences.

For example, in the fixed finite element case,

J(r) = /Q [F(x, U,VU) + ﬁ W - U")Z] 40 (7.8)

which is a non-increasing function of 7 when U satisfies the weak form
or uU-un oF
Joaseain= [ [(55+ S5 w0+ g oneo|an as)

(cf.(3.27)). As 7 — oo the 'pseudo-steady state’ solution satisfies

/n [(g_g i %) $i(x) + 8%—FU-V¢J'(X)] =0 (7.10)

which is the appropriate time-discretisation of the PDE (7.1).
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The Galerkin equation (7.10), itself a discretisation of (3.27), is therefore a
result of J(U) being stationary with respect to U. Similarly, in the adaptive
case the corresponding discretisations of (4.36) and (4.37) arise from making
J (u) stationary with respect to U, X. In the extension to the MBF method the
discretisations of the Galerkin forms (5.41) and (5.42)) simply have F' replaced
by G.

8. Iteration to Steady State

The property of the previous sections that I(t) is non-increasing and tends to
a limit as ¢ — oo holds only in a semi-discrete sense. Notwithstanding the
results in Section 7, a further (time-like) discretisation is necessary to obtain
a practical algorithm for reaching the steady state which may invalidate this
property, although it will hold for sufficiently small At. However, the property
can be used to construct steepest descent algorithms converging (in the sense
that I converges) to a stationary point and hence to a corresponding steady state
solution of the weak form.

Such an iteration may be expected to converge progressively more slowly as
the limit i1s approached. However, it is desirable to be able to take as large
a pseudo-time step At as possible, consistent with reaching convergence. A
standard approach is to accelerate the convergence by switching to Newton’s
method when possible (a strategy which is the basis of many packages for the
solution of nonlinear equations).

We illustrate the approach on the fixed finite element method of section 2.
The aim is to solve the weak form (3.5) (with 9 replaced by «) in its algebraic
form (3.13), i.e.

b(U) = 0. (8.1)
From
dI(U)
dt

we have a steepest descent property for b(U) = 0. The steepest descent iteration
is

=-b(U)U (8.2)

U — UP = Atb(UY, (8.3)

corresponding to (3.14), where At is a suitable step, while an iteration based on

the Galerkin form (3.18) is
A, (UPT —UP) = Atb(U)? (8.4)
or its diagonal variant

Do (UP*! — UP) = Atb(U)?, (8.5)
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both of the same form as Newton’s iteration

— JP(UPHT — UP) = b(U)? (8.6)
where b
J = U (8.7)

The A and D matrices guarantee descent for sufficiently small At but the J
matrix does not.

(If F' is quadratic these arguments are redundant since the matrix equation
(8.1) is linear. In all the adaptive cases as well as (2.5) and (2.28), however, the
equation (8.1) is nonlinear.)

8.1. MBF iterations

We have seen in the MBF approach in Sections 5.2 -5.4 that an optimal solution
U may be sought in the space of discontinuous piecewise linear functions. It is
then necessary to solve the pair of equations () and (), namely

d(W) =0 (8.8)

and
[F];=0 (8.9)

Yy (with variations U in the latter case constrained to lie on the graph of U),
for W and X simultaneously. This leads to a natural two-step iteration scheme
on these two equations alternately whereby solutions for one of the variables are
obtained while the other variableis held fixed. That is, we seek a solution of (8.8)
for W with nodal positions held fixed, and then solve (8.9) for X; (interpolating
or extrapolating W along the piecewise linear graph of the current solution). The
procedure is then repeated to convergence. The iteration has the property that
I(t) is non-increasing at each stage of the iteration. If (8.8),(8.9) cannot be solved
outright a fallback position is to use steepest descent iterations, namely

E(Wf”"'1 — W?) = Ard(W)* (8.10)
or
DE(W”+1 — W”) = Ard(W)? (8.11)
and
X - X2 = —[Fl2Ao (8.12)

(under the above constraint) with A7 and Ao chosen such that I(t) is non-
increasing.

30



8.2. Best Fits using Direct Minimisation

For example, in [6] the case (2.3) is treated in this way using both piecewise
linear and piecewise constant approximation on a line and on triangles. In the
one-dimensional case it is possible to solve both (8.8) and (8.9) outright, the
appropriate equations (from (5.32)) being

/ab(U — f(z))prpdz =0 (8.13)

Vi, v and
(U~ f(=))*]l;=0 (8.14)
Vs where in the latter equation variations are confined to lie on the graph of the
current approximation to U. The procedure is to solve (8.13) for U and then to
solve (8.14) for X, picking the solution which reduces I, repeating to convergence.
The converged solution gives continuity of U almost everywhere with no tangling
of the grid. Convergence may be accelerated by Newton’s method.
In the two-dimensional case it is possible to solve only (8.8), now in the form

(U = £t = 0, (8.15)

outright while (8.9), now

K;
Fn.6Xyds = 0, (8.16)
k=1 8
(see (5.42)) must be replaced by (8.12) in the form
i
XPH —XP=—-Acd> [ Fajnds (8.17)
k=1 0%

where X;=(X;,Y;). Additional precautions have to be taken to ensure that the
grid does not tangle. There are special problems with convergence in two dimen-
sions in that the error cannot be driven down to machine accuracy because of the
inflexibility of the grid topology. However, by using an edge-swapping routine
and a technique for small element removal this can be achieved (see [6]). The
optimal approximation U is no longer continuous but the jumps are small a.e.

In these best fit problems it is straightforward to calculate W from (8.8)
because the functional is quadratic. However, in the shallow water equation
case (2.5), for example, we cannot solve (8.8) outright except by iteration (using
Newton’s method, say). The alternative availableis to go back to (8.10) or (8.11)
and do a steepest descent step.

The iteration proposed here, therefore, is to use (8.11) and (8.12) in turn
to reduce the functional I at each step, converging towards a limit at which the
approximation is optimal. The method is confined to functionals with F' bounded
below.

31



9. Relation with Equidistribution

Various authors have discussed properties of optimal grids in the limit of large
numbers of nodes, showing that in one dimenson the distribution asymptotically
possesses an equidistribution property [7]. That is to say, there exists a function
&(z) whose increment across an interval is constant over the grid. Algebraically
this can be stated as AE = constant or, if Az is the length of the interval, as

EAz = constant,

& being a mean value of £(z) in the interval. This can also be regarded as a
discretisation of
E(z)ze = constant,

where ¢ is the computational coordinate, or of the nonlinear elliptic differential
equation

(E(z)ze)e = 0 (9.1)
with boundary conditions z(a) = 0, z(b) = 1, say.

In particular, one of the properties of the MFE method when run to steady
state includes the generation of grids which equidistribute functions of the solu-
tion U(z). For example, in the case of the heat equation, the steady state grid (if
reached) equidistributes |um|2/ % in the limit of large numbers of nodes, and there
is a corresponding result for convection-diffusion [4]. Jimack [7] has shown that,
for a general number of nodes, the grid for the heat equation is optimal in the
sense that it corresponds to the best Ly fit with adjustable nodes by piecewise
linear functions to the steady state approximation U in the H! semi-norm. This
is equivalent to the best fit by piecewise constant functions in the L norm. A
similar result holds (for a different equation) for best fits by piecewise linears
in the Ly norm. In the limit of large numbers of nodes, therefore, there is an
equivalence between the best fit and the equidistribution principle. The latter is
of only limited use for small numbers of nodes, however, although it may be used
to create grids which give a first guess for the iterative algorithms discussed in
Section 8.

In higher dimensions there is no unambiguous equidistribution principle but
an obvious generalisation of (9.1) is

V.(BE(x)Vx) = 0, (9.2)

which again can be used to construct an initial guess for the grid in the iterations
of Section 8.

10. Conclusions

In this report we have shown how some standard variational methods of interest to
the numerical analyst may be generalised to include grid adaptivity. A practical
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iterative method is proposed which is viable in any number of dimensions.
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