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Abstract

The Lanczos method is derived and analysed for application to the
non-symmetric generalised eigenproblem Ax = AEX, where E may be
singular. An identification test which effectively removes 'bad’
eigenvalue approximations without knowledge of the true eigenvalues
and eigenvectors of the system is also considered and both the method
and the test applied to several test problems, including a matrix
representing a 4-machine system employed by the South of Scotland

Electricity Board.
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1 INTRODUCTION

Problems requiring the computation of the eigenvalues of large
matrices are now very commonplace and occur in such fields as
transient power stability, vibration problems and the numerical
solution of p.d.e.'s. Whilst efficient numerical methods are abundant
for computing the eigenvalues of sparse, real, symmetric matrices,
procedures which deal with non-symmetric matrices are rather less in
evidence. However, since, in practical terms, most system matrices are
non-symmetric, it s unrealistic not to attempt to create comparable
techniques for this more general case. Such techniques as do exist,
for example, those decribed in Stewart and Jennings (1981} and Saad
(1980), are useful, but offer only a limited amount of information,
the former being a simultaneous iteration procedure which calculates a
few dominant eigenvalues, the latter based on Arnoldi's method,
employing Hessenberg matrices to approximate the given matrix. In
their favour, however, 1is their property, shared with Cullum and
Willoughby's Lanczos technique (1986), which will be discussed

further, that the original matrix is not modified.

In the first section, the Lanczos procedure with respect to both

the symmetric and non-symmetric cases will be derived and analysed.

In the second section, a statement of Cullum and Willoughby's
algorithm for the non-symmetric case will be given, together with
those modifications which have been included plus some details omitted

from their report (1986).



In the third section, numerical results as have been obtained to
date will be given and compared with those of Cullum and Willoughby
and in the final section, conclusions will be drawn and comparisons
made between the effectiveness of the algorithm outlined in this

report and other available numerical procedures.



2 DERIVATION AND ANALYSIS OF THE LANCZOS PROCEDURE

In this section, we derive the basic algorithm which describes the
Lanczos process and consider its application to the problem Ax = A X,
say, where A is real, nxn and symmetric. The motivation for the
technique comes from the property that the eigensystem of a similarity
transformation of a general matrix A is related in a straightforward
manner to the eigensystem of A itself. The advantage of this is that A
may be reduced to a more simple form from which the calculation of the

eigenvalues and eigenvectors is substantially more efficient.

Associated with A is the characteristic polynomial

X(\) = A" -8 A"t - .. -E8 =0
n-1 0
By the Cayley-Hamilton theorem
A" = E A4 L+ Ed (2.1)
n-1 4]

Suppose we choose r, an arbitrary vector which lies in the space of

all the eigenvectors of A. Multiplying (2.1) by r, we have

n _ n-1
A'r = En—lA r+ .. 4 goﬁ
i.e.
A"r = [r, Ar, L ATTTRIE (2.2)
T
where £=1[E&,&..... & I
Consider now the Krylov sequence
r =r
—-0 —
L . r, j=0,...,n-1
so that r = A p
Rewrite (2.2) as [r ,r , ..., r JE=1r or
=0 -1 -n-1 - -n

BE = r . (2.3)



Therefore, the coefficients of the characteristic equation satisfy n
1inear equations in n unknowns. Multiplying (2.3) by BY gives the

normal equations

B'BE = B' r
or ME =K
where m _ =r'r
i+1 j+1 -1 —j
- {Aiﬁo)T A'r
=r "At Iy
-0 -0
i, j=0.,1,...,n-1
and K. =r Tr
i+1 =i —n
i=0,1,..... ,n-1

Note that the element m depends only on the sum of the indices, so
J

write
mi+1 j+1 ® ui+j 1+J=0,...,2n—1
and
M = |-4|0 Ui un_i
ui
u“‘i u2n—2

Lanczos gave an efficient algorithm for solving Mg = K. Once g is

determined, it 1is necessary to find the roots of the characteristic

equation.

However, the numerical algorithm is not stable, i.e. a small
perturbation in M greatly affects the vector § “and, furthermore, the
Krylov vectors r, Ar, etc soon become parallel to the eigenvector

associated with the dominant eigenvalue.



Assume an arbitrary starting vector £1 and some set of n

independent vectors x and form the set of modifed Krylov vectors,
i 8

r s s wss,l defined by the relations
—2 =3 —n+1
1
k r = Ar - Z h r. . (2.4)
i+1—1+1 —i _ ji—j
The ki+1 are scalars and usually employed as normalising factors.

The h_i are also scalars and are calculated so that - is orthogonal
J —i

Equations (2.4) may be rewritten as

A[Ei""’rn]z[tf""r-n] h11 h12 "'hln
k h h
2 22 2n
0 k hnn
or AR=RH

where H 1is upper Hessenberg.

However, the above process may break down if B is null. In this
-1

case we employ a new vector v.+1, orthogonal to x1 ,..‘,xi. Thus we
A/ ) il
may write
1
vV =r ,r =Av - Z h v,k v =r ,r %0
—1 —1 —i+1 =i j=1 ji—j i+1—i+1 —i+1 —i+1
V. an arbitrary non-null vector orthogonal to X ,....,x , I =0
—i+1 -1 —i —i+1
(2.5)
Choices of the initial set X = { x ,....x } obviously affect the

resultant method. In order to create the procedure known as the

Lanczos method, the ﬁi's are derived simultaneously with the r 's and

v 's and are derived from AT in the same way that the v 's are derived

-1

from A. Such vectors will be labelled t and w so that we have
=1 8

1

* *

v =r = Av - Z h™ v
i+414—i+1 —i+1 —i B ji—3



W =t = ATw - Z h  w (2.6)
L+1—i+1  —i+1 ~1 jeg 31T

where h_1 and hji are calculated so that Cvs is orthogonal to
; LS

Wooo W, and t = orthogonal toyv .....,V, respectively. Again we
have

AV =VH and WV =1L

ATW = WH and VW = L" (2.7)

where H and H" are upper Hessenberg and L and L" are lower triangular.

From (2.7) we have L = (L")T =» L = L" are diagonal

D, say.
Then
H=V"'Av=0D1H)D (2.8)
Since the LHS of (2.8) 1is upper Hessenberg and the RHS lower

Hessenberg, it follows that both must be tri-diagonal so that

h =h" =0 j=1,...,i-2
it ji

=> if Ay 1is orthogonalised with respect to w, and w then it is

also orthogonalised with respect to wJ j=1,...,i-2. Similarly for

T
Aw .
i

Furthermore, from (2.8), it follows that

h = h
11 i1
and h  k =h" k"
1i1+1 1+1 1i+1 i+1
so that, by choosing kj,kf =1, j=1,...,n,
J .
h =h" = H=H
11 11

Rewriting (2.6) to encompass the above gives

B v =r =Avy -av = 7yV
i+1—i+1 ~i+1 -—i i—i 1—-i-1

vy w =t =AW -aw -Bw (2.10)
1+1—1i+1 —1i+1 —i b s i—i-1

i=1,...,n

where orthogonality decrees that



a =W Av (2.11)
T
E iV1
B =v A'w (2.12)
i —i-1 -1
vi
- i-1—1-1
T
V=W A (2.13)
T
W
= i-1—1-1

Equations (2.10)-(2.13) define the basic Lanczos process.

The values assigned to a B and <y decree that the Lanczos
1 1
vectors {V} = {v,....v} and W} = {w ,....w} are real
3 =1 =3 3 -1 =i
biorthogonal, i.e. VJTWJ= IJ. The real biorthogonal projections of Av
and ATyi onto the vectors w and v are a Vv, and a w respectively.
Similarly, vV, and B w. , are the real biorthogonal projections of
-1i- 1—=1-

Av,  and ATyi ontow andyv respectively.

So, having eliminated the majority of h 's in the matrix H and
1
introduced a new notation, the Lanczos matrix, now denoted by Tn

{where n is the order of the matrix) is given by

ai r52
YZ C(2 I33 0
T =
n
0 Yn— 1 an— 1 r31’1
Y a
n n

Clearly, not all of the values of a f and y need be calculated.

1 1
The algorithm may be stopped at any point m, say, and the Lanczos
matrix, Tm, constructed. Since the two sets of vectors Vj and wJ are

biorthogonal, the Lanczos matrices, T , Jj=1,.. are the orthogonal
J



projections of A onto the subspaces V , i.e. T
J J

N\
J J

Note that breakdown can occur if the product y B = ET1+1—1+1
is zero. However, this is by no means unwelcome,since it implies the
presence  of an exact invariant subspace and, thus, that the
eigenvalues yielded by the method to this point are, theoretically,
correct. Parlett and Taylor (1984) have shown, though, that this
happens only rarely and for very special matrices and choices of
starting vectors. Cullum and Willoughby's adaptation of this method,
which encompasses the non-symmetric case, entails the formulation of a
Lanczos matrix whose resultant form is symmetric and, typically,
complex. They achieve this by eliminating the variable ¥, by setting

Bi =y, = JTriTt_). In addition, they produce an equivalent rewritten
= b N

form for ui so that we have

v = -a -Bv =r
Bi+1._'i+1. Axl 1¥i r“,’i—i—i —i+1
T
B W =AW -aw -Bw =t
i+1—1i+1 —i i—i i—i- 1 i+t
a = {a" + d')/2 (2.14)
i i i
2 T T
B = (r t
i+1 - i+1— i+1
T T T
a° =w (Av -Bv Jand d" =v (Aw -Bw )
i - i =i\ 1i—i-1 i — ¥ e i—i-1

2.1 CONVERGENCE

A great deal of theory has been produced concerning the convergence
of the Lanczos method upon application to a real, symmetric matrix A.
Cullum and Willoughby make a statement in their report (1986) which
summarizes the effectiveness of the Lanczos method and label it the

Lanczos Phenomenon, it being:



Given a real, symmetric matrix A, use of the Lanczos method to
generate an mxm matrix T will, for large enough m, cause every
m

distinct eigenvalue of A to appear amongst the eigenvalues of Tm.

In theory then, the implication is that if we continue with the
computation, at some point we will be able to extract all of the
eigenvalues that we require. In practice, however, losses in
biorthogonality somewhat nullify the validity of this assumption and
'extra' eijgenvalues appear. These take the form of either duplicates
of acceptable eigenvalues or bad approximations, labelled as

‘spurious’.

Cullum and Willoughby have developed some kind of identification
test which examines each eigenvalue produced by the Lanczos matrix and
sorts the good from the bad. Justifications, which will follow, have
been made for the application of this test to the real, symmetric
case, but there are none for the case when A is non-symmetric,
although the test appears to work equally favourably in practice. In
both cases orthogonality is lost as convergence of the eigenvalues of

T to A occurs as m increases.
m

In order to provide a basis for the justification of the test, a
series of definitions and lemmas follow:

Definition 2.1

Define a submatrix TiJ of the Lanczos matrix T where

1 <1i<<j<mas
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T
i)

In addition, define 6 = v B 2 £k<m
k k k
and write T =T and T =T 1 <k €m
k 1k k km

Definition 2.2

Define the characteristic polynomial of the submatrices Tk and Tk,
k =1,2,...,m of any tri-diagonal Tm to be
ak(p) = det{pl - Tk) and ak(u) = det(pl - Tk)
respectively.

Lemma 2.1

For any M, a simple eigenvalue of an mxm symmetric matrix Tm, the

components of its right eigenvector may be given by

2 _ ) N
[ulk)]® = ak_i(u)ak+1(u) k =1,2,...,m
a' ()
m
where am+1(u) =1 and ao(u) = 1.
Lemma 2.2

Let y be an eigenvalue of T , a tri-diagonal matrix. By definition,
m

a (y) = 0. Then
m
m

a,(wa _(w =T &

k=2

k
where 6k = y%Bk.
Proofs for the above two lemmas may be found in Cullum and Willoughby

(1985).



11

From Lemma 2.1, it can be seen that the mth component of u, the

right eigenvector of a simple eigenvector p of T 1is given by
m

[utm1® = a  (n)

a m(u)

Suppose for this pair {p,u} we define the corresponding Ritz value
and Ritz vectors {p,Vmg,w u} for A. Then, from the matrix formulation
of equations (2.14), i.e.

AV =VT +8 v e’ (2.15)
m m m m+1 m+1-m
where e is the mth unit vector , we can form an expression for the

residual norm which employs these Ritz vectors by multiplying (2.15)

by u, it being:

NAV u - pV oull = |B  ulm)|llv Il +E (2.16)
n— m— m+1 “m+1 m

v ull v ull
m— m—

In order to validate the identification test, it must first be
shown that the residual norm (2.16) and that of the corresponding Ritz
vector W u are in some sense sensible measures of the accuracy of the

he

computed Ritz value p.

2.2 Symmetric case

For the real, symmetric case, results are well established for the
convergence of the Ritz value u to the actual eigenvalue A, the best

known of which is:
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Given any scalar u and non-zero vector x, 3 an eigenvalue X of A

such that

IA - W) € IAx - pxll (2.17)

X

Clearly a small residual => a small error in the eigenvalue
approximation. Furthermore, a perturbation of e, say, in A will
produce a perturbation no greater than € 1in the approximation. In
addition, if A is real and symmetric, Hym+1u =1 in {(2.16) and Paige
{1976) has shown that the errors Em are bounded by llAll and the machine
epsilon. Moreover, correct implementation of the method Teads to
values of IV ull which are not 'small'. The implication then is that
the degree of approximation of a Ritz value and vector (u,u) obtained
from T to those of A can be estimated from |Bm+1u(m)|, a value easily

obtained.

2.3 Non-symmetric case

Unfortunately, this linear relationship between a perturbation in
the original matrix and a corresponding perturbation in  the
approximation exists only for the symmetric case. Results hold for
diagonalisable matrices {(Bauer and Fike (1960)), but more general

results may be found in Kahan et al (1982).

Recall from the properties of the derived Lanczos matrix that

T =W AV
3 j 3

and let A be a typical eigenvalue of TJ.Then

Tp=po a'T =65, qp=1

and suppress the dependence of €, p and g on J.
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Now VJ and wj have the properties that

VW =1 (2.18)
3 3 i
AV -V T =(0,0,...,0, v ) (2.19)
J 3 3 j+r1—j+1
WTA -TwWw"™ =1(0,0,...,0,y w ) (2.20)
| 33 J+1—j+1

Multiply (2.19) and (2.20) by p and g' and introduce 3 and o, the
last elements of p and gT respectively, such that
AV - V¥,p8 =8, 8Y.,

Y

qu.TA - equ,
- - ]

W w
j+1 j—i+1

and the approximate eigenvalues are X = VJB, gT =q'W

Corollary The closest matrix to A with (6, x, ¥y as an
eigenelement is A - E for an E satisfying
T
IENl = max {|BJ+1EJ|"YJ+1“ , |}ej+1wj|Hyj+1 i}
x| lly™ I
Kahan et al have shown that E is the rank 2 matrix
T
B (Bj+1gj} YyrX F ( Yj+1!j) ALY
lix I® iy 11>
The object of interest, |X - e|, is unknown, but when lEINl is small

enough then
In - 8] < cond(8).lEN + OCIEN)
Suppose we regard A as a perturbation of A - E, then we may take

cond{8) = cond(6, A - E)

= Ixy™n = ix iy
ly™ xi
Consequently, the Lanczos algorithm should be allowed to run until the
perturbation NEIl is small and cond(©).lEIl satisfies the given
tolerance. For j<<n, the cost of <calculating an eigenvalue of Tj

compares favourably with that of executing a step of the Lanczos

process. In principle x and g? are also computable, but this involves



14

the computation and formulation of V —and W_ at a cost of 2jn
J J
operations, probably more than that of a step of Lanczos. Instead,

2 be saved in the

Kahan et al suggest that the values HV.IIF2 and IIWJTHr
3 :
fast store, where
J
W 12 = L [ [ T L 2,
1F i=1 &8 - J i=1 T

values which may easily be updated.
A more accessible bound then is given by

cond (@) = lxIty™ I < IV 1u_iw "1 lipltigh
- = i F 3 F = =

2.4 Validation of the identification test

From (2.16) and Lemma 2.1, we can see that

AV u - WV ull = nsm+1ym+1n[am_1(u)éz(u)]°'5 + E (2.21)
v ul W oull [a' (wa (w]°?

Employing Lemma 2.2 and adopting the procedure of Cullum and

Willoughby in their non-symmetric method that Bk =Y we have

AV u - WV ull = ™ | v + E (2.22)
m= m— k=2 k —m+1

m

v ull IV oulifa' (wa_ (w1°°
m— m— m 2
where Em is the roundoff error which, in practice, appears to remain

controlled and 'small', although theory is lacking here.

Cullum and Willoughby's identification test rests on this 'fact'
and, 1in addition, requires that the Ritz vectors are not small and
that the norms Hym+1n and Hym+1H are not big.These requirements when
substituted into (2.22) imply that the size of the residual norm with
respect to the eigenvalue p is dependent on the éz(u) term, so that
small éz(p) => a large residual term, which in turn implies a spurious

eigenvalue. Hence, any eigenvalue which is both a member of T and its
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submatrix %2 may be dismissed as having been produced by losses in
biorthogonality. On a more positive note, numerically multiple
eigenvalues may be accepted as ‘good' approximations, since the
implication here is that duplicates arise from eigenvalue
approximations of matrices which are themselves good approximations of
the original matrix A. This then is the justification and statement of

Cullum and Willoughby's identification test.
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3 STATEMENT OF THE ALGORITHM

The problem under consideration is the generalised eigenproblem,
Ax=XEx, where both A and E may be sparse. Both matrices are generated
and stored by the facility MATLAB and accessed by call statements in

the program NSL7.

The majority of numerical methods for eigenvalue problems have the
properties that they first yield the dominant eigenvalue and that the
computation may be stopped at a point when all the eigenvalues of
interest have emerged. In the same way, we shall exploit the Lanczos
method by adapting the problem somewhat so that we may centre the
computation around a particular range of eigenvalues.

We consider then the shifted inverse problem

(E7'A - 81)7"x = ux, w=1/(x - 6)
which, in theory, will compute the eigenvalues p which are closest to
the shift 6. However.,we will refrain from computing the inverse of the
adjusted matrix directly, working instead with its LU decomposition
and employing forward and backward substitution whenever the formation
of a matrix-vector product is required.i.e. we consider

z = (E'A - 81)7 Yy

LU = (E"*A - &I) (3.1)
Ly = v
Uz = y

and solve for z. Ideally, we would 1ike to avoid computing the inverse
of the matrix E and deal with the problem in the following form:

z = (A~ 8E) 'Ev
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(3.3)

—
<
1]
m
<

Uz =

1<

Part of the computation requires that we take the product of the
transpose of the matrix in question with a vector. This leads to the

following formulation:

z = ET[(A - 8E)" 171y

LU=A- &

U'w = v (3.3)
L'y = w

E'y =z

In order to implement the algorithm given by equations (2.14), two
starting vectors v and w are required (we assume here that 60=0).
The wvectors must satisfy the condition that ng1n = Hy1H = 1 and
further restrictions are made by imposing the condition that v = w .
There 1is 1ittle 1literature concerning the choices of these starting
vectors. Cullum and Willoughby imply that, so long as the above two
conditions are satisfied, the choices are arbitrary, whilst other
authors (Parlett and Taylor (1984), Wilkinson (1965)) imply that the
choices of the starting vectors play some small part in the resultant
success of the method. The Power Method suggested itself as a sensible
means of generating the vectors, and a few iterations of this were
employed, the number of iterations being dependent on the size n of
the matrix.

So, the algorithm for the Lanczos Method is given as:

Step 1

Read matrices A, E and order n.
Input the size m of the final Lanczos matrix Tm and the shift

(compiex), &, required.
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Generate starting vectors VoW using Power Method and normalise.

Assume working matrix to be in the form Al = E*'A - &I.

N.B. For any following matrix-vector products of the form (A1)™' x =

y. y is found by solving the system x = Aly = LUy by forward and

backward substitution.

Also note: Since only the previous, current and new values of each

vector v and w are employed at any time, throughout the computation
-1° —i

the vectors v. , v and v.,, are stored in vl1, v2 and v3 respectively
L - ) A

(similarly for w's) and are updated at the end of every step.

Step 2
Set a = (WwAL™'v o+ vT(ALTN)Tw )/2
1 —1 —1 -1 —1
_ -1 _ T -1,T, 0.5
B, = ALy, - av ) ((A")'w -aw)]
Step 3
For i=2,...,m
..1 _
Bi+1¥i+1 = Al Y. - %Y _Biyi—i S
T -1 _
Bi+1'w‘i+1 - (Al ) ﬂl “diﬂi - B]'.E:L--i = Ei+1
a = (a + d')/2
i i i
2 _ T
r3i+1 T o—iet=i+t
a = w (AT BV )
o = v A ) T B )
Step 4

If Bi+1=0, breakdown occurs. Form matrix Tl as in Step 5 and compute
eigenvalues to date as in Step 6. Restart process by implementing the
last step of the Gram-Schmidt process to generate two new starting
vectors v and w , orthogonal to all previous vectors L and v,
j=1,...,i-1, respectively. (Unfortunately, this entails storing all
vectors as they are generated, although they could be placed onto some
sort of external storage device such as disc where they may be

retrieved only as required.)



Step 5

Form Lanczos matrix, T
m

Step 6

Y B2
Bz % Ba
0

19

Solve for eigenvalues py = 1/(X - &) and re-evaluate true eigenvalues,

A=06+ 1/p.
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4 NUMERICAL RESULTS

Numerical results obtained by the Lanczos method differ vastly in
their accuracy and are largely dependent on the condition number of
the shifted matrix, it being a measure of the matrix's sensitivity to
perturbations. A condition number equal to, or just greater than, 1
indicates that a small change in the components of that matrix will
not greatly alter the results obtained whilst a 'Targe' condition
number implies that that matrix 1is extremely sensitive to such

changes.

The matrices initially examined were all constructed via the MATLAB
facility and typically had classical structures, i.e. of symmetric or
Hessenberg type, although non-symmetric matrices were, of course, also
examined, these being the main source of interest. Of these cases,
various combinations were employed, differing both m (the final

dimension of the Lanczos matrix) and the value of the shift.

The first group of test results were achieved from matrices
specially generated to display certain characteristics, for example,
distinct eigenvalues, multiple eigenvalues and defective eigenvectors.

As one would expect, matrices with low condition numbers gave
reliable results, often picking up every eigenvalue to machine
accuracy. In those cases where a shift was chosen to coincide with a
known eigenvalue, the matrix predictably became very ill-conditioned

and consequently the results were poor.
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The second group of test problems involved a non-symmetric matrix,

A, having eigenvalues spread over both the positive and negative
planes. Various shifts were chosen, these taking wvalues at
eigenvalues, below and above eigenvalues and zero. Results were
generally poor, but were considerably more promising in the case where
the shift was chosen to be slightly greater than the dominant
eigenvalue (see figures 1 and 2 at end of section).The problem here,
of course, is that prior knowledge of the dominant eigenvalue would

seem to be required to guarantee good approximations.

In the next section of problems, the matrix E was incorporated so
that the problem became a generalised eigenproblem. Here, A was chosen
to be symmetric and E to be symmetric positive-definite. For the first
study with this particular combination of matrices, no shift was
incorporated, but the value of m (determining the size of the Lanczos
matrix Tm) was reduced each time. The results obtained are represented
at the end of this section in figures 3-6. In the second study, m was
consistently set as the size of A and E while the shift values were
altered and finally, these values were retained while m was given a

common, low value.

The results all displayed a common characteristic. A shift chosen
to be slightly greater than the dominant positive eigenvalue produced
very good results and multiple approximations, it having the effect of

Towering the ‘'new' matrix condition number. A shift chosen slightly
below the dominant eigenvalue behaved less well, whilst a shift chosen
just above the next dominant eigenvalue produced good approximations
to that and the next few eigenvalues, but did not manage to pick up

the true dominant member of the set. Similar results were obtained for

shifts chosen further down the range. A noticeable difference on the
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accuracies obtained could be seen between the second group where A was
non-symmetric and the third where A was symmetric, although in both
cases similar matrix condition numbers were recorded with the
symmetric case being a great deal more accurate. The most encouraging
results were seen in the third section where m was repeatedly reduced.
With m = n, the dimension of A, approximately 56% of distinct
eigenvalues were recovered with a further 22% of duplicates. Reducing
the Lanczos matrix to 80% of its original size caused 62% of all
possible distinct eigenvalues (i.e. 80% of those of the original
matrix) to be picked up with a further 12% of duplicates. With a
Lanczos matrix 60% of its original size, 50% of all possible distinct
values were obtained with 10% of dupiicates. A value of m equal to
40% of n led to 80% of all possible recoveries whilst m equal to 20%
of n gave a 70% success rate. In this case then, reducing the size of
m did not dimpair the ability of the method to pick up those
eigenvalues 1ying closest to the shift. Each reduction of m merely
caused the Lanczos matrix to 'drop' those eigenvalues furthest from,

and consequently of less interest than, the shift.

In considering a particular state matrix of the SSEB system, the
method was used in both the shifted,inverse form and in its most basic
form. A full computation of the eigenvalues employing the latter
produced extreme discrepancies between the actual eigenvalues of the
system and those given by Lanczos. However, after application of
Cullum and Willoughby's didentification test (1986}, the most
inaccurate of these were eliminated and the remainder proved to be
reasonable approximations (see figures 7 and 8). It was unfortunate
that these approximations did not, in some sense, lie 'outside' the
true eigenvalues, for then they might have represented a reasonable

bound for the true solution. Interestingly, reduction of the size of
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the Lanczos matrix resulted in removal of the same spurious
eigenvalues with no further reduction by the identification test
(figures 9 and 10). Application of the shifted, inverse form produced

similar results to the reduced Lanczos method (figure 11}.
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5 CONCLUSIONS

Observation of the shifted inverse formulation points to an area of
possible concern. Logically it would seem that a 'good' choice of 8,
i.e. one that happens to coincide with, or nearly with, an actual
eigenvalue of the system, would, by the very definition of the
problem, cause the shifted, inverted matrix to be singular. A
contradiction of sorts appears to arise. A choice of shift which
should 1dncrease the rate of convergence would seem to promote the
opposite. Fortunately, Wilkinson {1965, Ch.9, Sec.49) has shown that
such a choice has only positive effects and any doubts regarding the

production of singular matrices may be discounted.

Comparison with the QR method, it being the main altternative
technique, shows that, while Lanczos inevitably loses some eigenvalues
in deflating the original matrix to tri-diagonal form, its advantage
lies 1in systems where the matrix is sparse and/or where only a few
eigenvalues are desired. In such cases, the number of floating point
operations required for the QR is 0(n’) compared to the Lanczos
process which employs O0(n) flops to obtain the tri-diagonal form,
followed by a further 0(n) flops to compute the eigenvalues using a QR
method which takes advantage of the tri-diagonal structure. Naturally,
the workload is greatly reduced by the implementation of the shifted,
inverse form, which 'relabels' the eigenvalue of interest as the
dominant eigenvalue so that an ‘incomplete' Lanczos matrix may be

calculated, which, 1in theory, contains those eigenvalues of interest.
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Results obtained by, amongst others, Cullum and Willoughby (1986)

are very encouraging, but may display the method under favourable
conditions. Results obtained to date by myself using this shifted,
inverse form are less encouraging, in particular for the state matrix
of the SSEB system which is very badly conditioned and may account for
the lack of accuracy obtained. However, I would find it hard to
maintain confidence 1in the method for matrices which are other than
symmetric. Alternatives to the version defined by equations (2.14) are
available and include a similar process which employs
reorthogonalisation at every step, obviocusly advantageous in that
accuracy is greatly enhanced, but clearly vastly more expensive. Block
Lanczos methods are also in evidence which ultimately yield block tri-
diagonal matrices and are especially useful for computing a few of the

extreme eigenvalues of a sparse matrix.
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