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Abstract

Variational principles whose natural conditions are the steady state shallow water
equations of motion are stated. The corresponding variational principles for quasi
one-dimensional flows are derived. Discontinuous solutions of the shallow water
equations are considered by formulating new variational principles, whose natural
conditions include the relations between the flow variables immediately either side
of a hydraulic jump.

Approximations to continuous and discontinuous flows in channels of vary-
ing breadths and constant equilibrium depths are calculated using finite dimen-
sional versions of these variational principles. Approximations to continuous flows
are calculated on fixed grids using both the quasi one-dimensional and the two-
dimensional formulations. Methods of generating adaptive grids in one dimension
using the variational principles are also studied and these allow grid dependent

approximations to continuous and discontinuous quasi one-dimensional flows to

be found.



1 Introduction

In a previous report [1] a number of variational principles for unsteady and steady
continuous shallow water flows were derived. The continuous, differentiable func-
tions which satisfy the variational principles also satisty the shallow water equa-
tions of motion. Many principles are available because the governing physical laws
can be expressed in different variables, and because each free principle can be used
to formulate one or more constrained principles. The main purpose of this report
is to use these variational principles to generate finite dimensional approximations
to solutions of the shallow water equations for channel flows.

In [1] the variational principle devised by Luke [2] for fluid flow beneath a
free surface was used as a starting point to form other principles for unsteady
shallow water flows which were then modified for time-independent flows. In
Section 2 of this report the shallow water equations of steady motion are stated and
the corresponding variational principles for steady flows are given. By assuming
that the flow is quasi one-dimensional, so that the flow variables are functions
of one space coordinate only, corresponding variational principles associated with
quasi one-dimensional shallow water flow can be derived from the two-dimensional
versions given in [1]. This derivation is also described in Section 2.

In Section 3 consideration is given to variational principles for discontinuous
shallow water flows. Under certain circumstances, when the outlet depth is spec-
ified to lie in a particular range of values, a hydraulic jump may occur in the
flow. At such a point of discontinuity the differential equations which govern the
flow are not applicable. The flow immediately in front of the jump is related to
that immediately behind the jump by jump conditions which are statements of
the governing physical laws at such discontinuities ([3]). Three jump conditions
govern the flow at a discontinuity in shallow water. One condition is used to locate
the position of the jump and the other two relate the flow variables either side of
the jump. All three conditions may be incorporated in variational principles for
discontinuous flows.

Approximations to continuous and discontinuous shallow water flows are sought
using the derived functionals. The method used is to find functions in a prescribed
finite dimensional space for which the functionals are stationary. In Section 4 fi-
nite dimensional expansions using finite element basis functions are substituted
into the variational principles and used to derive approximations on a fixed grid
to the flow variables in one and two dimensions.

Approximations to continuous flows on adaptive grids are also considered. The
jump conditions, derived in Section 3 for discontinuous flows, can be applied to
the approximate solution at the internal nodes of the grid to give an algorithm for

generating grid dependent solutions. This process is given in Section 5. An alter-



native method, based on similar reasoning, but solving directly the requirement
that the functionals are stationary with respect to variations in the positions of
the grid points, is also given in Section 5. In the case of minimising a functional
these two methods of generating grid dependent solutions should derive minimum
values less than those derived for the solutions generated on fixed grids but still
greater than the exact minimum. Similar remarks hold for the case of a maximum
principle.

Attempts are also made to approximate discontinuous flows. Finite dimen-
sional approximations can be calculated in regions of the domain away from the
hydraulic jump using the variational principles for continuous flow and regarding
the pre- and post-jump approximations as independent. The actual position of the

hydraulic jump is found using the jump conditions. Details are given in Section 5.

2 Variational Principles for Continuous Flows

2.1 The Shallow Water Approximation

Shallow water theory is an approximation to free surface flow in circumstances
where the depth of fluid is much less than some characteristic horizontal length
scale of the motion. It is essentially a vertically averaged representation of the
flow and reduces the problem to one which is two-dimensional in the horizontal
coordinates.

Only flows of constant equilibrium depth are considered here.

Consider a domain D in the horizontal (x, y) plane. Let d be the depth of fluid
and v the velocity, both defined on D. Define the mass flow vector Q by

Q=dv (2.1)

and the energy F by
1
E=gd+ SVVs (2.2)

where ¢ is the acceleration due to gravity. The shallow water equations of steady

irrotational motion are given by

vQ =0 conservation of mass, (2.3)
VE = 0 conservation of momentum, (2.4)
v = V¢ irrotationality, (2.5)

where ¢ is a velocity potential defined on D and
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Details are given in Stoker [3]. The conservation of momentum equation (2.4) is
satisfied by F = constant for continuous flows. Thus the energy F is considered
to be a constant whose value is to be specified.

Let D be a channel of slowly varying breadth B(x) and consider a section
of the channel occupying the interval [z.,x,] of the z-axis. Then, under the
above conditions, the flow can be assumed to be quasi one-dimensional in the x
direction. The flow variables are functions of x alone. The V. operator is replaced
by %%(B( z)-) and V by & +. The quasi one-dimensional counterparts of (2.3)
and (2.5) are

(BQ) = 0 conservation of mass, (2.6)
v = &, 2.7)
where ' denotes %. The one-dimensional version of the conservation of momen-

dx
tum equation, £’ = 0, is satisfied exactly by the assumption that E is constant

on [z, z,].

2.2 Variational Principles for Steady Shallow Water

In [1] the variational principle of Luke [2] for fluid with a free surface was used to
derive four variational principles for unsteady shallow water flow by applying the
shallow water approximation to the variables within the functional and performing
changes of variables using (2.1) and (2.2). These principles were then reduced to
corresponding principles for steady shallow water by assuming that all of the flow
variables are independent of time. The resulting variational principles for steady

shallow water are given by

in(@Qv.0) = o{ [[ (lv.B)+Qu(v = Vo)) dudy
n /ECqﬁdZ} —0, (2.8)
§1,(Q,d, ) — 5{//D (H(Q,d) + Ed + 6V.Q) dz dy
+ / 6(C — Qun) dz} — 0, (2.9)
o1s(Q6) = o{ [[ (P(Q.B)+6V.Q)dedy
+ / (C —Qun) dz} —0,  (2.10)
S14(Q,d,v,8) = {// + Qv+ Ed+ ¢V.Q) de dy

+/¢(C—Q.n)dz} — 0. (2.11)
b
The function p is defined by

1 1 2
p(v,E) = — (E = V.V)
2q 2
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and has the values of pressure. The function r can be described as the Lagrangian
density (see [1]) and is defined by

The function R can be called the Hamiltonian density and is defined by
1 5, 1
R(v.d) = igd + idv.v.

Finally, the function P has the values of flow stress and P(Q, E) is defined by

eliminating v and d from the equations
1 1
P = §gal2 +dv.v,Q=dvand F = gd+ 5V-V

The function C' in (2.8)—(2.11) is a given function on the boundary ¥ of D and F
is regarded as a given constant in these principles.

The natural conditions of (2.8)-(2.11) include the equations of steady shallow
water motion (2.3) and (2.5) expressed variously in terms of d, v, Q, ¢ and F
depending on the generating functional. The natural boundary condition of each

of the principles is

Q.n=Con X.

Equations (2.8)—(2.11) can be used to generate finite dimensional approxima-
tions to solutions of the shallow water equations. This is done by substituting
finite expansions for the flow variables into the functionals L;, L,, Lz and Ly
and finding the coefficients which cause them to be stationary with respect to
variations within the finite space.

In this report a constrained version of the ‘p’ principle (2.8) will be used.
A variational principle can be constrained by considering only variations which
satisfy one or more of the natural conditions. The other natural conditions re-
main as natural conditions ([4]). The ‘p’ principle (2.8) is constrained to satisfy

irrotationality by substituting v = V¢ into the integrand. This yields

§11(6) = 5{//Dp(v¢,E) de dy +/20¢d2} ~ 0 (2.12)

which has as natural conditions the conservation of mass equation, expressed in
terms of ¢ and £, in D and a boundary condition for the mass flow, expressed in
terms of ¢. Equation (2.12) will be used in Section 4 to generate a finite element

approximation to the velocity potential ¢.

2.3 Variational Principles for Quasi One-dimensional
Steady Shallow Water

In the same way that variational principles for unsteady shallow water flows were

derived from principles for free surface flows in [1] by making the shallow water
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approximation, the quasi one-dimensional approximation can be applied to (2.8)—
(2.11) to give variational principles for quasi one-dimensional shallow water in a
slowly varying channel as follows.

Let all of the flow variables be functions of x alone. Substitute @) = Q(x),
d=d(z),v=wv(x)and ¢ = ¢(x) for their two-dimensional counterparts in (2.8)—
(2.11). Replace the operators by their one-dimensional versions, that is, replace
V.Q by %(BQ)/ in (2.9)—(2.11) and V¢ by ¢' in (2.8). Then the integration
with respect to y can be performed. The function C', defined on ¥, is the value
of Q.n on the boundary of the two-dimensional domain. Assuming that there is
no flow across the fixed, lateral sides of the channel, then C' = 0 on this part
of the boundary. Therefore the function C' need only be prescribed at the inlet
and outlet boundaries and is the value of the mass flow at inlet and outlet. In
the one-dimensional case the boundary condition at inlet ', is given the constant
value C'. To satisfy conservation of mass, the boundary condition at outlet C, is
defined by C, = OB—% where B, = B(x.) and B, = B(x,). Using these values the
boundary integrals in (2.8)—(2.11) can also be evaluated.

The variational principles for quasi one-dimensional flow are given by

5.0y = 5{/9:03(]9(1),]5) +Qv—¢) de+ OB, (d(e,) — qb(:z;e))} ~0, (2.13)

61 =6 [ B(Qd)+ Bd = Qo) do + CB. (o) — () f =0, (2.14)

e

§ds = {/ B(P(Q,E) — Q) de + CB. (¢(x,) — qb(:z;e))} 0, (2.15)

60i=6{ [ B(=R(o,d)+ Q0= &) + Ed) de + CB.(8{x) = 6(z.)) } = 0,
- (2.16)
where J; = J1(Q,v,9),Js = J(Q,d,¢),Js = J3(Q,¢) and Jy = J4(Q,d, v, ).
The natural conditions of (2.13)—(2.16) in the domain [z., x,] include the conser-
vation of mass equation (2.6) and equation (2.7), expressed in different variables
depending on the generating functional. The natural boundary conditions, com-
mon to all of (2.13)—(2.16), are

(QB)|,. = CB. and (QB)|, = CB.. (2.17)

Equations (2.13)—(2.16) can be used to generate finite element approximations
to quasi one-dimensional shallow water flows in the same way as for the two-
dimensional equations. Constrained versions of the ‘p” principle (2.13) and the ‘r’
principle (2.14) are now considered.

Following the derivation of the constrained two-dimensional ‘p’ principle (2.12),
the variations in (2.13) are constrained to satisfy the natural condition v = ¢'.
This yields the variational principle

6h(6) =6 { [ B B de + CB(6(e0) - bla)} =0 (2.18)

Te
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which has as its only natural condition in [z, z,] the conservation of mass equation
(2.6), expressed in term of ¢, and boundary conditions for ¢.

The ‘v’ principle (2.14) is constrained to satisfy conservation of mass, (QB) =
0, in [, 2,]. For consistency the natural conditions (2.17) must also be applied

as constraints. The constrained ‘r’ principle is given by

5To(d) = § {/ B(r(Q.d) + Ed) d:z;} ~0 (2.19)

where Q(z) = ggf) in [x.,z,).

The functionals in (2.18) and (2.19) each depend on only one variable and will
be used in Section 4 to generate approximations to the velocity potential and the
depth of flow respectively. The unconstrained ‘v’ principle (2.14) depends on @,

d and ¢ and will be used to give approximations to all three variables.

3 Discontinuous Flows and Variational

Principles

The variational principles of Sections 2.2 and 2.3 are all concerned with continuous
flows. In this section variational principles for quasi one-dimensional flows with
hydraulic jumps are considered.

Hydraulic jumps may occur when conditions are imposed on the flow at the
outlet boundary which cannot be achieved by a continuous flow. The value of the
energy F, defined by (2.2), is not conserved at a hydraulic jump, although values
of mass flow @ and flow stress P are ([3]). These conditions are known as jump

conditions and are explicitly given by
[Q]l, =0, [P]xs =0 and [E]l, >0 (3.1)

where the brackets [-],. denote the jump in the value of the quantity at the point
z,. That is, for example, [Q], = Q|$S+ — Q|$S_ where + denotes the inlet side of
the jump position and — denotes the outlet side of the jump position.

The property [E], # 0 is used in the method to approximate discontinuous
solutions as, in the variational principles, the constant £ may be assigned one
value in the channel before the hydraulic jump and another, smaller value behind
the jump. The value at inlet, £° must be specified. A value at outlet, £°, which
forces the flow to be discontinuous can be calculated from the outlet boundary
condition. In this report a value of the depth at outlet, d,, will be specified.
Using conservation of mass, the value of mass flow at outlet can be calculated as
Q, = CB—%. The definition of mass flow (2.1) then yields the value of the velocity
at outlet, that is, v, = %- Then the outlet energy can be calculated, using (2.2),
as K° = gd, + %voz.



Equations (2.6) and (2.7) govern the motion in the channel away from the
jump but at the discontinuity, where derivatives are not defined, the differential
equations do not apply. The behaviour of the flow variables at a point of discon-
tinuity is governed by the jump conditions (3.1), two of which can be derived as
the natural conditions of variational principles for quasi one-dimensional flow as
follows.

Consider first a general functional of the form

Ts

I(z4,u) :/% Fe,u,u) d:z;—l—/:OF(x,u,u’) do + [g(z,0)"  (3.2)

where u = (u1(2), ..., u,(z))?, 0" = (¥)(2),... v, (2))T and z, € (x.,z,) is a point

at which any of the u; may be discontinuous. The position of x; is allowed to vary
in the variational principle 61 = 0 and gives rise to jump conditions. Using Taylor

series 61 = 0 gives

/xs Z {Fuz — Py — Z (Fu;uJU; + Fu;u;u;/)} ou; dx

Te 4=1 7=1

J

Ts =1

=1
+ Z (Fu; + gui) ouil,, — Zn: (Fué + 9“i) buil,,
=1

=1
n
_I_

(£ buil, , — Fu 5ui|$s_) + 8z, (F|IS+ - F|l,s_) =0, (3.3)

=1

where x,+ is the side of the point x, towards x. and x,- is the side of x, towards
= 5ui|%—|—u§(:1;s)5:1;5.
Substituting this into (3.3) gives the natural conditions of 61 = 0 as follows.

x,. At the point z,, the total variation in w; is given by 5;12'

d
ou;  F, — d—Fu/, =0 1=1,...,n & € [, 25) U (x5, ). (3.4)
x 2
dugl, (Fu; + gul) =0:=1,...,n. (3.5)
ougl, (Fu; + gul) =0:=1,...,n (3.6)
Su; [Fu;] =0 t=1,...,n. (3.7)
oxs [F — ZFu;u;] = 0. (3.8)
=1 Ts

The functionals in the one-dimensional variational principles (2.13)—(2.16) are
all of the form (3.2) with @, d, v and ¢ being identified with the w; as appropriate.
Thus the natural conditions of (2.13)—(2.16) are given by (3.4)—(3.8). The natural
conditions caused by variations of the u; in the domain, (3.4), and on the inlet

and outlet boundaries, (3.5) and (3.6), are the same as those for the continuous



case in Section 2.2. In addition, there are jump conditions caused by the variation
of x4, given by,

(p(v, £) + Qu)],, =0,

(r(@,d) + Ed)],, =0,

BQ BP(Q,E)], =0 and

BQl.. = B(—R(v, d)—l—Qv—I—Ed)] = 0.

The first jump condition in each case is the conservation of mass flow across the

and

for the ‘p’ principle [BQ],, =0

for the ‘v’ principle [BQ],. =0 and

for the ‘P’ principle ] 0 and
] 0

[ (B
[ (B
[BQ.. [
for the ‘R’ principle | and |

discontinuity since, by hypothesis for quasi one-dimensional flow, the breadth B
is continuous. The same argument applies to the second jump condition in each
case which states that there is no change in the value of the flow stress P across
the jump. That the conditions are the same can be seen by using the definitions
of mass flow and energy, (2.1) and (2.2), to perform changes of variables.

The conditions [Q],, = 0 and [P],, = 0 are the same as (3.1); and (3.1), and
are consistent with the theory ([3]).

The constrained ‘t” principle (2.19) will be considered for practical implemen-

tation. The functional for this case is
]1(d):/; (0, d)+Eddx+/ r(Q,d) + E°dyde  (3.9)

where @ = B=. The natural jump condition of 67, = 0 is
(r(@,d) + E°d)|, , — (r(Q,d) + E°d)|, _ =0. (3.10)

One method of generating approximations to discontinuous depth functions
which will be given in Section 5 involves finding continuous solutions on [z, )
and (x5, x,], with @, fixed, and coupling them at the point x; using the jump
condition (3.10).

It is possible to define any number of points like z, in the domain [z, z,]
thus splitting it into several intervals. If the positions of all of these points are
allowed to vary then the one-dimensional variational principles yield the two jump
conditions [BQ],. = 0 and [BP],. = 0 at each of these points. This gives a basis
for a method to generate solutions on adaptive grids which is implemented in

Section 5.

4 Approximations on Fixed Grids

Finite element expansions are now used to generate approximate solutions of the
shallow water equations for flows in channels with horizontal beds. In this section
methods are considered for calculating approximations on fixed grids. The algo-
rithms are intended only for generating approximations to continuous solutions
since a hydraulic jump would be poorly approximated unless it occurred at a grid

point.



4.1 Approximate Quasi One-dimensional Flows

In this section methods will be developed to calculate quasi one-dimensional ap-
proximations to the shallow water equations using three of the variational prin-
ciples of Section 2 — (2.14), (2.18) and (2.19). The constrained ‘r’ principle
(2.19) involves a functional of the variable d, the fluid depth, alone and is used to

generate an approximation to d.

4.1.1 The Constrained ‘r’ Principle

Let the domain [z, z,] be divided into n — 1 intervals by the set of points x; (i =
1,...,n). The finite element approximation d", to the depth function d, is defined
on this grid by

dh(:zj) = idiai(:p), (4.1)

where the o; (1 = 1,...,n) are finite element basis functions and the d; (i =
1,...,n) are the coefficients of the approximation at the grid points x;.

The finite element approximation to d is defined to be the function for which
the constrained ‘v’ functional, J; in (2.19), is stationary within the space spanned

by the set of basis functions. Let

Li(d) = / B (r(Q.d") + Ed") da (4.2)

where Q(x) = ggf), d" is given by (4.1) and d = (dy, ..., d,)T. The finite element

solution is such that L, is stationary with respect to variations in d, that is,

DL, o
Fj(d):a—cxz/ Blra+E)a;de=0 j=1,....n. (4.3)
J

1

This system of equations can be solved using Newton’s method. The Jacobian,

J, is given by

J(d)={J;} = {ad} = {8d061l} = {/ Brgngno;a; d:z;} (4.4)
J Ut T

and is the Hessian of L;.

Given an approximation, d*, to the solution d a hopefully more accurate

approximation, d**!, is found using Newton’s method, that is,

d*tt = d* 4 sd*, (4.5)
where J (d*) 6d* = —F(d"). (4.6)

The process is repeated until
max ‘5df < tolerance. (4.7)




The Jacobian, J, and the vector F = (I, ..., F},)T are evaluated using the seven
point Gaussian quadrature formula.

It is possible to deduce properties of the expected solutions using the fact that
the Jacobian is the Hessian of L. From the definition of the function r(Q,d) in

Section 2.2, the second derivative of r(Q,d") is given by
2

Tghgh = F — 4. (48)
Substituting the definitions Q = d"v" and v"* = 2(E — gd") into (4.8) gives
2K
T'ghgh = dT — 39 (49)
The depth approximation d” is termed critical at a point if d* = 23—E This is in
g

agreement with the definition of critical flow in the exact solutions and corresponds
to a point where the velocity has the critical value ¢, = \/gd. From (4.9) it can
be seen that if the flow is subcritical, that is d” > %, then rgngn < 0 and if the
flow is supercritical, that is d* < %, then rgngn > 0. From (4.4) the Jacobian has
the form of a weighted mass matrix, where Brgn is the weight function. Thus
if the approximated flow is subcritical in the domain throughout the iterations J
is negative definite and the solution of (4.3) maximises L;. Alternatively, if the
iterated approximate flow is supercritical in the whole domain J is positive definite
and the solution of (4.3) minimises L;. If both subcritical and supercritical flow
occur during the iterations then J may be indefinite.

Thus, given the energy, F. of the flow, the mass flow at channel inlet, C,
and the breadth variation of the channel B(x), finite element depth solutions can
be generated for continuous flows which are either wholly subcritical or wholly
supercritical in the domain except for a possible region of critical flow.

The algorithm is implemented on the equi-spaced grid given by

1 —1

n—1

(v, —x.) t=1,...,n, (4.10)

T, =T+

where ., = 0, x, = 10 and n = 21. Two sets of basis functions are considered:
the first, ol (i = 1,...,n), leads to continuous piecewise linear approximations
and the second, af (¢« = 1,...,n — 1), gives discontinuous piecewise constant

approximations. The basis functions are defined by

ol(z) = { moe ©EleLT
0 x € [1’171’2]
;i__xﬁ S [xi—l,l'i]
ozi’(l‘) = ;:%; T € [T, Tip] i=2 . ..n—1, (4.11)
0 z € [xi—17$i+1]
d(z) = 4w ©ELnvEl
0 e [r,_1,7,]
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and

oi(e) = {1 TE T i=1,...n—1, (4.12)
0 =& (i 2ig1)

and are shown in Figure 1.
For the basis functions defined by (4.11), J is tridiagonal and (4.6) is solved
quickly for éd* using Gaussian elimination and back substitution. For the basis

functions defined by (4.12), J is diagonal and (4.6) is easily solved.
The energy, E, of the flow is taken to be 50 which gives a critical depth of

d, = % ~ 3.33. Two values of the mass flow at inlet, (', are used. One value
3

= Qg—]j* where (), is the critical mass flow (), = 517 (%)5 and B,

is the breadth of the channel at the point where B'(x) = 0 and the breadth is a

minimum — the channel throat. This generates approximations to flows which are

is given by C

critical at the channel throat. Non-critical flows are approximated by specifying
C' to be less than %.

Several breadth functions are considered. These are

Bi(z) = 6+4 (1 - (xi)) v € [re,wo), k=248, (4.13)

Ba(z) = 6+4|1— (xi) v € 2o, 1), (4.14)
_ fora(i-(=2)) welwas]

By(z) = { il (o) acinl (4.15)

For these breadth distributions the value of € yielding critical flows is 11.5 ; the
value C' = 10 is used to give examples of non-critical flows.

The tolerance on the Newton iteration in (4.7) is taken to be 1077.

The initial approximation, d°, to the solution d affects whether the converged
finite element solution is an approximation to subcritical or supercritical flow. In
practice subcritical solutions are obtained by specifying d? > d, (: = 1,...,n) and
supercritical solutions are obtained by specifying d? < d. (1 = 1,...,n).

Using the piecewise linear basis functions (4.11) and the breadth distribution
By(z) (k = 2), Newton’s method converges to the supercritical solution from
the initial approximation d? = 1 (i = 1,...,n) in 11 iterations for critical flow
and in 5 iterations for non-critical flow. Subcritical solutions are obtained, using
d? =4 (i = 1,...,n), in 6 iterations for critical flow and 3 iterations for non-
critical flow.

With the piecewise constant basis functions (4.12) and the breadth distribution
Bi(z) (k = 2), the supercritical solution, using d? =1 (« = 1,...,n), is found

after 10 iterations for critical flow and 5 iterations for non-critical flow while the

11



subcritical solution, using d? = 4 (¢ = 1,...,n), is found after 5 iterations for
critical flow and 3 iterations for non-critical flow.

Figure 2a shows the finite element depth approximations for critical and non-
critical flows in a channel with breadth distribution By(x) (k = 8). The top two
solutions are approximations to subcritical flows and the other two approximate
supercritical flows. Figure 2b shows a linear interpolation to the breadth function
using the 21 grid points given by (4.10). The sides of the channel are almost
parallel for much of its length where the breadth is smallest so the depths of the
critical flows are close to the critical value for some distance around the point
x = 5.

Figure 3a shows the finite element approximations for the breadth distribution
Bs(x) where v = 7.5 and 0 = 1.5. The linear interpolation of the breadth function
is given in Figure 36. The depth approximations are critical in value only at the
point of the channel throat, that is, at = 7.5.

If the components of the initial approximation d° are close to the value of
the critical depth d, then it is possible that the Jacobian may become indefinite
during the iteration and Newton’s method may not converge. The method may
also fail when approximating certain critical flows. This is due to the subcritical
and supercritical solutions being close together in a region of near-critical flow. In
this case, for a subcritical approximation the iteration process may calculate the
supercritical solution at nodes near the channel throat. This causes the Jacobian
to become indefinite. One way to prevent this is to reassign any supercritical
values to be slightly subcritical, then the Jacobian remains negative definite. The
supercritical approximation to a critical flow may need a similar adjustment.

Thus finite element approximations to quasi one-dimensional depth variations
in a channel can be calculated using the constrained ‘v’ principle (2.19). The algo-
rithm is now applied to the constrained ‘p’ principle (2.18) to generate piecewise

linear approximations to the velocity potential.

4.1.2 The Constrained ‘p’ Principle

The algorithm of the previous section is applied to the quasi one-dimensional ‘p’
principle, constrained to satisfy v = ¢’, (2.18).

The domain is divided into n — 1 intervals, by the points «; (¢ = 1,...,n),
as before. The z; are defined by (4.10). The finite element approximation to the
velocity potential ¢ is given by

o"(x) =3 i), (4.16)

=1
where the a; (¢ = 1,...,n) are the piecewise linear basis functions (4.11) and the
¢; (1 = 1,...,n) are the values of the finite element approximation at the grid

12



points x;.
Let N
La(¢) = [ Bp(@". B)de + CB. (@) = 6" (e1))  (417)

1
where ¢ = (¢y,...,8,)T. The finite element approximation to the velocity poten-
tial is given by ¢ such that L,(¢) is stationary, that is,

0L,

The solution is found using Newton’s method. The Jacobian, J, is given by

J(@p) =1{Ji} = {gf;;} = {83;;;]} = {/:n Bp¢h/¢h/oz/oz/d:1;}

and 1s the Hessian of Ly. As for the ‘t’ principle, the Jacobian can be used to

/ " Bpyi! du+C B, (ai(2,) — aiz1) = 0i = 1,...,n. (4.18)

give information about the approximations. From the definition of the function

p(v, E), the second derivative of p(qﬁh/, FE) is given by

Dgh'ph! = ; (g (¢h/)2 B E) .

Using the constraint v = ¢', an approximation, v", to the velocity, v, is given by
v" = @M. The critical speed ¢, is defined by ¢, = % so that subcritical solutions,
with v* < ¢,, have pygnignt < 0 and supercritical solutions, with v" > ¢, have
pgnignt > 0. Thus, for subcritical flows J is negative definite and for supercritical
flows J is positive definite.

Given an approximation, ¢*, to the solution ¢ a hopefully more accurate

approximation, ¢!, is given by Newton’s method, that is,

! = " +49", (4.19)
where J (") 5¢* —F (¢"). (4.20)

The process is repeated until
max‘5q§f‘ < tolerance. (4.21)

The Jacobian and the vector F are integrated exactly. The Jacobian is again
tridiagonal and (4.20) is solved by Gaussian elimination and back substitution.
The initial approximation, ¢°, to the velocity potential is given by
t—1

qbQ:n_lvo i=1,....n (4.22)

Y is assigned a value which determines whether the solution being calcu-

where v
lated will be the suberitical or the supercritical approximation. If v° < ¢,Z2=%= the

solution will be subcritical and if v° > ¢, £2=%= the solution will be supercritical.
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The algorithm is implemented on the grid given by (4.10) where z. = 0,
z, = 10 and n = 21. The energy E is again taken to be 50. Approximations to
flows in channels with breadth distributions given by (4.13)—(4.15) are considered.
The two values of mass flow at inlet ¢' = 11.5 and €' = 10 are used to generate
critical and non-critical approximations.

Using By(z) (k = 2) and with a tolerance on the Newton iteration of 1073 the
method converges to the subcritical solution in 4 iterations using v° = 2 and to
the supercritical solution in 4 iterations using v = 4 for non-critical flows. For
critical flows the method converges to the subcritical solution in 6 iterations using
v = 2 and to the supercritical solution in 7 iterations using v® = 4.

Results for the quadratic channel breadth case are shown in Figure 4. The
approximations are for supercritical flow which is critical at the channel throat.
Figure 4a is the linear interpolation of the breadth function at the 21 grid points.
Figure 4b is a piecewise constant approximation to the velocity, calculated using
v" = ¢" on each element. Figure 4¢ is the piecewise linear approximation to the
velocity potential.

Thus the constrained ‘p’ principle (2.18) can be used to calculate a piecewise
linear approximation to the velocity potential and hence a piecewise constant

velocity approximation.

4.1.3 The Unconstrained ‘r’ Principle

The algorithm used in Sections 4.1.1 and 4.1.2 is now extended and applied to
the quasi one-dimensional unconstrained ‘v’ principle (2.14) to generate piecewise
linear approximations to depth, velocity potential and mass flow.

The approximations are defined on the grid given by (4.10) with z. = 0,
x, =10 and n = 41. They are

0'() = 3" Q) , d(e) = Y (o), ) =3 bnle) (423)
=1 =1 =1
where the o; (¢ = 1,...,n) are the piecewise linear basis functions (4.11). The

approximations (4.23) are substituted into the functional for the discrete version
of the ‘r” principle (2.14), given by,

Ly(Q.d,¢) = |

T

B (r(Q",d") + Ed" — 6" Q") dx + CB. (¢"(x,) — ¢"(21))
(4.24)
where Q = (Q1,...,Q,)",d=(dy,...,d,)" and & = (¢1,...,¢,)T. The approx-

imate solutions are generated using the values of Q, d and ¢ such that

ILs 0Ly _, 9Ly _
2

od; — 7 0Q;

0 i=1,...,n. (4.25)

14



Equations (4.25)5 yield
— /xn Be'Q" de + CB. (i(z,) —ai(20)) =0 1=1,...,n,

which may be rewritten as

2 o
ZQ]/ Ba)a;de = —-CB;,
i=1 u
i+1 Tit1
ZQ]/ Bajajde = 0 t=2,...,n—1,
7=1—1 Ti-1
Z Q]/ ! Ba,/a;dz = CB.,
j=n—1 Tn—1
or as
49Q = Co. (1.26)

where Ag is a constant n x n matrix and Cg is a constant n x 1 vector with only

first and last entries non-zero. The matrix Ag is of rank n — 1 and is singular

but, using the boundary condition @)1 = C, the solution of (4.26) is unique. Ag is

tridiagonal so Q is calculated using Gaussian elimination and back substitution.
Equations (4.25); yield

/an(rdh—l—E)ozid:Jc:O 1=1,....n

1

which, once Q" is known, can be solved for d" in the same way as in Section 4.1.1.

Equations (4.25)y give

/an(rQh—th/)ozidx:O v=1,...,n,

1

which may be rewritten as

2 xr2 T2
Z ok / Bayaj'dx = / Brgnay dz,
j=1 T T

1+1

Tig1 , Tig1 )
Z qb]/ Boja' dr = / Brorajdz  1=2,...,n—1,
j=i—1 Tyi—1 Tyi—1
n Tn Tn
Z qb]/ Ba,aj' dx = / Brora, dz,
j=n—1 Tn—1 Tn—1

or as

Ay = Cy,
where A, is an n x n matrix and C, is an n x 1 vector. Once ¢" and d”" are known
@ can be calculated directly. The matrix A, is of rank n — 1 and singular but
¢ 1s a potential function and the important quantity is its gradient so one of the
values, say ¢1, can be specified arbitrarily. This procedure is equivalent to setting

the arbitrary constant in ¢ by assigning its value at the boundary.
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Results for critical flow in a channel with breadth Bi(z) (k = 4), given by
(4.13), are shown in Figure 5. The energy F is taken to be 50. The piecewise
linear approximation to mass flow is given in Figure 5a. The piecewise linear
approximations to the velocity potential and depth for a supercritical flow are
given in Figures 5b and He¢ respectively. Figure Hd shows an approximation to the
velocity, the height of each dot representing the magnitude of the velocity over a
particular element.

Results for the corresponding subcritical flow are given in Figure 6.

Thus the quasi one-dimensional variational principles of Section 2 can be used
to generate finite element approximations to all the variables of shallow water
motion. The methods developed so far in this section are now extended to give

an algorithm for generating such approximations in two-dimensions.

4.2 Approximate Two-dimensional Flows

The methods of Section 4.1 are extended and used on the constrained ‘p’ principle
(2.12) to generate two-dimensional approximations to the velocity potential. The
approach is essentially the same as the one-dimensional method.

The domain in two dimensions is approximated by a triangular grid. The finite

element approximation ¢" to the velocity potential is given by

p

¢h(x7y) = Z¢262(x7y) (4'27)

i=1
where the 3; (+ = 1,...,p) are two-dimensional finite element basis functions
defined on the triangular grid and the ¢; (¢ = 1,..., p) are the coefficients of the
solution.
Let the domain for the discrete version of the constrained ‘p’ principle (2.12)

be D", the region covered by the triangular grid. Consider the functional

// (Vo' E) d:z;dy—l—/ O dz+/ O dy,

where @ = (¢q,...,¢,)" and ¥, and X, are the inlet and outlet boundaries of D".
The finite element solution is defined by the ¢ which is such that L4 is stationary

with respect to variations in ¢, that is,

8L4

Fi(é) = // pv(thﬂd:z:dy—l—/ CﬂdZJr/ CBAS =0 i=1,....p.

The solution can be found by Newton’s method in the same way as before. The

Jacobian is given by

100 = ) = { e b = { o =[], T Vdeas}.
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Given an approximation, ¢”, to the solution ¢ a hopefully better approximation,
@"t! is given by Newton’s method, that is,

! = " +49", (4.28)
where J (¢") 5¢* ~F (¢"). (4.29)

The process is repeated until

max ‘(Mf
K3

< tolerance. (4.30)

The channels used for illustration are all symmetric about the x-axis so that only
one half of them need be considered. This does not affect the specification of the
boundary function €' since the symmetry implies that there is no mass flow across
the axis of symmetry.

The triangular grid for each domain is defined using the grid points

Tit(j—tyn = 72:11(51?0—51?5)4'1‘5 i=1,....n,7=1,...,m,
yi-l—(j—l)n == %T]n;—llB (wi-l—(j—l)n) = 1, BRI N j = 1, S

where p = mn. An example of a grid for n =9 and m = 7 is given in Figure 7.

The finite element basis functions are defined on a triangular grid. The basis
function corresponding to a particular node is piecewise linear over each element
surrounding a node, of magnitude one at the node, zero at all other nodes (see
Figure 8). Using these basis functions the integrands of the Jacobian and the
vector F = (F,...,F,)T are constants over each element of the grid, so the
Jacobian and F are integrated exactly.

The Jacobian for Newton’s iteration is no longer tridiagonal, as it was for the
one-dimensional case. However equation (4.29) may still be solved efficiently for
§¢" using a pre-conditioned conjugate gradient method [5]. The Jacobian .J is pre-
conditioned by its diagonal entries, that is, by the matrix P = diag (Ji1, ..., /).
The system

P (@h) 7 (@") Pt (¢F) sut = =Pt (o) F (&)

is solved for 6% by the conjugate gradient method. Then the solution §¢" is
given by
5¢k _ p-! (¢k) 5¢k'
The effect of this pre-conditioning is to improve the convergence rate of the con-
jugate gradient iteration ([6]).
The algorithm is implemented for channels with various breadth distributions.
The sides of the channel are taken to be parallel on the intervals [z, 0] and [10, z,],

where v, = —[ and x, = 104 for different values of [. The breadth varies only on
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the interval [0, 10]; in this way any inconsistencies in the definition of the boundary
function C' can be studied. The breadth distributions used are

2
B(x) = 6+4(1—2)" 2€(0,10]
! 10 v € [~1,0] U10,10 + 1],
10 x € [—1,0]
2
Bs(z) = ¢ 6+4(1-2)" 2€]0,8]
6+4(2) wels10+1,
6+1(1-2) 2c[0,3
Bs(r) = {1 6+4(2-2) 2e 3,10
10 v € [~1,0]U[10,10 + 1].

The initial approximation, ¢°, to ¢ is given by

qs?:(xi_xe)vo i=1,....,p, (4.31)

Ty — Iy

where v°

is assigned a value which determines whether the subcritical or supercrit-
ical approximation is calculated. In theory, if v < ¢, Z2=% the algorithm generates
the subcritical solution and if v > ¢,22=2= the supercritical solution is found.

The energy E is taken to be 50. Two types of boundary conditions are
employed. The first is that C'(y) = —K, where K is a constant, on ¥, and
Cly) = % on Y, which is consistent with conservation of mass. The second
boundary condition is given by C(y) = Ky + Kyy on ¥, and C(y) = —(K; + Kyy)
on Y, where K| and K, are given constants and B, = B,.

Results are given for the first type of boundary condition with K = 10.

Consider the breadth distribution By(x) with [ = 1, n = 5 and m = 3. For
this domain Newton’s method, with a tolerance in (4.10) of 1072, converges to
the subcritical approximation in 4 iterations requiring respectively 5, 7, 7 and 8
conjugate gradient iterations with a tolerance of 107!, On a refined grid, with
[ =1, n =7 and m = 5, and using the same tolerances, Newton’s method
converges to the subcritical approximation in 5 iterations requiring 12, 13, 15,
16 and 5 conjugate gradient iterations. In both cases ¢ is given by (4.31) with
v’ = 0. Both of the approximations exhibit the property of the exact subcritical
solution that the speed increases as the channel breadth decreases. They also
approximately satisfy the boundary conditions of zero flow across the channel
sides and the axis of symmetry y = 0. The change in the approximate speed
with breadth is represented better on the refined grid, in particular the maximum
speed has increased and the minimum decreased. Increasing the resolution of a
more refined grid has less effect on the velocity approximation.

Two-dimensional approximations to supercritical flows were not found accu-

rately by this method. The best results were generated by using the supercritical

18



one-dimensional approximation to ¢, calculated in Section 4.1.2, as the initial

approximation ¢°, that is,

¢?+(j_1)n:q§i t=1,....n,73=1,....m,

~ ~

where ¢ = (qﬁl,...,q;n)T is the one-dimensional solution vector. Then, using

k
By(x) with | = 5, n = 5 and m = 3, the ratio max, 00|

max;
k

B

reached a minimum

X

of 2.35 x 1072 for 4 Newton iterations but increased as the iterations continued.
The approximate solution at £ = 4 is shown in Figure 9. This is the piecewise
constant velocity approximation calculated from v* = V¢" on each element, the
length of the arrow in each element being directly proportional to the magnitude
of v*. The failure of the method to converge completely in this case might be the
result of the occurrence of a hydraulic jump in the supercritical flow for the shapes
of channel considered. The approximation does exhibit certain properties of the
exact solution in that the magnitude of the supercritical velocity decreases as the
channel breadth decreases and the flow directions appear to be approximately
consistent with the boundary conditions of zero flow across the channel sides and
the line of symmetry y = 0.

Figures 10 and 11 show approximations v* to the velocity for subcritical flows.
The breadth variation in each case is By(x) and several values of [ are considered.

Figure 10 is the approximation for [ = 1, n = 9 and m = 7. The increase in
the magnitude of the velocity as the breadth decreases can be clearly seen and
this agrees with the behaviour of exact subcritical solutions. Notice also that the
speed is greater close to the z-axis than it is near the channel sides.

Figure 11 shows the consequences of increasing the lengths of the sections of
the channel where the sides are parallel. In Figure 11a [ = 15 and in Figure 1156
[ = 5. It can be seen that increasing [ from 5 to 15 has very little affect on the
approximation in the region between the lines + = —5 and = = 15. Also notice
that the velocity in the domain {(x,y): « € [—15,—=5],y € [0, B(x)]} is virtually
constant and parallel to the channel sides.

This justifies the use of the boundary conditions C'(y) = —K on ¥, and C'(y) =
KB.
B

o

on Y, for [ >~ 5 which should ideally be applied at the ends of an infinitely
long channel since they assume that the flow is uniform across the inlet and outlet
cross sections.

Thus, the algorithm given in this section can be used to generate a two-
dimensional piecewise constant approximation to the subcritical velocity in chan-

nels of various breadth distributions.

The methods of this section are all concerned with approximating continuous
solutions of the shallow water equations of motion. In Section 5 approximations

to discontinuous solutions are considered.
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5 Solutions on Variable Grids

In order to be able to approximate discontinuous shallow water flows and to im-
prove approximations to continuous flows, methods of generating grid dependent
solutions are now considered.

First, the constrained ‘v’ principle (2.19) is used to generate a piecewise linear
approximation to a discontinuous depth variation on a grid with just one ad-
justable node. This node is placed at the discontinuity by applying the jump con-
ditions of Section 3. The method is modified slightly to generate approximations
to continuous depth variations on variable grids. This idea is extended further to
give a second algorithm for approximating discontinuous solutions. Finally, the
constrained ‘p’ principle (2.18) is used to generate piecewise linear approximations
to the velocity potential on a solution dependent grid generated directly from the

variational principle.

5.1 The Constrained ‘r’ Principle
5.1.1 Grid with One Moving Node

Consider the constrained one-dimensional ‘t” principle (2.19). Let the domain of
integration, [x.,x,], be split into n — 1 adjacent intervals by the points x; (¢ =
L,...,n) given by (4.10). In order to approximate discontinuous flows one of these
grid points must be chosen to be the initial approximation to the position of the
discontinuity. This requires deducing which of the nodes is nearest to the actual
position of the hydraulic jump. Let N = n — 1 be the initial guess for the number
of this node in the grid given by (4.10).

The basis of the method to approximate discontinuous flows is to generate
approximate solutions in front of the jump and behind the jump and to couple
the two approximations by means of a discontinuity at the position of the jump.

The energy F of the flow in front of the jump is given by the specified value
E€. Let the approximation to the depth in this region, [z, 2], be

&(@) = 3 dia (o),

where
wiey | 255 welmal
0 x & |11, 2]
;l_—l;l__ll z E [xi_17 xl]
Oéf(l’) - ﬁ xE[wi,l'H_l] i:2,...,N—17
0 € € [51?2'—1751?2'4-1]
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IN—TN-1

STENL 4o [enoy, 2]
0 v & [tn-1,2N]

The energy F of the flow behind the jump is £°, which is calculated from the
specified outlet depth using conservation of mass and the definitions of mass flow
and energy £ (2.1) and (2.2). Let the approximation to the depth in the region

[N, x,] be given by

n

@(x)= Y dal(e).

=N
where
INAITE o [an, T
a]ov(x) — TN41—TN [ N>y N-|—1] :
0 T & xN, tni]
;—_9;11—_11 T C [ i1, ]
af(z) = § I e v, ai] i=N+1,....,n—1,
0 T € [xz 1, & Z+1]
Tl g v, T
agfe) = § T TE Mt
0 T Q[ Ln-1,T ]
The discontinuous approximation is given by the values of d* = (dS, ..., d%)T,

d° = (dS,...,d°)T and xy such that

L(d°,d% an) :/

CB(Qu)+ B det [T Br(Qua) + BU) de (5.1)

1

is stationary with respect to variations in d, d° and xy. The algorithm which
generates the approximation is in two parts.

First, with the grid points fixed, seek the supercritical solution d® such that
the functional L in (5.1) is stationary with respect to variations in d°. This is done
using Newton’s method as in Section 4.1.1. Also, seek the subcritical solution d°
such that L is stationary with respect to variations in d° by the same method.

The approximation, xy, to the position of the jump is improved by employing
the jump condition. If x, is the exact position of the discontinuity and d is the

exact solution then, from (3.9), the jump condition is

(r(@,d) + E*d)|, , — (r(Q,d) + E°d)|, _ =0.

If
(7 (Qd) + Edf)|,, — (r(Q,d°) + E°d”)], | < tolerance, (5.2)

for some specified tolerance, then the approximate solution has been found and
xy is the approximate position of the hydraulic jump. If (5.2) is not satisfied then
a new approximation to the jump position is found using the jump condition as

follows.
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The equation
r(Qs,dy) + E¢dy — r(Qs,dy) — E°dy =0 (5.3)

is solved to give the value, (),, of the mass flow which would occur at the jump
it di; and d};, were the actual depths of the flow before and after the jump. The
‘v’ principle (2.19), and therefore (5.1), is constrained to satisfy conservation of

mass, that is,

Q(z)B(x) =CB. € [z, 1, (5.4)
Since the breadth distribution is to be specified, (5.4) can be used to find the

point % in the channel where the mass flow is of magnitude Q,. Using the
known breadth variation, B(x), on the outlet section of the channel the value of

2% is found by bisection from

OB,
Qs

It is conjectured that the point 2 is closer to the actual jump position than the

B ()

(5.5)

point xp.

The algorithm for positioning a node at the jump is in two parts. Firstly,
beginning with N = n — 1 the corresponding value of 27! is found. Then,
stepping backwards along the channel to the n — 2 th node, the value of 2”2
is found. TIf (2, 1 — 2" Y (2, —277?) < 0 then x, lies between z,_, and
x,_1. Otherwise the process is repeated until the node j is found such that
(v; — 29) (zj_1 — 2271) < 0. Then, if |z; — 27| < |z;_1 — 227, the number, N, of
the node to be moved to the jump position is j; otherwise N = j — 1.

Once the number of the node to be moved to the jump position has been
established (5.3) is used in an iteration process to position the node at the jump.
The node xy is moved to the position #Y¥ which is calculated from (5.3) and (5.5).
The finite element approximation to d is re-calculated on the modified grid and
if (5.2) is still not satisfied (5.3) is solved for @, then (5.5) yields a new Y. The
node xy is moved to ¥ and the process is repeated until (5.2) is satisfied. The
approximate solution has then been found and zy is an approximation to the
jump position.

The algorithm is applied to a grid with ., = 0, 2, = 10 and n = 21. The

breadth distributions considered here are
2\ K
B7(:1;):6—|—4<1—5) r € lr,z,], k=24

The energy F is taken to be 50 and the mass flow at inlet €' is assigned the value
which causes the flow to become critical at the channel throat, that is, C' = 11.5.
Under these conditions, for a tolerance on the Newton iteration of 107 and

on the jump condition (5.2) of 1072, the method converges to a discontinuous
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approximation, with outlet depth specified to be 4.6, in 4 iterations on the position
of the discontinuity once the node to be placed at the discontinuity has been found.
These iterations require 11, 8, 6 and 6 Newton iterations. The initial values of the
approximation at the nodes of the original, regular grid are ¢ =1 (¢ =1,...,N)
and d? = 4.6 (¢ = N,...,n). Once the number of the node to approximate the
jump position has been deduced, subsequent approximations to the finite element
solution use the approximation on the previous grid as the first guess in Newton’s
method to find the approximation on the new grid.

Figure 12 gives a result for B7(z) (k = 4). Figure 12a is an approximation
to discontinuous flow caused by specifying the outlet depth to be 4.68; the flow
is supercritical before the jump and subcritical afterwards. The number of the
node which has been moved to the jump position is 15. Figure 12b is the linear
interpolation of the breadth function at the grid points.

The algorithm given in this section is a method for generating an approxima-
tion to a discontinuous flow in a channel, given the energy and mass flow at inlet,
the breadth distribution and the depth at outlet. It uses a grid where all of the
nodes except one are fixed. The algorithm causes the one movable node to be
located at the position of the hydraulic jump.

In Sections 5.1.2 and 5.1.3 this method is extended and applied to a grid where

all the internal nodes are allowed to vary.

5.1.2 Grid Dependent Solutions

In this section the constrained ‘t” principle (2.19) is used to calculate a piecewise
linear approximation to the depth on a solution dependent grid where all the
internal grid points are allowed to move.

The domain of integration [z, z,] is divided into n — 1 adjacent intervals by
the points x; (¢« = 1,...,n) given by (4.10). The method is to generate finite
element approximations to the depth on each interval [z, z,44] (1 = 1,...,n — 1)
and use the jump condition at each internal node to reposition the node. Instead
of just two finite element approximations coupled at a point, as in Section 5.1.1,
there are now n — 1 solutions coupled at the n — 2 internal nodes.

Let d”(z) be the finite element approximation to d in the 7 th element, [x;, z;41],

given by
df(:z;):dfozf(x)—l—dﬁof(x) t=1,....n—1, (5.6)
where
TR x € [y,
aZL(x) — { Tip1 =T z [l‘ x -I-l] i = 17 n— 17
0 | r & {x27xi+1} (5.7)
— S 19 g .
af(z) = w5 LT r=1,...,n—1
0 o fr,zu]



The finite element solution on each element is given by the values of d; = (d¥, d%)T
such that

Tn

L(d,....d, 1) :/x B(r(Q.d") + Bd") da (5.8)

is stationary with respect to variations in d; (¢« = 1,...,n — 1). The solutions

1

are found using Newton’s method, as previously, except that there are now n — 1
problems, each with 2 unknowns.
Once dy,...,d,_1 have been calculated, the positions of the internal nodes are

allowed to vary using the jump conditions. If

(r (Q.d!) + Ed)

- (7” (Q?dz}'b—l) + Edzh—l)

< tolerance (5.9)

7

T

for a specified tolerance and for all + = 2,...,n — 1, the required approximation
has been found. If (5.9) is not satisfied for any value of ¢ = 2,...,n — 1, the new

position of the grid point is found by solving
r(Qud) + BdE —r (Q,.d,) — Bd =0

for ()s. The new position for z; is calculated from () using the conservation of
mass equation and bisection. The finite element solutions are found for the new
grid and the procedure is repeated until (5.9) is satisfied.

The algorithm is applied to a channel where the breadth distribution is given
by

—8 -2
Bg(x) = 10 4 2tanh (12)43) — 2tanh (12)43) r € |z, 1., (5.10)

where z. = 0, z, = 10 and n = 21. The energy F is taken to be 50 and the mass
flow at inlet, (', is assigned the value which causes the flow to be critical at the
channel throat, that is ¢’ = 11.5.

Figure 13a shows the subcritical approximation to the depth under these con-
ditions. A piecewise linear interpolation of the breadth function is given in Fig-
ure 13b. The dots in Figure 13a are the final positions of the grid points. There is
a slight movement of the nodes to regions where the breadth function has highest
curvature. These correspond to regions where the depth function also has high-
est curvature and so improve the piecewise linear approximation from the case
of a fixed, regular grid. Notice that the jump in the value of the depth approx-
imation at each node is small, that is, the discontinuous piecewise linear depth

approximation is nearly continuous.

5.1.3 Discontinuous Grid Dependent Approximations

The methods of Sections 5.1.1 and 5.1.2 are combined to create an algorithm for
generating approximations to discontinuous depth solutions on solution dependent

grids using the constrained ‘r’ principle (2.19).
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The domain [z., x,] is divided into the n— 1 intervals [z;, ;41] (1 = 1,...n—1)
by the points z; (i = 1,...,n) given by (4.10). Let d"(x) be the finite element
approximation to d in the i th element [z;, ;1] where d%(z) is defined by (5.6)
and the basis functions are given by (5.7).

The solutions d; = (d¥,d®)T are sought such that (5.8) is stationary with
respect to d; for ¢ = 1,...,n — 1. The energy E in the integrand of (5.8) is
assigned a value depending on whether the ¢ th interval is in front of or behind
the node which is chosen to be the initial approximation to the position of the

hydraulic jump. Let the number of this chosen node be N then

E=F if 141N
and E=F° if >N,

where F° is the value of E at inlet and E° is the value of £ at outlet which is
calculated from the specified value of the outlet depth.

The solutions d; (¢ = 1,...,n — 1) are found using Newton’s method, as
previously.

Once thed; (: = 1,...,n—1) have been calculated on the initial grid the jump

condition is applied at each internal node. If

(r (Q,df) + Eldf) - (r (Q,dﬁ_l) + Ezdﬁ_l) | < tolerance, (5.11)
where
E1:E2:Ee lfl<]\/v7
E,=F°, E,=F° ifi=N,
EleQZEO lfl>]\/v7
forall: =1,....,n—1 and given a specified tolerance, the required approximation

has been found. If (5.11) is not satisfied for a certain value of 7 then the new

position of the corresponding grid point, z,, is found by solving
r(Qudb) + Bydl —r (Qidly) — Eydf =0 (5.12)

for );. The new value for z; is found from @); using the conservation of mass law
and bisection.

The grid point closest to the jump position is found in the same way as in the
method of Section 5.1.1. The approximation, z, to the jump position is initially
taken to be x,_;; equation (5.12) then yields a better approximation z”~! to the
jump position. The process is repeated next using z,_, as the approximation to
the jump position and then continuing back along the channel using each grid
point in turn until (z;_; — 227%) (2; — ) < 0 for some j. Then, if |z; — 2!| <
|z;_y — 2471, N = j is the number of the node which will be moved to the jump

position; otherwise N = j — 1.
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With N fixed the n — 1 finite dimensional approximations (5.6) are calculated
on the new grid using the solution on the previous grid as the initial guess in
Newton’s method. If (5.11) is not satisfied for some ¢ in the range 1,...,n the
grid points are repositioned using (5.12). The process is repeated until (5.11)
is satisfied for all ¢ in the range 1,...,n. An approximation to a discontinuous
shallow water flow has then been found.

The algorithm is applied on a domain where . = 0, x, = 10 and the breadth

distribution is given by

k
Bo(z) :6—|—4<1— ‘;) v €[] k=24

The number of grid points n = 21. The energy F is taken to be 50 and the mass
flow at inlet ' is given the value which causes the flow to be critical at the channel
throat, that is C' = 11.5.

Figure 14 gives solutions for the breadth distribution By(x) (k = 2). Figure 14a
shows the depth approximation for an outlet depth of 4.6. The number of the
node which is placed at the jump position is 15. Figure 145 is the piecewise linear
interpolation to the breadth function using the 21 grid points. The position of
the 15th node has moved to be at the jump position from its initial location. The
other nodes have hardly moved, the curvature of the breadth function not being
as large as, for example, that of the breadth function given by (5.10). Given a
tolerance in (5.11) of 0.5 the method converges in 4 iterations on nodal positions.
Figure 14¢ is the corresponding depth approximation for an outlet depth of 4.0

which, for the same tolerance, converges in 5 iterations.

The methods of Sections 5.1.1, 5.1.2 and 5.1.3 yield piecewise linear approx-
imations to continuous and discontinuous depth functions. They use the jump
condition derived in Section 3 to create solution dependent grids. An alternative
method is now described using the constrained ‘p’ principle (2.18) to generate a

piecewise linear approximation to the velocity potential on a variable grid.

5.2 The Constrained ‘p’ Principle

Consider the one-dimensional constrained ‘p’ principle (2.18).
Let the domain of integration [z., z,] be divided into n — 1 intervals [z;, 2;41]
(¢=1,...,n—1) by the points x; (¢ = 1,...,n) given by (4.10). Let
¢h(l’a X) = Z 452'042'(:1?, Li_1, T4, :1?2'+1)

=1

be the finite element approximation to the velocity potential ¢. The basis func-
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tions a; (¢ = 1,...,n) are the piecewise linear basis functions given by

L2 c
Oél(l’,l‘l,xg) = T2—T1 z [1?1,1’2] 3
0 Z € [xlv $2]
;—_xﬁ T € [T, 1]
(T, o1, T, Tigr) = ;%ffff% r € (x5, 2i44] i=2,...,n—1,
0 v & [Ti1, Tiga]

T—Tn—1

Oén(win—l,l'n) = { Tp—Tn—1

xe[nlvx]

0 T €[ Tp—1,7 ] 7
the ¢; (¢« = 1,...,n) are the values of the approximation at the z; and x =
(21,...,2,)T is the vector of nodes of the grid. The discrete version of the func-
tional in (2 19) is given by

(/ b [T )Bwﬁ E) da+ CB. (6" (2a,%) = 0" (21,%))

where ¢ = (é1,...,¢,)T and o = 8(‘5;. The finite element solution for the

velocity potential is found by solving the set of equations

Fi(¢,x) = (/ +- —I—/ )Bp¢h/ozi’dx+CBe[ozi]§;‘:0 1=1,....n
(5.13)
for ¢. This is done by Newton’s method, as previously.

New positions for the grid nodes are found by solving

Gi(qb,x):g:i _ (/ 4. +/ )Bp¢h/ /dx

o™
+CB, la ] —0i=2...,n—1 (5.14)
Z; -

for #; (1t =2,...,n — 1) by Newton’s method.
The process of solving alternately (5.13) and (5.14) is repeated until either

oL

oL
Xi
i|10

— ) < tolerance
g

or until successive values of

oL oL

ox;

maX

) (5.15)

max (maX

for the solutions change by less than some percentage.
Consider the domain [—5, 15]. Several breadth distributions are studied. These

are

6+4(1-2)" = el0,10]

Bio(z) = { 10 x € [—5,0] U[10,15]



Bu(e) 8+2cos (2£) x €[0,10]
X = 5
H 10 x € [=5,0] U [10,15]
Bual) 10+ 2tanh 2 (2 — 8) + 2tanh 2 (2 — ) « € [0, 10]
xT =
- 10 z € [=5,0] U [10,15]

The energy FE is assigned the value 50 and the mass flow at inlet ¢ = 11.5.
Let the criterion for convergence using (5.15) be that the value of (5.15) changes
by less than 5%.

Consider a domain where the breadth is given by By;. Let the number of grid
points n = 9. Then the method converges to the subcritical approximation in 11
iterations on the nodal positions, to the supercritical approximation in 3 iterations
and to a transitional approximation in 17 iterations.

The associated piecewise constant velocity approximations, calculated using
v" = ¢"' are shown in Figure 15. Figure 15a shows the supercritical approxi-
mation. The grid points have not moved from their original positions given by
(4.10). The subcritical approximation is given in Figure 15b. The grid points have
moved towards the midpoint of the channel, that is, towards the region where the
curvature of the breadth is largest. Figure 15¢ shows an approximation to transi-
tional flow where the flow is supercritical at inlet, becomes critical at the channel
throat and then subcritical in the outlet section. Figure 15d shows the breadth
variation.

Figure 16 gives corresponding results for a grid with 41 nodes. There is a
slight node movement in the subcritical case (Figure 16b) and none at all in the

supercritical case (Figure 16a).
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Figure 1: One dimensional basis functions @) piecewise linear and b) piecewise

constant.

Figure 2: a) Depth approximations on a fixed grid and b) B;(x) (k = 8).
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Figure 3: a) Depth approximations on a fixed grid and b) Bs(x) v = 7.5, 0 = 1.5.

Figure 4: a) By(x) (k = 2), b) supercritical velocity and ¢) velocity potential

approximations on a fixed grid.

31



Figure 5: a)Mass flow, b) velocity potential , ¢) depth and d) velocity approxima-

tions on a fixed grid — supercritical case.
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Figure 6: a)Mass flow, b) velocity potential , ¢) depth and d) velocity approxima-

tions on a fixed grid — subcritical case.
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Figure 7: Example of a two-dimensional grid for By(x) (k = 2) with n = 9 and

m=171.

Figure 8: Two-dimensional basis function.

34



Figure 9: Supercritical two-dimensional velocity approximation.

Figure 10: Subcritical two-dimensional velocity approximation.
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Figure 11: Subcritical two-dimensional velocity approximations — a) [ = 15 and

b) =5

Figure 12: a) Depth approximation on grid with one moving node (d, = 4.68)
and b) B;(x) (k= 2).
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Figure 13: @) Subcritical depth approximation on an adaptive grid and b) Bs(z).
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Figure 14: a) Depth approximation on adaptive grid (d, = 4.6), b) Bo(x) (k = 2)
and ¢) depth approximation (d, = 4.0).
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Figure 15: Adaptive grid with n = 9 «a) supercritical velocity approximation, b)
subcritical velocity approximation, ¢) transitional velocity approximation and d)

Bii(x).
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Figure 16: Adaptive grid with n = 41 a) supercritical velocity approximation, b)
subcritical velocity approximation, ¢) transitional velocity approximation and d)

Bii(x).
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