BSc Computer Science

UCAS code: G400
For students entering Part 1 in 2003
Awarding Institution:
Teaching Institution:
Relevant QAA subject benchmarking group(s):
Faculty of Science
Date of specification: 15 March 2005
Programme Director: Dr GT McKee
Programme Adviser: Dr GT McKee
Board of Studies: Computer Science
Accreditation: British Computer Society

Summary of programme aims

This programme aims to prepare students for a career in the software industry, with a particular emphasis on technologically advanced software applications having a basis in science. Graduates will be well qualified to play a disciplined and creative part in a research, development or support environment.

Transferable skills

The University's Strategy for Teaching and Learning has identified a number of generic transferable skills which all students are expected to have developed by the end of their degree programme. In following this programme, students will have had the opportunity to enhance their skills relating to career management, communication (both written and oral), information handling, numeracy, problem-solving, team working and use of information technology.

As part of this programme students are expected to have gained experience and show competence in the following transferable skills: IT (word-processing, using standard and mathematical software, scientific programming), scientific writing, oral presentation, teamworking, problem-solving, use of library resources, time-management, career planning and management, and business awareness.

Programme content

The profile which follows states which modules must be taken (the compulsory part), together with one or more lists of modules from which the student must make a selection (the "selected" modules). Students must choose such additional modules as they wish, in consultation with their programme adviser, to make 120 credits in each Part. The number of modules credit for each module is shown after its title.

Part 1 (three terms)

Credits

Compulsory modules

Either

CS1A2 Programming 1 10 C
CS1B2 Programming 2 10 C
or
CS1C2 Introductory Programming I 10 C
CS1D2 Introductory Programming II 10 C
and
CS1G2 Introduction to Algorithms 10 C
CS1H2 Functional programming 20 C
SE1A2 Introduction to Computer Systems 10 C
MA113 Logic and Discrete Maths 20 C
And either
MA114 Math. Foundations of Computer Science 20 C
Or
MA111 Maths for Scientists 20 C
Or both
CY1A2 Cybernetics and its Application 20 C
And CY1B2 Analysis of Cybernetic Systems 20 C
If necessary, an option from (say) Modern Languages, to make 120 credits 20 C
Part 2 (three terms)
Compulsory modules
CS2A2 C and Compilers 10 I
CS2B2 Operating Systems 20 I
CS2C2 Computer Architecture 10 I
CS2D2 Databases 10 I
CS2E2 Software Engineering 10 I
CS2F2 Design and Programming Methods 20 I
CS2G2 Algorithmic Techniques 20 I
CS2P2 Information Systems Design 20 I
Part 3 (three terms)
Compulsory modules
SE3Z5 Social, Legal \& Ethical Aspects of Science \& Engineering 20 H
CS3Q2 Computer Science Final Year Project 30 H
Optional modules (a total of 70 credits to be chosen):
CS3A2 Computer Networking 10 H
CS3B2 GUI, Web \& Multimedia Design 10 H
CS3E2 Distributed Systems 10 H
CS3F2 XML Technologies and Applications 10 H
CS3L2 Neural Computation 10 H
CS3M2 Evolutionary Computation 10 H
CS3N2 Software Quality Metrics 10 H
CS3U2 Linear Algebra for Computer Vision and Robotics 10 H
CS3J2 Computer Graphics I 10 H
CS3D2 Computer Graphics II 10 H
CS3G2 Computer Vision 10 H
CS3W2 Artificial Intelligence 10 H
CS3Y2 Robot Architectures 10 H
CY3F2 Virtual Reality 10 H
CS3TR4 Informatics for E-Enterprise 20 H
CS3C5 Dependable Systems Design 10 H
CS4TZ4 Network Security 10 H

Progression requirements

To proceed to Part 2 students must:

- Achieve an overall average of 40% over 120 credits taken in Part 1
- Achieve a mark of at least 30% in individual modules amounting to not less than 100 credits.

To proceed from Part 2 to Part 3 students must:

- Achieve an overall average of 40% over 120 credits taken in Part 2
- Achieve a mark of at least 30% in individual modules amounting to not less than 100 credits.

To be eligible for Honours, students must obtain an overall average mark of 40% and no mark lower than 30% in any module and at least 40% in CS3Q2 Final Year Project.

Part 2 contributes one third of the overall assessment and Part 3 the remaining two thirds.

Summary of teaching and assessment

Teaching is organised in modules that typically involve both lectures and practical work. Most modules are assessed by a mixture of coursework and formal examination. However, some modules are assessed only as coursework, while others are assessed solely by examination. Details are given in the relevant module descriptions.

Admission requirements

Entrants to this programme are normally required to have obtained:
A minimum of GCSE English Grade C and GCSE Mathematics grade B.
A level: 280 points, at least two A2's.
Equivalent qualifications are acceptable.
Admissions Tutor: Dr MP Evans

Support for students and their learning

University support for students and their learning falls into two categories. Learning support includes IT Services, which has several hundred computers and the University Library, which across its three sites holds over a million volumes, subscribes to around 4,000 current periodicals, has a range of electronic sources of information and houses the Student Access to Independent Learning (S@IL) computer-based teaching and learning facilities. There are language laboratory facilities both for those students studying on a language degree and for those taking modules offered by the Institution-wide Language Programme. Student guidance and welfare support is provided by Personal Tutors, the Careers Advisory Service, the University's Special Needs Advisor, Study Advisors, Hall Wardens and the Students' Union.

Within the providing Department additional support is given though practical laboratory classes. The development of problem-solving skills is assisted by appropriate assignment and project work. There is a Course Adviser to offer advice on the choice of modules within the programme. Course handbooks are provided for each Part of the course: these give more details about the modules which make up the degree. In addition, the School of Systems Engineering produces a Handbook for Students, which provides general information about the staff and facilities within the school.

Career prospects

In recent years most students who have followed this programme have gone into careers in the software industry. These range from small start up companies to multi-nationals and several graduates have started their own businesses. Others have joined research groups in university and industry, the public service, and the teaching professions.

Opportunities for study abroad N/A

Educational aims of the programme

To develop the students' knowledge of the theory and practice of modern computer science, necessary for them to secure employment as professional software engineers in a wide variety of industries; to encourage their critical and analytical skills; and to develop their skills in applying theoretical concepts to the practice of computer systems design.

Programme Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and Understanding

A. Knowledge and understanding of:

1. software engineering and theoretical issues in Computer Science.
2. a range of programming languages and environments.
3. information technology.
4. appropriate mathematical techniques, including the use of mathematics as a tool for communicating results, concepts and ideas.
5. business context.
6. engineering practice.

Teaching/learning methods and strategies

The knowledge required for the basic topics is obtained via lectures, exercises, practicals, assignments and project work.
Appropriate IT and other software packages are taught.
Practical demonstrators and project supervisors advise students, and feedback is provided on all continually assessed work.
As the course progresses students are expected to show greater initiative.
Assessment
Most knowledge is tested through a combination of practicals, assignments and formal examinations. Students write reports on many assignments, and also make oral presentations of their work.
B. Intellectual skills - able to:

1. select and apply appropriate computer based methods, mathematical and scientific principles for analysing general systems.
2. analyse and solve problems.
3. organise tasks into a structured form.
4. understand the evolving state of knowledge in a rapidly developing area.
5. transfer appropriate knowledge and methods from one topic within the subject to another.
6. plan, conduct and write a report on a project or assignment.
7. prepare an oral presentation.
C. Practical skills - able to:
8. use appropriate software tools.
9. program a computer to solve problems.
10. use relevant software and analyse the results critically.
11. design, build and test a system.
12. research into computer science problems.
13. utilise project management methods.
14. present work both in written and oral form.

Teaching/learning methods and strategies

 Appropriate software, mathematical, scientific and IT skills and tools are taught in lectures, and problems to be solved are given as projects or assignments. Project planning is part of the Part 3 project, and written and oral presentations are required for various assignments and projects.
Assessment

Skills 1-5 are assessed partly by examination, though sometimes also by project or assignment work. Skills 6 and 7 are assessed as part of project work.

Teaching/learning methods and strategies

Software tools are introduced in lectures and their use is assessed by examinations and assignments.
Programming assignments are set, and students may write programs to solve other projects.
Practicals and projects are used to teach about skill 3, and projects are used for skills 4, 5, 6 and 7.

Assessment

Skills 1 and 5 are tested in coursework and in examinations. Skills 2, 5 and 7 are tested by assignments and projects, 3 is assessed in practicals and sometimes in projects, Skills 4, 5 and 6 are assessed through project work.
D. Transferable skills - able to:

1. use software tools.
2. acquire, manipulate and process data.
3. use creativity and innovation.
4. solve problems.
5. communicate scientific ideas.
6. give oral presentations.
7. work as part of a team.
8. use information resources.
9. manage time.

Teaching/learning methods and strategies

Software tools are taught partly in lectures, mainly through practical sessions and assignments.
Data skills are acquired in laboratory and projects. Creativity and innovation and problems solving are experienced through projects, as are team working, time management and presentations. Use of information resources, such as the library and IT methods is experienced through projects and assignments.

Assessment

Some skills, like the use of software tools and ability to communicate orally and in written form are directly assessed, in assignments or projects, other skills are not directly assessed but their effective use will enhance the students overall performance.

Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably expect to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each module can be found in module and programme handbooks.

