

Session: 5

Room: URS 2n13

Proc. School Conf. for Annual Research Projects

School of Systems Engineering

University of Reading

2016 SCARP

SQASM: Simple Quantum Assembler

Ryan Watkins

BSc Computer Science r.watkins@student.reading.ac.uk

ABSTRACT

New quantum programming languages need to be derived for when full-scale quantum systems become

available. SQASM is a simple quantum assembler presented as a language other higher order QPL (Quantum

Programming Language) implementations can compile down towards. The language is designed for the ease

of the programmer to write code close to hardware also. SQASM ties into a complimentary quantum

simulator with the help of parsing and lexical analysis from YACC and LEX respectively. The quantum

simulator is written in Python. The idealized architectural model chosen is quantum random access machine

(QRAM). One may perform local quantum algorithms and arithmetic with compilation down to gate

descriptions. Full adherence of quantum mechanics to provide true quantum simulation. The simulator

contains implementations of a quantum ripple carry adder [3], Quantum Cost efficient quantum multiplier [4]

and also Deutsch’s algorithm [2]. Both the simulator and programming language can be used as individual

components to perform quantum computational simulation or work in tandem. Wrapper functions within the

simulator allows SQASM to call certain functions to perform quantum computation.

Figure 1: SQASM compilation input

 Figure 2: SQASM compilation output

INITIALIZE R 2

 ...

ADD 3 2 R2

MEASURE R2 RES

--- ADD TERM TERM ---

Trying to call Quantum Simulator...

Elapsed time for add: 0.031271s

SUCCESS: ADD

SUCCESS: Python Simulator function called

SET HASH BIN: 50

--- MEASURE TERM TERM ---

Trying to call Quantum Simulator...

Amount of amplitudes in register: 65536

Selection range: [0,15]

RES: [1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

SUCCESS: Python Simulator function called

SET HASH BIN: 70

