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© SUMMARY

This paper looks at some well-known methods for the
numerical integration of the vibration equation from the point
of view of various groupings of the independent equations
involved. New forms are given of the general three-parameter

method introduced by Zienkiewicz. [1],



The original Newmnark mothod [21 for the intepration of the
[
vibration aequation

1] ]
Mx + Cx + Kx = { (1.1)
takes
) 2 .
Eaer = 2Xn T ARG T %ﬁt [C1 - 26020 + 262 4] (1.2)
and Voeqg =Vt At [(1 - YN) a + YN§n+1] (1.3)

where the subscript N is used to distinguish the Newmark parameters.
There are then two more equations like (1.2) and (1.3) relating n -1
and n time levels.

Taking these four equations together with

May + Cyy + Kx; = f, (1.4)

for J=n-1, n, n+1
gives altogether seven independent equations from which Zienkiewicz (1]
quotes Leleux and Chaix [3] as pointing out we can eliminate the six

i v v v & €
quantities a_ ., a s 8.4 Y4 0 e to arrive at a

recurrence relation in ﬁn-1-' X , X H

2
[M + v BtC + ByAt K] x o

¢ T-2M+ (1 - 2y,) BEC + (1 + vy - 28y) BEKT x_
2

P TN+ Ly - 1) B (- vy ¢ B btk x
2

u Atz[(i_- Y

Loy * BTt (%,+ Yy~ 2B, Bfaag]  (145)

From equation (1.5), knowing two prevlious values X , X_we can
—n-1 -

obtain x .4 and thus step forward for values of the displacements only,

but this does not conveniently give values of the volocitias.
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As an alternative we con use equations (1.2) and (1.3) to obtain

o ond a and then substitute in equation (1.4) used now only at
- =

time levels n, n+*1 to pro@uce two equetions in X0t X v Vo
xn+1 which constitute a one-step method to obtaln the vector

. . T ' )
In+1 r§n+1 R Atvn+1j . Thesg can be arranged in varilous ways but'one

arrangement which 1s simple to apply is as follows:

il [YN5n+1 - BNAt¥n+1] - LfN” * [BN - %NJ AtZK] X,

From equation 1.6 the vector YnEne1 " BNAtv say, can

—n+1 = UYneq
be obtained by simply inverting the matrix M .

Then the second equation can be taken as

2
At YNK5n+1 + [M+AtYNC] At!n+1

2
At (1—YN]K§n+EWfAtF1—YN]6] At_\l_n

2 2
MR (UL (YL LI (1.7)

If we now substitute for Atv in terms of x and u we have
—n+1 —n+1 -

to invert the matrix [M + AtYNC + AtZBNK] to obtain 5n+1 and hence

At.‘in+1 :
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If wa want to compute én u [ﬁn, Atxn, At?gn] then wo can simply

substituto for x

Xne1? Ve in equation 1.4, 3 = n + 1 to obtain

M+ AtYNC + AtZBN1 A4

= -Kx = TC + At Klv
-n -

~[at (1 - yJc+ 1 At2(1—26N)K]9_n
2

* e 1.7a

This gives 2, and then are obtained by substituting

+1 Zne1r Ineq

for into equations 1.2 and 1.3.

a
—-N+1

When C = 0 unconditional stability is achieved with ZBN . YN z

N =

for any of the above recurrence relations whether in x _, or

Y
- -’ -

X .
-



Sacond Approoach

If wo stort as in Zienkiewlcz (1] from the supposition that

oB ni"1
x =) Ny (£)x,
n-1
wherae the Ni[t) are quadratic in the time t, and substitute this

into the Weighted Residual form of equation (1.1) -

At At
_wLmeiii, + C):Nif_i + lxXNiii] dt = Jwidt
~-At : ~At

then we obtain immediately a recurrence relation between 5ﬂ_1 :

X,X+1 ]
M+ At (1 + 2y.) € ¢ At2(y +B]K] X
— z = z z “n+1
- 2 2
o [-2m-2v8tc+at?¢ - 8K x
Z z -N

—

+ M- At(1 - ZYZJ Cc - AE?(YZ = Bz)k] X1
2 2

—

where 1 3
vy, =ljwegdeg

-1
e g

B = 1|w E%d &

-1
! J

p = Wd¢g
~1

and & = /At .

T o e = T T T IRy IR "

(1.0)

(1.9)

(1.10)

(1.11)
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The right hond side of eguation 1.10 Lo obtainod by assuming

n+1
6 2 Ni(t]ii i.e, the same interpolation as for X .
n-1

The recurrence relation (1.10) is exactly ths same ss that in

equation (1.5) if we take

Y F 2 8 5
N 5 z
(1.12)
28N " Y, ' 8z
Ve must note that the Newmark equations (1.2) and (1.3) with
independent BN » Yy ore not consistent with the assumption of a
polynomial variation in time.
Suppose we now start from equation (1.8) and {1.10) and form the
pair of equations which constitute the one-step recurrence relation in
o T .
the vector [fn’ étx%] Iﬂ .
Equation (1.8) can be written as
x= oot (1ot x e 1o 8] x e £ {1 thx (1.13)
25t | at] " 2 75t Ag|
This implies that
~ .
x=-1(1-2t Xoeq T 2t Xt 1 1+ 2t LI : (1.14)
240t At 2 246t At
At
and hence
Yo ¥ Zner T Zamn | (1.15)
246t
= b 016
Vaer © e T Y X040 (1.16)
246t
To obtain the pair of equations in Xoeq? Vet X v, we can

eliminate x from the thres equations (1.10), (1.15), (1.16), giving

—n-1



[%M + 2y, ALC + Atzﬁzk]in‘1

. [ﬁm + 2y AC - a2 (1 - az)k]fn

+ [}M - 6t(1 - ZYZ)C - Atz(YZ - BZJK]At!ﬂ + At2F (1.17)

[where AtZE 1s written for the right hand side of equation (1.10)]

and

= 2x_ + Atv_ . (1.18)
=n -

Equation (1.17) can be used to generate o1 and then

equation (1.18) to obtain At!n This algorithm for obteining

+1 °

[?n' At!n]T is much simpler than the method represented by the pair

of equations (1.8), but it cannot be regarded as being equivalent to
Newmark., With the damping matrix C = 0 we can again analyse the

stability by taking Xn+1 = Axﬂ. We have unconditional stability for



Now wa can express the hypothesis that x 1is a quadratic in timg
in terms of threo independent parameters.

(1) I wo choose X X X

to ba these three paramcters then
~n+1’ =o' =n-1 b pare

the W.R., (Weighted Residual) equation gives a two-step recurrence in
the displacements only which is convenient if we only need the
displacements.

(11) If we need to evaluate velocities as well as displacements we

could choose to express the quadratic variation in terms of X s X,
~n+1’ -

v
-—N
i.e. X =x +vit+ t2 (x - x_ - Atv ) .
- - —5 —n+1 n
At
Substituting from equation 1.19 into the W.R. equation 1.8 gives
2M(x - x_ - Atv_ ) + AtC |Atv_ + 2y_(x - x_ - Atv)
—n+1 - n — z =+t —
+ At2K X + y_Atv_ + B_(x - x_ - AMv )| = AtzF
n z z "n+1 n n -
i.e,
: 2.1-1 [ ,.2
X = x + Atv_ + |2M + 2v_AtC + B_At -At KX
—n+1 - -N z z | N

2

dm oy

e Atz(C - y_AtK)v_ + At
z -

where Y, BZ are the same as in equation 1.11.

«

Equation (1.20) can be used to obtain x
—n+1

differentiated gives

Atxﬂ+1 = 2(_>_<n+1 - §n] - At_!n

which is of course the same as equation (1.18).

and then equation (1.18)

(1.19)

(1.20)

(1.21)



I Equation (1,20) is the same as equotion (1.17) provided the vector
£ from the forcing function 1s obtained 1n the samc way.
Similarly we could make the W.R, equation produce o relation between
Xn+1' Xoro oV, to obtailn Vo

equation (1.21).

then afterwards got Zﬂ+1 from

To summarise this section we note that (a) 1In the origilnal
Newmark approach [2] there are seven independent equations in the nine

vantities x X X v Y \Y a a a
q -1 St Lnttt cn-1tt It D1’ Sn-1? St Sn

.

We can (i) eliminate six of these quantities from the seven equations to

obtain a single recurrence relation in x , X, X , (i) we can °
—n-1" =’ -—n+1

use the two equations (1.2) and (1.3) together with equation (1.4) at
time levels n , n+1 only i.e. four independent equations now in

X X v \ a a and eliminate a a to produce
/ -’ T+t n’ ot S’ -’ o+ P

two equations (1.6), (1.7) which constitute the recurrence relation in

!n’ (iii) we take equations 1.7a, 1.2, 1.3 to form a recurrence

in En .

(b) In the Zienkiewicz approach [1]

(1) The recurrence relation (1.10) in x X , X is obtained
-n -’

-1’ —n+1
immediately by substituting the Lagrange form of the quadratic variation
in time assumption (1.8) into the W.R. equation (1.9).

(1i) It is pointed out here that the quadratic variation in time can be

expresged in other ways each in terms of three quantities e.g. Vot

5n‘ !n Or X .4 fn' !n and the W,R, equation will then give a

L relation between thaese three quantities in each case. The equation which
states the quadratic variation can then be used to give a relation betwoen

?n terms of Xn+1' LI !n or Vv

—+1

four quantities, thus pglving §n+1

O o R




in toerms of X " We thon have a one-stop recurrence

X v
| “n+l’ et oen

in in , no longer equlvalent to Newmark.

(111} There does nolt appear to be a useful one-step recurrence in

X from this approach.
—N
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Hiphor Order Formuloc

In reference [1] Ziankiewlcz obtoined o very goncral highor-order
formula hy assuming that the displacoment x 1is cubic in time and
writing

- n+1
"X = y Nj(t) X
J=n-2 :
i.e. a Lagrangian interpolation expressing x in terhs of the four
. He Used this to obtain a four

quantities x X , X
.—1

=20 Zn-1r I Zned
term recurrence relation in the displacements via the Welghted Residual
Method. This recurrence relation is in terms of three parameters o ,
B, ¥ . It has been analysed by Wood [4] and shown to include the
Houbolt 51, Wilson -0 [6] and Farhoomand [7] methods; it also

includes the Bossak [8] and Hilber-Hughes-Taylor [8], when these are
second order methods. The correspondence with Hilber-Hughes-Taylor

(using subscripts H, Z to distinguish Hilber-Hughes-Taylor and

Zienkiewicz parameters respectively) is that when they take

Yy,=1-a
H 5 H
we have Y, © 2
' 2
a, = 8 + jZBH 4 BaHBH BaH
Bz = 4 - 2aH2 + ZBH

(Hilber, Hughes, Taylor use the undamped form of equation (1) with C = ol
We now look at the Zienklewlcz approach from the point of view of
the number and type of independent equations involved. There is the

rocurrence relation in X X , given in reference [1]

_ Zn-20 Zn-1t Zar Zned
Equation 2.1 can also be differentiated to obtain

i n+1 .
S Xx. ) N, () x

J=n-2 J ]

(2.1

(2.2)

(2.3)

(2.4)
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Subatituting tho eppropriate valuecs for t then gives throa

| .
equations for v , V \Y; % g9 of ’ , .
4 h : ~n+t1" n’ -1 ih EBSI0S Gif LN Yo Za-1r Xn-2
From thaese four indepundent equatlions wae can sliminate §n~2 to plve
three equations relating now X1 X Koot Yaerr Var Vper v
R T
If we aim to obtein a two-step recurrence in Y _ = |x , ﬂtvi] we
— —n —f _

cen arrange the equatlons so that one gives® X+ directly and the other

glves Xn+1

Equation 2.4 can be differentiated again and used to give equations

, X i.e. we now have

for a a in terms of X
-’ -n . -2’ n+

X X
+1 —n-1" =

X , X vV , V a _,

five equations involving 5n-1’ X, Xo+1r Y, Vo1t &g

2

Zn-2

a . We can eliminate x , X from these five equations to
n+1 —n-2’ ‘n-1
obtain three equations in X0 Xoeq? Xn‘ !n+1’ a.r 8.4 which

constitute the recurrence



-
N
4

| Now wo can express tha cuble verlation of x in time in various
ways esach involving four discrote values of dlsplacenmont, velocity,
acceleration, chosen as convenient. Tha W.R, equatlon thon gives a
relation between these four quantities. The statement of cublc
variation gives further relations between four or five quantities:

(1) We can express the cubic variation as above in equation (2.4)

using §n+1' zﬂ, 50_1, 5n—2 giving a three step recurrence in

displacements as in [1] .

(ii) We can express the cubic variation in terms of X , X, V
N+’ N’ -

and either x

or v . The W.R. equation then relates these
—n-1 —

-1

four quantities and thus gives an equation for X The velocity

“n+1 "’
\Y% is then obtained from a five term equation.
—n+1 ) -
For example, stating the cubic variation as
2
x=x_ +vit+ t (x - 2% + x_ )
—~ N - — —+1 N -1
2At )
3
+ t7 0 (x - X - 2v_At) (2.5)
—3 1+l -1 -
2At
we have
’
X=Vn b B (e 7 20 Xy
At
2
+ 3t (x "X - 2v_At)
—3 1 1 -
240t
” (2.6)
xm A D 7 20 2]
At
N _ - .
a3t [5n+1 X -1 2!nAt] (2.7)

P
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Tha W.R. equation thon gives

MRt 2 K B T X T ZXnAt]]
b [ty vyl 7 2 ) * Bl Koy 2]

+ K X Y2At!n + B, (x - 2xn + X L)

52 n+1 n-1
+ %thn+1 - X4 T 2vnAt)] 3 F

where F 1s the result of a suitable interpolation on the forcing

function f , and the parameters & 82, Y, are given by

At 3
0, = _1 t3wdt
th3
“At
At
B, = 1 t2wdt r
q&iz
-At
At
Y, =1 tWdt
qAt
“At
At )

where q = |Wdt

-At

(2.8)

(2.9)
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Equotl 2.8) thon gilvaocs ; Ing
quation ( ) then pivas 5ﬂ*1 knowlng x1. 5ﬂﬂ1, v‘, and
LA is piven by substituting t = At  1n cquation (2.6):
i.e. \ = 5 x -2 %X - 1 X
7 L a7 e
- 2v ' 0 (2.10)

The results represented by equations (2.8) and (2.10) are similar
to those produced by the more eleborate procedure described above
starting with the VW.,R, equation with the displacements only.

Equations (2.8) and (2.10) together constitute a two-step

recurrence in Y =
el

(1ii1) We can express the cubic variation in terms of the four discrete

quantities x_ , v, a , a as follows
- " =’ ' -+ . :
2 3
x =x +tv +1ta_ + t (a - al) (2.11)
— N —N 5 - —s—t n+1 n

n
Then substituting for x , x , X in the W.R. equation we obtain

immediately

2
[ays + By ALC + oy At ﬁ] a .
2 5

== Kx = (C+ ygAtKly_

2
- [(1 = Ya] M+ [YS - _B_:i]AtC + (383 - Gs]ﬁt K}_‘E_’n

+ ALSF (2.12)

where the forcing vector F 1s again obtained from some suitable

interpolation and the paramecters g 83, Y4 ere given by
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(At \
SO
I ua = _:L_ £ Wdt
rAt3 )
0 .
(At
By = 1 £2Wdt
rAtz )
0
(At
Y3 = 4 tWdt
ri
J
o
AL
r = IWdt
0 F

X -1 At7e = x + Atv_ + 1 At7a
—n+1 5 -+l - - F -
and
Atv = 3 Atza = Atv_ + 1 Atza
—n+1 5 —n+1 -n 5 -

(obtained from equation (2.11)), then constitute a one-step scheme for

X = [x , Aty Atza:IT . Equation (2.12) has been constructed
- - - -

especially to give Atz_qn+1 in terms of the values at the previous step

and then x are obtained simply from equations (2,14)

X1 and At_\_/n

+1
and (2.15),

in order to use the results on stability etc. in reference [4] we
can match the coefficlents in the stability polynomials resulting from

the methods in (i1) and (i3i) above by putting !n+1 = kxﬂ,

X " Xﬁn respectively used on the equation (1.1) with C = 0 by

(2,13)

(2.14)

(2,15)
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for the method (ii)

and

for method (iii).

From reference (4] we have that the conditions for unconditional

stability and positive damping simplify into
a>0, b>0, 33ab>c>0
where for method (ii)

a = Yz,..

+*
PN
-

Hence the Houbolt method which corresponds to a = 27,

Y, ® 3 corresponds also to method (ii) used with

a, =31, B, =23, ¥v,=5 .
2 5" 2 w2 3
These values give a = 2_, b = E_. (o §_ as obtained in
2 2 4

reference M4] in connection with the recurrence in the displacements

only,

(2.106)

(2.17)

(2.18)

(2.19)
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For method (114) we havo

oYy -1, b=fyyyg -1,
2

cC n (Y.,, zcs SPP, + 1 "
3 5 3 7
Hence the Houbolt method which corresponds to method (iil) used

with ag = 6 , 83 =11, Ygq = 2 gives the same values of a, b, c agein.
3

The other methods described in reference [4] can be similarly linked
up with methods (ii) and (iii) in this paper.

To summarise this section we note that the cubic variation of the
displacement in time can be expressed in various ways conveniently to
give
(1) a four-term three-step recurrence in displacements alone,

(1i) a three-term two-step recurrence in displacements and velocities
(1ii) a two-term one-step recurrence in displacements, velocities and
accelerations.

If the starting values exactly correspond and the forcing terms are
interpolated in the same way the results will be the same because of
the linearity of the relatipns.

Adams [10] has demonstrated the equivalence of working with
displacements only or with the vector zﬂ = [ﬁﬂ i At!n , Atzgﬂ] iﬁ a

comparison of the Hilber, Hughes, Taylor [9] and Bossak [8] methods.
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