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Abstract

In numerical weather prediction (NWP), determining states and recon-
structing model parameters or the underlying structural functions of dynamical
models are essential and crucial components of the modelling and simulation
process. In addition, it is gaining prominence in emerging application areas. In
light of this, we examine the estimate of an unknown model M or the F' function
that determines the rate of change of x, which represents the dynamical system
model of the type & = F(z) using a high-dimensional nonlinear approach based
on Ansatz functions such as Polynomial or Gaussian functions.

The focus of this thesis is to propose specific iterative learning methods
developed for estimating a dynamical system of interest using data assimilation
(DA) techniques, as opposed to the traditional approaches typically used for
parameter estimation, reduced order model approximation and the current
approaches of machine learning (ML) and artificial intelligence (AI) techniques
in general.

This is initially evaluated using two models of dynamical systems with
increasing complexity: Lorenz '63 and Lorenz '96. Then, we examine the recon-
struction strategy based on a variety of basis functions, including Polynomial
and Radial Basis Functions (RBF). As generic application issues, we examine
the reconstruction of the dynamics of Lorenz 63 with implicitly applied RBF
under the assumption that the L? metric in coefficient space corresponds to a
Gaussian prior in coefficient space. In addition, we employ the Amari Neural
Field model for kernel reconstruction as a simulation test case for brain neural
activity.

Using the Lorenz 96 model, we examine a Taylor series technique to
express the forcing function F'(z) with regard to the state variables. This was
utilised for the rebuilding of models via ensemble data assimilation. Using
the variational data assimilation method and the Kalman filter technique, our
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primary objective is to study a general method for resolving this problem with
little or some specific understanding of the underlying dynamical system.

The models are then supplemented with a reaction-diffusion system. We
demonstrate that learning a reaction-diffusion model’s fundamental partial
differential equation is doable and produces good results when the learnt model
is utilised as a propagator.

Thus, we notice that the general iterative model reconstruction is com-
petitive for the specific inverse issue under study for a broad range of initial
conditions. Included are numerical examples demonstrating the practicability
of the method.
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Chapter 1

Introduction

The primary objective of this study is to create nowvel learning methods
based on data assimilation (DA) techniques for estimating a dynamical system
of interest. The development of machine learning approaches for models with a
range of neural networks is increasing; we shall examine some of these techniques
below. The estimations of the states are often from observations using data
assimilation techniques. In this instance, these approaches were used to recreate
the model, not simply its states.

We again study dynamical system representations to construct innovative
data assimilation strategies to model learning. In the midst of accomplishing
this, we investigate:

a) the Lorenz ’63 model, which is prevalent in low-dimensional chaotic
dynamical model.

b) the Lorenz ’96 model, which is a potentially higher-dimensional chaotic
dynamical model.

c) the Amari Neural Field Model, which is a high-dimensional funda-
mental model from neuroscience; and

d) the reaction-diffusion system model as a full-grown weather model
used by the reaction-diffusion system and COSMO consortia®, where we
restrict our attention to some specific sets of atmospheric variables, in
particular, temperature over central Europe.

thttp://cosmo-model.org
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The algorithmic approach we investigate here starts with employing well-known
data assimilation techniques to estimate models dynamically. To our knowledge,
this has yet to be previously applied to model learning or explored in the field
of neuroscience research in this way.

(VAR) As a first generic approach, we develop and investigate variational data
assimilation to estimate or reconstruct a model. Such approaches have
already been used for adaptive or variational bias correction (VAR) in
satellite data assimilation [34], [125]. Here, we will develop the ideas into
a more generic tool that can be applied in different setups. This will be
worked out in detail in Section 3.1.

(KF) An immensely popular data assimilation method is the Kalman filter
(KF). We will formulate and investigate the Kalman filter for learning
the model in Section 3.2. It can be viewed as an extension to the above
variational approach, where in this case, the background uncertainty
covariance matriz B is updated in each assimilation step.

The dynamical system described in this research is not explicitly dependent on
time (t) for emphasis and clarity. In most instances in this study, its dependence
is on the fields, and it is an implicit dependence, and the coefficients are not
time dependent. However, the forcing term F' is dependent on time for its
prediction.

Dynamical systems are usually written in the form of primitive equations

i = F(z) (1.1)

with a forcing term F' : R” — R” mapping the state space R™ of dimension
n € N of the system into itself. In the case of the Amari model [5], the forcing
term has a particular form

du

P (@) = —u(z ) + [ wlzy)f(uly.0) dy 12)

such that for the state u which is a function in L?*(D) x C*(]0,T]) with some
domain D € R? d=2,3 and a time interval [0, T],

Flu)(z,t) = =u(z,) + [ wzy)f(uly. 1) dy. (13)
where the function w(z,y) for z,y € D with some domain D in space is called

the neural kernel. In that case, the forcing term estimation can be reformulated
as a kernel reconstruction or kernel learning task.

Chapter 1 Page 2/150
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o We will describe the use of the learning methods VAR and KF to Forcing
Term Estimation in Section 3.3. It also applies to the reconstruction
of dynamics of the Lorenz models as particular cases. We will show
the results in Section 4.1 and Section 4.2. The application to some
subdynamics of the reaction-diffusion system weather model is conducted
in Section 4.4.

o We will investigate the application of VAR and KF to the Kernel Learn-
ing Problem in Section 3.4, compared to the traditional kernel recon-
struction and numerical results shown in Section 4.3.

Data assimilation combines data from several sources, such as observations
and numerical models, to estimate a complex system’s state. Specifically, it is
commonly used to estimate the state of a dynamical system, which is a system
that changes over time based on a set of rules or equations.

By merging information from observations and a mathematical model,
estimating the state of a dynamical system at a particular moment can be done
by applying the data assimilation technique. Given the available data, it requires
solving an optimisation problem to get the most accurate approximation of the
state. The estimated state can then predict the system’s future behaviour.

Several domains, including meteorology (especially for weather forecasts),
oceanography, and geophysics, utilise data assimilation to enhance weather
forecasting and climate modelling. It is also utilised in engineering and finance
to evaluate the current state of complicated systems and anticipate their future
behaviour. Data assimilation is also the method of combining observations and
models to estimate the state of a dynamic system.

A dynamical system is a mathematical model that represents the time-
dependent behaviour of a system [106]. It consists of a collection of equations
that regulate the deterministic or stochastic behaviour of the system. Usually,
the future state of a deterministic dynamical system is defined or determined
by its current state and the governing equations. Random variables impact the
future state of a stochastic dynamical system.

A diagrammatic representation of the technique in its simplest form is
presented in Figure 1.1 for the classical data assimilation approach, and Figure
1.2 depicts the simplest diagrammatic representation of the model learning
ansatz.

Chapter 1 Page 3/150
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R" Observe

Time steps

(a)

Figure 1.1: The figure shows a one-dimension state-space illustration of
the trajectories of the data assimilation approach used in this thesis at each
assimilation step. We consider the state-space X = R", i.e., our states x € R"
are real numbers. At time ¢;, we have calculated 28 € RY; Similarly, we measure
y; € R'. We then estimate x; at time t;, the result is the analysis at z{ € R!.
The process is repeated at each successive time step to, t3, t4,...,t,.

/AL Observe

Time steps

(b)

Figure 1.2: Depicts the model learning strategy included in a classical data

assimilation approach at each assimilation phase employed in this thesis. The

My, M}, M2,....MP (model error background at every iteration stage), while

My, Mg,....M? represents the model analysis at each propagation stage. The

variational or Kalman filter method updates the Model at each time step t;
in the model-space M € Z".
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Section 1.1 Model Reconstruction for Dynamical Systems

By learning models in the neuroscience framework, one of this thesis’s
long-term applications is to find new mathematical and computational models
that can support and lead neuroscience research concerned with collective
neural activities and the large-scale complex processes targeted by non-invasive
brain imaging methods. The methods developed here offer a path towards
new predictive analytical approaches and could offer some solutions to the
long-standing contentious debates about using predictive models to obtain
insights from large-scale neural dynamics within the neuroscience research
communities and other fields of study.

We will start our presentation with an overview section (1.1) that examines
earlier and current research studies in this field. In addition to the description
of the mathematical approaches formulated, it lends credence in support of the
argument to establish a vital requirement for a model reconstruction approach
in neuroscience and other application areas. It emphasizes the use of data
assimilation as a method of choice for this study, provides an overview of
related approaches such as reduced order modelling, reviewed surveys on modern
learning approaches (machine learning and artificial intelligence) used in data
science and completes it with a brief introduction to parameter estimation
techniques.

1.1 An Overview

The study of dynamical systems has grown in popularity over the last century,
according to [16]. Its applications span various subjects and sub-disciplines,
including mechanics, biomedical engineering, medical physics, biology, and other
non-technical topics (like economics and social sciences). Over the previous
three decades, the rise of big data has presented significant obstacles to data
sourcing, handled, analysed, and efficient use for decision-making, diagnostics,
and forecasting.

Dynamical systems are usually classified into two phases: the phase state
or state space, which contains states that develop over a particular period and
usually contain the full description of the real-life occurrence we are attempting
to simulate. The other is system dynamics, which describes the rules guiding the
development of our dynamic system of interest with time, with time evolution
being either discrete or continuous [50]. This study’s modelling technique
considers both discrete and continuous dynamical systems.

Chapter 1 Page 5/150



Section 1.1 Model Reconstruction for Dynamical Systems

One of the primary issues for many application areas in the modelling and
simulation of dynamical systems is how to grasp the changes that have occurred
through time from real-world phenomena in estimating a system’s future state.
In their descriptions of Gaussian Process Dynamical Models (GPDM),[52],
[83] and [119] stressed the difficulties of capturing the nonlinearities of the
data without overfitting the model. This frequently leads to the additional
challenge of determining an appropriate mathematical modelling approach
or an extraction algorithm that determines the states and reconstructs the
model parameters of our dynamical system, especially when we have little
prior knowledge of the system without distorting the inherent characteristics
or properties of the system.

This could also require providing a part or the complete description of a
system with a detailed understanding of the hidden or underlying structural
functions of the dynamical model of interest. On the other hand, the goal of
this research is to examine and create a generic technique that may be utilised to
solve these issues with little or specialised knowledge of the underlying dynamical
system.

In doing this, we have developed two mathematical approaches below
describing the steps we have taken to deal with these cases.

i. (POL) We describe the model dynamics by a polynomial approzimation,
which may be considered a Taylor function approach. The coefficients
of a polynomial basis function representation parametrise the unknown
model.

ii. (RBF) We investigate a radial basis function approximation with nodes
and coefficients used to estimate the forcing term or the integrated model
application M (z).

The RBF approach is similar to the reconstruction of a flow field along the
known model trajectories, where the direction or movement of the fluid can be
observed at specific locations within a state space as time passes. This is the
reference approach to be investigated for this study.

In both cases, we describe a generic variational approach based on the basic
approach of the Kalman filter to estimate the model coefficients. It follows the
idea of variational data assimilation, with updates of the covariance matrix
B. of the coefficient,s which parametrise the model dynamics by the standard
Kalman update formula.
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B@ = (I — KH)BWY (1.4)

Where K = BHT(R+ HBH")™! is the Kalman matrix for model coefficient
updates, H is the model’s observation operator, and B = B® is the model
coefficient uncertainty covariance matrix before the current update step. A
detailed explanation of this method is described in Section 3.2.

First, we describe a generic but naive approach to model reconstruction
by variational data assimilation in model space. However, this approach
requires a model covariance matrix in this case. In the particular case where
the covariance is Gaussian, we see that the model is represented as a sum of
Gaussians around the current analysis states

29 k=1,2,3,.. (1.5)

One major drawback of the approach described above is that, over some
time, it accumulates a considerable sum of Gaussians that will need to be stored
in each time step for cases where the dynamical system is highly nonlinear and
high-dimensional, i.e., there is the need to store a growing number of the entire
model states, and this naive application of 3D-VAR to model reconstruction
may be computationally inefficient.

To avoid adding large sums of Gaussians, we need to keep the dimension of
the model approximation space limited. The essential task for a particular sys-
tem is to design appropriate ansatz functions which can be used to approrimate
the real-world model under consideration. As a result, we study two particular
approaches for this thesis, the polynomial or Taylor approach and the radial
basis function (RBF) approach to help address these challenges.

1.2 Model Reconstruction in Neuroscience

In this section, it is essential to reiterate that, to our knowledge, there is no
known model reconstruction strategy in the area of neuroscience or elsewhere
where the approaches utilised in this thesis have been previously examined or
implemented in this manner. Thus, this is a groundbreaking study for future
research in this field.

Model reconstruction is a crucial method in neuroscience that tries to com-
prehend the brain’s complicated processes by developing computational models
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that replicate the behaviour of neural networks. The data from neurophysi-
ological tests, such as electrophysiological recordings, imaging methods, and
behavioural research, are used to develop these models. A good example was
provided by these researchers [75] where they reconstructed a large-scale model
of the neocortical microcircuitry using anatomical and physiological data from
multiple sources.

The primary objective of model reconstruction is to increase knowledge
of the processes underlying brain function and behaviour. Researchers may
examine the impact of various changes on brain activity and behaviour by
creating computer models that represent the critical characteristics of neural
systems.

An essential advantage of model reconstruction is that it enables researchers
to test hypotheses and make experimentally testable brain function and be-
haviour predictions. For instance, researchers can use models to anticipate how
a specific medicine or intervention would impact brain activity and behaviour
and verify these predictions using animal models or people.

The human brain is an enormously complex and diverse organ, with more
than 100 billion nerves and neurons interacting with trillions of synapses. Hence,
it is challenging to generalise from a confined examination or area of the brain
to the rest of the brain [83], [87]. This analysis can only show or provide
insights into the brain region from where the data extraction occurred. As a
result, it is not always feasible to extract as much data as we may need from
the brain using an invasive extraction technique, especially when combined
with the challenge of identifying dependencies from a system that correlate to
the process that would have formed such a system.

In recent times, the vast amount of the data [37], [69] generated within
neuroinformatics has significantly been influenced by advances in informa-
tion technology (IT) and decades of expanding neuroscientific research at all
levels [66], [97]. [111] investigated constructing a neural network model for
computational neuroscience consisting of constituent neural units. This has
also led to the proliferation of multiple databases where a large amount of
neuroscience "big data" can be stored to enhance more research projects and
develop strategies for future systematic collection while analysing these data
remains a crucial challenge.

The authors [31], [81] also emphasised the need to deal with the staggering
amount of data sets produced in a field of scientific investigation such as
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medical imaging, including functional magnetic resonance imaging (fMRI) or
computerised tomography (CT) brain scans, Neuroimaging, and other sources
of data generated from the brain in the neurosciences. Lichtman et al. [69]
acknowledged the need for a breakthrough algorithm and new computational
framework to address the inherent difficulty in mapping synaptic network
connections within the brain and the sheer complexity of the amount of big
data generated due to the interconnectedness of the structure of the nervous
system as a result of the emergence and advancement of connectomics.

Two main big data projects are at the frontiers of these recent innovations.
The Brain Initiative and the Open Connectome Project, while the former
aims to develop advanced technological tools that can be used to deepen our
understanding of the inner workings of the neural activity in the brain [3], and
the latter aims to produce a wiring map of the brain to understand connections
between neurons better [37].There are other known research projects in the field
of Neuroscience, [91] explored the use of a mathematical model to determine
the impact of conductances by two chemical components in the nervous system
by reconstructing an electrical signal conducted along axons (or muscle fibres)
by which information is conveyed from one place to another known as the action
potential. An equally notable project is The Brainbox Initiative, designed for
non-invasive simulations and imaging of the brain [17].

Similarly, there are other comparable projects with this research; notable
amongst them is the construction of predictive neuron models through large-
scale data assimilation of electrophysiological data [82], but the direction
of this thesis follows a slightly different layer of focus dealing with simpler
systems. Again, [82] investigated the characterization of diverse neuronal
dynamics in sensory circuits by estimating the dynamical properties of neuron
networks. Furthermore, [20] and [73] used very well-known statistical methods
to make different types of statistical inferences using the Bayesian Model to
investigate some established hypotheses within the neuroscience community on
the dependences of the temporal structure of sequences of events as an essential
part of the decision-making process in the human brain.

Another equally relevant study is that provided by [74], he presented a
relatively simple mathematical approach that fits our perspective, i.e., & =
f(x,t) with observations y = h(z). He estimated the model error using a
dynamical elastical net with L? and L' regularization on some term w, which
is added to the dynamics in the form & = f(z,t) + w(x). The key point is
learning model features from the data, which could be described as a weak
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constraint 4D-VAR and [84] examined the delay coordinates map, which maps
the original state space into a reconstruction state space and the local inverse
of this map.

There are other well-known technical challenging areas of interest within
neuroscience, some of which includes understanding the connections or mapping
of the various cells that go on in the brain during blood flows, provision of
valuable insights on the neural activities within the brain, assimilating and
evaluating the critical stages of learning and skills acquisition processes and
other medical or diagnostic interventions beneficial for patients with debilitating
health conditions that require regular monitoring in order to manage them.
There is a big analytical challenge in this field, and current research efforts
are yet to address this seeming problem of integrating or synthesizing all the
available data into a more coherent and cohesive format for better analysis and
interpretation.

These are some of the fundamental driving forces behind this research
which is to develop a mathematical model that can be used to characterize the
data, help detect unknown signal sources, connect and track network activities
from the brain and provide adequate knowledge of the model and make the
prediction task more effective and efficient.

1.3 Parameter Estimation in Data Assimila-
tion

Parameter estimation, model order reduction, and machine learning are
three key topics in computational science and engineering. This literature
study will investigate how these domains are interrelated and how they might
be utilised together to address complicated challenges. This section examines
several works of literature on parameter estimate strategies in data assimilation.
On this issue, historical and contemporary literature outlines the numerous
methods and approaches of parameter estimation, some closely resembling
the methods utilised in this work. Parameter estimation is concerned with
estimating the values of model parameters [80].

The process of guessing the values of model parameters based on available
data is known as parameter estimation. In statistical modelling, model pa-
rameters are estimated values based on observable data. The most frequent
approach for parameter estimation is maximum likelihood estimation (MLE),
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which requires selecting the set of parameter values that maximises the chance
of observing the data supplied in the model. Based on the data, bayesian esti-
mation requires assigning prior distributions to the parameters and updating
them using Bayes’ theorem.

The authors [10] and [11] provided a comprehensive and detailed overview of
the theory and practice of parameter estimation techniques, including Bayesian
methods, variational methods, ensemble Kalman filter, particle filters, maximum
likelihood estimation, and least squares methods, and their application to a
variety of scientific fields, such as geophysics, weather forecasting, ecology, and
economics.

[76] outlined an equation learning strategy that aims to draw conclusions
from observation data and aid in filtering out the noise that might influence the
structure and values of the parameters learnt via uncertainty quantifications.
In their research on linking a groundwater flow model with a polluted transport
model, the authors [46] also introduced a dual-state ensemble Kalman filter
(EnKF) technique that allows them to estimate the states of flow and pollu-
tants simultaneously, provides a sequential updating scheme between models,
simplifies the implementation of the filtering system, and yields more stable
and accurate solutions than the standard approach.

The preponderance of the publications of these authors [105], [27, 104],
[65] emphasise the primacy of data assimilation for state estimation and its
utility in estimating uncertainty in model parameters inside the model state.
In their numerous research works, they have combined these data assimilation
approaches to estimate state parameters and estimation precision.

Parameter identifiability [94] is an additional important factor to consider
when determining how well given model parameters are adequately described
by the quality of available data. Parameter estimation and identifiability are
fundamental concepts in statistical modelling and data analysis. Despite their
relationship, these phrases refer to different aspects of the modelling process.

Identifiability of parameters refers to the extent to which the values of model
parameters can be uniquely derived from the data [72] without equifinality
presenting obstacles. Identifiable parameters are those for which a singular set
of parameter values can adequately explain the observed data. Even with an
infinite number of data, it is impossible to accurately predict the value of an
unknown parameter [123] and [7], and estimating unknown parameters from
data relies on statistical models.
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Nevertheless, it is possible that not all model parameters can be identified,
posing difficulties for parameter estimation and model interpretation. Non-
identifiability occurs when different parameter value combinations generate
similar model outputs, making it impossible to determine the parameter values
using the available data uniquely [9]. [35] presented two statistical computations
to compare the ability of some parameters to be uniquely estimated before and
after calibrations based on the changes in their datasets.

In essence, parameter identifiability investigates whether parameters can
be precisely estimated from the data. Extensive research has been conducted
on parameter identifiability in systems biology, mathematical modelling, and
statistics. Numerous techniques and methods have been developed to evaluate
and improve the identifiability of model parameters. [118], [45] and [51] are some
examples including sensitivity analysis, identifiability analysis, experimental
design, regularisation techniques, and Bayesian inference methods.

1.4 Reduced Order Model Literature

In most highly nonlinear and high-dimensional dynamical systems, for
example, the brain system, it is often tricky and computationally challenging
to use the entire brain model for simulations; this will require exceedingly high
computing power to be able to execute, and as a result, we need to adopt
the use of an equivalent or replica system on a small scale that can offer an
approximate description of the processes of the system of interest in a reduced
set up while also preserving the integrity of its internal structures in the process.

This research also acknowledges using a distinct technique called Model
Order Reduction (MOR). It is a popular statistical and mathematical strategy
for lowering the computational complexity of mathematical models that are
frequently employed in numerical simulations. Reduced Order Models (ROMs)
are miniature or reduced versions of high-dimensional and complicated models,
as their name indicates. Whilst this technique is not utilised in this thesis, we
foresee a future link or expansion of the methodology employed in this work to
the MOR. In light of this, this part introduces the general framework utilised
for the model order reduction technique compared to other methods, as well as
some of the assumptions underlying their respective selections.

MOR techniques have a long-standing history with the success of subspace
projection methods for solving large linear systems and matrix eigenvalue
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problems. One of the most well-known approaches was proposed by Krylov
in 1931 [99] for the explicit construction of the characteristic polynomial of a
matrix which eigenvalues can then be calculated as the roots of that polynomial.
Amsallem et al. [6] proposed a model reduction method that approximates
solutions of global basis vectors into lower-dimensional subspace generated by
the most appropriate local basis vectors. Concisely, MOR methods search for
a correlated set of governance equations in a subspace significantly lower in
dimension than the central system of interest.

Similarly, [41] Festjens et al. described using ROMs as essential catalysts for
improving the computational efficiency of simulations in processes with a high
value of the degrees of freedom (DoF), especially in an optimization framework.
[33] Corigliano et al. equally proposed a new strategy formulated as a MOR
technique; the basic idea employs an everyday use of Domain Decomposition
(DD) with a popular version of the Proper Orthogonal Decomposition tech-
niques, which are usually used to extract a reduced basis from a set of snapshots
in nonlinear problems. Other methods include the use of t-Distributed Stochas-
tic Neighbour Embedding (t-SNE) by Cieslak et al. [28] and [114], Uniform
Manifold Approximation and Projection (UMAP) [78] and Linear Discriminant
Analysis (LDA) [112].

Therefore, MOR could also be described as a pseudo or surrogate mod-
elling method. It is a widely used technique for reducing large-scale order to
low-dimensional order models, and its use in this format spans several differ-
ent science and engineering domains. They are also called metamodels and
emulators due to their use as decoys to reduce the computational burden in
many application areas [47]. Koo et al. [64] proposed a proper orthogonality
decomposition (POD) with a robust point interpolation method (RPIM) ap-
proach for predicting the temperature and sensor placement for a cylindrical
steam reformer, a similar approach was used by [117] as a parameter MOR
(pMOR) method. Another MOR technique used in [124] reducing the sizeable
computational complexity based on tensor decomposition and matrix product
was the use of an equivalent transformation of the main quadratic-bilinear (QB)
systems from their non-linear input-output systems.

In summary, reduced-order models are good enablers of rapid prediction,
inversion, and design and help in quantifying uncertainties of large-scale sci-
entific and engineering systems [120]. However, using ROMs also comes with
challenges related to finding or deciding which ROMs are the most efficient and
suitable solutions for the system of interest. In this study, we have compared
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the models’ errors and their convergence by investigating the error evolution of
the reconstructed model with the original dynamics.

There are several works of literature with examples of MOR applications,
one of which includes its application in Cosmology [86], where it was used to
infer or reconstruct the underlying model from observational data obtained
from gravitational waves using polynomial regression and Gaussian Process
without depending on too many highly intricate model assumptions. Another
approach is the temperature prediction and sensor placement in cylindrical
steam reformer [64], an analytical framework for control systems [14], and for
simulations in engineering sciences and modern ICT technologies [42] amongst
others. The authors [26] investigated a model which combines the Reduced
Order Model (ROM) with Data Assimilation (DA) to enhance the precision of
simulations of computational fluid dynamics.

In this thesis, the focus is on learning models, not on the construction of
appropriate MOR approaches. Our approach could be applied to any MOR
ansatz. We have based our technique on the use of a 3D-VAR data assimilation
approach or on the localized ensemble transform Kalman filter (LETKF) to
model reconstruction developing new techniques for learning the model.

1.5 Survey on Modern Learning Techniques

The goal of this thesis is to employ data assimilation techniques for model
learning or model reconstruction, respectively. Of course, today there is a
rapidly expanding field of machine learning, which usually determines neural
network connectivity to adapt the neural network as a model to given sets of
observations. Our approach is a different learning method, and we apply it to
a wide range of different approximate models.

To be able to discuss similarities and differences of our data assimilation
approach to machine learning, in this section, we present a literature survey of
the recent and modern modelling techniques used in machine learning (ML),
deep learning (DL), which is a branch of artificial intelligence (AI), and computer
science and other scientific computing community. In practice, the application
of ML (both supervised and unsupervised) has evolved over the last decade
with the proliferation of big data and increasing computing power. In addition,
data assimilation and machine learning models [19] are now being combined to
simulate and train ML-based parametrization using data with noisy and sparse
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observations. The link of this section with the thesis is to provide a narrative
and an exploration of some pieces of literature with recent applications of
advanced machine learning and other analytical methods to provide solutions
to issues in new or existing fields of research areas, which this thesis as well
aims to achieve in the field of neuroscience as an example.

The urge mainly drives them for the enormous demands and consumption
of new insights by consumers, governments, businesses (including social media
platforms -the likes of Google, Facebook, YouTube, Twitter, Amazon, Netflix,
Microsoft, etc.), and more recently, its use on a large scale for providing insight-
ful analysis on the Covid-19 pandemic responses across multiple disciplines,
and other emerging artificial intelligence (Al) technologies and platforms to
name a few [1, 2, 44, 54, 79, 95, 107].

Another relevant learning method is reinforcement learning (RL). In its
simplest form, it could be described as a give-and-take learning technique due
to the interactive or sequential approach of the learning method. The authors
in [116], [62], [13], have all described the concept of RL from the perspective
of their different application areas ranging from engineering, neuroscience,
and psychology, etc. However, they are all unanimous in their conclusions of
the adaptive nature of the learning method to its environment with limited
knowledge of such and uses the limited feedback provided to improve the quality
of the decisions. Supervised ML techniques are used to develop predictive
models based on the input and output data.

In contrast, unsupervised techniques on the other hand, can be used to group
and interpret data based only on input data. The formulated mathematical
approaches used in this research fall into both techniques. As a field of research,
ML primarily focuses on the theory, performance, and properties of learning
systems and the algorithms used [92].

Several recent research studies focus on the evolution and use of machine
learning that transcends many disciplines. This thesis could be developed for
further research into some of the new and emerging trends in the use of ML
and Al. Machine Learning can be described as using data and algorithms to
copy or emulate how humans learn [36], [77]. The information known by the
algorithms is then adapted by improving the performance of the knowledge
gained as additional samples or real-world data becomes more available. These
researchers presented a modern approach [23] to integrating DA and ML models
to increase prediction reliability.
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Recent advances in Information Technology, big data processing, and open-
source software have brought considerably new insights into how machine
learning algorithms and artificial intelligence are used in shaping our under-
standing of the world we live in today. Some of the novel machine learning
techniques include classification models, clustering and retrieval, kernel-based
learning, dimensionality reduction methods, recommender systems, and deep
learning (Mostly implemented using neural network architecture), amongst
others, which are now widely applied to provide new valuable insights including
visualisations into real-world phenomenon using data (including images, texts,
and sounds) derived from such systems.

Current ML and Al applications include advanced learning algorithms
to aid climate change research and preparedness [57]. ML algorithms have
been successfully applied to high-dimensional input data in numerous fields
for playing games, web searches, fraud detection, the spam filtering in emails,
credit score ratings, and many more. [100]. Other emerging and future uses
of ML applications are expected in the face and voice recognition, self-driving
vehicles, driver assistance systems, space technology, and many more.

However, the use of ML algorithms and their application has its challenges.
These algorithms exist as black boxes due to the lack of unique laws governing
the understanding, knowledge, and, sometimes, the interpretation of results
from their use. They can be attributed to the multidisciplinary nature of ML,
which spans computer science, statistics, mathematics, engineering, cognitive
science, and various other scientific and socioeconomic fields. It is also important
to note that other learning techniques like regression (Linear and Logistics),
Support Vector Machines (SVM), Random Forest, Classification, Bayesian
Learning, and Decision-Tree modelling are all algorithms embedded in ML
techniques.

In conclusion, parameter estimation, model order reduction, parameter
identifiability and machine learning are all interrelated topics with strong links
to data assimilation. They may be employed in tandem to tackle difficult issues.
The combination of these strategies can result in more accurate and efficient
models, as well as a substantial decrease in processing costs. Beyond data
assimilation, there are connections between these domains that can lead to
additional advancements in parameter estimation and model order reduction
in future research.
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1.6 Data Assimilation Techniques

Data Assimilation is a well-known mathematical modelling technique used
in numerical weather prediction (NWP) models and many other application
areas. The flexibility of data assimilation as a technique makes it adaptable
for application in various fields apart from in numerical weather predictions
(NWP), where it was first used for planetary weather analysis and more recently
in the field of biological cells [52] and many other emerging application areas.
However, weather forecasting is still predominantly the key driver of many
recent theoretical and practical applications of the algorithm due to the deluge
of available data and the short turnaround time used in dealing with such
systems [85].

The authors in [87], [30], [81], [108] described on several occasions in their
numerous publications that the basic idea of the data assimilation technique is
to enable forecasts by combining information from prior knowledge with new
observed information from the system to obtain the best description of the
system of interest [85], [52].

Data Assimilation can be seen as a recursive Bayesian inference technique.
Data assimilation combines measurements with models as its basic idea using
interpolation and filtering methods. The use of data assimilation in estimating
the true state of dynamical systems has been well documented in several
research works of literature and journals and one such by [98] was an attempt
to use data assimilation in hydrological models to improve model state and
estimate streamflow.

The traditional data assimilation approach aims to determine a state x
which is close to the background state z* containing knowledge from the past
to the observations y which also contains knowledge about the current state of
the dynamical system of study. Apart from its daily use in numerical weather
predictions (NWP), it is now also widely applied in many fields. Here, we
briefly describe the main approach of data assimilation with much emphasis on
how it was applied to the model reconstruction approach used in this thesis
within the model space M € Z.

There are two basic steps in data assimilation applications:

DEFINITION 1.6.1. (Propagation Step) Mapping z.”, — 2\ = M(2\"),
with time index k =0,1,2,3, ....
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This step involves the application of a defined or known model M which
maps a state :1:5:21 at time t,_; (previous time or period) into the current state

x,(cb) = M(x,gja_)l) at time t; (current period).
DEFINITION 1.6.2. (Estimation Step) Mapping (yk,x,gb)) — x,(f), where yy,
denote observations at time t;, and k =0,1,2,3, ....

The estimation step uses the measurement g, at the current time t;. The
first guess or background x,ﬁb) derived from the propagation step above to
calculate an analysis xk(a), which is the solution to the minimisation problem
for some cost functions and can be used to calculate the difference between the
observed and predicted values in a model, which will be described below.

The recurrence of these two phases is known as the data assimilation cycle or
cycling. This technique is especially significant for variational data assimilation
approaches in which the algorithms iteratively alter the model parameters to
minimise the cost function until a satisfying solution is reached, as demonstrated
in the following parts of the thesis.

The state space x, background state (*) and the observations y are employed
to define the cost function:

J() = Hla =20 B w — ) 4+ L(H(z) ) RHE) —y), (16
where

xr = State space, x € R", i.e., x is in the state space R"

2® = Background state, z* € R",

B = Background error covariance matrix, B € R™*"

R = Observation error covariance matrix, R € R"™*™,

H = CObservation Operator,

y = Observation, y € R™

If H is linear, we have H € R™*" but in general,
H:=R"—R" z~ H(x),

The minimizer of the functional (1.6) is called the analysis . For linear H,
the minimizer can be explicitly calculated, it is given by

2@ ="+ BHY(HBH" + R)"'(y — H(a")), (1.7)
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where the so-called analysis is a state x* € R™. Using functional analytic
notation, the cost functional can also be written in the form

J(x) = |l — 2[5 + [ly — Hal[z-. (1.8)
In this case, and for H linear, the normal equations can be written as
v =a" + H* (I + HH*) '(y — Ha), (1.9)

where H* denotes the adjoint operator in the space X with some scalar product
(-,-) which defines the norm || - || by ||z||* = (z, x), where

- 1la = /(a7 Az) (1.10)
It is used to access the size or magnitude of the vector as shown in 1.8.

In the classical data assimilation approach, the equation in (1.9) above can
be written as:

2@ = 2O 4 BHT(HBHT 4+ R) ' (y — H2)
=K
= 2O 4 K(y — Hz®), (1.11)

where K = BHT(HBH?” + R)™! is known as the Kalman gain matriz. This
matrix is a central tool for data assimilation, and it will be the main tool for
all of our model reconstruction algorithms.

In investigating this technique for model reconstruction, we consider a
dynamical system of the form # = F(z) by a high-dimensional nonlinear
approach based on Gaussian basis function.

Therefore, we propose two generic approaches for reconstructing the model
dynamics of a dynamical system by estimating the model given by the forcing
term F' using a radial basis function approximation to estimate the forcing term
which is the trajectory or path of the dynamical system. The technique used
in this approach is analogous to the reconstruction of a flow field, where the
path or movement of the fluid can be observed at specific locations or points
within a state space as time passes.
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Figure 1.3: In this figure, we show a flow field description of a typical dynamical
system trajectory estimation

1.7 The Approach of Parameter Estimation

This section highlights the role of parameter estimation as a key component
used in the making of statistical inference. There are many different parameter
estimation techniques usually called estimators, which are often applied to data
to obtain an estimate. An estimator is a rule that is followed to estimate a
parameter while the numerical value that is derived from a particular sample is
known as the estimate. In this study, however, the definitions of the attributes
or qualities of a good estimator are not covered.

Also in this section, we highlight under which side conditions should a
generic inverse approach be undertaken, when is parameter estimation a good
choice, and what more generic model reconstruction method which we will
develop in the upcoming chapters is, and what are its advantages.

As a description, suppose we have variables X7, Xs,...,X,, which are random
samples drawn from a population with a parameter 6, then 6 is a statistic that
can be used as an estimator of 4 if

0=0(X1,X,....X,) (1.12)

As a result, for an equation of the form & = F(z) described in this study,
we assume that we have measurements of the dynamics at points in time
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t1,ts, ..., t,. Now, assume that the F' is given as a system of polynomials in the
variable of the state space, as shown in the example for the Lorenz '63 system
where

z = o(y—ux) (1.13)
Uy = x(p—2)—y (1.14)
z = xy-— Pz, (1.15)
we obtain
oy —ox
Flx)=| pr—xz—vy |. (1.16)
xy — Bz

for a state space with variables (z,y, z) € R3. The classical idea [52], [39] and
[40, 68] is to use an Ansatz of the form

3 3
CE(%) =c¢; + Z a;;T; + Z bi7j7ngxg (1.17)
j=1 =1

fori =1,...,3. where (z,y, andz) are the system’s state variables and (o, p, and/3)
are the parameters that govern the system’s behaviour, and

1) o(sigma): The Prandtl number quantifies the ratio between momentum
and heat diffusivity. This parameter determines the rate at which fluid
motion smooths out temperature differences.

2) p(rho): The Rayleigh number quantifies the proportion of buoyant forces
to viscous forces. This parameter controls whether or not the system will
experience convection.

3) B(beta): A parameter that affects the rate of heat transfer between the
system’s top and bottom. This parameter influences the pace at which
the system’s temperature gradient will equilibrate.

Therefore, the method to find F' by estimating the coefficients in (1.17) is a
parameter estimation problem, which now has much fewer degrees of freedom
and all the standard data assimilation methods such as the Kalman filter, and
parameter identifiability techniques in 1.3 can all be employed to solve this
parameter estimation problem.

For the neural field equation or other very large-scale problems as well, the
approach of trying to find unknown parameters or parameter functions leads
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us to an example of the neural kernel reconstruction problem, which is also a
reference point for our investigation.

Equally, parameter estimation and pattern recognition or classification
approach are similar since they both use measurements to describe an object
or system but the former use real-valued scalar or vector to describe an object
while the latter description is based on a selected class or category from a finite
number of attributes.

In general, [12], [113] described the process of attributing a parametric
description to an object, a physical process, or an event based on measurements
obtained from the same object or system as parameter estimation. In contrast to
kernel estimation which is more generic in approach since we do not prescribe a
special form of the kernel, but just look for the connectivity between two points.
We could, however, transform kernel estimation into parameter estimation
when we base it on some form as in (3.40).

1.8 Thesis Outline

The thesis is structured into five chapters except for the appendix part.
The introductory Chapter 1 provides a well-rounded view of the main ideas
underpinning this research, and the detailed outline of the dynamical systems
representations including the mathematical expressions used to denote them
in the thesis are in Chapters 2 and 3. Chapter 4 provide the mathematical
details and outputs of the model reconstruction approaches. The results of
the statistical analysis of the sensitivity analysis of the models used in this
thesis were presented in Chapter 5, while the conclusions and summary of the
findings and perspectives for future research on the thesis were highlighted in
Chapter 6.

We developed two model reconstruction approaches using variational data
assimilation and Kalman filter methods using a radial basis function to efficiently
approximate nonlinear models.

1. Chapter 1 is the introduction to the applications and techniques of this
thesis, including an overview of the history of related pieces of research
in the field of neuroscience 1.2, its biological and mathematical aspects,
followed by a brief overview of existing pieces of literature on reduced order
models and their applications in Section 1.4, a survey on machine learning
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in Section 1.5, and other modern algorithms used in the data science
and scientific computing communities. In addition, a brief description
of parameter estimation and parameter identification in Sections 1.3. It
also contains a review of the past and current works of literature on the
fundamental data assimilation techniques used in the thesis 1.6, coupled
with a brief explanation of the parameter estimation approach in the
concluding section 1.7.

2. In Chapter 2, we highlight the model systems used as a testbed for this
research - Lorenz 63 and Lorenz 96 model equations, particularly in
Sections 2.1 and 2.2 respectively. The background, simulation setup for
both models and a brief overview of the Amari Neural Field model 2.3.1.
A complimentary weather forecasting model using data from the reaction-
diffusion system Atmospheric model and its background in Section 2.4
and 2.4.1 respectively completes this chapter.

3. In Chapter 3, we show an efficient approach for model reconstruction.
First, we describe a variational approach to data assimilation in a model
reconstruction setup, which is essentially a three-dimensional variational
assimilation 3D-VAR equipped with a Gaussian covariance matrix. A
brief introduction to the Kalman filter method for model learning and its
applications is in Section 3.2; the expansion coefficients described here
have the potential to achieve full model reconstruction, the forcing term
estimation, and polynomial estimations in Sections 3.3 and 3.3.1. This is
then completed with the radial basis function in Section 3.3.2 and kernel
estimations in Subsections 3.4.1 and 3.4.2.

4. Chapter 4 provides a detailed description of the algorithm developed for
large-scale and highly nonlinear dynamical systems using the variational
data assimilation approach. We show our learning results in numerical
examples developed for Lorenz 63 and ’96 equations, its state estimation,
and the kernel reconstruction problem and carry out an application to
weather forecasting. The statistical analysis of the numerical examples in
the following Subsections 4.1.3, 4.2.1 and 4.4.1 describes the sensitivity
analysis and error evolution of the models used in the study. Those
examples were built on the theoretical discussions from the main Chapters
in 1, 2 and 3, and 4.

5. In Chapter 5, we present the results of the statistical analysis of the
evaluations for the L63 model in Section 5.1, for the L96 model in Section
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5.2 and for the Amari Neural field model in Section 5.3. The evaluations
highlighted the analysis of the error evolution considering changes to the
input parameters, while documenting the learning performances of the
models mentioned above at varying time steps or experiences.

6. In Chapter 6, we provide our conclusions and further possible studies
building on our work and results. In Section 6.1, we provide an evaluation
of results and summarise our thesis and provide the conclusion and further
possible studies building on the knowledge and understanding gained
from this research. In addition, a new Section 6.2 has been added to
discuss the limitations of the thesis with a further concluding overview
on the perspective of the thesis in Section 6.3.

7. Finally, the concluding chapter of this thesis contains a detailed de-
scription of all the codes (model learning) used in this research as an
attachment in the appendix 7.1 and list of figures.
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Chapter 2

Model Systems

This chapter highlights the dynamical system’s representatives of all the
models used as test beds for the model reconstruction techniques developed in
this thesis.

The technique developed in [88] and [15] serves as a point of reference for our
method, which in the case of the neural field equation is an innovative sequential
kernel reconstruction approach, whose goal is to determine the strength or
shape of the connectivity between the various types of neurons and collections
of neurons in the brain.

First, we study the popular Lorenz 63 and 96 dynamical systems. Section
2.1 highlights the use of the Lorenz 63 model in dealing with chaotic systems.
Similarly, Section 2.2 describes the use of the Lorenz 96 equation as a testbed
for systems with an independent external driving force and a damping term.
Then, we treat the neural field equation of computational neuroscience in
Section 2.3.

The technique developed in [88] and [15] serves as a point of reference for our
method, which in the case of the neural field equation is an innovative sequential
kernel reconstruction approach, whose goal is to determine the strength or
shape of the connectivity between the various types of neurons and collections
of neurons in the brain. Finally, we investigate a reaction-diffusion system
model in Subsection 2.4.

2.1 Lorenz ’63

We have chosen to employ some popular basic model systems to test our
model reconstruction approach. This section describes the systems which we
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use for evaluating the theoretical and practical applications of our algorithm in
real-life scenarios.

The reference to both theory and applications in dealing with nonlinear
dynamical systems stem largely from its use in Numerical Weather Prediction
(NWP) to Neuroscience including other well-known and emerging application
areas. Sections 2.3 and then further in Section 3.4 discusses the use of the Amari
Neural Field equation and a kernel reconstruction approach by regularized
inversion as a reference point for our method in the case of the Amari model
setup.

2.1.1 Simulation Setup, Techniques, and Deterministic
Chaos

Over five decades ago, Lorenz [70], a meteorologist, published in the Journal
of the Atmospheric Sciences [Vol 20] his findings that certain nonconservative
hydrodynamical systems (with both viscous and thermal dissipations) exhibited
varying patterns when subjected to different initial conditions while studying the
behaviours of natural systems. In his work, Lorenz showed that the properties
of nonperiodic solutions of finite systems are deterministic in nature and are
designed to represent the forced dissipative hydrodynamical systems.

In his conclusion, he also posed pertinent questions to researchers regarding
how long a forecast for numerical weather predictions should be. As a solution,
he suggested that this could evolve either through a comparison of pairs
of numerical solutions with identically initialised conditions or through the
existence of an analogue if the former approach does not produce the desired
result while also acknowledging the fact that significantly modified initial
conditions coexist with identical numerical solutions.

The Lorenz '63 equations as displayed in Figure 2.1 are a widely used
scientific and mathematical model for simulating and differentiating dynamical
systems and it is also mostly acknowledged as a case study prototype for data
assimilation techniques even when the available measurement data is limited,
[81]. [121] described the model as a significant breakthrough in the study of
chaoticity, which was considered one of the groundbreaking discoveries of the
20th century after relativity, quantum mechanics and cosmology in the field of
theoretical physics.

It is a system of three coupled non-linear ordinary differential equations now
known as the Lorenz equation as shown in the previous chapter above: (1.13),
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Figure 2.1: The simulation of the Lorenz ’63 so-called butterfly equations.

(1.14) and (1.15), where x(t) = (z1(t), 22(t), 23(t))T € R?® are the dynamical
states. The constants o, p, 5 are the model parameters known as Prandtl
number, the Rayleigh number and a non-dimensional wave number respectively
and 7 is a temporal scaling factor.

Gianfelice [48] also examined similar variations of the Lorenz 63 models
which they mapped to an Ordinary Differential Equation (ODE) system through
the change of variables using the original Lorenz '63 equations. There are an
appreciable amount of different kinds of literature on Lorenz '63 and one such

is a more recent look at the new and emerging uses of the model explored by
[115].

We also note that in the above equations (1.13)-(1.15), we have a steady-

state solution when 798 = 74tz — 7% — () j e  there is no convection in the

dt at — Tt
state.
In general, for certain choices of the parameters o, p and [ we obtain chaotic
behaviour of the model dynamics. For the goal of this study, we use the
standard numerical values for the constants o = 10, p = 28, and § = 8/3.

The use of this model for this study may be justified by the arguments men-
tioned above. As a result, we have found its usage beneficial in reconstructing
the forcing term of an interesting dynamical system. The Lorenz 63 model
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and the synapses and neuronal activity within the brain comprise complicated,
non-linear designs.

In addition, the simplified nature of Lorenz '63 equations has been one of
the major attractions for its use by many researchers. The results of further
simulations carried out using this model for the reconstruction of the forcing
term and the data assimilation techniques used in this study are discussed and
displayed in subsequent sections of the thesis below.

2.2 Lorenz 96

The Lorenz '96 model was suggested by E. Lorenz in a seminar on pre-
dictability at ECMWF in late 1995. It has since been used as a case study for
simulating non-linear and high-dimensional chaotic systems. It is continuous
in time and discrete in space model for dynamical systems used in numerical
weather prediction to study the key aspects related to forecasting of spatially
extended chaotic systems. It is commonly used as a testbed example system to
assess basic ideas of data assimilation and forecasting in a high-dimensional
set-up [61].

2.2.1 The Lorenz 96 Model System and its Background

The use of the Lorenz 96 equation as a case study has been well documented
in many research areas for parametrizing highly nonlinear dynamical systems.
[18] used it to implement the convergence of a novel method using numerical ex-
periments by combining data assimilation and machine learning techniques.[25]
used the prism of Lyapunov analysis to investigate the geometrical structure of
instabilities in the two-scale (2.2) and ([8]) used the model as a testbed for a
stochastic parametrization scheme in numerical weather simulations.

The Lorenz 96 model in its simplest form can be mathematically represented
by the following linear equation below where the dynamics of the kth variable
is given by:

dX,

—— = =X, 1(Xpg — X — X F 2.1

gt k—1(Xi—2 kt1) kot < (2.1)
Advection Diffusion ~ Forcing

where X = (Xi,...,X,,)T € R" and time index k = 1,..., N, with constant
F which represents the magnitude of an external driving force, and it is
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independent of k, n is the dimension or size of the system and —Xj is a
damping term.

The equation described in (2.1) above, can be extended to use the two-scale
version of the Lorenz ’96 model. In this case, we introduce another periodic
variable Y with its own set of ODEs. Both X and Y ODEs are correlated or
linked through the process called coupling.

dX}, —
—— = =X (X — X - X F  — heY; 2.2
0t k—1(Xg—2 k1) kT _ cYy , (2.2)
Advection Diffusion ~ Forcing  Coupling
dY hc
— = = =Y (Vimow = Yieon) — Vi + Vi, (2.3)
dt N b
Advection Diffusion .
Coupling

where X}, and Y}, are assumed to be periodic variables denoting atmospheric
quantities discretized into K and K * J sectors respectively along the latitude
circle [102]. The main driver for the two model variables (2.2) and (2.3) is the
quadratic nonlinear modeling advection, constant forcing, linear damping and
coupling between both models in each of the sectors where they operate, while
the b, ¢, and h are constant parameters representing the spatial and temporal
scale ratios and coefficients of the coupling respectively.

However, for the purpose of this thesis, the use of the extended version of
this model in 2.2 and 2.3 above is beyond the scope of what is being used in
this research, but it has been referenced for completeness in the description of
the 2.2 model.

2.2.2 Simulation Setup, Techniques, and Visualization

The Lorenz 96 model is a simplified model for studying atmospheric dynam-
ics (a dynamical system used to research meteorological and oceanic processes).
[71], [58] and [122]. In the subsection above 2.2.1, the Lorenz 96 described by
equation 2.1 gives a simple mathematical representation of the model showing
its key components. The Lorenz 96 model has been extensively researched,
and it has been demonstrated to display a range of complicated dynamical
behaviours, including chaos, turbulence, and pattern generation. The authors
[93] in their review paper, analysed links between the L96 model and specific
features of brain dynamics but cautions that the .96 model is not intended
to emulate neural dynamics, and its applicability to the neural world is more
metaphorical than literal.
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As a first example in the setup for the Lorenz "96 system, let us consider that
there are N nodes located on a circle. At each node, we have some excitation
modelled by z(j), j = 1,...,N and the setup code is defined in the Matlab code
in the Appendix Section 7.2.1. As a result, we then visualize the location of
the nodes and the values of the excitation given by the code above. This is
just the initial value of the excitation for N = 9 nodes.

Time index j=1001
\ r\/\/ /\

? X /\/J

N

05 \ o~ 1
0 - o 05

0 5
05 _—~ 0 0
05 T~ - 05

Figure 2.2: (a) Displays the visualization of the nodes and activity function of
Lorenz '96 and (b) shows the final view when (time index=1001) of the changes
in the excitations for the model at each time step around the rings.

Furthermore, we display the trajectories for all nodes individually with the
time shift and integration step size in Runge-Kutta which are generated by the
code defined in 7.2.1.

This leads us to the image shown below in Figure 2.3.
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Figure 2.3: Visualization of the trajectories of the Lorenz 96 system with N =9
nodes and nsteps = 100 time-steps with their respective time integrations
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Lastly, we investigated the model time-integration using the 4th order
Runge-Kutta method in more detail by displaying the result of the change of
excitation equations of the Lorenz 96 system defined below in the Appendix
Section 7.2.1.

In this case, we define a jth time index for all the number of time steps
(1,000) and monitor the changes or evolution of the excitations z’s for our
Lorenz ’96 at each time step around the defined nodal points around the circle,
see 2.2 (b) above.

In Figures 2.2 and 2.3 we see the forward evolution of the model for the
excitations at 1000 timesteps as shown in the setup above. The descriptions of
these steps are highlighted below:

e We construct a set of nodes located on a circle, as shown above, these
are the grey points and each grey dot is likened to a neuron, now placed
on a circle.

» At each node, we have an excitation, given by a value x(j) where j is the
number of the node and z(j) € R is the set of all excitation values in the
state, a vector x € R", with n nodes (or neurons).

o Also, the excitation can be positive or negative, this is generally more of
an oscillator model.

o We then display the excitation values by plotting the black curve as shown
in both figures above.

o The neuron is fixed in space. The excitation value changes at every time
index, this excitation might oscillate, i.e., it tends to go up and down.

2.3 Amari Neural Field Model

Unlike the Lorenz models, which are standard dynamical systems used in
both neuroscience and meteorology as a simple test case for innovative ideas,
the neural field model is more complicated and more specific towards particular
applications of neuroscience. The neural field equation is also high-dimensional
and has a completely different forcing term compared to the Lorenz models,
where we can evaluate different approaches.
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2.3.1 The Amari Model and its Background

The brain is a complex system. The Neural field theory [29] is a population-
level approach to modelling the non-linear dynamics of a large population of
neurons while maintaining a degree of mathematical tractability. Coombes [32]
described the Neural field models as the coarse-grained activity of populations of
interacting neurons. In large neural networks with complex topology, analysing
and simulating networks of such high magnitude and complexity is often
challenging and this is due to the nonlinearity of the activation functions of
the substantial number of synaptic weights, [15].

The Amari neural field equation (NFE) or the Cowan-Wilson neural field
models are used as a generic tool of study for more complex neural mass
approaches in cognitive neurodynamics. In this study, we have used the Amari
equation to reconstruct a connectivity kernel described in the inverse neural
problem below:

DEFINITION 2.3.1 (Inverse Neural Problem). Given the dynamics u(z,t), cal-
culate a connectivity kernel w(zx,y) for x,y € D such that u satisfies the
corresponding Amari equation, i.e.

du

P () = —u@, )+ [ w(e,y) fluly,n) dy. (2.4

for x € D,t > 0 with initial condition
u(z,0) = ug(x), = € D, (2.5)

where D (D € R, d=2,3 and a time interval [0,T]) is assumed to be a brain
area with some neuronal activity, T is the membrane’s time constant, u(x,t)
represents the activation of neurons at position x and time t, w(x,y) is the
connectivity kernel that determines the strength of connections between neurons.
f(u) depicts the connection between the input current and output firing rate
of a neuron, whereas f(y,t) is the external input. The citations are [22], [21],

[58] and [110].

The Amari neural field equation is a simple model used for simulating neural
activities in the brain. The basic idea that connects the use of this study object
with our research is that it builds on our knowledge and understanding of the
network or wiring connecting one neuron or a group of neurons within the
brain.
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Apart from building on our knowledge and understanding of this wiring
connecting a neuron or group of neurons, the Amari NFE can be used to
simulate the strength and or shape of the connectivity between the various
types and collections of neurons in the brain.

The Amari neural field equation was used as a basis for the neural kernel
reconstruction technique in this study. The inverse techniques introduced in
[15] serve as a reference point for the model reconstruction approach used in
the thesis.

2.4 Weather Forecasting

Weather forecasting is an age-long practice, with activities ranging from its
early beginnings in the early 20th century, its first successful attempts after
the second world war to modern weather models, e.g. [90].

2.4.1 Setup for Reaction-Diffusion Equation

Weather forecasting is based on partial differential equations, which control
the evolution of some fields in three-dimensional space. The dynamical core of
such models simulate the fluid-dimensional parts of field dynamics. Here, we
use a simple two-dimensional reaction-diffusion model as a learning space for
model reconstruction. The equation is given by

d

d—?(a:,t) = p(z) - Vu(z,t) + cpispDu(z, t), (2.6)
for x € [0,a1] x [0,a2], t € [0,T] and ay,as, T € R. Initial conditions are
prescribed by

u(z,0) = up(x), x € [0,a1] x [0, as] (2.7)
with some function ug. The parameter field p is chosen to be
1

T) = ———Pmp(T), € |0,a1| X |0,a 2.8
p( ) “ptmp(x)Hpt P( ) [ 1] [ 2] ( )

based on . .
Pemp(2) = ()" + 0.2 % () (2.9)

" ] ]

for x € [0,a1] x [0, ag).

Chapter 2 Page 34/150



Section 2.4 Model Reconstruction for Dynamical Systems

We employ a fourth-order Runge-Kutta scheme for integrating (2.6). To
enhance stability, we use a filter F which removes high-order noise. The filter
is based on a 2d Fourier transform F and its inverse £'~! in the form

F(u) == F(c; - F(u)) (2.10)
with function ¢y defined by
L el <
c(z) == { 0z >r (2.11)

An example with T'= 20, a; = as = 5 is shown in Figure 2.4.

The discretized version of equation (2.6) can be written in the form

Uk+1,5 = chfuk,év ] = 17 ey n (212)
3

with time index k£ = 1,2, 3, ... and spatial index 7 = 1,...,n, where n is the
total number of spatial grid points. The constants c;c depend on the vector
field p(z;) and constants given by the finite approximation of the operators

V= ( 321 ) (2.13)

Oz

and
0? 0?

AN=—+—.
8x%+83§%

(2.14)

In a discretized setting, learning the model can be accomplished by learning
the coefficients cj¢ for 7, = 1,...,n. The Kalman Filter (KF) gives an estimate
of the system’s status based on measurements, which may be used to alter
the system’s output and ensure it remains within acceptable limits. However,
a mismatch between the system’s input and output can lead to instability,
which might manifest as oscillation, overshoot, or loss of control, and a detailed
description the Kalman filter approach to this task is given in Section 4.4.
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Figure 2.4: We show the time series of the integration of equation (2.6) with
every 30th step between T' = 0 and T' = 20, where h; = 0.05, ¢ is the time
taken and jt is the time index for the integration.
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Chapter 3

Data Assimilation for Learning
Models

This chapter describes two approaches to model reconstruction. First, in
Section 3.1 a generic variational data assimilation approach for model learning
is developed. In Section 3.2 a Kalman Filter for model construction is described,
which can be understood as an extension of the variational method, where the
covariance matrix is updated in each step.

We describe the general mathematical approach, which is then worked out
for different low and high-dimensional dynamical systems in the upcoming
sections. In particular, when applied to forcing term estimation in Section
3.3 we also provide some basic convergence results. Comparison to traditional
kernel reconstruction for the neural field equation is carried out in Section 3.4.

Numerical results for Lorenz 63 (L63), Lorenz 96 (L96), Amari Neural
Field Equation (NFE) and the reaction-diffusion system NWP model will be
presented in the subsequent Chapter 4.

3.1 A Variational Approach to Model Recon-
struction

The goal of this section is to develop an iterative variational approach to
model reconstruction. Variational methods have a long tradition for the solution
of inverse problems [38, 49, 60, 67, 81] and in data assimilation [59, 81, 101].

In addition, we have formulated a variational method for model reconstruc-
tion by employing the ideas of both inverse problems and data assimilation
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as presented in [24]. This is done by using the 3D-VAR approach to estimate
nonlinear model dynamics M which is then tested for the case of the systems
L63, L96, NFE and the reaction-diffusion system. In contrast to classical data
assimilation where the method is used for state estimation, in this thesis, we
apply it on the second level of abstraction to reconstruct the model instead 3.9
in the model space M € Z.

Following the notation of [81], the variational approach aims to determine
some quantity z € X in a state space X from measurements y € Y in some
observation space Y by minimizing the functional

J(2) = allz — 2O +[ly — Ha|]?, (3.1)

where H : X — Y is the observation operator which maps a state x onto the
simulated observation Hx € Y, o > 0 is known as the reqularization parameter
and where () is a so-called first quess or background for the solution and the
minimization of (3.1) contains both a fit to the data y and tries to keep the
distance to the background z(® as small as possible. It is well-known in the
description by [43, 49] that the background term ||z — z(*)|| corresponds to the
Tikhonov reqularization around the first guess z(®).

In the examples described from the various publications by [49, 67, 81] (see
also (1.7)), the minimizer of the quadratic functional (3.1) is given by

2@ =2® + H*(al + HH*) }(y — HzY). (32)

Here, H* denotes the adjoint operator in the space X with some scalar product
(-,-) which defines the norm || - || by ||z||* = (z, z).

We now apply the variational approach to state estimation to the task of
model reconstruction in the framework of the data-based model reconstruction
problem. The task is to find the model M or its model dynamics F' such that
the solution zj, at times ¢, = k - h; with

ht:

: (3.3)

for k =0,1,2,...,n; with the number of time steps n; in the time interval [0, T,
T >0, to
&= F(x) (3.4)

with H taken to be a linear operator, and initial state z(0) = z satisfies

H(l’k) = Yk, k:0,1,2,... (35)
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In the presence of observation error, however, the measurement ¥, may
not accurately reflect the actual state of the system. To take care of this, the
observation equation above 3.5 can be adjusted to add an observation error
term, e:

H(xp) =y +e, k=0,1,2,.. (3.6)

where, e accounts for the uncertainty of the measured data and the increase
in the true estimation of the state using the equation of the kalman filter. In
summary, it is the difference between the measured value,yy, and the true value
of the system’s state.

However, we need to take care of two layers of our problem.

(L1) The first layer is the original state space which we use for the system and
its dynamics. This is the space X on which model M acts.

(L2) The second layer is the space of possible models. We call it Z and assume
that Z describes some adequate framework for the model M or its forcing
function F'.

Here, we assume that Z is a Hilbert space of model M under consideration,
where the models M : X — X are non-linear functions describing the state
evolution on layer L1 of our problem.

We can now define some dynamics on our model space, i.e. the model M,
at time t; is mapped into the model My at time ¢ by

My = M(My), k=1,2,3,... (3.7)
We choose M to be the constant dynamics, i.e. we define
M(M)=M, M e Z, (3.8)

i.e. we only treat the case where the model under consideration is not dependent
on time t. We are now prepared to define the observation operator acting on
the model space by

Hi (M) := HM (x)_1), k=1,2,3,... (3.9)

with H : Z — Y. In this study, we have assumed that H is a linear observation
operator (which contains observation error of variance epsilon taken into account
in all parts of our theory and numerical simulations), then H;, is linear on Z
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as well. In addition, M is assumed to be any model or vector valued function,
and its linearity is not a requirement, since we have

Hi(My+ My) = H(M; + Ms)(24—1)
= HM(z)—1) + HM(2)-1)
Hi (M) + Hi(M2) (3.10)

and for s € R we calculate

Hi(sM) = H(sM)(zg-1)
= H(sM(xp_1))
= sHp(M). (3.11)

The adjoint of the operator Hy, is the operator H; which satisfies
(He(M),y)y = (M, Hy),. (3.12)
Using (3.9) we transform the left-hand side to obtain
(HM(zp-1),y)y = (M(xp-1), H'y)x (3.13)
leading to
(M, Hyy), = (M(zra), Hy)x - (3.14)

Now assume that we are given some first guess M® for the model. For
clarity, if basis functions represent the model in equation 3.15 below, it can be a
function depending on its coefficient vector. We give a one-dimensional example
in Section 4.1.2 below. Then, we can apply the variational state estimation to
the model space Z at each time step t; by

MO = MY+ Ky — HMD)), (3.15)
MO = MMy = M (3.16)

for k =1,2,3, ... with the model Kalman operator
Kp:=H(l +HH)™?, k=1,2,3,.. (3.17)

with some regularization parameter a > 0. Here, we remark that we have
argued in a general Hilbert space environment. When we choose classical
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(?-spaces with weights given by the covariance B on Z and the error covariance
R on Y, as worked out in [24] or in [81], equations (5.2.11) and (5.2.14), the
Kalman operator (3.17) takes the form

Ky = BH' (aR+HBH) ™, k=1,2,3, .., (3.18)

where now the adjoints H* have been replaced by H* = BH'R™'. Equations
(3.15), (3.16) and (3.18) describe the use of 3D-variational data assimilation to
the determination of the model M.

The following sections will apply this rather generic abstract setup to the
estimation of a general nonlinear model on a low or high-dimensional state
space. Here, as a first step (we call it the naive step), we remark that R is
an operator or matrix on observation space Y. The operator H' maps the
observation space R™ into the model space Z and B is an operator or a matrix
on Z. We further note that

o The observation operator is evaluated by
H(M®) = HM®O (2\" ) = Hz", (3.19)
which corresponds to H = Hd,, ,, using x5 as a short notation for x,(ca_)l,
where the 0 is the delta function, i.e., the mapping of a function onto its

value at a given point. §, in model space is defined by 4§, (M) := M(x),
therefore, Ho,(M) = HM (z).

o In the simplest case, using H' = 6,,_, H', we can derive (see [83])

Tr—1

H'(R + HBH) Ly — H(M))

= 0p,_H'(R+ B(ap—1, 21 ) HH') " (yy, — Hx,(cb))
= b, H'(R+ HH')\(y, — Hz\")
= 6o, (3.20)

Finally, the increment is given by
BH (R +HBH) (g — H(MP)) = Bb,,_ .z
= Blz, zp_1)z\". (3.21)

If B(z, ) is a Gaussian function of x with centre Z, then the model increment
in each step is a Gaussian RBF function centred at SE](CG), compare Odunuga et

al. [83].
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3.2 Kalman Filter for Model Learning

The Kalman filter (KF) is an important method in geosciences, for numerical
weather prediction (NWP) and other related fields of study. It has a very
strong background in optimal estimation field theory [63]. Particle filtering
is particularly a useful technique for inference in state-space dynamic models
[109].

Here, we describe the Kalman filter in the above generic framework for
model reconstruction. As an application, it can be used for estimating unknown
parameters (i.e., finding the right parameter updates) from known measurements
observed over a given period.

The algorithmic approach follows the basic ideas of Section 3.1, but the
Kalman Filter adapts the covariance matrix in each assimilation step. This
means we complement equation (3.15) with the updated equation

B@ = (I — KH)BY (3.22)

where the first guess covariance matrix B® is employed at time step ¢, and
B is the analysis covariance matrix which reflects the posterior uncertainty in
model space after the assimilation of the observations based on the observation
operator H. Altogether, we obtain the Kalman equations

M® = MY+ Ky — HMD)), (3.23)
MY, = ML) = M (3.24)
Biyi = (I—KH)B, (3.25)

for kK =1,2,3, ... with the model Kalman operator

Ky :=ByH (aR+HBH), k=1,2,3,.. (3.26)

To gain a deeper understanding, let us describe the above equations in a
concrete setting. Using an expansion of the model M with respect to some
basis functions

pe: X - X (3.27)

for £ = 1,..., N acting on the state space, we describe M = M|c] with some
coefficient vector ¢ € Z = RN of dimension N € N. We can now formulate the
Kalman filter approach with respect to the expansion coefficients. We note
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that the functions can be non-linear, but the expansion depends linearly on
the coefficients c. In the case where X = R", this leads to a linear form

M|c] = Ac (3.28)
with a matrix
A (¢§(x,§a>1)) e RN (3.29)
€=1,.,N

which consists of the basis functions ¢ (x) evaluated at the current background
state. With more detail this reads

N
Mlc](z},) = Z (i) )ee. (3.30)

We now obtain the observation operator H applied to M|c] to be given by

He-c = HY pelay)ce
=1
= HAc. (3.31)
Clearly, from (3.30), (3.31) and (3.29) we see that H. is given by
H.:= HA ¢ R™, (3.32)

Here, we use the notation H, in general and Hc in Octave or Matlab code.

We are now prepared to carry out the data assimilation step for model
learning with the Kalman filter. Let B, be the covariance matrix in coefficient
space, i.e. B. € R***. Then, we solve

H,-c=Hz\" (3.33)

by standard data assimilation to calculate an update of the model coefficient c,
i.e. we calculate

A =" + B.HT(R + H.B.HT) Y(yx — Hol?) (3.34)
for k =1,2,3,.... Further, we update the covariance matrix B, based on the

Kalman filter equations, i.e.

B = (I — K.H,)BY (3.35)
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in each step of the filtering, where

K.=BYH"(R+ H.B®YHT)™' (3.36)

In equation 3.31 above, the ¢ coefficient indicates the connection between
the input and output variables in the model, i.e., it quantifies the effect of a
certain input variable on its corresponding output variable. Thus, the reliance
of the linear operator H on c is vital for comprehending and evaluating the
model’s outcomes, and it underscores the need of selecting and estimating
the proper coefficient ¢ for a specific model to ensure correct and dependable
results. Therefore, any changes in the value of the coefficients can drastically
impact the model’s behaviour and performance.

3.3 Forcing Term Estimation (FTE)

In general, models for dynamical systems are complex codes based on partial
differential and integral equations modeling the underlying dynamics, physics,
biology or chemistry. Usually, the time derivative & of the state variables x is
given by a forcing term F'(x) in the form

T = F(x), (3.37)
where F': X — X with state space X is a function of the state variables.

In this section, we focus on the formulated technique used for estimating
the forcing term F' which controls the dynamical system. For small time steps,
we can employ Euler’s method for integration, leading to

x(tkH) ~ :L‘(tk) + [L‘(tk) T = I(tk) + F(.Z‘(tk)) T (338)

with some small time interval 7 and #;,1 = tx +7. We rearrange the terms into

Fla(t) ~ i(mk“) - x(tk)). (3.39)

We approximate F' at x(t)) based on the trajectory of our dynamical systems
at the point in time t; and t,,.;. Now, using expansions of the forcing term
F(z) in the form

F(x) = 52_: we(T)ce (3.40)
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with basis functions ¢, and coefficients ¢ € R for £ = 1,..., N, we can work
out reconstructions of F' based on the variational algorithm (VAR) of Section
3.1 or the Kalman Filter (KF) of Section 3.2, reconstructing the coefficient
vector ¢ € RV,

The above task is, of course, a very broad and generic problem. We will see
that in the simplest possible case of X = R it leads to classical interpolation or
splines. In the subsequent Section 3.3.1, we will employ polynomial expansions
for the forcing term. The approach of radial basis functions will be described
in Section 3.3.2.

Giles et al. [55] in their conclusion, reiterated the importance of the esti-
mation of forcing functions as a diagnostic tool for nonlinear dynamics. He
also posited that the lack of fit of models is adversely affected when they
contain unmeasured components and further recommended developing tests
for independence to evaluate the synergy between forcing functions and model
trajectory. This approach is relevant to the methods formulated in this thesis.

3.3.1 Forcing Term Estimation based on Polynomials
(POL)

Here, we approach the reconstruction of the dynamical model propagation
from t;_; to tg based on the Taylor series approrimation of the forcing function
F(x) with respect to the state variables z;,j = 1,...,n. The

» convergence of Taylor’s expansion or its polynomial approximation to
approximate the forcing term I’ together with

» the convergence of Euler’'s method when time steps are chosen smaller
and smaller

will lead to the convergence of model reconstruction on the manifold covered
by the dynamical system trajectories. Here, we work out these arguments in
adequate detail.

We assume that we work in state space X = R", such that ' maps R" into
itself. In a first step, we approximate F' by its Taylor series around z = 0 € R",
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which using the standard definitions for vectors x, f € R"

8] = Bi+ ...+ b,
Bl = BilBs!- - By
2P = xflxgzxgn
1Pl
= drdpedi = — (3.41)

can be written in the form

2?4+ Ry j(z), j=1,...,n, (3.42)

e O

with remainder terms R4 j(z), 2z € R", j = 1,...,n. The polynomial forcing
term is then given by

Fy(z) = (Z ag)atﬂ) (3.43)
|61<¢ j=1,..n

for x € R™. It can be used to approximate the general term F(z). We note

that in (3.43) the model for each component (Fy(x));, j = 1,...,n, of Fy(z) is

given by the coefficients ag) for all |G| < ¢£. The number of these terms is given

by the sum of the partition functions p(&) for £ =0,1,2, ..., (.

Here, we simply estimate the total number of degrees of freedom dyye. to
be bounded by
Afree =n - (L +1)" (3.44)

degrees of freedom when we employ the above equation, counting less than
¢+ 1 choices for each power of the n variables, multiplied by n components of
the function with values in R™. For a model in R? with a polynomial degree
for each variable x4, ..., x, up to £ = 1, this would lead to dfrec = 3 - 23 =24
possible degrees of freedom. So, if we know that the approximate model falls
into the class given by (3.43), we know that we have to reconstruct at most 24
coefficients. Also, using further symmetries and constraints will restrict the
number of degrees of freedom significantly.

As described in Section 1.6, the standard model of data assimilation is to
receive measurements at times t;, k = 1,2, 3, .... These are the times when we
can use data to update our knowledge of the dynamical model as well. However,
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the forcing term equation (3.37) describes the change of = at time ¢. The model
dynamics M (z) from tx_; to t; is obtained from the full integration of the
equation (3.37). We will assume that the trajectory z(t) remains in the ball
B, for all t > 0, i.e., that we have ||z(¢)|| < r, ¢ > 0. If F(z) is Lipschitz
continuous on B, with Lipschitz constant C},, we can estimate

[F(2) = F(zr)l] < Cufle = zxl| (3.45)

for the integration of x(t) from t;_; to tx. Also, if F' depends continuously on
T, we can estimate

t
lo@ —aiall = 1] & dt]

tk—1
t

= I [ Faw)a]

< Colt — e (3.46)

with
Co = sup ||F(z)]]. (3.47)
IEBT

Now, we calculate

t
z(t) —xp_y = / T dt
te—1
t

- / F(a(t) dt

Flar) + (F(x(t)) _ F(a:kl)ﬂ dt

/t
te—1
t

— FPloe) - (b= tey) + (F(x(t))—F(xk_l)) d(3.48)

lk—1

Using (3.45) and (3.46) we estimate the last term in (3.48) by

| [ (Pt - Fa)d| < [° 1FE0) - Fao)
< G lalt) — e
= (O (3.49)

to write (3.48) for time ¢ = ) in the form

T — Tp—1 — F(l’k_l) . (tk - tk—l) + O(|tk — tk_1‘2). (350)
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The estimate (3.50) means that we can approximate the full model dynamics
in the form

Ty — Tg—1 = M(l‘k—l)) — Tg—-1
= (M —I)(1-)
= F(xp_1) - (tk — tre1) + O(|tr — trs]?) (3.51)

with the components of F' given by (3.42). Using standard convergence results
for polynomial approximation of C*-functions (e.g. [96]), i.e., the estimates on
the remainder R, of (3.42), we now obtain the following result.

LEMMA 3.3.1. Assume that for a ball B, C R™ of radius r > 0 and ¢ € N the
forcing term F(x),x € R, of a dynamical system (5.37) satisfies F € C*(B,)
and that the trajectory x(t) remains in B, for all times t > 0. Then, the model
propagation M : x(ty_1) — x(tx) salisfies

w(ty) — x(tp—1) — Fo(z(tp-1)) - (te — te-1)

o |ek — wpa
VAl

fork =1,2,3, ... with Lipschitz constant Cy, of F' and Cy given by the supremum
of the (-st derivative

< CLOY(t, — ty) (3.52)

d‘'F
Coi=sup Y, &7(@6 (3.53)
2By, |pj=t 1 ATy - dyy
of the forcing term F'.
Proof. The result is a consequence of equation (3.51) derived above. O

We use the notation xy = x(tx) and zx_; = z(t,_1) and assume that the
true model M is mapping z,_; into xg, i.e.,

T = M({L‘k_l), k= 1, 2,3, (354)

Then, the above theorem estimates the difference between the true model M
applied to xj_; and its approximation

M[CL] (Ik71> =Tp_1+ Fg(&?(tkfl)) . (tk — tkfl) (355)
based on the polynomial forcing term F', i.e.,

oloe — x|t

i (3.56)

|EESERUAIEN

’ < CLC(ty — tr—1)
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The algorithmic approach now follows the basic ideas of Section 3.1 and
Section 3.2, see equations (3.15) and (3.16) as well as (3.34) and (3.35). For
the case of a polynomial expansion, it provides an estimate for M [a] with some
coefficient vector a.

We also note that any knowledge about the true polynomial representation
of the model can be used here to limit the number of terms needed to represent
the forcing term and make the whole approach efficient and sufficiently stable.
We will apply this for example to the Lorenz 96 system in Section 4.2.

3.3.2 Forcing Term Estimation based on Radial Basis
Functions (RBF)

We have studied a polynomial approximation of the forcing term in our
previous Section 3.3.1. Of course, other sets of basis functions or splines can
be tried and might be adequate depending on the particular dynamical system
under consideration.

A natural approach is to search for an approximation of the function F' by
high-dimensional Gaussian basis functions, i.e., basis functions of the form

ol gl(x) = q-e @B @m0 g e X (3.57)

where 1 € X is the centre of the radial basis function, ¢ € X is its target and
B is its covariance. Here, we will study the case where we keep B constant
and employ sets of basis functions defined by their nodes p and expansion
coefficients.

Let us assume we are given N € N points pe, £ = 1,..., N close to the
manifold covered by the system dynamics, target vectors g¢, £ =1,..., N and
that we want to approximate F' by N € N radial basis functions with centre
given by points py, ..., py and target vectors g.. We employ the notation

Ve = Q[Pe, el (3.58)

Then, solving equation (3.39) with the above basis functions, the classical RBF
interpolation system leads to the equations

N
€=1
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for the unknown coefficients cc € X, £ =1,..., N and the vectors

1
Pk = ;(xk_i'_l —x) € X, k=1,2,3,.. (3.60)

In the case where X = R™ we can write (3.59) in matrix equation form
pr = Agc (3.61)

where p, € R® and A € R™¥ is the matrix with entries

A= (¢lpe aela)) (3.62)

for K = 1,..., K. When solving the matrix equations (3.61) for k = 1,..., K
based on the algorithms (VAR) and (KF), the dynamics F' is approximated by

N
Fuppr(@) = . pe(a)ce, @ € X, (3.63)
£=1

3.4 Neural Kernel Estimation

We have introduced the neural field model in Section 2.3. Neural activity
is described by some activity function u on a domain D modelling the brain,
where u satisfies an equation of the form (3.37) with F' given by

F(u,z) = —u(z,t) + /D w(x,y) f(u(y,t)) dy, (3.64)

where in traditional notation z,y € D are points in space R? for d = 2, 3.
The area of kernel reconstruction, compare [4, 15, 89|, estimates the neural
connectivity w(zx,y) from the given measurements. Usually, it is based on
reconstructing the activity function u(z,t) for x € D and t € [0, T] first and
then determining the neural dynamics from the states, i.e., the underlying
parameter functions as e.g. the neural kernel w driving these dynamics given
some initial condition using the Amari neural field equation (2.4).

Our goal in the following sections is to compare sequential model reconstruc-
tion with classical kernel estimation. To this end, we briefly describe kernel
estimation in Section 3.4.1. We will then describe how the variational algorithm
(VAR) defined in (3.15) and (3.16) or Kalman Filter (KF) given by (3.34) and
(3.35) can be used for sequential kernel estimation in Section 3.4.2. We will see
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that the sequential methods can be equivalent to classical kernel estimation,
but they are computationally much more efficient and exhibit further very
useful properties.

In practice, computational efficiency is the capacity of a computer method
or programme to do a particular job with minimal computing resources, such
as memory, processing power, and time. An algorithm is deemed efficient if it
uses fewer computational resources to solve a problem than other algorithms in
a similar capacity. Efficiency is essential to software development since it may
affect the user experience and overall system performance. When programmes
are inefficient, they might take longer to execute, consume more memory, and
need more processing power, resulting in decreased performance, higher energy
usage, and higher expenses.

The algorithmic complexity of a programme, which refers to the number of
processes it must complete to solve a problem, is one of the most important
criteria affecting its computing efficiency. In general, algorithms with a lower
computational complexity are more effective than those with a larger one.
Other approaches to increase computational efficiency include optimising the
algorithms used in the programme, decreasing the number of memory accesses,
and lowering the quantity of data that must be processed. Moreover, techniques
like caching, parallel processing, and data compression can increase productivity.

Computational efficiency is essential to the software development life cycle.
Algorithms and programmes that are efficient can give faster, more depend-
able, robust and more cost-effective solutions to issues, whereas inefficient
programmes can lead to sluggish performance, excessive energy consumption,
and increased expenditures.

For our case, we compare the calculation of the full matrix W over a full
collection of time steps, which needs to solve a problem of size N = n¢+n¢ with
n being the number of neural variables in one space direction, d being the space
dimension (for our example d = 2). The inverse problem is a minimization
problem with N unknowns and m x nk observations, with nk being the number
of time steps (measurement times) under consideration and m the number of
measurements per time step. Using a model approximation with Np degrees
of freedom and the Kalman filter for learning a coefficient vector ¢ € RV?, we
solve a problem with Np unknowns at each time step.

As a small example, with n = 100, d = 2 and m = 100 and nk = 100 the
inversion problem solves for n* = 10® unknowns solving an equation system of
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dimension 10* x 108. With an approximation of dimension Np = 50, Kalman
filter needs to solve 100 problems of size 50 x 100 iteratively. The second task is
fast on a standard PC, the first task is slow. When moving to dimension d = 3,
the first task would be a system of size 10* x 102, not feasible on standard
PCs at the moment.

3.4.1 Classical Kernel Estimation

The neural fields model is more complicated and specific towards a particular
application area e.g., Neuroscience, unlike the Lorenz which is a standard
dynamical system used in both neuroscience and meteorology as a simple test
case for new ideas.

Under the condition that the forcing function f() is known, the task to
learn the neural model can be reduced to learning the connectivity kernel w.
We test the technique by carrying out the following steps.

« We first choose some reconstructed (or prescribed) dynamical field v(p, t).
Here, one example is to employ some Gaussian-shaped pulse with a centre
travelling along some parabolic curve through a rectangular domain D.

o We pick matching times t, = 1,2,3,...,25 for which we fed the corre-
sponding function v(-,t;), & = 1,...,25 into the model reconstruction
algorithms.

o For testing the result of the model reconstruction, we simulate the neural
field equation according to equation (4.4) with initial state v(-,¢;) and
function f based on the Eulerian finite difference method.

In more detail, given some dynamical field u(p,t) for p € D and t € [0, 7],
we can rewrite equation (4.4) in the form

ri () +ulp,t) = [ wp.)f(ulg.t) d. (3.65)

for p € D and t € [0,T]. In discretized form based on a quadrature formula for
the integration, we obtain an equation of the form

U=Wo (3.66)

with matrices
Uy = 7u(pjty) +ulpj,te), (3.67)
P = flulge, te))se (3.68)
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with quadrature weights s¢ and

Wi := w(pj, qe), (3.69)

for j,€ = 1,...n and kK = 1,...,n,. In the case of a rectangular rule, the
quadrature weights s¢ are given by s¢ = ay/ny - az/ne on a domain D =
[0, a1] x [0, ag] with ny discretization points in e; direction and ny discretization
points in e, direction.

Equation (3.66) includes the knowledge about the field u(p,t) at all time
steps t for k =1, ...,n,. With this knowledge, we solve the equation for W by
rewriting it into

v =T WwT, (3.70)
The regularized solution of (3.70) based on Tikhonov regularization is given by
W@ = (ol + d07) 1o w7 (3.71)

3.4.2 A Kalman Filter for Kernel Estimation

As a follow-up from 3.4 and 3.4.1 above, in this subsection, we discuss
the setup, field simulations and the model reconstruction approach used in
the kernel estimation methods described above. We then compare it with the
reconstructed dynamics generated. Here, we carry out learning of the model
itself for the neural field dynamics based on the Kalman filter. Finally, we then
display the results of the error for Kalman reconstruction in comparison with
the full four-dimensional neural field reconstruction method of Section 3.4.1.

In more detail, we start as in the previous section with the equation

Tu (p,t) +ulp,t) = /Dw(p, q)f(u(q,t)) dg, (3.72)

for p € D and ¢t € [0,T]. But now, we sequentially treat the times ¢t. In
discretized form based on a quadrature formula for the integration, we obtain
an equation of the form

U, = W, (3.73)
with column vectors
U, = (7’ u (pj, 1) + u(pj, tk)> o (3.74)
j=1,...n
b, = ( f(u(qg,tk))>£_1 (3.75)
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and W defined as in (3.69).

The equation (3.73) below, represents a linear transformation or mapping
between two vectors, U7 and @, using the transpose of a matrix W

vl =ofwt (3.76)

where U} indicates the transposition of the row vector Wy, ®f indicates the
transposition of the row vector ®;, which also has k components, and W7
represents the transpose of the matrix W.

Clearly, one single equation is not sufficient for the reconstruction of W.
But with the Kalman filter solving equations described in Section 3.2 for
k=1,2,...,n, we can iteratively obtain a reconstruction of W. To use (3.34) -
(3.35) we need to bring (3.76) into the form

r=~H.-c (3.77)

with ¢ being either a reordered version of W or the constants of an appropriate
approximation Ansatz for W, r = U, and H,. being the observation operator
mapping ¢ onto (®FWT)T.

We will describe a high-dimensional and a low-dimensional version of this
type of Kalman learning of the neural kernel in Section 4.3.
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Chapter 4

Low and High-Dimensional
Applications

This chapter works out the applications of the algorithms introduced in
Section 3 for sequential model reconstruction developed based on standard
ensemble data assimilation. The aim is to provide an approach which takes care
of the limitations of the algorithm in dealing with large-scale data assimilation
frameworks for model reconstruction.

We will apply the variational scheme (3.15) and (3.16) to reconstruct the
Lorenz 63 model in Section 4.1. For reconstructing the model in the case of
Lorenz 96 we work out the Kalman filter approach (3.34) and (3.35) in Section
4.2. Reconstructions of the neural connectivity kernel from dynamics of the
neural field equation based on the Kalman filter model reconstruction are
shown in Section 4.3. Finally, we study reconstructions of a simplified version
of temperature dynamics for the reaction-diffusion system numerical NWP
model in Section 4.4.

4.1 Learning the three-dimensional Lorenz 63

In this section, our goal here is to present the result of the scheme for a
low-dimensional model using the Lorenz 63 model, which is widely used as a
study object for dynamical systems, compare for example [81]. It is a system of
three non-linear ordinary differential equations (see 1.13, 1.14 and 1.15 above,
with constants o, p, 8 known as Prandtl number, the Rayleigh number and a
nondimensional wave number. Here, for the constants we take the classical
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values 0 = 10, = 8/3 and p = 28. The implementation of the system is
straightforward.

As a first test case for model reconstruction, we test the reconstruction of
its dynamics from a sequence of measurements y;. of the full state.

We use a straightforward implementation of equations (3.20) and (3.21). We
first generate the measurement data by running a Lorenz 63 model, calculating
the measurements y(:, k) for k = 1,2,3, ..., Nnat. The true curve is stored in
xv(:, k) for k=1,2,3, ..., Nnat.

In sub-section 4.1.2 below, we display the results of the convergence of
Lorenz '63 model learning reconstruction technique in figure (4.1). Similar
displays were shown in figures (4.2) and (4.3) for true and approximated model
with different time steps.

A display of the original and reconstructed trajectory is found in Figure
4.6(b). The error evolution is shown in Figure 4.6(c). The Matlab/Octave
codes used in both cases are in Appendix Section 7.1.

o In particular, the learning equations (3.15) - (3.17) are realized by line
14 of the first code example of Section 7.1.

o The approximate model is a sum of Gaussians with centres z; and learned
coefficients, shown by the second code example in Section 7.1.

o The data assimilation cycle in which the model learning is integrated is
shown by the third code example of Section 7.1.

4.1.1 Variational Model Learning a 1d Scenario

In this subsection, we demonstrate the convergence of the model learning
technique described above using a one-dimensional case, in addition, we show
the results of the findings and their corresponding errors. We describe on an
interval I = [a, b], we then define a scalar function M : x — M (z) with values
M(x) € I for all z € I. Then, M defines a dynamics with initial state zo € I
by

x = M(xp_1) (4.1)

for k =1,2,3,.... Here, for our first example we have chosen

M(x) =7 -sin(z) + .
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With a starting value of 2o = 3 and interval [a,b] = [0, 27|, we display the
dynamics and first two steps of model reconstruction in Figure (4.1). Further-
more, we first show the natural approach where a radial basis function around
each analysis state is constructed in each learning step.

To explain the grey lines in Figure (4.1), starting with the value xz;_; we
draw a grey line first to the function value M (xy_1), which is a vertical line
from the point (x_1,0) up from the z-axis to the point (xy_1, M(xx_1)). Then,
the value x; = M (z,_1) is the next value, which can be read from the y-axis.
We draw a grey line from this point (xx_1, M (xr_1)) to the point (0, M (zg_1))
on the y axis, and then to the point (M (zx_1),0) = (xx,0) on the z-axis. This
is the third grey line which terminates at the new state x,_; on the z-axis.

Figure (4.2) shows the result after time step & = 50 in (a), k¥ = 300 in
(b) and k£ = 1000 in (c). We observe good convergence of the reconstruction
toward an L? error of 0.062155. The grid points used (Ng = 150) for the
approximation is indicated by the black dots. We display the dynamics in grey
lines up to the first 100 time steps.

L2-Error = 7.5085 L2-Error = 7.4388

(a) 0 1 2 3 4 5 6 (b)

Figure 4.1: True and approximated model in time step £k = 1 and k = 2, where
the blue curve displays the true model, the orange curve the approximative
model, the grey lines indicate the model dynamics (describes how the variables
or components of the model change and interact with each other as time
progresses), and the magenta points are the states of the model. We also
display an example of a radial basis function around the initial state as a grey
line. The grid points as centers of the RBF functions are shown as black dots,
they coincide with the model states x,g‘l_)l in this example.
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L2-Error = 1.0183 L2-Error = 0.17252

L2-Error = 0.062155

Figure 4.2: True and approximated model in time step £ = 50, k = 300 and
k = 1000, where the blue curve displays the true model, the orange curve
the approximative model, the grey lines indicate the model dynamics and the
magenta points the states of the model. We also display an example of a radial
basis function around the initial state as a grey line. The grid points as centers
of the RBF functions are shown as black dots, they coincide with the model
states 5’71@1 in this example.
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In a second stage, we demonstrate the outcomes of using a N, = 150 point
grid throughout the model-learning operation. Figure (4.3) depicts the findings
and errors. As a result, the centres of the radial basis functions no longer
correspond with the model trajectories, but are instead represented by the
whole collection of Ng = 150 black dots seen in the figure. Currently, the
approximation of the model has a fixed dimension specified by N,; during the
data assimilation cycle, the coefficients are estimated repeatedly.

L2-Error = 0.50868 L2-Error = 0.16712

L2-Error = 0.052773

Figure 4.3: True and approximated model in time step £ = 50, £ = 300 and
k = 1000, where the blue curve displays the true model, the orange curve
the approximative model, the grey lines indicate the model dynamics and the
magenta points the states of the model. We also display an example of a radial
basis function around the initial state as a grey line. The grid points as centers
of the RBF functions are shown as black dots, they do not coincide with the
model states :v,(f_)l shown as magenta points in this example.
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4.1.2 Variational Model Learning for L63

We now come to the Lorenz 63 model. In figure 4.4 below, we first select
some true dynamics and generate observations y; at points t; for k£ € N. Next,
we carry out the Lorenz '63 model reconstruction according to equations (3.15)
and (3.16). Now, in the first step, we assume that we have perfect observations.
Observations with some error R = I with r > 0 are treated in a second test
scenario.

20 20
1
\0\\\% 10

0
-10
20 39

//
0_| >
30 =
20 o 0 20
0 10 4
-30

-20

Figure 4.4: (a) and (b) depict the original dynamics from different perspectives,
whereas (c¢) and (d) depict the rebuilt dynamics from the same perspectives,
where the model has been reconstructed using equation (3.23). The blue star
is the beginning state for the dynamics and the reconstructed trajectory to the
rest of the neural patch.
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25 35

30

A RARLA R
et

100 200 300 400 500

(a) (b)

L

AR mmwhw

0 1000 Boo

Figure 4.5: The error evolution of the first guess during the assimilation
analysis cycle is shown in blue, in (a) we show the first 500 steps, and in (b)
the evolution over an assimilation cycle of 5000 steps. The red curve shows
the error of the constant model in each of the steps as a reference. The x-axis
shows the number of time steps while the y-axis is the error evolution in both
cases.

When we carry out the assimilation, the error of the current model can be
estimated by calculating the difference between the measurement y; and the
first guess error shown below in figure 4.5, and given by the norm of

€ = Yk — M]gb)@jkfl)
MGrue) (gliruely _ g, (4.2)

for k € N. This is not only reflecting the model error M — M but it is
also the sum

M(true)( (true)) M( )(xkfl) = M(true)( (tTue)) . M’Eb) (x](gtisz))
M(b)( (t'rue)) M]Eb) (xkfl) (43)

of the model error on the true state plus the propagation of the error of the
current state estimate. However, if the model M,gb) becomes better, also the
state estimate will become better. The norm [|ex|| of ey is a reasonable score
to measure the convergence of the model estimation.

In Figure 4.6 we see the model trajectory, the approximation points are
chosen by a selection algorithm around the actual model trajectory and also
the first guess and analysis errors when a data assimilation plus model recon-
struction algorithm is run. Similarly, figure 4.7 below, show the evolution of
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the first guess and analysis error for the model reconstruction approach at 200

time steps.

For comparison, the first guess error with a constant model approximation,

i.e.,, with M(z) = « for all points, is shown in Figure 4.6 (c¢). Here, the
total dimension of the model approximation was N = 429. The number N is
fundamentally influenced by

1. the grid size of the underlying regular grid. This grid size will also
determine the approximation quality of the model. When the grid size is
made smaller, the approximation will become better based on standard
approximation results for radial basis function approximation.

2. The model dimension N is influenced by the area the trajectory of the
underlying system covers. In the case of Lorenz '63, the trace of the
trajectory is profoundly two-dimensional, such that only a part of the
full state space is touched by the trajectory and needs to be taken into

consideration.

—-Background curve
-~ Analysis curve
+~Nature run

o ed =3 e
> o =) ~

error evolution
o
@

0.2

0.1

3D-VAR

50

100 150
time steps

Figure 4.6: Figure (a) shows the points generated to approximate the dynamical
model by radial basis functions chosen from some uniform grid and taking all
points where the trajectory passes through in the enclosed cube. Figure (b)
shows the first guess approximation achieved by this within 200-time steps.
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Figure 4.7: The error evolution of the first guess error compared with that of
the analysis error for the model reconstruction approach within 200 time steps.

4.1.3 Statistical Analysis of the Numerical Experiment
Description: L63

In this section, we emphasise and describe the processes required to under-
take a statistical analysis of the numerical experiment using the Lorenz ’63
model learning approach. We do a sensitivity analysis to demonstrate how
variable input changes affect the model’s output. After finishing the Lorenz
63 model learning, this was accomplished by modifying the time steps and
visualising the accurate and approximation trajectories at each stage.

For the Lorenz 63 system we test the reconstruction of the model dynamics
based on the Kalman Filter for the Ansatz of a superposition of exponential
functions on a grid. We will conduct experiments where

1. We let the exponential nodes be given by the list of analysis states x,(f),
k=1,2,... growing over time.

2. Limit the nodes of the exponentials to a fixed grid covering the area of
the trajectory.

Further, we can learn the coefficients based on

1. A three-dimensional approach with fixed covariance matrix in coefficient
space.

2. The Kalman Filter approach with covariance matrix in coefficient space
changed in each step of the learning procedure.
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3. A four-dimensional approach where the coefficients are calculated based
on an interval of points.

By theory, for a linear observation operator the Kalman Filter is equivalent to
the 4D approach [103], [56]. We have tested this on a limited interval.

Sensitivity Analysis: L.L63 Model Reconstruction
A sensitivity analysis is carried out for the following approaches below:

1. Testing the result of the model reconstruction for different parameter
settings, displaying the resulting model trajectories in comparison for
selected cases.

2. Testing a range of parameters and studying the histogram of resulting
model errors.

For the model errors we can employ various metrics.

1. First guess error in the analysis cycle where the approximate model is
growing step by step based on the model learning procedure.

2. Analysing the forecasting error for some fixed lead time.

3. Testing the length of a model trajectory which stays within some error
bounds around the true model trajectory.

Sensitivity Experiment #1. We carried out experiments with different
number of time step Nnat, ranging from 400 to 1150. Depending on the
number of time steps, the original trajectory will cover more or less area in
state space. This leads to a varying number of base points for the model
approximation. When the approximate trajectory leaves the area where the
model training worked well, it can happen that the increments tend to zero
and the approximate trajectory is stuck somewhere. In the cases where the
approximate model trajectory stays within the area where approximations
work sufficiently well, the approximate trajectory follows the original trajectory
oscillating between the two wings of the butterfly.

Choices of parameters for this experiment are:

Chapter 4 Page 64/150



Section 4.1 Model Reconstruction for Dynamical Systems

x0 = [0;-12;21] % initial point for trajectory

Nnat = 300; % steps for nature run

X = x0; % initial state for iteration

noise = 0.00001; Y% noise factor on measurements

dtime = 0.03; % time interval between measurements
sigma0 = 10; /» standard parameter in the Lorenz system
rhoO0 = 28; %~

betal = 8/3; % ~

The result of these runs is reflected in Figure 4.8. We show the model
learning outcome by carrying out a free run starting with zy based on a varying
number of time steps of the nature run and corresponding training period. The
results compares the true and approximate trajectory after learning the Lorenz
63 model. Even if the exact trajectory is met only for 200 or 300 time steps,
in most tests there is a clear correlation in the patterns noticeable between the
trajectories. In (f) and (g), though, the free run started tobe stuck in a local
fixed point after about 100 time steps.

Sensitivity Experiment #2. We tested the whole model reconstruction
with different seeds for the random error generator of the observation errors.
Learning was based on a trajectory starting with some state zy given above.

The result of these runs is reflected in the histogram below in Figure 4.9
showing the distribution of the first guess errors over the full model trajectory.
The experiments have been carried out with noise at € = 107°. The standard
deviation of the distribution is quite small with values of 0.0002.

Sensitivity Experiment #3. We tested the whole model reconstruction
with different initial conditions for the trajectory employed for training. We
show a histogram of the first guess errors over the full trajectory during model
learning.

The result of these runs is reflected in the histogram shown below in Figure
4.10, which shows the distribution of the first guess errors over the whole model
trajectory when the initial point for the training trajectory was changed. In
this case, we notice a negative or left-skewed distributed error. It suggests a
clear indication of extremely low values in the standard deviation of the noise
clustered towards the left.
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Figure 4.8: Experimenting with model learning with Nnat=200, 300, ..., 1100

steps. We display a visualization of the true and the approximate trajectory

both run freely for Nnat steps after completing the learning for the Lorenz 63

%del, starting with the original point z0.
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Figure 4.9: A histogram of the first guess errors over the full trajectory during
model learning when the seed of the observation error random number generator
was changed. The standard deviation of the noise was set to € = 107°.

20
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0.02 0.04 006 008 0.1 0.12 0.14 0.16

Figure 4.10: A histogram of the first guess errors over the full trajectory during
model learning when the initial point for the training trajectory was changed.
The standard deviation of the changes to x¢ in the form zy = z¢o+o*randn(3, 1)
was set to 0 = 0.2.
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4.2 Learning higher dimensional Lorenz 96

This section displays the results of the learning obtained through the
application of Lorenz 96. This was applied in a higher dimensional environment
to show its feasibility as a dimension reduction approach.

We follow through with the simulation of the Lorenz 96 model as described
in Section 2.2, in particular equation (2.1). To set up our learning framework,
we model the forcing term F' at each node j € {1,..,n} as a polynomial function
of the variables in an environment j —dj, ..., 7 +dj with dj € N. The polynomial
ansatz for the forcing term as given by (3.40) provides a framework for learning
the L96 model. We can explicitly compare the true’ coefficients c¢ as given by
the explicit F'(z) for L96 with the reconstructed coefficients c¢.

The coefficients c¢ are successively reconstructed based on either a three-
dimensional approach as described in Section 3.1 or the Kalman filter of Section
3.2 when the coefficient covariance matrix is updated in each step of the
iteration.

Figure 4.11 displays the results of a nature run where we carry out a
classical data assimilation cycle for L96. We then carry out the same data
assimilation cycle without the knowledge of the L96 system, but with the model
reconstruction for the coefficients ¢, of the ODE system.

The iterative results of the coefficient reconstructions are shown in Figure
4.12 (d) over 40 steps, where we observe that most coefficients are readily recon-
structed after about 10 steps. The first guess error of the model reconstruction
is shown in Figure 4.12 (a) and (b). At the end of the 40 steps the original and
reconstructed coefficients ¢¢ are shown in Figure 4.12 (c). The algorithm was
able to recover the coefficients of the system of ODEs in a quite reasonable
way.

A targeted selection of the reconstruction code carrying out the reconstruc-
tion of the coefficients based on the observation operator H, is shown in line 6
of the Matlab code No. 1 in Part B in Appendix 7.2.3 below. In particular,

o The operator H. is defined in code example No. 3 of Section 7.2.3.

o The Kalman filter based learning of the coefficients is carried out on line
16 of the Matlab code No. 2 of Section 7.2.3 with an update of the model
B, matrix on line No. 17 of the Matlab code below.

Chapter 4 Page 68/150



Section 4.2 Model Reconstruction for Dynamical Systems

Here we employed the Localized Ensemble Transform Kalman Filter (LETKF)
following [56] for the data assimilation parts of the Lorenz 96 model. In this
study, we have used the LETKF for our Lorenz "96 system as a data assimilation
(DA) method, which is a well-known approach for incorporating observations
into numerical models, and can be used with the Lorenz '96 system to estimate
the system’s state. In this case, we have used it for the reconstructing the
model’s state instead by using observations included in an ensemble to compare
model reconstructed or predicted to true observations.

The numerical example from the following codes by Potthast and Schenk!.
The basic cycling code is shown in Section 7.2.4, code No. 1.

!Taken from the Data Assimilation Coding Environment DACE of Deutscher Wetterdienst
(DWD), specifically, the explorative coding parts dace_play/octave.
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Figure 4.11: Results of the dynamics of some variables used in the simulation
of the Lorenz 96 model in (a), (b) Displays Local Ensemble Transform Kalman
Filter (LETKF) plot of the first guess and analysis evolution errors and the
ensemble spread of the background and analysis errors (¢) The nature run,
first guess and analysis mean for each variable at the end of the last cycle is
displayed with the first guess mean in observation space while (d) shows the
nature run, the first guess states and the first guess deviation from nature run.
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Figure 4.12: Further results of the simulation of the Lorenz '96 showing the
first guess field from the original and model reconstruction and its errors in
(a) Line plots of the model reconstruction and first guess errors and their
corresponding means of the first guess and reconstructed model respectively in
(b) and (c) shows the coefficients of the original and reconstructed model while

(d) displays the coefficient reconstruction error.
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4.2.1 Statistical Analysis of the Numerical Experiment
Description: L96

This section shows the methods used to analyse the numerical experiment
and their corresponding explanations for the Lorenz '96 model reconstruction
approach. We conduct a sensitivity analysis to demonstrate the effect of
variable input modifications on the model’s output. We display the results
of the learning process for the Lorenz 96 model, this was accomplished by
modifying the time steps and, afterwards, visualising the true and approximated
trajectories at each stage.

We carry out a run of the Lorenz '96 system with parameters described as
follows:

Nnat = 40; % number of cycles

N = 50; % model state dimension 50

J = 2; %» neighbors needed for Lorenz 96

F1 = 8; % forcing term for the true state

% Parameters for the numerical solution of the model

dtime = 0.05; % steps of integration

h = 0.05;

% Parameters for generating observations and in

noise = 0.02; % noise factor on measurements Y% standard deviation of observat:
hH = 2; % every hH-th variable is observed

rho = 4%pi/N; % localization radius with respect to differences of nodes

with some initial state x0. Then, we run the model reconstruction scheme
reconstructing the coefficients in the forcing term.

Sensitivity Analysis: L96 Model Reconstruction
Sensitivity Experiment #1. With different initial states of L96 defined by
x0 = b*sin(2*pi*3*(1:N)’/N) + 1xrandn(N,1);

The dimension of the local coefficients of Lorenz 96 for reconstruction has been
chosen to be n, = 21.
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30 . . . . . - 10

@ (b)

Figure 4.13: Figure (a) shows the distribution of the reconstruction error for
N = 100 model reconstruction runs with z, taken from the random distribution
described above. The coefficients and their reconstruction for the last sample
are shown in Figure (b).

4.3 Neural Field Model Learning the Kernel

Here, we develop the model reconstruction techniques described in 3.4, i.e.,
the four-dimensional neural kernel reconstruction and the neural Kalman filter
in Section 3.4.2 by applying it to the reconstruction of the dynamics of a neural
field as described by the Amari neural field equation in equation 2.4

ri (pt) = —u(pt) + [ w(p.a)f(ulg.1)) da (44)
for p € D with some domain D € R? and ¢ € [0,7] with T > 0.

With the definition of ¥ and ® given by (3.74) and (3.75), our observations
of the model in each step are given by

We define our set of parameters to reconstruct to be
o) i=Wie, £=n(j—1)+¢ (4.6)

for j,& =1,...,n. In this case, the Kalman filter equations (3.34) - (3.35) are
based on the operator H, = H® defined by

(Hc(k))j,m(j—l)-i-f - (q)g)& 7§ =1,,,m, (4'7)
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Figure 4.14: We show two snapshots from the prescribed (bottom), and
reconstructed dynamics based on the RBF nonlinear model reconstruction
technique. The images show the times t = 5 for (a) and ¢t = 10 for (b) with a
simulation time-step of 0.9, where the input was given with times steps of size
1. The approximate dynamics can generate the movement of the pulse, though
with a slight phase error.

and zero otherwise, such that we have

(HP D), =y (4.8)
= (PR WT); (4.9
3

for j = 1,...,n. This Kalman approach is, at the end of any given time window
[0, T], equ