Generalised prime systems with periodic integer counting function¹

Titus Hilberdink

Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

We study generalised prime systems (both discrete and continuous) for which the 'integer counting function' N(x) has the property that N(x) - cx is periodic for some c > 0. We show that this is extremely rare. In particular, we show that the only such system for which N is continuous is the trivial system with N(x) - cx constant, while if N has finitely many discontinuities per bounded interval, then N must be the counting function of the g-prime system containing the usual primes except for finitely many.

2010 AMS Mathematics Subject Classification: 11N80 Keywords and phrases: Generalised prime systems.

Introduction

In a recent paper [7], we discussed Mellin transforms $\hat{N}(s)$ of integrators N for which N(x) - x is periodic in order to study flows of holomorphic functions converging to $\zeta(s)$. Here we consider the question when such an N determines a g-prime system; i.e. that N(x) is the 'integer counting function' of a generalised prime system — see section 1.3 for the definition.

An example of such a flow $\hat{N}_{\lambda}(s)$ was given (in [7]) but it was unclear whether or not they determined g-prime systems. As a consequence of our results, we show that none of them does.

In fact, we investigate more generally when an increasing function N for which N(x)-cx is periodic determines a g-prime system for a constant c>0. (At the outset we assume that N is right-continuous, N(1)=1, and N(x)=0 for x<1.) For example, N(x)=cx+1-c for $x\geq 1$ determines a continuous g-prime system for $0< c\leq 2$ at least.

As for discontinuous examples, we have the prototype N(x) = [x] for the usual primes and integers. For other examples, consider the g-prime system containing the usual primes except given primes $p_1, \ldots p_k$. This has integer counting function

$$N(x) = \sum_{\substack{n \leq P \\ (n,P) = 1}} \left[\frac{x-n}{P} + 1 \right],$$

where $P = p_1 p_2 \dots p_k$. In this case $N(x+P) = N(x) + \varphi(P)$ where φ is Euler's function, and $N(x) - \frac{\varphi(P)}{P}x$ has period P.

Our results split quite naturally into continuous and discontinuous cases. In section 2, where we consider the continuous case, the main result is that for N sufficiently 'nice' (eg. continuously differentiable), N determines a g-prime system only for the trivial case where N(x)-cx is constant; i.e. N(x)=cx+1-c.

For discontinuous N the picture is less straightforward. A useful tool is to consider its 'jump' function N_J , which must necessarily also have $N_J(x) - c'x$ periodic (for some c' > 0) and which also determines a g-prime system if N does (Theorem 1.1). We show that if such an N has only finitely many discontinuities in any interval but is otherwise 'smooth', then N must be a step function, the discontinuities must occur at *integer* points and the period, say P, must be a natural number. Then, denoting the jump at n by a_n , we show that a_n is even m (mod m) and multiplicative. This allows us to deduce our main result.

¹To appear in Acta Arithmetica.

²That is; $a_n = a_{(n,P)}$.

Theorem A

Let $N \in T$ be such that N(x) - cx has period P, and suppose that N determines a g-prime system. Then $P \in \mathbb{N}$ and

$$N(x) = \sum_{\substack{n \le P \\ (n,P) = 1}} \left[\frac{x-n}{P} + 1 \right].$$

i.e. N is the integer-counting function of the g-prime system $\mathbb{P} \setminus \{p_1, \ldots, p_k\}$ where p_1, \ldots, p_k are the prime divisors of P.

(For the definition of T, see section 1.2.) This actually shows that the smallest period must be squarefree and that $c = \frac{\varphi(P)}{P}$. Our set up includes all the usual 'discrete' g-prime systems. In proving Theorem A, we prove the following result on Dirichlet series with periodic coefficients,

which may be of independent interest.

Theorem B

Let $\{a_n\}_{n\in\mathbb{N}}$ be periodic, $a_1=1$, and suppose $a_n=\exp_*b_n$ for some $b_n\geq 0$. Then a_n is multiplicative.

Here * refers to Dirichlet convolution. Thus a_n and b_n are related by $\sum_{n=1}^{\infty} \frac{a_n}{n^s} = \exp\{\sum_{n=1}^{\infty} \frac{b_n}{n^s}\}$.

§1. Preliminaries

1.1 Riemann-Stielties convolution

Let S denote the space of functions $f: \mathbb{R} \to \mathbb{C}$ which are zero on $(-\infty, 1)$, right-continuous, and of local bounded variation. (See e.g. [3], pp.50-70.) This is a vector space over addition. Let S^+ denote the subspace of S consisting of increasing functions. Also, for $\alpha \in \mathbb{R}$, let $S_{\alpha} = \{f \in S : f(1) = \alpha\}$, while $S_{\alpha}^+ = S^+ \cap S_{\alpha}$.

For functions $f, g \in S$, define the convolution (or Mellin-Stieltjes convolution) by³

$$(f * g)(x) = \int_{1-}^{x} f\left(\frac{x}{t}\right) dg(t).$$

We note that S is closed under * and that * is commutative and associative. The identity (w.r.t. *) is i(x) = 1 for $x \ge 1$ and zero otherwise.

- (a) If f or g is continuous (on \mathbb{R}), then f * g is continuous.
- (b) Exponentials. For $f \in S_1$, there exists $g \in S_0$ such that $f = \exp_* g$; i.e.

$$f = \sum_{n=0}^{\infty} \frac{g^{*n}}{n!},$$

where $g^{*n} = g * g^{*(n-1)}$ and $g^{*0} = i$. Also $f = \exp_* g$ if and only if $f * g_L = f_L$ (see [5]), where $f_L \in S$ is the function defined for $x \ge 1$ by $f_L(x) = \int_1^x \log t \, df(t)$.

- (c) For $f \in S$, define the Mellin transform of f by $\hat{f}(s) = \int_{1}^{\infty} x^{-s} df(x)$. This exists if $f(x) = O(x^A)$ for some A. Note that $\widehat{f * g} = \widehat{f}\widehat{g}$ and $\widehat{\exp_* f} = \exp \widehat{f}$.
- (d) Let $f,g \in S$ be continuously differentiable on $(1,\infty)$. Let $g_1(x) = \int_{1-\frac{1}{t}}^x dg(t)$. Then f * g is also continuously differentiable on $(1, \infty)$ with

$$(f * g)' = f' * g_1 + f(1)g'.$$

Proof. Let x > 1 and consider (f * g)(x + h) - (f * g)(x) for h small. Consider h > 0 first. We have

$$\frac{(f*g)(x+h) - (f*g)(x)}{h} = \int_{1-\frac{x}{t}}^{x} \frac{f(\frac{x+h}{t}) - f(\frac{x}{t})}{h} dg(t) + \frac{1}{h} \int_{x}^{x+h} f(\frac{x+h}{t}) dg(t). \tag{1.1}$$

 $^{^{3}}$ All limits of integration are understood to be + (i.e. from the right) except where they are explicitly stated to be -.

The integrand in the first integral tends pointwise to $\frac{1}{t}f'(\frac{x}{t})$, so by the continuity of f' this integral tends to (see [1], p.218)

$$\int_{1-}^{x} \frac{f'(\frac{x}{t})}{t} dg(t) = (f' * g_1)(x) \quad \text{as } h \to 0.$$

The second term equals

$$f(1)\frac{g(x+h)-g(x)}{h} + \frac{1}{h} \int_{x}^{x+h} \left(f\left(\frac{x+h}{t}\right) - f(1) \right) dg(t).$$

The first term tends to f(1)g'(x) while the integrand tends to 0 by right-continuity of f at 1. Hence so does the integral.

If h < 0, write h = -k and split up as $\frac{1}{k} \int_1^{x-k}$ and $\frac{1}{k} \int_{x-k}^x$ and argue as before.

For the proofs of (a)-(c) see [3] and [5].

1.2 The 'jump' function

Definition 1.1: (i) For $f \in S$ and each $x \in \mathbb{R}$, we denote by $\Delta f(x)$ the left-hand jump of f at x; i.e.

$$\Delta f(x) = f(x) - f(x-) = \lim_{h \to 0^+} (f(x) - f(x-h)).$$

This is well-defined for monotone f and hence for $f \in S$. Note also that Δf is non-zero on a countable set only ([1], p.162).

(ii) For $f \in S^+$, let f_J denote the jump function of f; i.e.

$$f_J(x) = \sum_{x_r \le x} \Delta f(x_r),$$

where the x_r denote the discontinuities of f.

The function f_J is increasing and $f = f_J + f_C$, where f_C is continuous and increasing ([1], p.186).

Let δ_a denote the function which is 1 on $[a, \infty)$ and zero otherwise. Note that $\delta_a * \delta_b = \delta_{ab}$. Letting D_f denote the (countable) set of discontinuities of f, we may write

$$f_J = \sum_{\alpha \in D_f} \Delta f(\alpha) \delta_{\alpha}. \tag{1.2}$$

The series has only non-negative terms and converges absolutely.

Properties. Let $f, g \in S^+$.

(a) $(f * q)_J = f_J * q_J$.

Write $f = f_J + f_C$ and similarly for g. Then

$$f * g = (f_J + f_C) * (g_J + g_C) = f_J * g_J + f_J * g_C + f_C * g_J + f_C * g_C.$$
 (1.3)

The last three terms are all continuous, and so their jump functions are identically zero. Therefore we need to show $(f_J * g_J)_J = f_J * g_J$.

To see this, use (1.2) for f_J and g_J . Hence

$$f_J * g_J = \sum_{\alpha \in D_f} \sum_{\beta \in D_g} \Delta f(\alpha) \Delta g(\beta) \delta_\alpha * \delta_\beta = \sum_{\alpha \in D_f} \sum_{\beta \in D_g} \Delta f(\alpha) \Delta g(\beta) \delta_{\alpha\beta},$$

which is a sum of the form $\sum_{\gamma} c_{\gamma} \delta_{\gamma}$; i.e. a jump function. Thus $(f_J * g_J)_J = f_J * g_J$ as required.

(b) For $x \ge 1$, we have

$$\Delta(f * g)(x) = \sum_{\substack{\alpha\beta = x \\ \alpha \in D_f, \beta \in D_g}} \Delta f(\alpha) \Delta g(\beta). \tag{1.4}$$

Take Δ of both sides of (1.3). As the last three terms are all continuous, $\Delta = 0$ for these functions. For the remaining term

$$\Delta(f_J * g_J)(x) = \sum_{\alpha \in D_f, \beta \in D_g} \Delta f(\alpha) \Delta g(\beta) \Delta \delta_{\alpha\beta}(x) = \sum_{\alpha \beta = x \atop \alpha \in D_f, \beta \in D_g} \Delta f(\alpha) \Delta g(\beta),$$

since $\Delta \delta_a(x) = 1$ for x = a and zero otherwise.

(c) $D_{f*q} = D_f D_q = \{\alpha\beta : \alpha \in D_f, \beta \in D_q\}.$

If $x \notin D_f D_g$ (i.e. $x \neq \alpha \beta$ for any $\alpha \in D_f$ and $\beta \in D_g$), then there is no contribution to the sum in (1.4). Hence $\Delta(f * g)(x) = 0$ and $x \notin D_{f*g}$. Thus $D_{f*g} \subset D_f D_g$.

For the converse, if $x \in D_f D_g$ then $x = \alpha \beta$ for some $\alpha \in D_f$ and $\beta \in D_g$, so that

$$\Delta(f * g)(x) = \Delta(f * g)(\alpha \beta) \ge \Delta f(\alpha) \Delta g(\beta) > 0,$$

as all the other terms in (1.4) are non-negative. Hence $x \in D_{f*g}$ and $D_{f*g} = D_f D_g$ follows.

(d) For $f \in S$, let f_L denote the function $f_L(x) = \int_1^x \log t \, df(t)$. Then $\Delta f_L(x) = \Delta f(x) \log x$ (see [3], p.341) and hence $(f_J)_L = (f_L)_J$. (Both sides equal $\sum_{\alpha \in D_f} \Delta f(\alpha) \log \alpha \, \delta_{\alpha}$.)

The subspace T

Consider those functions in S whose right-hand derivative exists and is continuous in $(1, \infty)$; i.e.

$$f'_{+}(x) = \lim_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

exists for each x > 1 and f'_+ is continuous here. Let T denote the subspace of such functions which have a finite number of discontinuities per bounded interval. For example, all step functions in S lie in T with $f'_+ \equiv 0$. Further for $f \in T$, $f'_+ \equiv 0$ if and only if f is a step function. This follows from the fact that if f is continuous on an interval, and f has a continuous one sided derivative, then in fact f' exists (and of course equals the one-sided derivative) – see [9], p.355. Thus on each interval where f is continuous and $f'_+ \equiv 0$, we must have $f' \equiv 0$ so that f is constant here.

Part (d) of 1.1 generalises to functions in T: if $f, g \in T$ then $f * g \in T$ and

$$(f*g)'_{+} = f'_{+}*g_{1} + f_{J,1}*g'_{+},$$

where g_1 is as before and $f_{J,1} = (f_J)_1$.

Proof. By 1.2(c), $D_{f*g} \subset D_f D_g$, so f*g has at most finitely many discontinuities per bounded interval. We have, on $(1, \infty)$,

$$(f * g)'_{+} = (f_{J} * g_{J})'_{+} + (f_{J} * g_{C})'_{+} + (f_{C} * g_{J})'_{+} + (f_{C} * g_{C})'_{+}.$$

Now $f_J * g_J$ is again a step function, so $(f_J * g_J)'_+ = 0$. Also, $f'_+ = (f_C)'_+$ so f_C is continuously differentiable and similarly for g_C . By 1.1(d), $(f_C * g_C)'_+ = f'_C * g_{C,1}$. For the remaining terms

$$(f_J * g_C)'_+(x) = \left(\sum_{\alpha \in D_f} \Delta f(\alpha) g_C\left(\frac{x}{\alpha}\right)\right)'_+ = \sum_{\alpha \in D_f} \frac{\Delta f(\alpha)}{\alpha} g'_C\left(\frac{x}{\alpha}\right).$$

This is clear for $x \notin D_f$ (since then $\alpha \neq x$), but also true if $x \in D_f$ since $g_C(\frac{x}{\alpha}) = 0$ for $x \leq \alpha$. Thus $(f_J * g_C)'_+ = f_{J,1} * g'_C$ and similarly $(f_C * g_J)'_+ = f'_C * g_{J,1}$. Putting these together gives

$$(f * g)'_{+} = f_{J,1} * g'_{C} + f'_{C} * g_{J,1} + f'_{C} * g_{C,1} = f_{J,1} * g'_{+} + f'_{+} * g_{1}.$$

1.3 Generalized prime systems

We distinguish between two different types of g-prime system.

Definition 1.2 An outer g-prime system is a pair of functions Π, N with $\Pi \in S_0^+$ and $N \in S_1^+$ such that $N = \exp_* \Pi$.

Of course, if $\Pi \in S_0^+$, then $\exp_* \Pi \in S_1^+$, so Π determines a g-prime system (with $N = \exp_* \Pi$). On the other hand if $N \in S_1^+$, then $N = \exp_* \Pi$ for some $\Pi \in S_0$ by 1.1(b), but Π need not be increasing. If Π is increasing, then we say N determines an outer g-prime system. The above definition is somewhat more general than the usual 'generalised primes', since we have not mentioned the equivalent of the prime counting function $\pi(x)$.

Definition 1.3 A g-prime system is an outer g-prime system for which there exists $\pi \in S_0^+$ such that

$$\Pi(x) = \sum_{k=1}^{\infty} \frac{1}{k} \pi(x^{1/k}).$$

we say N determines a g-prime system if there exists such an increasing $\pi \in S_0$.

Remarks.

(a) As such, $\pi(x)$ is given by

$$\pi(x) = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \Pi(x^{1/k}).$$

In fact this sum always converges for $\Pi \in S^+$ (since $\Pi(x^{1/k})$ decreases with k and $\sum_{k=1}^{\infty} \frac{\mu(k)}{k}$ converges). But of course π need not be increasing.

- (b) A g-prime system is discrete if π is a step function with integer jumps. In this case the g-primes are the discontinuities of π and the step is the multiplicity.
- (c) An outer g-prime system is continuous if N (and hence Π see below) is continuous in $(1, \infty)$.
- (d) For an outer g-prime system (Π, N) , let $\psi = \Pi_L$ (i.e. $\psi(x) = \int_1^x \log t \, d\Pi(t)$) denote the generalised Chebyshev function.

Note that $\psi \in S_0^+$, and that $N = \exp_* \Pi$ is equivalent to $\psi * N = N_L$ (see [3] and [5]).

If N determines a g-prime system and $N(x) = cx + O(x(\log x)^{-\gamma})$ for some $\gamma > 3/2$, then by Beurling's Prime Number Theorem⁴(see [2] or [4]), $\psi(x) \sim x$. Also $\psi_1(x) = \log x + \kappa + o(1)$ for some constant κ , where $\psi_1(x) = \int_1^x \frac{1}{t} d\psi(t)$.

(e) Applying 1.2(c) to outer g-primes shows that $D_{N_L} = D_N D_{\psi}$. But $D_{N_L} = D_N \setminus \{1\}$, so $D_N \setminus \{1\} = D_N D_{\psi}$.

Theorem 1.1

Let (Π, N) be an outer q-prime system. Then

- (a) $\Delta\Pi \leq \Delta N$. In particular, Π is continuous at the points of continuity of N.
- (b) (Π_J, N_J) is an outer g-prime system.

⁴This is usually formulated for g-prime systems, but actually proved for outer g-prime systems. No use of $\pi(x)$ being increasing is made, only that of $\Pi(x)$.

Proof. (a) Apply Δ to both sides of $\psi * N = N_L$ and use $\Delta N_L(x) = \Delta N(x) \log x$. Thus

$$\Delta N(x) \log x = \Delta(\psi * (N_J + N_C))(x) = \Delta(\psi * N_J)(x) \ge \Delta \psi(x),$$

since N has a jump of 1 at 1. But $\Delta \psi(x) = \Delta \Pi(x) \log x$, so $\Delta \Pi \leq \Delta N$ and (a) follows.

(b) Take the jump function of both sides of the equation $\psi * N = N_L$. Thus $(\psi * N)_J = (N_L)_J$. By 1.2(a) and (d) this is $\psi_J * N_J = (N_J)_L$. Since N_J and ψ_J are increasing, this implies (Π_J, N_J) forms a g-prime system.

Theorem 1.1 gives a useful necessary condition for $N \in S_1^+$ to determine a g-prime system; namely that N_J must determine a g-prime system. Of course, this is no use if N is continuous, in which case $N_J = i$ —the identity w.r.t. *.

Finally, we remark that if N is continuously differentiable on $(1, \infty)$, then so is ψ and $\psi' = N'_L - N' * \psi_1$. The proof follows 1.1(d) with f = N and $g = \psi$, so that $(f * g)' = N'_L$. The first integral on the RHS of (1.1) then tends to $f' * g_1 = N' * \psi_1$, while the second integral lies between

$$\frac{N(1)}{h} \int_{x}^{x+h} d\psi(t)$$
 and $\frac{N(1+h)}{h} \int_{x}^{x+h} d\psi(t)$.

Since N is right-continuous at 1, it follows that $\frac{\psi(x+h)-\psi(x)}{h}$, must therefore tend to a limit as $h\to 0^+$. Similarly, for $h\to 0^-$.

In the same way, $N \in T$ implies $\psi \in T$.

§2. Continuous g-prime systems with N(x) - cx periodic.

Suppose now that $N \in S_1$ and N(x) = cx - R(x) where R(x) is periodic for some c > 0. Extend R to the whole real line by periodicity. Thus R is right continuous, locally of bounded variation, and R(1) = c - 1. In what follows we shall always write $N = \exp_* \Pi$ where $\Pi \in S_0$.

Theorem 2.1

Let $N(x) = cx - R(x) \in S_1^+$, where R is continuously differentiable and periodic, and c > 0. Then Π is increasing if and only if R is constant; i.e. N(x) = cx + 1 - c for $x \ge 1$.

Proof. If R is constant, then N(x)=cx+1-c $(x\geq 1)$ and $\hat{N}(s)=1+\frac{c}{s-1}$. Thus $\hat{\psi}(s)=-\hat{N}'(s)/\hat{N}(s)=\frac{1}{s-1}-\frac{1}{s+c-1}$, which implies $\psi'(x)=1-x^{-c}\geq 0$. Hence Π is increasing.

For the converse, let R be non-constant and suppose, for a contradiction, that Π is increasing. Equivalently, suppose that $\psi' \geq 0$. Differentiate the relation $N_L = \psi * N$, using 1.1(d). Thus for x > 1,

$$N'(x)\log x = (N'*\psi_1)(x) + \psi'(x) \ge (N'*\psi_1)(x), \tag{2.1}$$

where $\psi_1(x) = \int_1^x \frac{1}{t} d\psi(t)$. Since N' = c - R', this becomes

$$R'(x)\log x - (R'*\psi_1)(x) \le c\log x - c\psi_1(x).$$

By Beurling's PNT, the righthand side tends to a limit as $x \to \infty$, so for some constant A and all x > 1,

$$R'(x)\log x - (R'*\psi_1)(x) \le A$$
 (2.2)

Let P be a period of R. Extend R to \mathbb{R} by periodicity. By continuity and periodicity of R' there exists $x_0 \in [0, P]$ such that

$$R'(x_0) = \max_{x \in \mathbb{R}} R'(x).$$

Furthermore, for $\delta > 0$ sufficiently small, the set of points x in [0, P] for which $R'(x) \leq R'(x_0) - \delta$ contains an interval, say $[\alpha, \beta]$ with $0 < \alpha < \beta < P$. (If not then R' is constant which forces R constant.) Let

 $x = nP + x_0$ in (2.2) where $n \in \mathbb{N}$. Since $\log(nP + x_0) = \psi_1(nP + x_0) + O(1)$ and R' has period P, (2.2) can be written as

$$\int_{1-}^{nP+x_0} R'(x_0) - R'\left(P\left\{\frac{nP+x_0}{tP}\right\}\right) d\psi_1(t) \le A. \tag{2.3}$$

(A different constant A.) Note that the integrand is non-negative. Furthermore, the integrand is at least δ for $t \in \left[\frac{nP+x_0}{kP+\beta}, \frac{nP+x_0}{kP+\alpha}\right]$ for each positive integer $k \leq n$.

Let K be a fixed positive integer less than n. Thus the LHS of (2.3) is at least

$$\sum_{k=1}^K \int_{\frac{nP+x_0}{kP+\beta}}^{\frac{nP+x_0}{kP+\alpha}} \delta \, d\psi_1(t) = \delta \sum_{k=1}^K \left(\psi_1 \left(\frac{nP+x_0}{kP+\alpha} \right) - \psi_1 \left(\frac{nP+x_0}{kP+\beta} \right) \right).$$

As $n \to \infty$, the k^{th} -term in the sum tends to $\log(\frac{kP+\beta}{kP+\alpha}) = -\log(1-\frac{\beta-\alpha}{kP+\beta}) \geq \frac{\beta-\alpha}{kP+\beta}$. Thus

$$\liminf_{n \to \infty} \int_{1-}^{nP+x_0} R'(x_0) - R'\left(P\left\{\frac{nP+x_0}{tP}\right\}\right) d\psi_1(t) \ge \delta(\beta - \alpha) \sum_{k=1}^K \frac{1}{kP+\beta} \ge \delta' \log K$$

for some $\delta' > 0$. This is true for every $K \ge 1$ so the lefthand side of (2.3) cannot be bounded. This contradiction proves the theorem.

Remark. (i) We see that N(x) = cx + 1 - c determines an outer g-prime system for every c > 0. What about g-prime systems; i.e. for which values of c is π increasing? We show in the appendix that this happens for $0 < c \le \lambda$ and fails for $c > \lambda$ for some $\lambda > 2$.

(ii) The proof of Theorem 2.1 can be readily extended to the case where R is absolutely continuous and R'(x) has a maximum value, say at $x = x_0$ and the set

$$\{x \in [0, P] : R'(x) < R'(x_0) - \delta\}$$

contains an interval, for some $\delta > 0$.

In particular this shows that none of the functions N_{λ} with $\lambda > 1$ (as defined in [7], section 3) form part of a g-prime system, except of course when $\rho_{\lambda} = 0$. (To recall: $N_{\lambda}(x) = x - R_{\lambda}(x)$ for $x \geq 1$ and zero otherwise, where $R_{\lambda}(x)$ is periodic with period 1 and defined for $0 \leq x < 1$ by $R_{\lambda}(x) = \rho_{\lambda}(\zeta(1-\lambda,1-x)-\zeta(1-\lambda))$. Here ρ_{λ} is a continuous function of λ with $\rho_{1} = 1$.)

For $\lambda > 2$, this follows from Theorem 2.1 since R_{λ} is continuously differentiable and non-constant. For $1 < \lambda \le 2$, this follows on noting that R_{λ} is absolutely continuous and R'_{λ} is maximum at 0+.

§3. G-prime systems with N(x) - cx periodic and finitely many discontinuities

Suppose now that N has discontinuities (other than at 1). To check whether N comes from a g-prime system we consider its jump function N_J . By Theorem 1.1, a necessary condition that N determines a g-prime system is that N_J does.

Our strategy for determining the possible N will be as follows. Writing $N = N_J + N_C$, we first show by extending Theorem 2.1 that we must have $N_C(x) = a(x-1)$ for some $a \ge 0$. Then we show that the discontinuities must occur at the (rational) integers and that the period, say P, is an integer. Writing a_n for the jump at n we therefore have $a_{n+P} = a_n$ for $n \ge 2$. Next we show that $a_{1+P} = a_1$ is forced, so a_n is truly periodic. Using a result of Saias and Weingartner [8] on Dirichlet series with periodic coefficients, we deduce that (i) a_n must be even (mod P) and (ii) that a_n is multiplicative. We are then in a position to deduce $N_C \equiv 0$ (i.e. N is a step function) and determine exactly which arise from g-prime systems.

First we extend Theorem 2.1 to members of T.

Theorem 3.1

Let $N(x) = cx - R(x) \in T$, where R is periodic and such that Π is increasing. Then $N(x) = N_J(x) + a(x-1)$ for some $a \ge 0$.

Proof. We proceed as in the proof of Theorem 2.1 but with R'_{+} in place of R'. Now (2.1) becomes

$$N'_{+}(x)\log x = (N'_{+} * \psi_{1})(x) + (N_{J,1} * \psi'_{+})(x) \ge (N'_{+} * \psi_{1})(x),$$

and (2.2) still holds with R' replaced by R'_+ . If R'_+ is not constant, then as before, we can find an $x_0 \in [0, P]$ which maximises R'_+ and for which $R'_+(x) \leq R'_+(x_0) - \delta$ holds throughout some interval for some (sufficiently small) $\delta > 0$. We obtain a contradiction as before and hence N'_+ is constant.

But N has finitely many discontinuities in bounded intervals, so $N'_{+} = (N_{C})^{\top}_{+}$. So $N'_{+} \equiv a$ implies (since N_{C} is continuous) that $N_{C}(x) = a(x-1)$, using $N_{C}(1) = 0$. Since N_{C} is increasing, we must have a > 0.

Later on, we shall see that the only possible value of a is 0.

Notation

Let λ denote the total jump of N per interval of length P; i.e. $N_J(x+P)-N_J(x)=\lambda$ for $x\geq 1$. Thus $N_J(x)=\frac{\lambda}{P}x+O(1)$ and, by integration by parts, $(N_J)_L(x)=\frac{\lambda}{P}x\log x+O(x)$. Note that $\lambda=0$ implies N is continuous, while $\lambda=cP$ implies $N=N_J$.

For the following, D_N denotes the set of discontinuities of N in $(0, \infty)$ and $D_N^* = D_N \cap (1, P+1]$. We suppose that D_N^* is a finite, but non-empty, set.

Proposition 3.2

Let D_N^* have k elements. Suppose $\alpha \in D_N$ such that α is irrational. Then there are at most k^2 numbers $\beta \in D_N$ such that $\alpha\beta \in D_N$.

Proof. Suppose, for a contradiction, that there are $l > k^2$ numbers $\beta \in D_N$ such that $\alpha\beta \in D_N$. Let $D_N^* = \{c_1, \ldots, c_k\}$. Each β is of the form $nP + c_i$. There are k choices for c_i so some c_{i_0} will appear at least k+1 times. (If not and all appear at most k times, then there can be at most k^2 such numbers β .) Thus we have (at least) k+1 equations

$$\alpha(nP + c_{i_0}) = mP + c_i,$$

with (possibly different) $m, n \in \mathbb{N}$ and some $c_j \in D_N^*$. As D_N^* has only k elements, at least one c_j must occur twice; i.e. there exist positive integers n_1, n_2, m_1, m_2 such that

$$\alpha(n_1P + c_{i_0}) = m_1P + c_{j_0}$$
 and $\alpha(n_2P + c_{i_0}) = m_2P + c_{j_0}$.

Note that $n_1 \neq n_2$ and $m_1 \neq m_2$ otherwise they are not genuinely different equations. Subtracting these two gives

$$\alpha(n_2 - n_1) = m_2 - m_1,$$

and α is rational — a contradiction.

Proposition 3.3

 D_N contains only rational numbers and P is rational.

Proof. By 1.2(a) and Theorem 1.1,

$$(N_J)_L(x) = (N_J * \psi_J)(x) = \sum_{\substack{\alpha\beta \leq x \\ \alpha, \beta \in D_N}} \Delta N(\alpha) \Delta \psi(\beta).$$
(3.1)

Since $(N_J)_L(x) = \frac{\lambda}{P} x \log x + O(x)$ and $D_{\psi} D_N = D_{N_L} = D_N \setminus \{1\}$, we may rewrite (3.1) as

$$\sum_{\alpha \le x} \Delta N(\alpha) \sum_{\substack{\beta \le x/\alpha \\ \text{s.t. } \alpha\beta \in P(N)}} \Delta \psi(\beta) = \frac{\lambda}{P} x \log x + O(x).$$
 (3.2)

For α irrational, by Proposition 3.2 there are at most k^2 possible β s for which $\alpha\beta \in D_N$, where $k = |D_N^*|$. For each such β , $\Delta\psi(\beta) \leq \Delta N(\beta) \log \beta \leq C \log \beta$ for some C. Hence the inner sum on the left of (3.2) is at most $Ck^2 \log(x/\alpha)$. Thus the contribution of irrational α to the LHS of (3.2) is less than

$$Ck^2 \sum_{\alpha \le x} \Delta N(\alpha) \log \frac{x}{\alpha} = Ck^2 \int_{1-}^x \log \frac{x}{t} dN_J(t) = Ck^2 \int_{1}^x \frac{N_J(t)}{t} dt = O(x).$$

Hence

$$\sum_{\substack{\alpha \leq x \\ \alpha \text{ rational}}} \Delta N(\alpha) \sum_{\substack{\beta \leq x/\alpha \\ \text{s.t. } \alpha\beta \in D_N}} \Delta \psi(\beta) = \frac{\lambda}{P} x \log x + O(x).$$
 (3.3)

But the LHS of (3.3) is (using Beurling's PNT for $\psi_J(x)$)

$$\sum_{\substack{\alpha \leq x \\ \alpha \text{ rational}}} \Delta N(\alpha) \psi_J \left(\frac{x}{\alpha}\right) \sim x \sum_{\substack{\alpha \leq x \\ \alpha \text{ rational}}} \frac{\Delta N(\alpha)}{\alpha}.$$
 (3.4)

Now the function

$$N_{J,\mathbb{Q}}(x) \stackrel{\text{def}}{=} \sum_{\substack{\alpha \leq x \\ \text{optimal}}} \Delta N(\alpha) = \frac{\mu}{P} x + O(1)$$

for some $\mu \leq \lambda$ by periodicity. (μ is the jump per interval of length P from the rational discontinuities.) The RHS of (3.4) is therefore

$$x \int_{1}^{x} \frac{1}{t} dN_{J,\mathbb{Q}}(t) = x \int_{1}^{x} \frac{N_{J,\mathbb{Q}}(t)}{t^{2}} dt + O(x) = \frac{\mu}{P} x \log x + O(x).$$

It follows that $\mu = \lambda$ and there are no irrational numbers in D_N .

Finally, $\alpha \in D_N$ with $\alpha > 1$ implies $\alpha + P \in D_N$ by periodicity. As D_N contains only rationals, this forces P rational.

Proposition 3.4

 $D_N \subset \mathbb{N} \ and \ P \in \mathbb{N}.$

Proof. Since $D_N \setminus \{1\} = D_{\psi*N} = D_{\psi}D_N$, if $\alpha \in D_{\psi}$ then $\alpha\beta \in D_N$ for every $\beta \in D_N$. In particular (using $D_{\psi} \subset D_N$) $\alpha \in D_{\psi}$ implies $\alpha^n \in D_N$ for every $n \in \mathbb{N}$. By periodicity, $\alpha^n - kP \in D_N$ for every integer k provided $\alpha^n - kP \geq 1$.

Now write $\alpha = r/s$ and P = t/u where $r, s, t, u \in \mathbb{N}$ and (r, s) = (t, u) = 1. For D_N^* to be finite, the numbers $1 + P\{\frac{\alpha^n - 1}{P}\}$ (n = 1, 2, 3...) (take $k = [\frac{\alpha^n - 1}{P}]$ above) must repeat themselves infinitely often; i.e. for infinitely many values of n,

$$\alpha^n - kP = \alpha^{n_0} - k_0 P$$

for some integers k, k_0 , and n_0 . As such,

$$P = \frac{\alpha^n - \alpha^{n_0}}{k - k_0} = \frac{(\frac{r}{s})^n - (\frac{r}{s})^{n_0}}{k - k_0} = \frac{t}{u}.$$

Multiplying through by $(k-k_0)us^{n_0}$ shows that $s^{n-n_0}|ur^n$ for infinitely many n. But (r,s)=1, so $s^{n-n_0}|u$ for infinitely many n. This is only possible is s=1; i.e. $\alpha\in\mathbb{N}$. Hence $D_\psi\subset\mathbb{N}$.

It follows that $D_{\Pi} \subset \mathbb{N}$ also, and $D_{\Pi^{*k}} \subset \mathbb{N}$ for every positive integer k. Since $N = \sum_{k=0}^{\infty} \Pi^{*k}/k!$, it follows that $D_N \subset \mathbb{N}$ also.

Finally, $m \in D_N$ with m > 1 implies $m + P \in D_N$ by periodicity. Since $D_N \subset \mathbb{N}$, this implies $P \in \mathbb{N}$.

§4. Determining the jumps

Now that we have established the discontinuities are at the integers, it remains to determine the possible jumps. Write $a_n = \Delta N(n)$ and $c_n = \Delta \psi(n)$. Thus $a_1 = 1$ and $a_{n+P} = a_n$ for n > 1. The equation $\Delta N_L = (\Delta N) * \psi_J$ translates as

$$a_n \log n = \sum_{d|n} c_d a_{n/d}. \tag{4.1}$$

Thus $c_1 = 0$, for a prime p, $c_p = a_p \log p$, while for distinct primes p and q, we have (after some calculation) $c_{pq} = (a_{pq} - a_p a_q) \log pq$.

Next we show that a_n is truly periodic $(a_{n+P} = a_n \text{ for } n \ge 1)$. For the proof, let $\langle \mathbb{P}_{r,P} \rangle$ denote the set of numbers of the form $p_1 \dots p_k$ where the p_i are distinct primes, all congruent to $r \pmod{P}$. Here r is coprime to P. Each such set is infinite by Dirichlet's Theorem on primes in arithmetic progressions.

Proposition 4.1

 $a_{P+1} = 1.$

Proof. First we prove that $a_{P+1} = 0$ or 1.

Let p_1, \ldots, p_k be distinct primes all of the form 1 (mod P), with $k \geq 3$. Let $n = p_1 \ldots p_k$, which is also 1 (mod P). Note that for every d|n, $d = 1 \pmod{P}$, so that $a_d = a_{P+1}$ if d > 1. In particular $c_{p_ip_j} = a_{P+1}(1 - a_{P+1}) \log p_i p_j$ for any $1 \leq i, j \leq k$ with $i \neq j$. Since $c_n \geq 0$, (4.1) implies

$$a_{P+1}\log n \ge \sum_{1 \le i < j \le k} c_{p_i p_j} a_{n/p_i p_j} = a_{P+1}^2 (1 - a_{P+1}) \sum_{1 \le i < j \le k} \log p_i p_j = a_{P+1}^2 (1 - a_{P+1}) (k-1) \log n.$$

This is impossible for k sufficiently large unless a_{P+1} equals 0 or 1.

Next we show that $a_{P+1}=0$ implies $a_n=0$ for all n>1, and hence that $N_J(x)=1$ for $x\geq 1$ — i.e. the continuous case.

By induction. Suppose $a_{P+1}=0$ and that $a_n=0$ for all n>1 such that $\Omega(n)< k$, some $k\geq 1$. (It is vacuously true for k=1.) Then $a_{nr}=0$ for all such n and all $r\equiv 1\pmod P$, by periodicity. In particular, if we take $r\in \langle \mathbb{P}_{1,P}\rangle$. Note that this implies $c_{nr}=0$ also for such n and r.

Now let n be such that $\Omega(n) = k$. Then, with $r \in \langle \mathbb{P}_{1,P} \rangle$ such that (n,r) = 1,

$$a_{nr} \log nr = \sum_{d|nr} c_d a_{nr/d} = \sum_{d_1|n} \sum_{d_2|r} c_{d_1 d_2} a_{nr/d_1 d_2}.$$

Now $d_2 \in \langle \mathbb{P}_{1,P} \rangle$ also, so by assumption, $c_{d_1d_2} = 0$ if $\Omega(d_1) < k$. Hence only the terms with $\Omega(d_1) = k$ give a contribution; i.e. only if $d_1 = n$. Also $a_{nr} = a_n$ by periodicity. Thus

$$a_n \log nr = \sum_{d_2|r} c_{nd_2} a_{r/d_2} = c_{nr},$$
 (4.2)

since only the term with $d_2 = r$ makes a_{r/d_2} non-zero.

Now consider a_{n^2r} with n and r as above. We have

$$a_{n^2r}\log n^2r \geq \sum_{d|r} c_{nd}a_{nr/d}.$$

Using (4.2) and noting that $a_{n^2r} = a_{n^2}$, we therefore have⁶

$$a_{n^2} \log n^2 r \ge a_n^2 \sum_{d|r} \log nd = \frac{a_n^2}{2} d(r) \log n^2 r.$$

⁵As usual, $\Omega(n)$ denotes the total number of prime factors of n; $\omega(n)$ denotes the number of distinct prime factors of n. ⁶Using $2\sum_{d|n}\log kd=d(n)\log k^2n$.

i.e. $2a_{n^2} \ge a_n^2 d(r)$ for all $r \in \langle \mathbb{P}_{1,P} \rangle$ such that (n,r) = 1. But r can be chosen such that d(r) is arbitrarily large, and we have a contradiction if $a_n > 0$. Thus $a_n = 0$ is forced.

Hence by induction, $a_n = 0$ for all n > 1.

Thus, for the discontinuous case, $\hat{N_J}(s)$ is a Dirichlet series with purely periodic coefficients. Further, if N_J determines a g-prime system, then $\hat{N_J}$ has no zeros in 7 H_1 . Now we use the main result of Saias and Weingartner ([8], Corollary): Let F be a Dirichlet series with periodic coefficients. Then F does not vanish in H_1 if and only if $F = PL_\chi$, where P is a Dirichlet polynomial with no zeros in H_1 and χ is a Dirichlet character.

Thus $\hat{N_J} = PL_{\chi}$ for some Dirichlet polynomial P and Dirichlet character χ . We shall see below that the positivity of the coefficients of $\hat{N_J}$ implies that χ must be a principal character, showing that we actually have $\hat{N_J} = Q\zeta$ for some Dirichlet polynomial Q.

Proposition 4.2

 $\hat{N}_J(s) = Q(s)\zeta(s)$ where Q is a Dirichlet polynomial with no zeros in H_1 . Furthermore, a_n is even (mod P); i.e. $a_n = a_{(n,P)}$, and $Q(s) = \sum_{d|P} \frac{q(d)}{d^s}$ for some q(d).

Proof. From above, $\hat{N}_J(s) = P(s)L_{\chi}(s)$, where $P(s) = \sum_{n=1}^N b_n n^{-s}$ say. Extend b_n so that $b_n = 0$ for n > N. By inversion,

$$b_n = \sum_{d|n} \mu(d)\chi(d)a_{n/d} = 0$$
 for $n > N$.

In particular, for every prime p > N, $a_p = \chi(p)$. A simple induction on $\Omega(n)$ shows that more generally, $a_n = \chi(n)$ whenever all the prime factors of n are greater than N. Consequently, for all such n, $a_n = 0$ or 1 (since $a_n \ge 0$ while $\chi(n) = 0$ or a root of unity).

Now let $p > \max\{N, P\}$ be prime. Then $p \equiv r \pmod{P}$ for some r with (r, P) = 1. Let $n = p^{\phi(P)}$. Then $n \equiv r^{\phi(P)} \equiv 1 \pmod{P}$ and hence

$$1 = a_1 = a_n = \chi(n) = \chi(p^{\phi(P)}) = \chi(p)^{\phi(P)}.$$

But $\chi(p) = 0$ or 1, so $\chi(p) = 1$ for all sufficiently large p.

This implies χ must be a principal character. For suppose χ is a character modulo m. Let (r,m)=1. For a sufficiently large prime p in each residue class $r \pmod{m}$, $1=\chi(p)=\chi(r)$ by periodicity. Thus $\chi(r)=1$ whenever (r,m)=1; i.e. χ is principal. Thus

$$\hat{N}_J(s) = P(s)L_{\chi_0}(s) = P(s)\zeta(s) \prod_{p|m} \left(1 - \frac{1}{p^s}\right) = Q(s)\zeta(s),$$

where Q is again a Dirichlet polynomial, non-zero in H_1 . Denoting the coefficients of Q by q(n), we see that q(1) = 1, q(n) = 0 for n sufficiently large, and

$$a_n = \sum_{d|n} q(d).$$

To show a_n is even (mod P), we first show that for d|P, $a_{pd} = a_d$ for all sufficiently large primes p. It is true for d = 1, so suppose it is true if $\Omega(d) < k$, for some $k \ge 1$.

Let d|P such that $\Omega(d)=k$. Let p be prime and sufficiently large so that (p,d)=1 and q(pd)=0. Then

$$0 = q(pd) = \sum_{\substack{c|pd \ c > 1}} \mu(c) a_{pd/c} = \sum_{\substack{c|d \ c > 1}} \mu(c) a_{pd/c} + \sum_{\substack{c|d \ c > 1}} \mu(pc) a_{d/c}$$
$$= a_{pd} + \sum_{\substack{c|d \ c > 1}} \mu(c) a_{pd/c} - \sum_{\substack{c|d \ c > 1}} \mu(c) a_{d/c} = a_{pd} - a_{d}$$

⁷For $\theta \in \mathbb{R}$, H_{θ} denotes the half-plane $\{s \in \mathbb{C} : \Re s > \theta\}$.

since $a_{pd/c} = a_{d/c}$ as $\Omega(d/c) < k$ in the first sum.

Let d = (n, P). Then $(\frac{n}{d}, \frac{P}{d}) = 1$ and there exist arbitrarily large primes p congruent to $\frac{n}{d} \pmod{\frac{P}{d}}$. For such primes p, $pd \equiv n \pmod{P}$, and by periodicity $a_n = a_{pd} = a_d$ for p sufficiently large. Thus $a_n = a_{(n,P)}$

As a result, we can write

$$\hat{N}_{J}(s) = \sum_{d|P} \sum_{\substack{n=1\\(n,P)=d}}^{\infty} \frac{a_{n}}{n^{s}} = \sum_{d|P} \frac{a_{d}}{d^{s}} \sum_{\substack{m=1\\(m,P/d)=1}}^{\infty} \frac{1}{m^{s}} = \sum_{d|P} \frac{a_{d}}{d^{s}} \prod_{p|P/d} \left(1 - \frac{1}{p^{s}}\right) \zeta(s) = Q(s)\zeta(s),$$

which shows that q(n) is supported on the divisors of P.

Next we show that a_n is multiplicative.

Theorem 4.3

 a_n is multiplicative.

Proof. Equivalently, we show q(n) is multiplicative. Let the period be $P = p_1^{m_1} \dots p_k^{m_k}$. Write

$$Q(s) = \sum_{d|P} \frac{q(d)}{d^s} = \exp\left\{\sum_{n=1}^{\infty} \frac{t(n)}{n^s}\right\},\,$$

for some t(n), where t(1) = 0. Since $\hat{N}_J(s) = \exp\{\sum_{n=1}^{\infty} \frac{b_n}{n^s}\}$ for some $b_n \ge 0$, Proposition 4.2 implies that $t(n) = b_n \ge 0$ for n not a prime power. The aim is to show that t(n) = 0 for such n.

Since the q(n) are supported on the divisors of P, t(n) is supported on the set $\{p_1^{n_1} \dots p_k^{n_k} : n_1, \dots, n_k \in n_k\}$ \mathbb{N}_0 $\}$.

For each p|P let

$$Q_p(s) = \sum_{r=0}^{\infty} \frac{q(p^r)}{p^{rs}}$$

(This is a polynomial in p^{-s} .) Then

$$\prod_{p|P} Q_p(s) = \exp\left\{\sum_{\substack{n \text{ prime power} \\ n}} \frac{t(n)}{n^s}\right\},\,$$

where the sum is over prime powers only. Now define $T_1(s)$ and $t_1(n)$ by

$$\frac{Q(s)}{\prod_{p|P} Q_p(s)} = \exp\{T_1(s)\} = \exp\{\sum_{n=1}^{\infty} \frac{t_1(n)}{n^s}\}.$$
 (4.3)

i.e. $t_1(n) = t(n)$ for n not a prime power and zero otherwise.

If the Dirichlet series for $T_1(s)$ converges everywhere, then the result follows. For the LHS of (4.3) is then entire and of order 1 while if $t_1(n_0) > 0$ for some $n_0 > 1$, then the RHS of (4.3) is, for negative s, at least $e^{t_1(n_0)n_0^{-s}}$, which has infinite order. The contradiction implies T_1 is identically zero and $Q = \prod_p Q_p$.

Suppose then that the series for T_1 has a finite abscissa of convergence, say $-\beta$. Since the coefficients are non-negative, $-\beta$ must be a singularity of the function; i.e. $-\beta$ must be a zero of one of the $Q_p(s)$. (As we shall see later, $Q_p(s) \neq 0$ in H_0 , so $\beta \geq 0$, but we do not require to know this at this stage.)

We can write down the 'spatial extension' of (4.3). We can think of this as substituting $z_i = p_i^{-s}$. For p prime, let $\tilde{Q}_p(z) = \sum_{r=0}^{\infty} q(p^r)z^r$, so that $\tilde{Q}_p(p^{-s}) = Q_p(s)$. Now define

$$\tilde{Q}(z_1, \dots, z_k) = \sum_{b_1, \dots, b_k \ge 0} q(p_1^{b_1} \dots p_k^{b_k}) z_1^{b_1} \dots z_k^{b_k},$$

(the series is of course finite) and similarly for \tilde{T}_1 . Then (4.3) becomes

$$\frac{\tilde{Q}(z_1, \dots, z_k)}{\tilde{Q}_{p_1}(z_1) \dots \tilde{Q}_{p_k}(z_k)} = \exp\left\{\tilde{T}_1(z_1, \dots, z_k)\right\} = \exp\left\{\sum_{n_1, \dots, n_k > 0} t_1(p_1^{n_1} \dots p_k^{n_k}) z_1^{n_1} \dots z_k^{n_k}\right\}$$
(4.4)

Since (4.3) holds for $\sigma > -\beta$, (4.4) holds in the domain $\{(z_1, \ldots, z_k) : |z_1| < p_1^{\beta}, \ldots, |z_k| < p_k^{\beta}\}$.

Let r be the smallest positive integer such that $t_1(n) = 0$ whenever $\omega(n) < r$. (Thus $2 \le r \le k$). Put $z_{r+1}, \ldots, z_k = 0$. Then (4.4) becomes

$$\frac{\tilde{Q}(z_1, \dots, z_r)}{\tilde{Q}_{p_1}(z_1) \dots \tilde{Q}_{p_r}(z_r)} = \exp\left\{ \sum_{n_1, \dots, n_r \ge 0} t_1(p_1^{n_1} \dots p_r^{n_r}) z_1^{n_1} \dots z_r^{n_r} \right\}$$
(4.5)

where we identified $\tilde{Q}(z_1, \ldots, z_r)$ with $\tilde{Q}(z_1, \ldots, z_r, 0, \ldots, 0)$. Without loss of generality, we may assume that the numerator and denominator of the left-hand side of (4.5) have no common factors. (If there are any, cancel them, and apply the argument to what remains.)

Let $z_i = x_i$ (i = 1, ..., r) be real and positive. Take logs of (4.5) and differentiate with respect to each of the variables $x_1, ..., x_r$. This gives

$$\sum_{n_1, \dots, n_r \ge 0} n_1 \dots n_r t_1(p_1^{n_1} \dots p_r^{n_r}) x_1^{n_1} \dots x_r^{n_r} = \frac{\partial^r}{\partial x_1 \dots \partial x_r} \log \tilde{Q}(x_1, \dots, x_r) = \frac{P(x_1, \dots, x_r)}{\tilde{Q}(x_1, \dots, x_r)^r}, \quad (4.6)$$

for some polynomial P. The crucial point here is that the polynomials $\tilde{Q_p}$ have all disappeared.

Now, $\tilde{Q}_p(p^{\beta}) = 0$ for some p|P, say $p = p_1$. Fix x_2, \ldots, x_r and let $x_1 \to p_1^{\beta}$ through real values from below. If $\tilde{Q}(p_1^{\beta}, x_2, \ldots, x_r) \neq 0$, then the RHS of (4.6) remains bounded, and hence (since $t_1(n) \geq 0$), the series

$$\sum_{n_1, \dots, n_k \ge 1} n_1 \dots n_r t_1(p_1^{n_1} \dots p_r^{n_r}) p_1^{n_1 \beta} x_2^{n_2} \dots x_r^{n_r} \quad \text{converges}$$
(4.7)

while the LHS of (4.5) tends to infinity, so

$$\sum_{n_1,\dots,n_r>0} t_1(p_1^{n_1}\dots p_r^{n_r}) p_1^{n_1\beta} x_2^{n_2}\dots x_r^{n_r} \quad \text{diverges.}$$
(4.8)

But (4.7) and (4.8) are in contradiction since in (4.8) we actually require $n_1, \ldots, n_r \ge 1$ (if any $n_j = 0$, there is no contribution to the sum as $\omega(p_1^{n_1} \ldots p_r^{n_r}) < r$).

Thus this forces $\tilde{Q}(p_1^{\beta}, x_2, \dots, x_r) = 0$ for every x_i $(i = 2, \dots, r)$ in some interval, and hence for all such x_i , since \tilde{Q} is a polynomial. But this implies $(x_1 - p_1^{\beta})$ is a factor of both $\tilde{Q}(x_1, \dots, x_r)$ and $\tilde{Q}_{p_1}(x_1)$ — a contradiction. Hence T_1 is identically zero and the result follows.

Determining a for which $N_J(x) + a(x-1)$ is a g-prime system

The problem thus reduces to determining $Q_p(s)$. We shall see in Theorem 4.4 that the zeros of $Q_p(s)$ all have real part less than or equal to zero. We use this fact to deduce that the only permissible value of a is 0.

For, using this fact, the zeros of Q then all lie in $\mathbb{C} \setminus H_0$. In particular, in H_0 , the zeros of \hat{N}_J are precisely the zeros of ζ and hence \hat{N}_J has no real positive zeros. Indeed, $Q(\sigma) > 0$ for $\sigma > 0$ since $Q(\sigma)$ is real and non-zero here and as $\sigma \to \infty$, $Q(\sigma) \to 1$. Thus $\hat{N}_J(\sigma) < 0$ for $0 < \sigma < 1$. Also $\hat{N}(\sigma) = \hat{N}_J(\sigma) - \frac{a}{1-\sigma} < 0$ for $\sigma \in (0,1)$.

Now $N = N_J + N_C$ and $\psi = \psi_J + \psi_C$ and by assumption ψ_C is increasing. (Here $N_C(x) = a(x-1)$, so that $\hat{N}_C(s) = \frac{a}{s-1}$.) Thus

$$\hat{\psi_C}(s) = \hat{\psi}(s) - \hat{\psi_J}(s) = \frac{\hat{N_J}'(s)}{\hat{N_J}(s)} - \frac{\hat{N}'(s)}{\hat{N}(s)},$$

since (Π_J, N_J) and (Π, N) are g-prime systems. Note that $\hat{\psi_C} \neq -\hat{N_C}'/\hat{N_C}$ as (Π_C, N_C) is not a g-prime system (indeed $N_C(1) = 0$).

Both $\psi(s)$ and $\psi_J(s)$ are meromorphic functions, holomorphic in $\overline{H_1} \setminus \{1\}$, with simple poles at s = 1 and residue 1. Thus $\psi_C(s)$ has a removable singularity at 1 and poles at the zeros of \hat{N} and $\hat{N_J}$.

Landau's Oscillation Theorem (cf. [3], p.137) applied to $\hat{\psi_C}$ implies that $\hat{\psi_C}$ has a singularity at its abscissa of convergence, say θ . Of course $\theta < 1$ must be a zero of \hat{N} or $\hat{N_J}$. But neither \hat{N} nor $\hat{N_J}$ has real positive zeros, so $\theta \leq 0$. But then $\hat{\psi_C}$ must be holomorphic in H_0 , implying that \hat{N} and $\hat{N_J}$ have the same zeros here; i.e. all the non-trivial Riemann zeros. But at each such zero, say ρ , $\hat{N_C}(\rho) = 0$ also. This is impossible as $\hat{N_C}$ has no zeros, except if a = 0.

Hence a = 0 is forced and $N = N_J$.

Criteria for g-primes

We have $\hat{N}(s) = Q(s)\zeta(s) = \exp\{T(s) + \log \zeta(s)\} = \exp\{\hat{\Pi}(s)\}$. Thus

$$\hat{\Pi}(s) = \sum_{n=1}^{\infty} \frac{\Lambda_1(n) + t(n)}{n^s}.$$

For Π to be increasing, the coefficients of $\hat{\Pi}$ must be non-negative; i.e. $\Lambda_1(n) + t(n) \geq 0$ for all $n \in \mathbb{N}$. As t(n) is supported on the powers of the prime divisors of P, we have:

$$\Pi \ \ is \ increasing \quad \Longleftrightarrow \quad t(p^k) \geq -\frac{1}{k} \quad for \ p|P \ \ and \ \ k \in \mathbb{N}. \tag{*}$$

Note that $t(p) = q(p) = a_p - 1 \ge -1$ for p prime, so (*) is satisfied for k = 1.

Turning now to $\pi(x)$, N determines g-primes if π is increasing where $\pi(x) = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \Pi(x^{1/k})$. But

$$\hat{\pi}(s) = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \hat{\Pi}(ks) = \sum_{p} \frac{1}{p^s} + \sum_{k,n \geq 1} \frac{\mu(k)t(n)}{kn^{ks}} = \sum_{n=1}^{\infty} \frac{\pi_n}{n^s},$$

say, for some coefficients π_n . Thus π is increasing if and only if $\pi_n \geq 0$ for all n. Now $\pi_1 = 0$ and $\pi_p = 1 + t(p) \geq 0$ for p prime, while $\pi_n = 0$ for n not a prime power. Hence

$$\pi \text{ is increasing } \iff \sum_{d|n} \frac{\mu(d)}{d} t(p^{n/d}) \ge 0 \quad \text{for } n \ge 2 \text{ and } p|P.$$
 (**)

To deal with these criteria, it is useful to write them in terms of the zeros of \tilde{Q}_p .

The zeros of $\tilde{Q_p}$

Let p|P and let k be the degree of \tilde{Q}_p . Then \tilde{Q}_p has k zeros $\lambda_1, \ldots, \lambda_k$. Letting $\mu_r = 1/\lambda_r$ gives $\tilde{Q}_p(z) = (1 - \mu_1 z) \ldots (1 - \mu_k z)$ and

$$\log \tilde{Q}_p(z) = \sum_{r=1}^k \log(1 - \mu_r z) = -\sum_{n=1}^\infty \left(\frac{1}{n} \sum_{r=1}^k \mu_r^n\right) z^n.$$

Since $\log \tilde{Q}_p(z) = \sum_{r=1}^{\infty} t(p^r)z^r$, equating coefficients gives

$$t(p^n) = -\frac{1}{n} \sum_{r=1}^k \mu_r^n.$$

Hence (*) is satisfied for a prime p|P if and only if

$$\tau_n := \sum_{r=1}^k \mu_r^n \le 1 \quad \text{ for } n \in \mathbb{N}.$$
 (†)

Turning to (**), let $s_n(w) = \sum_{d|n} \mu(d) w^{n/d}$ for $w \in \mathbb{C}$. Then $\sum_{d|n} \frac{\mu(d)}{d} t(p^{n/d}) = -\frac{1}{n} \sum_{r=1}^k s_n(\mu_r)$ and (**) is satisfied for a prime p|P if and only if

$$\sum_{r=1}^{k} s_n(\mu_r) \le 0 \quad \text{for } n \ge 2. \tag{\dagger\dagger}$$

Theorem 4.4

Let \tilde{Q}_p , k and μ_1, \ldots, μ_k be as above. For k = 1, (\dagger) is satisfied if and only if $|\mu_1| \leq 1$. For k > 1, if (\dagger) is satisfied, then $|\mu_r| < 1$ for all r.

Proof. For k=1 this is trivial so assume k>1 and that (\dagger) is satisfied. The numbers μ_1,\ldots,μ_k are either real or occur in complex conjugate pairs. Denote the real ones by μ_1,\ldots,μ_l and the complex ones by $\nu_1e^{\pm i\theta_1},\ldots,\nu_me^{\pm i\theta_m}$ where $\nu_r>0$ and $0<\theta_r<\pi$. Thus (\dagger) becomes

$$\tau_n = \mu_1^n + \dots + \mu_l^n + 2(\nu_1^n \cos n\theta_1 + \dots + \nu_m^n \cos n\theta_m) \le 1.$$
 (4.9)

Assume without loss of generality that $|\mu_1| \ge ... \ge |\mu_l|$ and $\nu_1 \ge ... \ge \nu_m$. If $|\mu_1| \ge 1$, then $\mu_1^{2n} \ge 1$ and (4.9) implies

$$\nu_1^{2n}\cos 2n\theta_1 + \ldots + \nu_m^{2n}\cos 2n\theta_m \le 0$$
 for all $n \in \mathbb{N}$.

Suppose $\nu_1 = \ldots = \nu_q > \nu_{q+1}$ for some $q \leq m$, then this involves

$$\cos 2n\theta_1 + \ldots + \cos 2n\theta_q \le \frac{a}{A^n} \quad (n \in \mathbb{N})$$
(4.10)

for some a and A > 1. But this is impossible as we show below.

Thus if any μ_r is real, then $|\mu_r| < 1$. Now suppose $\nu_1 = \ldots = \nu_q > \nu_{q+1}$ and $\nu_1 \ge 1$. Then (4.9) implies

$$\cos 2n\theta_1 + \ldots + \cos 2n\theta_q \le \frac{1}{2} + \frac{a}{A^n} \quad (n \in \mathbb{N})$$
(4.11)

for some a and A > 1. We show this is impossible, which in turn implies (4.10) is impossible.

Let $\phi_r = \theta_r/\pi$. By Dirichlet's Theorem (see [6], p.170), the numbers $n\phi_1, \ldots, n\phi_q$ can be made arbitrarily close to q integers simultaneously; i.e. given $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that $|n\phi_r - K_r| < \varepsilon$ for $r = 1, \ldots, q$ and integers K_r . Thus, for some $|\delta_r| < \varepsilon$

$$\cos 2n\theta_r = \cos 2\pi n\phi_r = \cos 2\pi (K_r + \delta_r) = \cos 2\pi \delta_r > \cos 2\pi \varepsilon$$

which can be made as close to 1 as we please. The inequalities (4.10) and (4.11) are impossible and hence $\nu_r < 1$ for all r.

To deal with (††) we require the following.

Lemma 4.5

- (a) Let $w \in \mathbb{R}$. Then $s_n(w) < 0$ for all n > 1 if and only if w = 0 or 1.
- (b) Let w_1, \ldots, w_k be non-zero complex numbers of modulus less than one, and symmetric about \mathbb{R} ; i.e. $\overline{w_i} = w_j$ for some j. Then $s_n(w_1) + \cdots + s_n(w_k)$ changes sign infinitely often.

Proof. (a) For p prime, $s_p(w) = w^p - w > 0$ for w > 1, while for p an odd prime, $s_{2p}(w) = w^{2p} - w^p - w^2 + w > 0$ whenever w < -1 for p sufficiently large. This leaves $-1 \le w \le 1$. For w = 1, $s_n(w) = 0$ for n > 1, while for w = -1, $s_n(w) = 0$ for n > 2 and $s_2(-1) = 2$, so it narrowly fails in this case. For w = 0 the result holds trivially.

Now suppose -1 < w < 1, $w \ne 0$. Consider the entire function defined by the Dirichlet series

$$H_w(s) = \sum_{n=1}^{\infty} \frac{w^n}{n^s}.$$

Note that

$$\frac{H_w(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{s_w(n)}{n^s}.$$

Now if $s_n(w)$ is ultimately of one sign, then the abscissa of convergence of this series must be a singularity of H_w/ζ . This singularity must be real, and there can be no others further to the right. But the first real singularity (furthest to the right) is at -2, so H_w must be zero at all the complex zeros of ζ . This is a contradiction as H_w , being bounded in any strip, has at most O(T) zeros up to height T here.

(b) This time

$$\frac{H_{w_1}(s) + \dots + H_{w_k}(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{s_n(w_1) + \dots + s_n(w_k)}{n^s}.$$

If $s_n(w_1) + \cdots + s_n(w_k)$ is ultimately of one sign, then the abscissa of convergence is a singularity of the LHS. Each H_{w_i} is entire, so the first real singularity occurs at -2. As in (a), this gives a contradiction.

Proof of Theorem A. By Lemma 4.5(b), if k > 1, (††) cannot be satisfied (for then $|\mu_r| < 1$ for all r). So, for π to be increasing, we require k = 1; i.e. $\tilde{Q}_p(z) = 1 + q(p)z$. Hence $\mu_1 = -q(p)$ and (††) holds if and only if $s_n(\mu_1) = s_n(-q(p)) \le 0$ for $n \ge 2$. By (a) of Lemma 4.5, this only happens if q(p) = 0 or -1. Thus

$$\hat{N}(s) = \zeta(s) \prod_{p|P} \left(1 + \frac{q(p)}{p^s}\right) = \zeta(s) \prod_{i=1}^{l} \left(1 - \frac{1}{p_i^s}\right)$$

for some prime divisors p_1, \ldots, p_l of P.

Outer g-prime systems with N(x) - cx periodic

The condition in Theorem 4.4 does not allow us to determine which coefficients a_n will lead to outer g-prime systems as they are only necessary and not sufficient. Instead we use the relation

$$kq(p^k) = \sum_{r=1}^k rt(p^r)q(p^{k-r})$$
 (4.12)

which follows directly from $Q = e^T$. This allows us to calculate $t(p^k)$ explicitly in special cases. Suppose \tilde{Q}_p has degree 1. Then $q(p^r) = 0$ for r > 1 and (4.12) gives $kt(p^k) = -(k-1)t(p^{k-1})q(p)$ for $k \ge 2$. Thus

$$t(p^k) = \frac{(-1)^{k-1}q(p)^k}{k}.$$

As a result, (*) holds if and only if $(-q(p))^k \le 1$ for all k, which is easily seen to be equivalent to $-1 \le q(p) \le 1$ for all p|P (i.e. $0 \le a_p \le 2$). In particular, we have proven:

Theorem C

Let $N \in T$ be such that N(x) - cx has squarefree period P. Then N determines an outer g-prime system if and only if

$$N(x) = \sum_{d|P} q(d) \left[\frac{x}{d} \right],$$

where $q(\cdot)$ is multiplicative, $q(p) \in [-1,1]$, and $c = \prod_{p|P} (1+q(p)/p)$.

For example, the outer g-prime systems for which N(x) - cx has period 6 are given by

$$N(x) = [x] + \lambda \left[\frac{x}{2}\right] + \mu \left[\frac{x}{3}\right] + \lambda \mu \left[\frac{x}{6}\right],$$

where $(\lambda, \mu \in [-1, 1])$ and $(1 + \lambda/2)(1 + \mu/3) = c$.

ш. П

References

- [1] T. M. Apostol, Mathematical Analysis, Addison-Wesley, Massachusetts, 1973.
- [2] P. T. Bateman and H. G. Diamond, Asymptotic distribution of Beurling's generalised prime numbers in: Studies in Number Theory 6, Prentice-Hall, 1969, pp. 152-212.
- [3] P. T. Bateman and H. G. Diamond, Analytic Number Theory, World Scientific Publishing, 2004.
- [4] A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés, I, *Acta Math.* **68** (1937), 255-291.
- [5] H. G. Diamond, Asymptotic distribution of Beurling's generalized integers, Illinois J. Math. 14 (1970) 12-28.
- [6] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (fifth edition), OUP, 1979.
- [7] T. W. Hilberdink, Flows of zeta functions with periodic integrator, J. Théorie des Nombres Bordeaux 23 (2011) 349-363.
- [8] E. Saias and A. Weingartner, Zeros of Dirichlet series with periodic coefficients, *Acta Arithmetica* **140** (2009) 335-344.
- [9] E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University Press, 1986.

APPENDIX – When does N(x) = cx + 1 - c determine a g-prime system?

From the proof of Theorem 2.1 we saw that $\psi'(x) = 1 - x^{-c}$ for $x \ge 1$. Thus ψ (equivalently Π) is increasing for every $c \ge 0$. What about π ? Let $\theta = \pi_L$ be the generalization of Chebyshev's θ -function. Then $\theta(x) = \sum_{n=1}^{\infty} \mu(n) \psi(x^{1/n})$ so that

$$\theta'(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} x^{\frac{1}{n} - 1} \psi'(x^{\frac{1}{n}}) = \frac{1}{x} \sum_{n=1}^{\infty} \frac{\mu(n)}{n} (x^{\frac{1}{n}} - x^{\frac{1-c}{n}}).$$

Let f be the entire function

$$f(z) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} (e^{\frac{z}{n}} - 1) = \sum_{k=1}^{\infty} \frac{z^k}{k! \zeta(k+1)}.$$

Then $e^x \theta'(e^x) = f(x) - f((1-c)x)$ and θ is increasing if and only if

$$f(x) \ge f((1-c)x) \quad \forall x \ge 0.$$
 (A_c)

For $0 \le c \le 2$ this is easily seen to hold as

$$f(x) - f((1-c)x) = \sum_{k=1}^{\infty} \frac{(1-(1-c)^k)x^k}{k!\zeta(k+1)}$$

and the coefficients are all non-negative if (and only if) $0 \le c \le 2$.

Now consider c > 2. It is clear that (A_c) holds for all c > 2 (actually for $c \ge 1$) if and only if

$$f(-x) \le 0 \quad \text{for } x \ge 0. \tag{B}$$

For if (B) is true, then since $(1-c)x \leq 0$, we have

$$f((1-c)x) \le 0 \le f(x)$$

and (A_c) holds. Conversely, assume (A_c) holds for all c > 2. Suppose, for a contradiction, that $f(-x_0) > 0$ for some $x_0 > 0$. Then

$$0 < f(-x_0) = f\left((1-c) \cdot \frac{x_0}{c-1}\right) \le f\left(\frac{x_0}{c-1}\right)$$

for every c > 2. This is false for c sufficiently large as the RHS can be arbitrarily close to zero. Thus (B) is true.

However, we show that (B) is false, and hence that (A_c) fails for some c > 2.

Theorem A1

There exists $\lambda > 2$ such that for $c \leq \lambda$, π is increasing, while for $c > \lambda$, π is not increasing.

Proof. Clearly, if (A_c) holds for some $c = c_0 > 1$, then it holds for all smaller c, since (A_c) is equivalent to

$$f(-y) \le f\left(\frac{y}{c-1}\right) \quad \forall y \ge 0$$
 (A'_c)

and f is increasing on $(0, \infty)$. Also, if (A'_c) holds for all $c < c_1$, then by continuity of f, it holds for $c = c_1$. Now we show (B) is false.

Starting from the formula $\frac{1}{2\pi i} \int_{(-1,0)} \Gamma(s) x^{-s} ds = e^{-x} - 1 \ (x > 0)$ we have

$$\frac{1}{2\pi i} \int_{(-1,0)} \frac{\Gamma(s)}{\zeta(1-s)} x^{-s} \, ds = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cdot \frac{1}{2\pi i} \int_{(-1,0)} \Gamma(s) \left(\frac{x}{n}\right)^{-s} \, ds = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} (e^{-x/n} - 1) = f(-x),$$

using the absolute and uniform convergence of the Dirichlet series for $1/\zeta(1-s)$. Changing the variable gives

$$f(-x) = \frac{1}{2\pi i} \int_{(1,2)} \frac{\Gamma(1-s)}{\zeta(s)} x^{s-1} ds.$$

By Mellin inversion

$$\frac{\Gamma(1-s)}{\zeta(s)} = \int_0^\infty \frac{f(-x)}{x^s} dx \qquad (1 < \sigma < 2.)$$

Hence

$$\int_{1}^{\infty} \frac{f(-x)}{x^{s}} dx = \frac{\Gamma(1-s)}{\zeta(s)} - \int_{0}^{1} \frac{f(-x)}{x^{s}} dx = \frac{\Gamma(1-s)}{\zeta(s)} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k! \zeta(k+1)(k+1-s)}.$$

Since the LHS converges and is holomorphic in H_1 , the singularities at 2, 3, 4... on the RHS are all removable, as is the singularity at s = 1.

Suppose now that f(-x) is ultimately of one sign. Then the abscissa of convergence of the LHS Mellin transform must be a (real) singularity of the function. But the first real singularity occurs at -2 (zero of ζ). This is a contradiction as there are singularities at the non-trivial zeros of ζ to the right of this. Thus f(-x) cannot ultimately be of one sign; i.e. f changes sign infinitely often in $(-\infty, 0)$ and has infinitely many zeros here.

Thus (A'_c) fails for some $c \geq 2$ and hence all larger c. Let λ denote the supremum of those c for which (A'_c) holds. Thus (A'_c) holds for $c \leq \lambda$ and fails for $c > \lambda$.

Finally, $\lambda > 2$ since $f(\frac{y}{\lambda - 1}) \ge f(-y)$ for all $y \ge 0$ with equality for some y > 0 (or λ would not be optimal) and this is false for $\lambda = 2$.

⁸Here $\int_{(\alpha,\beta)}$ means $\lim_{T\to\infty} \int_{\sigma-iT}^{\sigma+iT}$ for any $\sigma \in (\alpha,\beta)$.