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Abstract

Attendance patterns at professional football matches in England and Wales over three centuries
are analysed, with particular attention paid to the loyalty, or persistence, of spectators or fans at
different football clubs over different periods of time. We find that about half of an attendance can
be attributed to loyalty, and that patterns of loyalty have evolved considerably over time, and vary
across regions within England and Wales, although there is little significant team-by-team difference.
We also find that fans are not necessarily concerned about how balanced matches are expected to
be, and that they are motivated by their own team’s quality, and the geographic proximity of the
visiting team.

JEL Classification: NO, E21, Z0.
Keywords: Economic History, Consumption, Sport Economics.

1 Introduction

The demand for any good is of central importance, and the demand for professional football events is no
different. What is rather unique when it comes to professional football is the length of time over which
the numbers of people expressing a willingness to pay exist. For the English Football League, the oldest
professional football league in the world and operating in England and Wales, attendance data has been
recorded since the League began in 1888. Since 1888 139 different clubs have participated in the league,
providing a vast amount of data over three centuries. Data on match outcomes back to 1888 also exists,
allowing analysis of many of the determinants of attendance over a very long period of time.

In this paper, we analyse attendance at English Football League matches over three distinct centuries,
employing panel time series methods in order to determine the extent to which patterns of attendance
have changed over the years, and have varied from club to club. Of particular interest is what we might
attempt to identify as habit persistence. Have football fans become more or less persistent in their
attendance patterns over the years? Do fans differ between clubs, and across regions? These kinds
of questions regarding the persistence of football spectator behaviour are naturally important for the
financial viability of football.

*Thanks to Carl Singleton, and conference participants at the XII Gijon Conference on Sports Economics in 2017, the
5th Annual Sports Economics Workshop in Cork in 2019, and the Economics and management of Professional Football
Workshop in Rotterdam in 2017 for helpful comments on a draft of this paper.



We find variation across clubs, but more significantly around the regions of England and Wales, and
over time, in the persistence of attendances. Attendance patterns have become markedly more persistent
since the 1950s, and are particularly strong in the more traditional footballing parts of the country. The
more we control for various other explanatory factors (competitive balance, refined measures of team
quality, local interest), the less important is a change in league position for explaining attendance.

In Section [2| the relevant previous papers investigating demand for attendance are reviewed, in Sec-
tion 3] the modelling methodology adopted is set out, in Section ] our dataset and sources are introduced,
in Section [§] results from the econometric estimations are presented, and Section [6] concludes.

2 Literature

Many studies considering the demand for attendance at sporting events have been conducted, and as
such this review is bound to be only indicative of the range of areas covered, rather than exhaustive.

One of the first sports economics papers, [Neale| (1964)), discusses various aspects of the demand for
sport, from the Louis-Schmelling effect to illustrate the importance competitive balance, to the fourth
estate effect and league standing effect, illustrating the interest generated in the press in sport, but also
the impact of the league standing of sports teams as an indicator of their quality.

Hart et al.| (1975]) appears to be the first demand for attendance study, and considers Saturday after-
noon attendance patterns at four top division English clubs between 1969 and 1972 (Leeds, Newcastle,
Nottingham Forest and Southampton), and find that both geography, and the quality both teams mat-
ter significantly, although they attribute a significant proportion of variation in attendance to “a large
irrational element in the psychology of football support”.

Another early study of English Football League attendances was carried out by [Bird (1982)), at an
historic low-point in attendances in the early 1980s. He found that demand was income inelastic, hence
that at the time football was an inferior good. He also found that demand was price inelastic also.

Cairns| (1987 considered structural changes in the Scottish league and their impact on attendance.
He noted that changes towards smaller divisions in the early 1980s increased inequality in the distribution
of attendances.

Peel and Thomas| (1988)) and [Peel and Thomas| (1992)) both look at individual seasons within the
English Football League (1981/82 and 1986/87 respectively), and in particular investigate the impact of
competitive balance on attendance using bookmaker odds. In |[Peel and Thomas| (1992) they introduce
a measure of core support via lagged attendance numbers at particular clubs. In both cases they find
that fans prefer to see their team win rather than a highly competitive match, controlling for other
factors related to the quality of a given match. This is contrary to the widely-cited ‘uncertainty of
outcome hypothesis’, a theory traced back as far as|Neale| (1964]), that spectators prefer greater levels of
uncertainty when consuming a sporting event.

Both |[Peel and Thomas|(1996|) and |Szymanski (2001)) consider ‘natural experiments’ of repeat fixtures
between teams to evaluate attendance demand. |[Peel and Thomas| (1996]) consider Scottish leagues where
teams play each other twice home and twice away, creating repeat fixtures. They find further evidence
contrary to the ‘uncertainty of outcome’ hypothesis: fans prefer to see their team win rather than
an exciting game. In England, the FA Cup often provides repeat fixtures when two teams in the same
division are drawn against each other, and |Szymanski| (2001)) use this to show the impact of the decreasing
competitive balance in the FA Cup relative to the league on falling attendances — a more conventional
‘uncertainty of outcome’ finding.



Dobson and Goddard| (1996) consider the demand for attendance at football matches across the
regions of England and Wales, where the Football League operates, and takes advantage of time se-
ries methods to consider a long-run cointegrating relationship between attendance, ticket price, team
performance, and a number of more economic variables. Their time dimension is seasons, rather than
individual matches. They note that their price term can be removed from the long-run relationship, but
that in the long term unemployment matters strongly. They suggest minimal differences across regions
in terms of the loyalty of supporters, although they measure loyalty in terms of the short-run response of
attendance to team performance, rather than simply by the persistence in attendance patterns as might
be reflected by a lagged dependent variable such as that used by [Peel and Thomas| (1992).

Simmons| (1996) makes use of time series methods within a panel of urban-based football clubs to
conduct a more conventional demand analysis, finding evidence that more casual supporters are sensitive
to price changes, and finding more generally that standard footballing variables such as league position
do matter.

Peel and Thomas| (1996) consider the situation where league competitions include repeat fixtures.
This is true of the Scottish football league, where teams play each other four times, twice at each
team’s venue. Such repeat games control for many of the unmeasurable factors affecting demand. They
consider one season of football, and all of the three divisions of Scottish professional football. Their
findings suggest that supporters prefer to see their team win, rather than necessarily a highly uncertain
match with a lower likelihood of victory.

Garcia and Rodriguez (2002) investigate the demand for attendance in Spanish league football,
considering a panel of match-by-match data alongside extensive price data. The main objective of the
paper is to estimate demand elasticities, in particular to investigate the common finding of inelastic price
demand. They appear to confirm this finding, although they note that a range of estimates result from
varying the specification of the regression model.

Forrest and Simmons| (2002)) consider in detail the extent to which the uncertainty surrounding
outcome matters. They find that there is a non-linear relationship between uncertainty of outcome and
attendance, namely that demand peaks when a home team is slightly more likely than usual to win a
game, tailing off either side of this. They use betting prices to do this, and look at match-by-match
data. They also note the interaction between competitive balance and home advantage, noting that by
increasing equality across teams, the case of the home outsider facing a very strong visiting team would
be lost, an occasion that they argue from their data does lead to greater attendance.

Forrest and Simmons| (2006) conduct an analysis similar to that of |Garcia and Rodriguez| (2002)) for
English Football League teams around the turn of the twenty-first century, looking at match-by-match
data for the seventy two teams that make up the Football League. They note that capacity constraints
are much less binding in the Football League compared to the Premier League (a breakaway league of the
top 20 teams that were previously in the Football League) enabling them to model using conventional
least squares methods of estimation.

Dobson and Goddard! (1995) would appear to be the study closest to this one, considering 94 teams
over 67 seasons, finding a varied role for the price in the demand for attendance at different teams. They
are unable to consider match-level data, however, as we do in this paper.

Price data, generally, is the most difficult data to collect when conducting demand studies; by and
large, the best data any of the cited studies here have been able to use is gate receipts at the match level.
This doesn’t, however, control for the different prices that are often charged for admission to sporting
events. For example, seating areas rather than standing areas, and concession prices for young and old



people. [Reade] (2019)) and [Nalbantis and Pawlowski| (2018) are able to analyse data at individual ticket
price level. Such data, naturally, is limited to particular clus, and particular eras, and hence the results

may not necessarily be applicable more widely.
Baimbridge et al| (1996]), Buraimo and Simmons| (2008) and Buraimo and Simmons| (2015) consider
the distinction between spectators in the stadium, and watching on TV. |Baimbridge et al.| (1996) argue

TV coverage reduces stadium attendance, but that the financial impact of this is positive, nonetheless.
[Buraimo and Simmons| (2008) find that fans on TV prefer more balanced encounters, whereas Buraimo]
land Simmons| (2015) find a stronger effect of quality of talent in events rather than how balanced they

are.

Demand for attendance has been investigated for other popular British sports, such as cricket, despite
cricket authorities releasing much less data on attendance than football. considered a
new one-day league which emerged in England in the late 1960s, [Hynds and Smith| (1994) considered
international test match cricket, [Sacheti et al.| (2014)) also looked at international cricket,
focussed on one-day international cricket, and considered daily observations in the
post-war era at the domestic level in England.

3 Methodology

This paper pursues an empirical methodology. The conventional approach to modelling demand in theory
is absolutely fundamental to the basics of economics. Economic agents maximise their utility subject
to a budget constraint, taking prices and income as given. An individual j maximises utility function
Uj =uw(X1,p1,..., Xjk,pKr, M), where X, is the quantity of good k consumed by individual j, py is
the price of good k, and M; is individual j’s income. Maximisation yields a set of demand functions
X;‘k = f(p1,...,pK,M;) for each good. Conventionally, we then think about quantities consumed of
goods, and prices, and infer characteristics of demand — elasticities of prices and of incomes.

In the context of demand for football attendance, individual level data do not exist. But data on the
aggregate sums of people attending football matches exists back for, as we document in this paper, 140
years. As such, we model some att;;, the attendance for match ¢ at time ¢, as att;; = ijl Xjit. We are
considering counts of people paying to watch football matches in person at a football stadium.

We consider football clubs through time, and as such we have a panel time series setting, with both
a large number of cross sections units (clubs, N = 139) and a large number of match-level observations
(T = 1413 on average, maximum 7" = 2482, minumum 7" = 11). As such, the concerns regarding small N
or T dimensions do not apply here, and we apply standard time series analysis methods to understanding
the dynamics present, at a general level, in our dataset.

We run an autoregressive distributed lag (ADL) model for the log attendance at club ¢ in match ¢,
att;, as a function of a vector of explanatory variables X;;. We introduce the autoregressive element, as
[Peel and Thomas) (1992)) and [Dobson and Goddard| (1996) do, in order to potentially capture persistence
in attendance. The distributed lag element allows variables from previous matches to affect attendance

on a given day, and enables the calculation of long-run effects.
We regress log attendance in order to interpret coefficients in terms of elasticities and semi-elasticities,
where appropriate, and the transformation also helps with the differences in scale observed in attendance



in our sample. We specify P lags of both log attendance and the vector of explanatory variables:

P P

atty = ooi + Y opattiep+ Y BpXiv—p+en, e~ N(0,02). (1)
p=1 p=0

We include a range of fixed effects, allowing the constant term can vary across units, hence ag; has an
i subscript. We check for how many are required. We allow X;:_, to vary across p; for example X;;
includes various fixed effects as specified later.

Persistence in attendance patterns is captured by the lagged dependent variable coefficients, hence .
In an AR(1) process, the «y coefficient would be interpreted as the percentage of a previous attendance
that returns for the next home match; persistence in attendance patterns. With P lags the persistence is
measured as 25:1 ap. The quality of inference into persistence depends on a number of assumptions, not
least those placed on the error term, ;4 ~ N(0,0?), holding true in the regression model. Particularly
important will be the inclusion of fixed effects for years, and for clubs.

In the case where attendance is non-stationary, as would be reasonable to conclude, it is conventional
to consider the transformed version of El

Aattyy = BoAXi + (o1 — 1) [atty 11 — koi — KeXit—1] + €i. (2)

Here, we have assumed P = 1 for simplicity, and ko; = a;/(1 — 1) and k1 = (8o + 51)/(1 — a1). The
expression att; ;1 — ko; — kK1X;+—1 is the long-run relationship between attendance and the expanatory
variables, and a; — 1 represents the speed of adjustment back to equilibrium once disturbed away from
it. The coefficient x; can be expressed as the infinite sum of partial adjustments of attendance each
successive time period to a change in X;;. As such, if we assume nothing else changes in the future, we
can think about this as the long-run marginal effect.

We estimate by ordinary least squares. Many attendance studies have estimated models of
attendance using models for censored data, since many stadia, particularly in more recent times, are
subject to capacity constraints, and as such we do not observe the true variation in demand. We appeal
to the small proportion of our sample that is capacity constrained in defence of our estimation strategy,
and also point out that we do not seek to interpret our results in terms of demand given our lack of price
data.

The coefficients on the lagged dependent variables are fundamental to the analysis of the persistence
of football attendance patterns. As such, we interact them with a range of controls in order to learn a
little more about the nature of persistence. Football fans tend to be of the belief that a great deal can
be determined simply by the knowledge of which team another person supports. What fans refer to as
‘loyalty’, we can consider to be a habit, or persistence in a pattern of attendance at a club level. Loyal
supporters are those that persist with watching a team. [Dobson and Goddard| (1996) measure loyalty
in terms of attendance response to performance measured by position, whereas [Peel and Thomas| (1992])
measure ‘core support’, an obviously similar concept, by an autoregressive structure.

This loyalty notion suggests that, amongst other things, the team matters for persistence patterns,
and so we test this by interacting lagged dependent variables with club fixed effects. Football supporters
attach a slightly lesser degree of loyalty to their region, and indeed we might anticipate that with the
regional spread of football over the three centuries of the Football League, that there are differences

11t is worth noting that the transformation remains valid statistically even if the data series are stationary in their
levels.



in attendance patterns across regions. To investigate this we interact lagged dependent variables with
regional fixed effects. Anecdotal evidence seems to suggest also that attendance patterns have differed
over the decades, with more alternative leisure pursuits available in more recent times. To test this, we
interact lagged dependent variables with a dummy variable for each decade.

The most salient explanatory variable for attendance is percieved to be league position. Although
many other measures of team quality exist, and indeed are described in Section [d] league position is
arguably the most simple, and most reflective. Rather than analysing various aspects of a visiting team,
fans will make decisions based on whether that team is top of the league, is around about the top of the
table, or worse. As a result, we focus on this in our analysis of our regressions, in addition to considering
fan persistence patterns.

4 Data

We use data from the www.11v11.com/ website, which describes itself as the ‘Home of football statistics
and history’, and is maintained by the Association of Football Statisticians.

It contains results for all league matches that have taken place in England since 1888, as well as a
number of other competitions (including European competition). Of the 224,932 matches recorded on
the website as of December 2018, 182,728 have an attendance recorded for them. From the very first
day of the Football League, on September 8 1888, it is recorded that 3,000 people watched Bolton Wan-
derers play Derby County, 12,000 people watched Everton play Accrington, and 2,500 people watched
Wolverhampton Wanderers face Aston VillaEl

The one drawback of such a huge dataset of attendances is the unavailability of individual ticket
prices for matches, meaning that we cannot estimate a demand function in the conventional economic
sense.

In Figure [1] each of those 182,728 observations is plotted, and so each attendance is a dot in the
diagram. The dataset covers the entire history of league football, and hence the early, pre-First World
War, years, are a time of expansion from a low level in 1888. This would naturally have been a period
of considerable expansion in the supply of observation areas at football clubs to cope with the revealed
demand for football. This highlights the difficulty of identifying demand from supply in attendance
data, even if some measure of ticket prices is available. Given that for us, price data is not available,
we simply focus on explaining variation in attendance patterns, using as much data as we are able to
make use of to explain observed patterns. After the Second World War, a steady decline is visible well
into the 1980s, and the pick up since the 1980s appears quite broad based, albeit helped by particular
growth in big attendances in a small number of constrained stadia, which is clearly visible on the plot.

When considering attendance patterns, we need to control for the level a match is at, as since 1893
the Football League has had multiple divisions, with teams separated on merit. From Figure [2| the
average (calendar) yearly attendance is plotted, showing that higher level matches (black line) attract
the highest attendances, with the difference being between 10 and 15 thousand. The dotted lines relate
to the structure of the Football League between 1921 and 1958, as below the top two divisions the league
was geographically split with a northern and southern division. After 1958 there was no geographical
split, and simply four divisions based on merit. These lower two divisions, geographically or otherwise,
have always had considerably lower attendances than the top two divisions, making clear the need to
control for the level when explaining attendance.

2These early attendance figures must be rounded, but this is not the case in the vast majority of our dataset.
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Figure 1: All attendances through time in the Football League.
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Figure 2: Average (over a calendar year) attendance by division through time in the Football League.
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Figure 3: Average (over a calendar year) attendance by region through time in the Football League.

We also include team fixed effects, season fixed effects, and year fixed effects, to allow unobserved
characteristics across each of these groupings to be reflected. League football began in the Midlands
and North of England, and these areas remain traditionally strong in terms of attendance numbers;
Figure [3] displays this regional variation, expressing the shares of total Football League attendance by
region. Although by and large regional shares had settled into roughly their current levels by the end
of the First World War, there is still variation through time, not least in the emergence of the East of
England since that time. Because we include team fixed effects, we cannot include regional fixed effects,
but these team fixed effects will pick up regional patterns such as those displayed in Figure [3]

There are 11 NUTS1 regions throughout the entire UK, the broadest possible aggregation. These are
areas such as the West Midlands, and the South East. Across the Football League, there are 36 NUTS2
regions, and these correspond more broadly to counties, hence Lancashire, Merseyside and Kent. There
are 90 NUTSS regions that have been represented by Football League clubs, and they represent towns,
cities, and in the case of larger cities, parts of those cities. Around 14% of all matches are between teams
in the same NUTSI region, almost 4% in the same NUTS2 region, and just 1% in the same NUTS2
region.

Because the 11v11 data includes the match result for every match, we make use of this to calculate
a range of explanatory variables. Table [I| presents descriptive statistics for the explanatory variables
that are used in the model. The average attendance over the entire sample is just under 14,000, with a
standard deviation almost as large, giving some indication of the extent of the variation in the variable
of interest. The ranges of other variables make sense; divisions have at most contained 24 teams in
Football League history, while we measure form as the total points accrued in a team’s previous six



Table 1: Descriptive statistics of data

Statistic N Mean St. Dev. Min Max
Attendance 165,105  14,006.610  12,073.410 23 83,260
Log attendance 165,105 9.187 0.879 3.135 11.330
Position (home team) 196,507 12.066 6.551 1 24
Elo strength (home team) 196,507 1,074.815 141.688 637.372 1,579.160
Form (home team) 196,507 7.350 3.784 0 18
Goals scored (home team) 196,507 29.493 20.056 0 128
Position (away team) 196,507 11.662 6.558 1 24
Form (away team) 196,507 7.659 3.818 0 18
Goals scored (away team) 196,507 29.803 20.177 0 128
Elo Prediction 196,507 0.494 0.142 0.065 0.931
Match balance 196,507 —0.020 0.025 —0.189 0.000
Home team in contention 196,507 0.859 0.348 0 1
Points (Standard Deviation) 196,507 0.021 0.013 0.000 0.750
Dynasty 196,504 26.079 133.720 1 1,940
NUTS1 region derby 196,507 0.140 0.347 0 1
NUTS2 region derby 196,507 0.037 0.190 0 1
NUTS3 region derby 196,507 0.009 0.095 0 1
Days Since Last Match 196,368 19.237 95.688 0 16,544

matches, hence this can be at most 18.

We include measures of the quality of the home team. Football has a plethora of different measures
of quality, and the value of the linear regression framework is that by including a number of them, we
can determine which are most important. We include league position of the home team, yet this need
not be the best measure of a team’s quality within season, as it may be that teams have had an easier
(harder) run of fixtures which means their position is somewhat inflated (deflated). To circumvent this
problem we include Elo strengths of the home team. Elo strengths (Elo, [1978)) are an alternative method
for ranking teams that takes into account the strength of opponents that have been faced (which league
standings do not do as they award points regardless of the opposition for particular match outcomes).
If team A has true strength at time ¢ of R4 ; and team B has true strength at time ¢ of Rp ¢, then the
expected score for team A against team B is:

_ 1 _ Qa 3)
o 1+ 10(RB,t—Ra,t)/400 o QA + QB,

Ey

and the expected score for team B against team A is:

1 QB

Ep = 1+ 10(Ra,t—Rp,t)/400 = QA I QB7 (4)

where E4 + Ep =1 and Q4 = 1074+/400 and Qp = 1075+/400 Naturally, the true strengths of teams
is unknown, and hence in practice one must choose a starting value for R4 ; and allow it to be updated
after each match. If the actual outcome of the match at time ¢ for team A, S, ., differs from the
expected outcome then that team’s score needs updating; if S4; = E 4, then the existing strength for
each team is accurate. While we could simply treat S4: as binary, scaling the match outcome between

10



0 and 1 (as we do) allows information on the closeness of the match to be built into the updating process.
Updating in the event of S4+ # E4+ is done according to the formula:

Raott1 =Ras+ K(Sat—Eay). (5)

The factor K can be varied and is conventionally set at 32. The setting of K affects both the conver-
gence of R4 to its true value and also the variation around that true value. A low K will lead to slow
convergence, but only small variance around that value, whereas a higher K will lead to quicker con-
vergence, but greater variance. Naturally, K can vary across different types of matches. For example,
in a well-known international football variant of the Elo system, used in [Reade and Akie| (2013)), FIFA
World Cup Finals matches are weighted three times what international friendly matches are. We simply
apply a weight of 40 to all matches.

When fans make decisions to attend or otherwise, they may do so based on simpler metrics than an
Elo score. More likely, they reflect on a team’s recent matches, what is usually referred to as their form.
We include form for the home team and away teams, where form is measured as the total number of
points accrued in a team’s most recent six league matches. This form measure averages between 7 and
8 points in our dataset, with a standard deviation of around 3.8 points. Fans may also make a decision
based on how many goals a team has scored up to that point in the season, as matches with more goals
are generally considered to be more entertaining. We include this for both the home and away teams,
and this variable averages between 29 and 30 goals, with a standard deviation of 20 goals.

How evenly matched two teams in a match are dictates the extent of the appeal of a match; the
uncertainty of outcome hypothesis proposes that the greater the balance, the more interest there will be
from spectators. We test that at three levels. First we consider how evenly matched the two teams are.
This is done by taking a transformation of the Elo prediction, F 4, for a match. Noting that the most
equal expected score would be E4 = 0.5, we thus consider the negative of the squared distance from 0.5
for E 4, hence balance = —(E4 — 0.5)2. We take the negative so that the function is inverse-U shaped,
achieving a maximum of zero for a match with £4 = 0.5. The lowest value this measure takes in our
database is -0.208, and the average value is -0.021.

Then we consider season-level indicators: the standard deviation of points in the league (which on
average is 0.021), and whether the home team remains in contention (that is, whether the team can
reach the top three positions in the league given remaining points available). By this measure, almost
86% of matches involve the home team in contention. Finally we think about dynasties, where this is
measured as the number of teams winning the League over the previous 25 years. On average this has
been 3 teams, with a high of 21 and a low of 1 (which occurred only after the first ever season of the
Football League.

Garcia and Rodriguez (2002) introduce the opportunity cost of attending matches, and we are also
able to include non-football-related variables that reflect the appeal of a match. First, we add a variable
for whether a match is between two teams from the same NUTS1, NUTS2 or NUTS3 region, reflecting
the greater interest there usually is for matches between neighbouring teams; derby matches, as they are
known. Fourteen percent of matches are between teams in the same NUTSI region, 4% between teams
in the same NUTS2 region, and 1% between teams of the same NUTS3 region.

We also add a variable for the number of days since the last home match to again capture opportunity
cost. A shorter length of time between matches makes them more difficult to afford, potentially, and
reflects a greater burden upon a potential attendee’s time use. The mean value of this variable is 17.6
days, but it is heavily skewed by, for example, teams exiting the Football League and returning at a

11



later date. The median is 14 days between matches, the standard fortnight between home matches.

We don’t include any macroeconomic variables in our estimation, such as GDP levels, growth, or
unemployment rates. By including season fixed effects we crudely pick up the kind of impact of such
variables over time.

5 Results

We present our results in steps, building up from a very basic model. This enables us to consider the
impact of the additional variables we add. It is worth noting that such a basic-to-general approach
runs counter to standard statistical principles; the most general model is most likely to satisfy the
assumptions we place upon any statistical model, as expressed in . As such, while we do consider
these small models, we do not emphasise their numerical values other than for the purposes of illustrating
the bias induced by the omission of varialbes.

The most basic relationship to be posited, regarding attendance, is that it depends on league position.
If a team is doing better, more people will attend. League position acts as a sufficient statistic as far
as potential supporters are concerned. As such, we run a range of regressions of log attendance on
league position, building from the most basic regression. We present these regressions as columns in
Table [2| adding more and more variables as we read from left to right. The top panel are the regression
coefficients, and where appropriate the fixed effects coefficients are suppressed. The panel beneath
presents, where appropriate, the long-run solution coefficients as in . The bottom panels presents a
small number of statistics evaluating the quality of the estimated model.

The leftmost regression simply regresses log attendance on league position, and suggests that a team
gaining one league position can increase attendances by 3.6%, but that equally this variation in league
position is only able to explain 7.4% of the variation in attendance over the years. Naturally, this is
a rather meaningless number, as there is nothing in the model to distinguish Manchester United from
Accrington Stanley. There are many ways to include this information, and we attempt to do so in a
number of informative ways.

First, we include the lag of attendance, hence a club’s most recent attendance as an explanatory
variable. We also include dynamic information on league position also, via its lag. This regression is
run over 14,000 fewer observations, reflecting that the data is somewhat patchy in places, and hence the
most recent match may not have attendance recorded. Nonetheless, there are still 151,025 observations,
and the lagged dependent coefficient is 0.86, suggesting that the attendance at any given match is about
86% of what it was at the previous match, plus a contribution from league position. The contribution
of league position is smaller, from the contemporaneous variable at 1.4%, however this does not include
the lagged information. Including this enables us to consider the long run impact of a change in position
from the middle panel of the table; if a club could be one position higher, attendance would be about
3.9% higher, consistent with the previous estimate.

Adding dynamic information improved the model fit dramatically as would be expected, with the
adjusted R? coefficient increasing to 0.8 from 0.07, and the standard error of the residuals falling by more
than half. In the third column we add a second lag of the log attendance and league position variable to
create a second-order autoregressive distributed lag model. The second lag is important, especially for
attendance, suggesting that the persistence through time of football attendances is more complex than
simply reflecting the most recent matchEl Taking the sum of the two lagged dependent variables as the

3In addition, unreported though important, the second lag removes all autocorrelation from the residuals of the estimated
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total persistence, the total effect is about the same (92%) but is distributed over the two most recent
matches. About 7,000 observations are lost by adding an extra lag, although again model fit improves,
and the impact of league position remains similar from the bottom panel, at 4.1%.

In the third, fourth and fifth columns, fixed effects are added. Figure [2] displays the importance
of controlling for the division of the Football League that a club was competing in, and so we add
in divisional fixed effects. These fixed effects have a further time dimension, as they relate to various
league restructuringsEl The persistence of attendance falls, with both the first and second lag coefficients
markedly smaller and their total effect at about 78%. The long term impact of a change in position
falls, too, from 4.1% to 3.1%, once we consider only changes within division. Naturally movements up
divisions lead to larger crowds.

In the fourth column, we control for club-specific effects by adding team fixed effects. This addition
further reduces the persistence of attendance to 69%, suggesting that with a simpler regression specifi-
cation attendance patterns attributable to club-specific characteristics were wrongly being attributed to
persistence. Adding in club-specific fixed effects reduces the long-run impact of a change in position to
2%.

In the final column, we allow for time-specific fixed effects; we include a fixed effect for each season
of the Football League’s existence. Consideration of both Figures 1] and [2] shows clear secular patterns
throughout the Football League’s existence, with initial growth, post-war peaks, a trough in the 1980s,
and subsequent recovery. This addition reduces persistence yet further to 51%, makes little difference to
the impact of position on attendance, and does affect the constant term, kg, by accounting for secular
patterns in attendance levels over the centuries.

In sum then, adding these fixed effects, along with the club and division fixed effects, almost halves
the effect of persistence. Much of what may have been attributable to habits and loyalty can better be
explained by considering the division, the club, and the period of time that a given match took place in.

While unmeasurable club-specific and time-specific trends undoubtedly exist, it is important where
possible to separate the unmeasurable from the measurable, and one the benefits of sport-related data
is the ability to measure what is often considered to be unmeasurable in other economic contexts. As
such, we add a number of control variables, although each of these variables is of interest in its own
right, when thinking about determinants of attendances.

The first column of Table |3| presents the baseline model. The first six rows are the constant, lagged
dependent variables and distributed lags of league position, as in Table [2] Persistence remains at about
50%, as it was in the final column of Table In the next three rows are other measures related to
the quality of the home team; their Elo strength, their form, and the number of goals the team has
scored. The Elo strength variable has a mean of 1077.2, and hence is much larger than form, with an
average value of 7.4, and as such the impact of Elo is proportionately greater, as well as being much
more precisely measured. The impact of goals scored is negative, suggesting that once form and the
intrinsic strength of the team as measured by position and Elo strength, the impact of goals is negative
and probably indicative of a weaker side that also concedes more goals.

The following four rows provide a measure of the visiting team in a match, via their relative Elo
strength (from the Elo prediction), their position, form and goals scored. The negative coefficient on

model.

4The second, third and fourth tiers were added gradually, with a geographical third tier after the First World War,
which became simply a third and fourth tier in 1959. In 1992, the FA Premier League was created, a breakaway league
from the Football League, and again in 2005 another renaming saw the division beneath the Premier League become the
Championship.
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the visiting team position implies that the stronger is a visiting team, the larger is the attendance; each
position higher increasing attendance by 0.7%. Form and goals scored by the visiting side prior to the
match have negative coefficients also, indicating that spectators would like to watch the home team play
out-of-form visiting sides that don’t score too many goals, after controlling for their league position. The
Elo prediction has a negative coefficient, which suggests that the more likely the home team is to win
(the larger is the prediction variable), the less likely are fans to attend (after controlling for all other
variables included).

The next four rows relate to measures of competitive balance. There is no impact of dynasties, as
measured by the number of different winners of the League over the previous 25 years. The standard
deviation of points in the league table, which is higher in the case of less competitive leagues, has the
anticipated effect: a less competitive league lowers attendances at matches within it. The third level
of uncertainty is match-level, and we capture this by both the balance implied by the Elo ranking, and
a dummy variable for whether the home team remains in contention to finish in the league’s top three
positions. If the home team is still in contention, attendances are higher by between 2.5 and 3%, while
the more balanced is a match, the lower is attendance. This is a pattern noted elsewhere, not least in
Buraimo and Simmons| (2008) where fans in the stadium are found to prefer their team to win, whereas
fans watching on TV would prefer a more evenly matched event.

The following four rows are non-football-related variables; we have dummies for NUTS1, NUTS2 and
NUTS3 regions specific matches, or derbies as they are colloquially known. A game between clubs in
the same NUTS1 region has about a 11% greater attendance. Games between clubs in the same NUTS2
geographic areas have a further 18% larger attendances. Matches between teams within NUTS3 areas,
have another 14% more spectators in attendance.

Finally, each extra day between matches increases the attendance by 0.02%, reflecting that matches
where there is only a few days inbetween will attract fewer than if there has been a longer period of time
since the last match. This indirectly reflects the budget constraints of supporters.

Adding these control variables reduces the long-run impact of position on league position further to
just 1.1%.

The second, third and fourth columns interact the lagged dependent variable with the fixed effects
for secular trends (inserting only decade indicators rather than a fixed effect for each year), regional
effects, and club effects. The bottom two rows display which fixed effects are interacted, and report an
F test for the significance of those fixed effect interactions. In all three cases, the null that they are zero
is rejected.

From the second column, persistence has changed over the decades. The variation is perhaps best
expressed graphically, and the sum of the autoregressive parameters related to each decade is presented
in the top panel of Figure[d] Recorded persistence increased distinctly between the 1950s and the 1970s,
which corresponds to the period of the most precipitous decline in attendances from Figure [I] This
greater persistence in attendance patterns has continued at this higher level of 0.55 since the 1970s.

A staple of football supporter interactions is the notion that some supporters are more loyal than
others. Loyalty is the idea that fans are persistent in attending regardless of how the team is performing.
In the third column we consider whether there are regional disparities in persistence, and hence ‘loyalty’.
We plot the differences across regions in the middle panel of Figure [ Supporters in Wales are the
most ‘loyal’, followed by those in the East Midlands, Yorkshire and the Humber and the North West.
Persistence is lowest in London, the South West and East of England.

The final column interacts club fixed effects with teams. This is the bottom panel in Figure 4} but
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Table 3: Table of regression results interacting persistence with various other factors. Fixed effects for
seasons, clubs, regions and divisions included.

Dependent variable:

Log Attendance

1) 2 ®3) 4)
Constant 4.854** 6.595*** 11.183*** 8.233***
(0.210) (0.786) (1.285) (0.678)
Log Attendance (first lag) 0.273** —0.053 0.293** 0.242%**
(0.002) (0.069) (0.006) (0.091)
Log Attendance (second lag) 0.224*** 0.192%** 0.222%* 0.434**
(0.002) (0.065) (0.006) (0.095)
Position (home team) —0.011*** —0.010"** —0.011%** —0.010***
(0.0003) (0.0003) (0.0003) (0.0003)
Position (home team, first lag) 0.003*** 0.003*** 0.003*** 0.003***
(0.0003) (0.0003) (0.0003) (0.0003)
Position (home team, second lag) 0.002*** 0.002*** 0.002*** 0.002***
(0.0003) (0.0003) (0.0003) (0.0003)
Elo Strength (home team) 0.001*** 0.001*** 0.001*** 0.001***
(0.00002) (0.00002) (0.00002) (0.00002)
Goals Scored (home team) —0.001*** —0.001*** —0.001*** —0.001***
(0.0001) (0.0001) (0.0001) (0.0001)
Form (home team) 0.005"** 0.005"** 0.005"** 0.005***
(0.0003) (0.0003) (0.0003) (0.0003)
Elo Prediction —0.498*** —0.524*** —0.498** —0.500%**
(0.013) (0.013) (0.013) (0.013)
Position (away team) —0.006*** —0.006*** —0.006™** —0.006***
(0.0002) (0.0002) (0.0002) (0.0002)
Form (away team) —0.006"** —0.005"** —0.006™** —0.006™**
(0.0003) (0.0003) (0.0003) (0.0003)
Goals Scored (away team) —0.0004*** —0.001*** —0.0004*** —0.0004***
(0.0001) (0.0001) (0.0001) (0.0001)
Dynasties 0.00000 0.00000 0.00000 0.00001
(0.00001) (0.00001) (0.00001) (0.00001)
Match Balance —0.931*** —0.893*** —0.931** —0.953***
(0.031) (0.031) (0.031) (0.031)
In Contention (home team) 0.024*** 0.029"** 0.024*** 0.024***
(0.003) (0.003) (0.003) (0.003)
League Points Standard Deviation —0.279*** —0.365*** —0.273*** —0.243***
(0.072) (0.071) (0.072) (0.071)
NUTS1 Derby 0.112%* 0.111% 0.113** 0.112%*
(0.003) (0.003) (0.003) (0.003)
NUTS2 Derby 0.176*** 0.175%* 0.176** 0.176**
(0.005) (0.005) (0.005) (0.005)
NUTS3 Derby 0.136*** 0.135%** 0.136*** 0.135**
(0.009) (0.009) (0.009) (0.009)
Days Since Last Home Game 0.0002*** 0.0001*** 0.0002*** 0.0001***
(0.00001) (0.00001) (0.00001) (0.00001)
Ro 5.239 6.125 5.504 2.942
R -0.011 -0.006 -0.012 -0.017
Observations 143,956 143,956 143,956 143,956
Adjusted R? 0.895 0.897 0.895 0.898
Residual Std. Error 0.286 (df = 143677) 0.284 (df = 143639) 0.286 (df = 143659) 0.283 (df = 143425)
Persistence with N/A Decpge Region Club
F Test N/A 64.8847** (df = 38; 143639)  23.671°" (df = 18; 143659)  14.26"** (df = 252; 143425)

Note: *p<0.1; **p<0.05; ***p<0.01
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Figure 4: Variation in the persistence of attendance patterns across decades and across regions in the

Football League.

with 130 clubs it is not possible to distinguish each team. A number of the outliers are teams with

very few observations, relatively (those with short stays in the Football League). The significant mass of

observations are within a range between 0.4 and 0.6, and as such as statistically indistinguishable from

each other[f]

6 Conclusions

Attendance patterns across three centuries are considered in this paper, using almost 200,000 match-level

observations on over one hundred Football League clubs. In the absence of price data, focus is instead

placed on the persistence of attendance patterns. Adequate controlling for variation attributable to the

quality of the teams involved in the match, as well as other factors such as those related to competitive

balance, we find a smaller, but nonetheless significant persistence effect that has varied over time, and

also varies across regions, and teams.
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