Skip to main content

University aiding the conquering of conker canker – University of Reading

Show access keys

University aiding the conquering of conker canker

Release Date 21 April 2010

horse chestnut tree

Experts from the University of Reading have played a vital role in research that has decoded the genetic blueprint of a disease that is threatening the UK's historic landscape.

The horse chestnut has become an iconic sight in Britain since its introduction in the 1500s but in 2002 a new lethal disease appeared that now infects over 70 per cent of trees in some areas. Bleeding canker, caused by the bacterium Pseudomonas syringae pathovar aesculi (Pae), causes lesions which bleed like open sores and in severe cases can kill large mature trees within one to two seasons.

Project leader, Dr Robert Jackson, and his PhD student, Federico Dorati, have been studying the genetic mechanisms responsible for the bacteria which causes Horse Chestnut bleeding canker disease.

They teamed up with other project leaders Prof. Sophien Kamoun and Dr David Studholme (The Sainsbury Lab) and Dr Sarah Green (Forest Research) to read the DNA code, or genome sequence, of the pathogen. Some of the work done at the University of Reading was deciphering what the genes did as well as carry out experimental tests to prove predictions. The genome sequence will also help Robert and Federico in their aim to find out how the disease is spread between trees.

"Comparing the genomes of British strains of the bacterium has shown us they are very similar and probably originated from a single introduction into the UK within the last few years," said Dr David Studholme who led the analysis of the DNA sequences at The Sainsbury Laboratory in Norwich.

"Detecting the origin of Pae is important from a biosecurity perspective," said Dr Sarah Green, a tree pathologist with Forest Research. "There has been an unprecedented rise in invasive plant diseases, likely due to the rise in international travel and in the global plant trade."

"We now have the first clues to the evolutionary origin of the disease and to its ability to spread so fast. Pae might have been accidentally introduced to Europe through importation in the plant trade. We need to prevent it being introduced to new geographical areas such as North America," said Dr Green.

Before the European epidemic, the only reported case of Pae was in India. A similar strain infects the Indian horse chestnut but causes only minor lesions in the leaves. The strains that emerged in Europe appear to be more aggressive and attack the woody trunk and branches.

"This pathogen spread quickly through Western Europe and Britain and the information from the sequencing will help us discover how it is dispersed," said Dr Rob Jackson from the University of Reading. "It may be that it can cause precipitation so it is swept into the atmosphere before being rained back down in new locations, or it may be carried by some kind of vector such as insects."

The success of the pathogen may be helped by a cluster of genes that help it to acquire iron, an essential nutrient for virulent bacteria. Pae also has an unusual cluster of genes which may be involved in the degradation of compounds derived from woody tissues. A plant will normally produce nitric oxide as part of its defence mechanism, but Pae may have the ability to inhibit this response via two genes identified by the scientists.

The differences between the Indian and British strains give the first clues to its virulence on European horse chestnut. The British strains contain additional genes that enable it to live off the sucrose found in the tree sap.

The genome sequence will allow scientists to determine which genes might be necessary for infection of a tree host so they can be targeted to control the disease.

"Emerging human and animal diseases are routinely sequenced and this research shows the usefulness of doing the same for plant pathogens," says Professor Kamoun from the Sainsbury Laboratory.

"We can quickly generate large amounts of genetic information on emerging plant diseases that is valuable for combating current and future biosecurity threats."

Contacts

TSL Press Office

Zoe Dunford, Tel: 01603 255111, email: zoe.dunford@bbsrc.ac.uk Andrew Chapple, Tel: 01603 251490, email: andrew.chapple@bbsrc.ac.uk

Forest Research press office

Charlton Clark, 0131 314 6500; charlton.clark@forestry.gsi.gov.uk

Paper cited:

Green et al, Comparative genome analysis provides insights into the evolution and adaptation of pseudomonas syringae pv. Aesculi on Aesculus hippocastanum to be published in PloS One.

About the Sainsbury Laboratory

The Sainsbury Laboratory (TSL) is a world-leading research centre focusing on making fundamental discoveries about plants and how they interact with microbes. TSL is evolving its scientific mission so that it not only provides fundamental biological insights into plant-pathogen interactions, but also delivers novel, genomics-based, solutions which will significantly reduce losses from major diseases of food crops, especially in developing countries.

About Forest Research

Forest Research is part of the Forestry Commission. It is a world leader in research and development in support of sustainable forestry, and is Britain's principal organisation for forestry and tree-related research. Forest Research conducts scientific research and technical development relevant to UK and international forestry, and which informs and supports the forestry policies of the UK, Scottish and Welsh Assembly Governments .

About the University of Reading

The University of Reading is one of the UK's top research-intensive universities. The University is ranked in the top 20 UK higher education institutions in securing research council grants worth nearly £10 million from EPSRC, ESRC, MRC, NERC, AHRC and BBSRC. In the RAE 2008, over 87% of the university's research was deemed to be of international standing. Areas of particular research strength recognised include meteorology and climate change, typography and graphic design, archaeology, philosophy, food biosciences, construction management, real estate and planning, as well as law.

We use Javascript to improve your experience on reading.ac.uk, but it looks like yours is turned off. Everything will still work, but it is even more beautiful with Javascript in action. Find out more about why and how to turn it back on here.
We also use cookies to improve your time on the site, for more information please see our cookie policy.

At the University of Reading we make every effort to support as many of the older browsers as possible, but due to the low percentage of users on IE6, we've decided that it's time to stop on-going support.
We strongly suggest you upgrade to a stronger, more stable browser like Google Chrome, Firefox or the latest version of Internet Explorer.