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ORDERS OF GROWTH OF REAL
FUNCTIONS

Abstract

In this paper we define the notion of order of a function, which mea-
sures its growth rate with respect to a given function. We introduce the
notions of continuity and linearity at infinity with which we characterize
order-comparability and equivalence. Using the theory we have devel-
oped, we apply orders of functions to give a simple and natural criterion
for the uniqueness of fractional and continuous iterates of a function.

1 Orders of Growth.

1.1 Introduction.

Consider functions between x and ex, say x, x2, xlog x, x(log x)log log x

, ex
1

log log x ,
e
√

x, 2x, ex in increasing order of largeness. Now, repeatedly take logs1 of these
and observe the asymptotic behavior at each level. Note that if 2f ∼ g, then
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1Throughout the paper, we denote the nth-iterate of log x by logn x; that is logn x =
log(logn−1 x) and log1 x = log x. Iterates of exp are denoted by ex

n; ex
n = exp(ex

n−1) and
ex
1 = ex.

2We have the usual definitions for f ∼ g, f = o(g), f ≺ g, f � g, namely: f(x)/g(x)
tends to 1, 0, 0,∞ respectively, as x → ∞. By f � g, we mean ∃a, A > 0 such that
a < f(x)/g(x) < A on a neighborhood of infinity.
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log f ∼ log g.

f x x2 xlog x x(log x)log log x
.
.
.ex

1
log log x

e
√

x 2x ex

log f log x 2 log x (log x)2 (log x)log2 x+1
.
.
. x

1
log2 x

√
x x log 2 x

log2 f log2 x ∼ log2 x 2 log2 x ∼ (log2 x)2
.
.
. log x

log2 x
1
2 log x ∼ log x log x

log3 f log3 x log3 x ∼ log3 x 2(log3 x)
.
.
. ∼ log2 x ∼ log2 x log2 x log2 x

log4 f log4 x log4 x log4 x ∼ log4 x
.
.
. log3 x log3 x log3 x log3 x

We notice that for the first four functions, logn f(x) ∼ logn x, while for the
last four we have logn f(x) ∼ logn−1 x whenever n ≥ 4. In this sense, the
former are not distinguishable from the function f(x) = x, while the latter are
indistinguishable from ex.

This observation motivates the following definition.

Definition 1.1. A function f has order k ∈ Z if for some n ∈ Z (and hence
all larger n) logn f(x) ∼ logn−k x as x →∞. We write O(f) = k.

This notion is not new and quite recently, it was used by Rosenlicht in [7].
Our initial aim is to generalize this notion to non-integral values.

It is easy to prove the following basic properties given that O(f) and O(g)
exist:
(1) O(f + g) = O(f · g) = max{O(f), O(g)};
(2) O(f(g)) = O(f) + O(g);
(3) f ∼ g =⇒ O(f) = O(g);
(4) if f < h < g and O(f) = O(g), then O(h) exists and equals O(f);
(5) O(ex

k) = k and O(logk x) = −k, for all k ∈ Z.
From these it follows that many standard functions tending to infinity have
orders. Indeed, Hardy showed that for all so-called L-functions f tending to
infinity (those obtained from a finite number of applications of the operations
+,−,×,÷, exp and log on the constant functions and x) there exist r, s ∈ N0

and µ > 0 such that for all δ > 0,

(logs x)µ−δ < logr f(x) < (logs x)µ+δ,

for x sufficiently large (see [2]). Hence logr+1 f(x) ∼ µ logs+1 x, so that

logr+2 f(x) ∼ logs+2 x.

Thus O(f) exists and equals r − s.
Which functions, given that they tend to infinity, do not have orders? It

is clear that if f(x) tends to infinity sufficiently rapidly or slowly (i.e. faster



Orders of Growth of Real Functions 3

than ex
k or slower than logk x respectively, for any k), then f does not have an

order. In fact, one could then say that f has order ∞ or −∞ respectively.
Other examples of functions not having an order are erratic functions which

behave, say, like x and ex along different sequences. More interesting examples
come from observing that O(fk) = kO(f) (where fk is f iterated k times),
which follows from (2) above. For example, suppose g is such that g(g(x)) =
ex. Then O(g2) = 1, so that if O(g) existed, it should equal 1

2 ! Furthermore,
suppose that x ≺ g(x) ≺ ex. Then, using logn g(x) = g(logn x), we have

logn x ≺ logn g(x) ≺ logn−1 x for every n.

More generally, if g is such that gn(x) = ex
m, then we should have O(g) =

m
n . This suggests we should generalize the notion of order to fractional and
even irrational values. Further, it indicates that there is, in some sense, a
‘continuum’ of functions between x and ex, with orders ranging from 0 to 1.

We end this introduction with a brief summary of the rest of the paper. In
§1.2, we generalize the notion of order to real values and, in §1.3, to a more
general setting, basing it on composition of functions (Definition 1.3). In §1.5,
we make a more in-depth study of functions of order 0, leading to the notion of
degree. The main result of this section (Theorem 1.13) shows how the growth
of iterates of a function is determined by its degree.

In Section 2, we develop the theory further to obtain a characterization
of order-comparability and order-equivalence (i.e. when different functions
give rise to the same orders), in Theorem 2.4 and Corollary 2.5. This is done
through the (new) notions of continuity and linearity at infinity.

In Section 3, we apply the notion of order to fractional and continuous
iteration. In general, a strictly increasing and continuous function tending to
infinity has infinitely many choices for fractional iterates. We give a simple
and natural criterion based on orders which gives unique fractional (and con-
tinuous) iterates of a particular growth rate. Furthermore, it applies in great
generality. To make the application, we consider the Abel functional equation,
to which the idea of orders is closely related. Indeed, we can view the notion
of order one functions as an approximation to the Abel equation, with the
solution of the Abel equation being obtained through a limiting process. We
give sufficient conditions for the existence of such a limit and its derivative.

Notation. Unless stated otherwise, all functions are considered to be defined
on a neighborhood of infinity. By ‘f is continuous/increasing/etc.’ we mean
‘f is continuous/increasing/etc. on some interval [A,∞)’. Also we write f < g
to mean ∃x0 such that for x ≥ x0, f(x) < g(x).

For a given f , we write fn for the nth-iterate. For the special functions
exp and log we use the notation ex

n and logn x for the nth-iterates respectively.



4 Titus Hilberdink

We define the function spaces

SIC∞ = {f : f is continuous, strictly increasing and f(x) →∞ as x →∞},
D+
∞ = {f ∈ SIC∞ : f is continuously differentiable and f ′ > 0}.

Note that SIC∞ and D+
∞ are groups under composition, if we identify functions

which are equal on a neighborhood of infinity.

1.2 Generalizing Orders.

There are of course various ways of making generalizations. One way would
be to generalize logn x from integral n to real n in a suitable way, and hence to
define O(f) = α if logn f(x) ∼ logn−α x as x →∞ for some n. Apart from the
problem of deciding how to define logλ x for non-integral λ, such an approach
is unsatisfactory in that it lacks the following desired ‘completeness’ property:
given a function f and λ ∈ R, suppose that for all ε > 0, there exist functions
gε and hε such that

O(gε) = λ− ε, O(hε) = λ + ε and gε < f < hε,

then O(f) exists and equals λ. This will be made clear later.
A more profitable way of generalizing orders (whereby the above property

is obtained) is by finding an increasing function, say F , which has the property
that

F (ex) = F (x) + 1 + o(1) as x →∞. (1.1)

Then F (x) = F (logk x) + k + o(1) for each k ∈ Z. Such an F tends to infinity
extremely slowly — slower than any iterate of log, since it follows from (1.1)
that F (e1

n) ∼ n as n →∞. Assume also that F (x+y) = F (x)+o(1) whenever
y = o(x) (in fact, after (1.1) it suffices to assume this for y = o(1)).

Now suppose that O(f) = k, so that logn f(x) ∼ logn−k x for some n.
Then

F (f(x)) = F (logn f(x))+n+o(1) = F (logn−k x)+n+o(1) = F (x)+k+o(1),

i.e. O(f) = k =⇒ limx→∞{F (f(x)) − F (x)} = k. This gives an immediate
generalization to non-integral orders: f has order λ ∈ R if

lim
x→∞

{F (f(x))− F (x)} = λ.

It will be seen however that there are many such functions F (satisfying (1.1)),
each giving rise to (possibly different) orders. As such, we shall write

OF (f) = λ,
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emphasizing the dependence on F .
One example of such an F is the following function Ξ defined below. First

we define χ(t) for t ≥ 0 by the equations

χ(t) = 1 for 0 ≤ t ≤ 1, and χ(t) = tχ(log t) for t ≥ 1.

Then χ is continuous and increasing. Now define Ξ(x) for x ≥ 0 by

Ξ(x) =
∫ x

0

1
χ(t)

dt.

Then

Ξ(ex) = Ξ(1) +
∫ ex

1

1
χ(t)

dt = 1 +
∫ x

0

et

χ(et)
dt = 1 +

∫ x

0

1
χ(t)

dt = Ξ(x) + 1.

Thus Ξ satisfies (1.1) with no error term. Also for all x, y ≥ 0,

y
χ(x + y)

≤
∫ y

0

dt
χ(t + x)

= Ξ(x + y)− Ξ(x) ≤ y
χ(x)

. (1.2)

In particular, if y = o(x), then Ξ(x + y) = Ξ(x) + o(1) (since χ(x) ≥ x).
The basic properties of orders referred to earlier all still hold in this more

general setting. It is natural to ask whether we have also generalized the
integer orders. This is indeed the case but, as we shall see later in §2.2, every
such generalization leads to the same (new) integer orders. For example, there
exists f such that OΞ(f) = 0 but O(f) 6= 0 in the original definition. Indeed,
we can characterize functions of order 0 (in the original sense) using Ξ as
follows.

Theorem 1.2. We have logn f(x) ∼ logn x for some n if and only if there
exists an integer k such that

Ξ(f(x)) = Ξ(x) + o
( 1

logk x

)
as x →∞.

Proof. Suppose logn f(x) ∼ logn x for some n. Then for all x sufficiently
large, | logn+1 f(x)− logn+1 x| ≤ 1. Hence for such x,

Ξ(f(x))− Ξ(x) = Ξ(logn+1 f(x))− Ξ(logn+1 x)

≤ Ξ(logn+1 x + 1)− Ξ(logn+1 x) ≤ 1
χ(logn+1 x)

,
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using (1.2). In the same way, for a lower bound, we have

Ξ(f(x))− Ξ(x) ≥ Ξ(logn+1 x− 1)− Ξ(logn+1 x) ≥ − 1
χ(logn+1 x− 1)

Combining these gives Ξ(f(x))− Ξ(x) = o( 1
logn+1 x ), since χ(x) � x.

Conversely, suppose Ξ(f(x))− Ξ(x) = o( 1
logk x ) for some k. Then for all x

large enough, Ξ(f(x)) − Ξ(x) ≤ 1
χ(logk+1 x+1)

, since χ(x) = o(ex). But then,

by (1.2),

Ξ(logk+1 f(x))−Ξ(logk+1 x) ≤ 1
χ(logk+1 x + 1)

≤ Ξ(logk+1 x+1)−Ξ(logk+1 x),

which gives logk+1 f(x) ≤ logk+1 x + 1 for sufficiently large x. Similarly for a
lower bound.

For example, the function h(x) defined by

h(x) = Ξ−1
(
Ξ(x) +

1
Ξ(x)

)
, (1.3)

has OΞ(h) = 0 but logk h(x) � logk x for all k ∈ N since Ξ(x) = o(logn x) for
all n.

Note that if we had used logλ x (with λ ∈ R) to generalize orders to non-
integral values, then we should expect that

lim inf
x→∞

{Ξ(x)− Ξ(logε x)} > 0

for every fixed ε > 0. But then for the above function h,

lim
x→∞

{Ξ(logn h(x))− Ξ(x) + n} = lim
x→∞

{Ξ(h(x))− Ξ(x)} = 0, while

lim inf
x→∞

{Ξ(logn−ε x)− Ξ(x) + n} > 0.

It follows that logn x ≺ logn h(x) < logn−ε x for all n ∈ N and all ε > 0. Hence
for such a generalization, we do not have the completeness property referred
to earlier.

1.3 Orders of Functions.

In the preceding discussion, we considered functions satisfying (1.1) and we
defined orders with respect to these. However, there is no reason why we should
restrict ourselves to such functions. More generally therefore, we define orders
with respect to any increasing function tending to infinity.
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Definition 1.3. Let f be increasing and such that f(x) →∞ as x →∞. We
say a function g has order λ with respect to f if

lim
x→∞

{f(g(x))− f(x)} = λ.

We denote this by Of (g) = λ.

In this general setting, there are no rules for sums and products of func-
tions, but only for compositions. Thus if Of (g) = λ and Of (h) = µ, then
Of (g ◦ h) = λ + µ, as can be easily verified. In particular, this implies that
Of (gk) = kλ for every k ∈ N.

The notion of order gives a simple, but non-trivial, estimate for the growth
of iterates of a function. For if Of (g) = 1, then for every fixed x for which
gn(x) → ∞ as n → ∞, f(gn(x)) ∼ n. To see this, let ε > 0. Then for all
suitably large x, g(x) > x, f is increasing and 1− ε < f(g(x))− f(x) < 1 + ε.
Hence 1 − ε < f(gr+1(x)) − f(gr(x)) < 1 + ε, and summing from r = 0 to
n− 1 gives (1− ε)n < f(gn(x))− f(x) < (1 + ε)n.

Examples 1.4. (a) Let f(x) = log x. Then Of (g) = λ ⇐⇒ log g(x) =
log x + λ + o(1); i.e. g(x) ∼ eλx as x →∞.

(b) Let f(x) = log log x/ log 2. Then Of (g) = λ⇐⇒ log log g(x) = log log x+
λ log 2 + o(1); i.e., g(x) = x2λ+o(1).

Thus log distinguishes between multiples of x and log log distinguishes
between powers of x. We have already seen how Ξ distinguishes between
iterates of exp.

Throughout the rest of this article, when we refer to orders w.r.t. f , we
shall implicitly assume that f is increasing and tends to infinity, and we shall
not repeat the phrase ‘let f be increasing etc.’.

Proposition 1.5. Suppose Of (g) < Of (h) for some functions g, h. Then
g < h; that is, g(x) < h(x) for all x sufficiently large.

Proof. Immediate from the definition.

Next we prove the completeness property referred to earlier.

Theorem 1.6. Let g be a function and λ ∈ R. Suppose that for every ε > 0,
there exist functions hε and kε such that

Of (hε) = λ− ε, Of (kε) = λ + ε and hε < g < kε.

Then Of (g) exists and equals λ.
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Proof. Since f is increasing and hε < g < kε, it follows that for all sufficiently
large x,

f(hε(x))− f(x) ≤ f(g(x))− f(x) ≤ f(kε(x))− f(x).

Letting x →∞ yields

λ− ε ≤ lim inf
x→∞

{f(g(x))− f(x)} ≤ lim sup
x→∞

{f(g(x))− f(x)} ≤ λ + ε.

Since ε is arbitrary, this implies limx→∞{f(g(x))−f(x)}=λ; i.e., Of (g)=λ.

Next we investigate the relationship between functions with respect to
which a given function has the same positive order. We start with two ele-
mentary results.

Proposition 1.7. Let h ∈ SIC∞. If Of (h) = Og(h) = 1, then f ∼ g.

Proof. There exists x0 such that for x ≥ x0, h(x) is strictly increasing,
continuous, and h(x) > x. Hence, every y ≥ x0 can be written uniquely as
y = hn(x) for some n ≥ 0 and x ∈ [x0, h(x0)). In particular, hn(x0) ≤ y <
hn+1(x0). But f(hn(x0)) ∼ n ∼ g(hn(x0)) as n →∞. Thus

f(hn(x0))
g(hn+1(x0))︸ ︷︷ ︸

→1

<
f(y)
g(y)

<
f(hn+1(x0))
g(hn(x0))︸ ︷︷ ︸

→1

,

and the result follows.

Proposition 1.8. Suppose that Of (h) = Og(h) = 1, for some function h.
Further suppose that Of (H) exists for some other function H. Then either
Og(H) exists and equals Of (H) or it does not exist.

Proof. Let Of (H) = λ and suppose Og(H) exists and equals µ > λ. Then
there exist integers m,n with m ≥ 1 such that mλ < n < mµ. But then

Of (Hm) = mλ < n = Of (hn) = Og(hn) < mµ = Og(Hm).

By Proposition 1.5, the left and right hand inequalities imply that Hm < hn

and hn < Hm respectively — a contradiction. A similar contradiction follows
if we assume µ < λ. Hence µ = λ.
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1.4 Order Comparability and Equivalence.

When do two functions f and g give rise to the same orders? i.e. when do we
have

lim
x→∞

{f(h(x))− f(x)} = λ ⇐⇒ lim
x→∞

{g(h(x))− g(x)} = λ,

for all functions h and λ ∈ R? If this holds we shall write Of ≡ Og. For
example, if f = g + o(1), then (trivially) Of ≡ Og.

There is also a more subtle notion of whether we can compare orders w.r.t.
f and g. Roughly speaking, by this we mean that if a given function has the
same order, say λ, w.r.t. both f and g, then Of and Og will agree on all
other functions of order λ. For example, suppose F1 and F2 are two functions
satisfying (1.1), is it true that OF1(h) = 1 ⇐⇒ OF2(h) = 1?

For reasons which will become clear later, it is more convenient to consider
functions which are invertible, so for the following definition we shall assume
that f and g are strictly increasing and continuous.

Definition 1.9. Let f, g ∈ SIC∞.

(a) We say f and g are order-comparable if, whenever Of (h) = Og(h) = λ
for a given function h and some λ, then for any other function H, we
have Of (H) = λ if and only if Og(H) = λ.3 In this case we may define
the set of values on which Of and Og agree. We denote this set by Of,g;
i.e.,

Of,g = {λ ∈ R : Of (h) = λ ⇐⇒ Og(h) = λ}.

(b) f and g are order-equivalent if they give rise to exactly the same orders;
i.e Of,g = R.

Note that if f and g are order-comparable, then they always agree on order
zero since the function h(x) = x is always of order zero; i.e., 0 ∈ Of,g whenever
Of,g exists.

Note also that Of,g = R implies Of ≡ Og, but not vice versa, since the
former requires f and g to be invertible.

The relations of order-comparability and order-equivalence are clearly equiv-
alence relations.

1.5 Degree of a Function; Growth Rates of Iterates.4

The equality Of (g) = λ gives information about the growth rate of g. However,
for fixed g, there is a difference between the cases where λ = 0 and λ 6= 0.

3As we saw in Proposition 1.8, if Og(H) exists, it cannot take any other value.
4This section may be omitted on a first reading.
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For λ 6= 0, f is determined up to asymptotic equivalence (by Proposition 1.7),
but for λ = 0, there are many other functions F for which OF (g) = 0. This
implies that if λ = 0 we actually obtain less information. To illustrate this,
consider g(x) = ex + 1. Then

(i) Olog(g) = 1 and (ii) Olog log(g) = 0.

(i) is clearly more informative, saying g(x) ∼ ex, whereas (ii) says only that
g(x) = x1+o(1).

In this section we make a further distinction between functions of order 0,
by defining the degree of a function. In this sense we can think of this as a
second-order theory.

Let f be increasing and suppose Of (g) = 0, where g(x) > x. Then

f(g(x)) = f(x) +
1

h(x)
,

where h(x) → ∞. Clearly the growth rate of g depends on how quickly h
tends to infinity. The faster (slower) h tends to infinity, the slower (faster) g
does. The motivation for the definition of degree comes from considering the
growth rate of iterates. Consider the following functions and their iterates:

0. Let g(x) = x + a with a > 0. Then gn(x) = an + x, which, as a function of
n, has order 0 (in the original sense, or indeed w.r.t. Ξ) for any fixed x.

1. Let g(x) = bx with b > 1. Then gn(x) = bnx, which has order 1 for any
fixed x > 0.

2. Let g(x) = xc with c > 1. Then gn(x) = xcn

, which has order 2 for any
fixed x > 1.

These examples show that the growth rate of gn(x) doesn’t depend sig-
nificantly on particular values of x. In each case OΞ(g) = 0, so consider the
differences Ξ(g)− Ξ. From (1.2), we have

Ξ(x + a)− Ξ(x) ∼ a
χ(x)

, as x →∞.

Hence
Ξ(bx)− Ξ(x) = Ξ(log x + log b)− Ξ(log x) ∼ log b

χ(log x)
,

and
Ξ(xc)− Ξ(x) = Ξ(c log x)− Ξ(log x) ∼ log c

χ(log log x)
.
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Now the differences between the cases become apparent. In case (i), (i =
0, 1, 2) the difference Ξ(g)−Ξ tends to zero with order −i. Hence in each case,

the order of gn(·) is −1 times the order of
1

Ξ(g)− Ξ
.

Definition 1.10. Let f ∈ SIC∞ and let g(x) > x for all x sufficiently large.
Then g has degree λ with respect to f , if

f(g(x)) = f(x) +
1

h(x)
and Of (h) = −λ.

We denote this by ∂f (g) = λ. More compactly, ∂f (g) = −Of ( 1
f(g)−f ).

Examples 1.11. (a) Let f(x) = log x. Using the fact that Olog(h) = λ
⇐⇒ h(x) ∼ eλx, we have

∂log(g) = λ ⇐⇒ g(x) = x + eλ + o(1).

(b) Let f(x) = log log x. Using Olog log(h) = λ ⇐⇒ h(x) = xeλ+o(1), we have

∂log log(g) = λ ⇐⇒ g(x) = x + x1−e−λ+o(1).

(c) Let f = Ξ. Then ∂Ξ(x + 1) = 0, ∂Ξ(2x) = 1, ∂Ξ(x3) = 2, ∂Ξ(xlog x) = 3.
Without too much difficulty one can show that if ∂Ξ(f) and ∂Ξ(g) exist,
then

∂Ξ(f(g)) = max{∂Ξ(f), ∂Ξ(g)},
∂Ξ(f + g) = max{∂Ξ(f), ∂Ξ(g), 1}, and
∂Ξ(f · g) = max{∂Ξ(f), ∂Ξ(g), 2}.

In the last two statements one must take into account that f(x)+g(x) >
2x and f(x)g(x) > x2 for all large x. Note also that after Theorem 1.2,
all functions of finite degree have order 0 in the original sense, while the
function defined by (1.3) has infinite degree.

Proposition 1.12. Suppose ∂f (g) < ∂f (h) for some functions g, h. Then
g < h; that is, g(x) < h(x) for all x sufficiently large.

Proof. We have

f(g(x)) = f(x) +
1

k(x)
and f(h(x)) = f(x) +

1
l(x)

,

with Of (k) > Of (l). Hence k > l (Proposition 1.5), and so g < h.
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As the earlier discussion indicated, the notion of degree is closely related
to the order of the nth iterate. This is the main result of this section.

Theorem 1.13. Let f ∈ SIC∞ such that ∂f (x + 1) = 0. Let ∂f (g) = λ and
suppose gn(α) →∞ as n →∞ for some constant α. Then Of (gn(α)) = λ (as
n →∞). More compactly, Of (gn) ≡ ∂f (g).

Proof. Since ∂f (x + 1) = 0, we can write

f(x + 1) = f(x) +
1

l(x)
,

where Of (l) = 0. For β ∈ R, define the functions pβ and qβ by

pβ(x) = f−1(f(x)− β) and qβ(x) = p−1
β (pβ(x) + 1).

(We have used the fact that pβ is invertible, with p−1
β (x) = f−1(f(x) + β).)

Observe that Of (pβ) = −β. Then

f(qβ(x)) = f(p−1
β (pβ(x) + 1)) = f(pβ(x) + 1) + β

= f(pβ(x)) +
1

l(pβ(x))
+ β = f(x) +

1
l(pβ(x))

.

Hence ∂f (qβ) = −Of (l ◦ pβ) = β.
Let ε > 0. Then there exists x0 such that for all x ≥ x0,

qλ−ε(x) < g(x) < qλ+ε(x),

by Proposition 1.12. Hence for each n ≥ 1,

qn
λ−ε(x) < gn(x) < qn

λ+ε(x),

using the fact that qβ is strictly increasing. Since gn(α) →∞ with n, we can
find m such that gm(α) > x0. Let x1 = gm(α). Hence for n ≥ m,

qn−m
λ−ε (x1) < gn(α) < qn−m

λ+ε (x1). (1.4)

But qn
β (x) = p−1

β (n + pβ(x)). Thus, as a function of n,

Of (qn−m
β (x1)) = Of (p−1

β ) + Of (n−m + pβ(x1)) = β,

since f(x+A) = f(x)+ o(1) for every A follows from the assumptions. Hence
from (1.4)

λ− ε ≤ lim inf
n→∞

{f(gn(α))− f(n)} ≤ lim sup
n→∞

{f(gn(α))− f(n)} ≤ λ + ε.

This holds for all ε > 0, and so it follows that Of (gn(α)) = λ.
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Remark 1.14. The condition ∂f (x + 1) = 0 is satisfied by functions f which
tend to infinity smoothly and slowly, functions such as log log x or Ξ(x).

To illustrate Theorem 1.13, take f = log log. Then g(x) = x + x1−β+o(1)

implies gn(α) = n
1
β +o(1) for β > 0 and every α sufficiently large.

2 Continuity and Linearity at Infinity.

In this section we shall introduce two notions of behavior at infinity with which
we can characterize when functions are order-comparable and order-equivalent
(Theorem 2.4 and Corollary 2.5). These notions will also be useful in §3.

2.1 Continuity and Linearity at Infinity.

Definition 2.1. (a) A function f is continuous at infinity if, for every ε(x) →
0 as x →∞, we have

f(x + ε(x)) = f(x) + o(1) as x →∞.

More compactly, f(x + o(1)) = f(x) + o(1).

(b) A function f is linear at infinity if, for every λ ∈ R, we have

f(x + λ) = f(x) + λ + o(1) as x →∞.

For SIC∞-functions, (b) is a stronger notion. Indeed, we have the following.

Lemma 2.2. Let f ∈ SIC∞ and suppose that f is linear at infinity. Then f is
continuous at infinity. Furthermore, f−1 is also linear (and hence continuous)
at infinity.

Proof. Let ε(x) → 0. Then, for any ε > 0, we have |ε(x)| < ε for x ≥ x0

say. Hence, for such x,

|f(x + ε(x))− f(x)| < f(x + ε)− f(x− ε) → 2ε as x →∞.

But ε is arbitrary, so f is continuous at infinity.
Now suppose that f−1 is not linear at infinity. Then ∃λ ∈ R such that

f−1(x + λ)− f−1(x) 6→ λ. Hence ∃xn ↗∞ and δ > 0 such that

|f−1(xn + λ)− f−1(xn)− λ| ≥ δ.

This means that

xn + λ ≥ f(f−1(xn) + λ + δ) or xn + λ ≤ f(f−1(xn) + λ− δ).



14 Titus Hilberdink

But
f(f−1(xn) + λ± δ) = xn + λ± δ + o(1),

and in both cases we obtain a contradiction, since δ > 0.

Lemma 2.3. (a) f ′ � 1 ⇒ f and f−1 are continuous at infinity;

(b) f ′ ∼ 1 ⇒ f and f−1 are linear at infinity.

Proof. (a) Let ε(x) → 0. Then for all y sufficiently large, |f ′(y)| ≤ A for
some A. Hence, for all large x,

|f(x + ε(x))− f(x)| =

∣∣∣∣∣
∫ x+ε(x)

x

f ′(y) dy

∣∣∣∣∣ ≤ A|ε(x)| → 0,

as x → ∞, showing f is continuous at infinity. On the other hand, (f−1)′ =
1/f ′(f−1) � 1. So the same argument applies to f−1.

For (b), we know that for any ε > 0, |f ′(x) − 1| < ε for all x sufficiently
large. Let λ > 0 without loss of generality. Hence for such x,

|f(x + λ)− f(x)− λ| =

∣∣∣∣∣
∫ λ

0

f ′(x + t)− 1 dt

∣∣∣∣∣ ≤
∫ λ

0

|f ′(x + t)− 1| dt ≤ λε.

Since ε is arbitrary, it follows that f is linear at infinity. The result for f−1

follows from Lemma 2.2.

2.2 Applications to Orders.

In this section we apply the concepts of §2.1 to give necessary and sufficient
conditions for two functions to be order-comparable and order-equivalent.

Theorem 2.4. Let f, g ∈ SIC∞. Then

(a) f and g are order-comparable if and only if f ◦ g−1 and g ◦ f−1 are
continuous at infinity, in which case either Of,g = αZ for some α ≥ 0,
or Of,g = R.

(b) f and g are order-equivalent (i.e. Of,g = R) if and only if g ◦ f−1 is
linear at infinity.

Proof. (a) Suppose f ◦ g−1 and g ◦ f−1 are continuous at infinity. Let θ =
g ◦ f−1. Suppose for some function h and some λ ∈ R, we have Of (h) =
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Og(h) = λ. Then

g(h(x)) = θ(f(h(x))) = θ(f(x) + λ + o(1)) (since Of (h) = λ)
= θ(f(x) + λ) + o(1)

(since θ is continuous at infinity,)

but the left side equals

g(x) + λ + o(1) = θ(f(x)) + λ + o(1).

Since f is invertible, it follows that

θ(x + λ) = θ(x) + λ + o(1). (2.1)

Now, if for any other function H, we have Of (H) = λ, then

g(H(x)) = θ(f(H(x))) = θ(f(x) + λ + o(1)) = θ(f(x)) + λ + o(1) (by (2.1))
= g(x) + λ + o(1),

so that Og(H) = λ also. Similarly, Og(H) = λ =⇒ Of (H) = λ by using the
fact that θ−1 is continuous at infinity. Hence f and g are order-comparable.

Conversely, suppose that f and g are order-comparable. As before let
θ = g ◦ f−1. Let ε(x) be any function tending to 0 as x → ∞, and put
h(x) = f−1(f(x) + ε(f(x))). Then

f(h(x)) = f(x) + ε(f(x)) = f(x) + o(1),

so Of (h) = 0. By supposition, we have Og(h) = 0 also. Thus

g(h(x)) = θ(f(h(x))) = θ(f(x) + ε(f(x))), and
g(h(x)) = g(x) + o(1) = θ(f(x)) + o(1).

Hence, writing y for f(x), we have θ(y + ε(y)) = θ(y) + o(1) as y → ∞, and
θ is continuous at infinity. Similarly for f ◦ g−1. This proves the first part of
(a).

Observe from above that λ ∈ Of,g if and only if

θ(x + λ) = θ(x) + λ + o(1) and

θ−1(x + λ) = θ−1(x) + λ + o(1),

where θ = g ◦ f−1. Suppose λ, µ ∈ Of,g. Then

θ(x + (λ + µ)) = θ(x + λ) + µ + o(1) = θ(x) + (λ + µ) + o(1),
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(and similarly for θ−1) so that λ + µ ∈ Of,g. Also −λ ∈ Of,g as

θ(x− λ) = θ(x− λ + λ)− λ + o(1) = θ(x)− λ + o(1)

(and for θ−1). In particular, λ ∈ Of,g implies λZ ⊂ Of,g.
Now suppose Of,g 6= R and Of,g 6= {0}. Let

α = inf{λ ∈ Of,g : λ > 0}.

Then α > 0, since α = 0 implies there exists λn ∈ Of,g with λn ↘ 0. From
above, this implies Of,g ⊃ ∪∞n=1λnZ, which is dense in R. Hence, given λ ∈ R,
there exist sequences µn, νn ∈ Of,g such that µn ↗ λ and νn ↘ λ as n →∞.
Then

θ(x + λ) ≤ θ(x + νn) = θ(x) + νn + o(1), (as x →∞)
and θ(x + λ) ≥ θ(x + µn) = θ(x) + µn + o(1).

Hence

µn ≤ lim inf
x→∞

{θ(x + λ)− θ(x)} ≤ lim sup
x→∞

{θ(x + λ)− θ(x)} ≤ νn

for each n. This forces limx→∞{θ(x+λ)−θ(x)} = λ. Similarly for θ−1. Hence
λ ∈ Of,g, and so Of,g = R — a contradiction. Thus α > 0.

By the same argument, we actually have α = minλ∈Of,g,λ>0 λ, for if there
exist λn ∈ Of,g such that λn ↘ α, then Of,g ⊃ ∪∞n=1(λn − λn+1)Z, which is
dense in R, and again we obtain the contradiction Of,g = R. Thus α ∈ Of,g.

Now we claim Of,g = αZ. For we already have Of,g ⊃ αZ, and if Of,g 6=
αZ, then ∃λ ∈ Of,g \ αZ. Hence kα < λ < (k + 1)α for some k ∈ Z. But then
λ − kα ∈ Of,g and 0 < λ − kα < α, which contradicts the minimality of α.
This proves (a).
(b) From (a), Of,g = R if and only if θ and θ−1 are continuous at infinity and

∀λ ∈ R,

{
θ(x + λ) = θ(x) + λ + o(1)

θ−1(x + λ) = θ−1(x) + λ + o(1);

i.e., θ and θ−1 are continuous and linear at infinity. By Lemma 2.2, this is
equivalent to saying that θ is linear at infinity.

Corollary 2.5. Let f, g ∈ D+
∞. Then:

(a) f ′ � g′ implies f and g are order-comparable.

(b) f ′ ∼ g′ implies f and g are order-equivalent.
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Proof. (a) Let θ = g ◦ f−1. Then

θ′ =
g′(f−1)
f ′(f−1)

� 1.

Hence, by Lemma 2.3, θ and θ−1 are continuous at infinity. Theorem 2.4(a)
implies the result.

For (b), we have θ′ → 1, so that, after Lemma 2.3, θ is linear at infinity.
Theorem 2.4(b) implies the result.

Remark 2.6. (i) The case α = 0 (so that Of,g = {0}) is possible. For
example take g(x) = βf(x) for some positive constant β 6= 1. Less trivially,
let g = θ ◦ f , where θ is given by

θ(x) = x +
√

x sin
√

x.

Then θ(x) ∼ x and θ′(x) � 1 (so that f ∼ g and, if f ′ exists, f ′ � g′), but

θ(x + λ)− θ(x)− λ =
λ

2
cos

√
x + O(x−1/2) 6→ 0,

as x →∞, for any λ 6= 0. Thus Of,g = {0}.
(ii) It is also possible to have Of,g = R but f ′ 6∼ g′. Let f ∈ D+

∞ and let
g = θ ◦ f where θ is given by

θ(x) = x +
1
2

∫ x

0

sin(t2) dt,

Then

θ(x + λ)− θ(x)− λ =
1
4

∫ (x+λ)2

x2

sinu√
u

du =
1
4

∫ 2λx+λ2

0

sin(x2 + v)√
x2 + v

dv

=
1
4x

∫ 2λx+λ2

0

sin(x2 + v) dv + O
( 1

x

)
= O

( 1
x

)
,

so θ is linear at infinity. But θ′(x) = 1 + 1
2 sin(x2) 6→ 1 and hence f ′ 6∼ g′.

Indeed, it is even possible to choose f and g such that Of,g = R but f ′ 6� g′,
by choosing θ(x) = x− 1

x +
∫ x

0
sin(t2)dt. This function is again linear at infinity

and θ′ > 0, but θ′ 6� 1. These examples show that order-comparability cannot
be usefully characterized in terms of derivatives.

(iii) Theorem 2.4(a) shows that the generalization to integer orders (re-
ferred to in §1.2) is unique. For example, suppose F1 and F2 are two order-
comparable functions satisfying (1.1), then 1 ∈ OF1,F2 . Hence Z ⊂ OF1,F2 .
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2.3 Equivalent Degrees.

If f and g are order-comparable, it is meaningful to ask whether they give rise
to the same degrees; that is, when is ∂f ≡ ∂g? Clearly, we would need to have
Of ≡ Og. With some extra conditions the degrees are also equivalent.

Theorem 2.7. Let f, g ∈ D+
∞ such that f ′ ∼ g′. Further suppose that f(x +

o(x)) = f(x) + o(1) and similarly for g. Then ∂f ≡ ∂g; i.e., ∂f (h) = λ ⇐⇒
∂g(h) = λ for all h and λ.

Proof. Suppose ∂f (h) = λ for some function h and some λ ∈ R. Then

f(h(x)) = f(x) +
1

k(x)
,

for some k with Of (k) = −λ. By Corollary 2.5(b), Of,g = R. Thus Og(k) =
−λ also.

Now g = θ ◦ f , where θ′(x) → 1. Hence

g(h(x))− g(x) = θ(f(h(x))− θ(f(x)) = θ
(
f(x) +

1
k(x)

)
− θ(f(x)) =

θ′(cx)
k(x)

,

for some cx ∈ (f(x), f(x)+1/k(x)). But cx →∞, so θ′(cx) → 1. In particular,
1

g(h(x))−g(x) ∼ k(x), and by the assumption, it follows that ∂g(h) = λ.
By symmetry, we also have ∂g(h) = λ =⇒ ∂f (h) = λ.

Slightly different sets of assumptions also give equivalent degrees. For
example, the same method of proof shows that the conditions f ′ � g′, Of,g = R
and f(λx) = f(x) + o(1) for all λ > 0 (and similarly for g), are also sufficient
to prove ∂f ≡ ∂g.

3 Fractional Iteration and the Abel Functional Equation.

In this section, we apply the notion of order to obtain a simple and natural
criterion for the uniqueness of fractional iterates of a function.

Let f ∈ SIC∞ and suppose we know that OF (f) = 1 for some F . Consider
the problem of finding a function g satisfying g ◦ g = f. In general, there are
infinitely many such g. As we pointed out in §1, if OF (g) exists, it must equal
1
2 . We shall show in Theorem 3.9 that, under some mild conditions on f and
F , there is only one such g for which OF (g) = 1

2 . This gives a natural criterion
for the unique ‘half-iterate’ of f which is best behaved at infinity with respect
to F . The same argument applies to other fractional iterates and continuous
iterates.

To prove these results we must first consider the Abel functional equation
to which fractional iteration is closely linked.
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3.1 The Abel Functional Equation.

Given a function f such that f(x) > x, the equation

F (f(x)) = F (x) + 1 (3.1)

(to solve for F ) is called the Abel functional equation. For example, the func-
tion Ξ from §1.2 satisfies (3.1) with f = exp. This equation has been studied
by many authors5. For an exposition on the Abel functional equation, see for
example [3], [4]. Szekeres ([9], [10], [11], [12]) studied it to develop a theory of
‘regular growth’, based on completely monotonic functions.

Equation (3.1) is closely related to the problem of finding a function F for
which OF (f) = 1; i.e.

F (f(x)) = F (x) + 1 + o(1) as x →∞. (3.2)

In §1.2, we required such an F with f = exp.
As Abel had discovered, the solutions of (3.1) can be used to define the

fractional iterates of f . For if F−1 exists, we may define the ‘λth-iterate’ of f
by

fλ(x) = F−1(F (x) + λ).

Then fn corresponds to the usual nth-iterate of f (for n ∈ N), f−1 corresponds
to its inverse, and fλ+µ = fλ ◦ fµ for all λ, µ ∈ R.

For f ∈ SIC∞, equation (3.1) always has an infinite number of SIC∞-
solutions. For suppose f is strictly increasing, continuous, and f(x) > x for
x ≥ a. Then define F strictly increasing and continuous on [a, f(a)] arbitrarily
such that F (f(a)) = F (a) + 1. Extend F using (3.1) to [a,∞). This gives an
infinite number of solutions. We show below that any two such solutions are
necessarily order-comparable. Furthermore, if F1 solves (3.1), then so does
F2 = F1 + c for any constant c. Trivially, F1 and F2 are then order-equivalent.
We show below that the converse is also true.

Theorem 3.1. Let f ∈ SIC∞ and let F1, F2 be SIC∞-solutions of the Abel
functional equation

F (f(x)) = F (x) + 1.

Then (i) F1 and F2 are order-comparable; and (ii) F1 and F2 are order-
equivalent if and only if they differ by a constant.

5In many articles, the function f is defined in a right neighborhood of 0. Using the
transformation g(·) = 1/f(1/·), this is equivalent to our setup.
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Proof. (i) After Theorem 2.4(a), it suffices to show that F1 ◦ F−1
2 is contin-

uous at infinity (since by the same reasoning the same is true for F2 ◦ F−1
1 ).

Let θ = F1 ◦ F−1
2 . Then θ ∈ SIC∞ and

θ(x + 1) = F1 ◦ F−1
2 (x + 1) = F1 ◦ f ◦ F−1

2 (x) = F1 ◦ F−1
2 (x) + 1 = θ(x) + 1.

It follows that θ(x)−x is periodic and extends to a continuous function on R.
Hence θ(x)− x is uniformly continuous on R. Let ε(x) → 0 as x →∞. Thus
θ(x + ε(x))− (x + ε(x))− (θ(x)− x) → 0; i.e. θ(x + ε(x)) = θ(x) + o(1), and
θ is continuous at infinity.

(ii) Suppose that OF1,F2 = R. Then θ is linear at infinity, by Theorem
2.4(b). But θ(x + 1) = θ(x) + 1. Hence,

θ(x) = θ(n + x)− n (for all n ∈ N)
= θ(n) + x− n + o(1) (as n →∞, since θ is linear at infinity)
= θ(0) + x + o(1).

Letting n →∞ gives θ(x) = x + θ(0), and so F1 − F2 is constant.
The converse is immediate.

In particular, if F1 and F2 are differentiable solutions of (3.1) and F ′1 ∼ F ′2,
then F1 = F2+constant.

3.2 Constructing Solutions.

In many cases it is possible, via an iterating process, to go from (3.2) to (3.1).
The simplest case is when the o(1)-term is sufficiently small.

Theorem 3.2. Let f ∈ SIC∞ and suppose that F ∈ SIC∞ is such that

F (f(x)) = F (x) + 1 + δ(F (x)),

where δ(x) → 0 in such a way that |δ(x)| ≤ ε(x) for some ε(x) ↘ 0 and∫∞
ε(t)dt < ∞. Then the limit

ρ(x) def= lim
n→∞

{F (fn(x))− n} (3.3)

exists for all x sufficiently large, the convergence being uniform in a neighbor-
hood of infinity. Further, ρ is continuous and increasing, satisfies ρ(f(x)) =
ρ(x) + 1, and ρ(x) = F (x) + o(1) as x →∞.
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Proof. The assumptions implicitly imply that f(x) > x eventually. Hence
for x sufficiently large, fn(x) → ∞ as n → ∞. For such x, we have by
iteration,

F (fn(x))− n = F (x) +
n−1∑
r=0

δ(F (fr(x))).

Now |δ(F (fr(x)))| ≤ ε(F (fr(x))) ≤ ε(r/2) for r sufficiently large, since ε(·)
is decreasing and F (fr(x)) ∼ r. Also

∑n
r=m ε(r/2) → 0 as m,n → ∞ by

comparison to
∫ n

m
ε(t)dt. Hence

∑∞
r=0 δ(F (fr(x))) converges absolutely, and

the convergence is uniform in a neighborhood of infinity. Thus

lim
n→∞

{F (fn(x))− n} = F (x) +
∞∑

r=0

δ(F (fr(x))) def= ρ(x).

Since each term in the above series is continuous, and the convergence is
uniform, it follows that ρ is continuous. Further

ρ(f(x)) = lim
n→∞

{F (fn(f(x)))− n} = lim
n→∞

{F (f(fn(x)))− n}

= lim
n→∞

{F (fn(x))− n}+ 1 = ρ(x) + 1 (since OF (f) = 1).

Also ρ(x) − F (x) =
∑∞

r=0 δ(F (fr(x))) which tends to 0 as x → ∞ since
δ(F (fr(x))) → 0 for every r and the convergence is uniform in closed neigh-
borhoods of ∞. This shows ρ(x) = F (x) + o(1).

Remark 3.3. Since ρ(x) = F (x) + o(1), it follows that Oρ ≡ OF . We could
further write OF,ρ = R if ρ is strictly increasing (since, strictly speaking, order-
comparability is only defined for SIC∞-functions). But it can happen that ρ
is not strictly increasing even if F is (see Remark 3.7 (i) for an example).

Without the strong bound on the error δ(x) in the assumptions of Theorem
3.2, the limit (3.3) may not necessarily exist. However, in many cases the limit

σ(x) def= lim
n→∞

{F (fn(x))− F (fn(x0))} (3.4)

does exist for all sufficiently large x, x0, and the limit function σ(x), also
satisfies the corresponding Abel equation (3.1):

σ(f(x)) = lim
n→∞

{F (fn(f(x)))− F (fn(x0))}= lim
n→∞

{F (f(fn(x)))− F (fn(x0))}

= lim
n→∞

{F (fn(x))− F (fn(x0))}+ 1 = σ(x) + 1 (since OF (f) = 1).
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Of course, if ρ exists, then so does σ, in which case σ(x) = ρ(x)− ρ(x0). We
will give various conditions under which σ exists in §3.3.

Unlike the case for ρ, we shall see (in Remark 3.7) that it may happen that
OF 6≡ Oσ. However, if we know that σ ∈ SIC∞, then we do have OF,σ = R,
which we prove below. Hence in this case, we may equally well use F or σ to
define orders.

Theorem 3.4. Let f, F ∈ SIC∞ such that OF (f) = 1. Suppose that fn(x) →
∞ as n → ∞ for x ≥ x0 and that the limit function σ in (3.4) exists and
σ ∈ SIC∞. Then OF,σ = R.

Proof. After Theorem 2.4(b), we just need to show that h
def= F ◦ σ−1 is

linear at infinity. Now σ−1(x + 1) = f(σ−1(x)) and hence

h(x + 1) = F (σ−1(x + 1)) = F (f(σ−1(x))) = F (σ−1(x)) + 1 + o(1)
(since OF (f) = 1)

= h(x) + 1 + o(1), as x →∞.

By iteration, h(x + k) = h(x) + k + o(1) for all k ∈ Z.
Assume, without loss of generality, that σ(x) is strictly increasing and

continuous for x ≥ x0. Let λ ≥ 0. Then for n ∈ N, σ−1(n + λ) = fn(σ−1(λ))
and, by definition of σ,

F (fn(σ−1(λ)))− F (fn(x0)) → λ as n →∞.

Hence

h(n + λ) = F (σ−1(n + λ)) = F (fn(σ−1(λ))) = F (fn(x0)) + λ + o(1)
= h(n) + λ + o(1)

Clearly, this extends to all values of λ.
Now we want to show that ‘n’ can be replaced by ‘x’; i.e. h(x+λ)−h(x) →

λ as x →∞ through real values.
Fix k ∈ N. Let n = [x]. Then x lies in one of the intervals [n + r−1

k , n + r
k )

(r = 1, . . . , k). By monotonicity of h we have (for all x sufficiently large)

h
(
n +

r − 1
k

)
− h(n) ≤ h(x)− h(n) < h

(
n +

r

k

)
− h(n).

Let k(x) = h(x)− x. Then k(x + 1) = k(x) + o(1) and the above inequalities
imply that

h
(
n+

r − 1
k

)
−h(n)−r − 1

k
− 1

k
< k(x)−k(n) < h

(
n+

r

k

)
−h(n)− r

k
+

1
k

. (3.5)
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Let x →∞ (so that n →∞). Now for each r ∈ {1, . . . , k}, h(n + r
k )− h(n)−

r
k → 0; i.e. ∀ ε > 0, ∃nr such that∣∣∣h(

n +
r

k

)
− h(n)− r

k

∣∣∣ < ε for n ≥ nr.

Hence for n ≥ N = max1≤r≤k nr, the above holds uniformly for all such r.
Thus the LHS of (3.5) tends to − 1

k while the RHS tends to 1
k as x →∞. This

shows that
lim sup

x→∞
|k(x)− k([x])| ≤ 1

k
.

However, this is true for all k ∈ N, so it follows that the above limsup is zero;
i.e. k(x) = k([x]) + o(1). Let λ ∈ [0, 1). Then

k(x + λ)− k(x) = k([x + λ])− k([x]) + o(1).

But [x + λ] = [x] or [x] + 1 and, in either case, the RHS tends to 0. By
iteration, k(x + λ)− k(x) → 0 for all λ, and hence

h(x + λ) = h(x) + λ + o(1),

as required.

Corollary 3.5. Let f ∈ SIC∞ and suppose that OF1(f) = OF2(f) = 1 for
some order-equivalent functions F1, F2 ∈ SIC∞ for which the corresponding
σ1 and σ2 exist and σ1, σ2 ∈ SIC∞. Then σ1 = σ2+constant.

Proof. We have OF1,σ1 = OF2,σ2 = R, from Theorem 3.4. Since OF1,F2 = R
we also have Oσ1,σ2 = R. Theorem 3.1 yields σ1 = σ2+constant.

3.3 Conditions for Existence of σ.

In this section, we consider sufficient conditions for which σ exists, and for
which σ is invertible.

Theorem 3.6. Let f, F ∈ SIC∞ such that OF (f) = 1 and F ◦ f − F is
monotonic. Suppose that fn(x) → ∞ as n → ∞ for x ≥ x0. Then the limit
σ(x), given by (3.4), exists and is an increasing function of x. Moreover, σ is
continuous if F ◦ f −F is decreasing, and σ is strictly increasing if F ◦ f −F
is increasing.

Proof. Let σn(x) = F (fn(x)) − F (fn(x0)). Since fn(x0) → ∞, we have
x0 ≤ x ≤ fm(x0) for some m. Thus

0 ≤ σn(x) ≤ F (fn(fm(x0)))−F (fn(x0)) = F (fm(fn(x0)))−F (fn(x0)) → m,
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as n →∞. Hence σn(x) is bounded as n →∞ in any case.
Let g = F ◦f−F , so that g(x) is either increasing or decreasing, and tends

to 1. Then σn+1(x)−σn(x) = g(fn(x))−g(fn(x0)), which is either ≥ 0 for all
n sufficiently large, or ≤ 0. In either case, σn(x) is monotonic and bounded,
and converges to σ(x). That σ is increasing follows immediately from (3.4).

Now, if g is decreasing, then for y > x (both sufficiently large),

F (y)−F (x) ≥ F (f(y))−F (f(x)) ≥ · · · ≥ F (fn(y))−F (fn(x)) → σ(y)−σ(x),

so that σ is continuous. On the other hand, if g is increasing, then the above
inequalities are reversed and σ is strictly increasing.

In particular, if ρ exists and F (f)− F is increasing, then ρ ∈ SIC∞ (since
ρ is continuous already) and so also σ ∈ SIC∞.

Remark 3.7. (i) The assumptions of Theorem 3.6 are not sufficient to give
σ ∈ SIC∞. It may happen that F (f) − F is decreasing but σ is not strictly
increasing. For instance, take f(x) = x + 1 and F to be the SIC∞-function

F (x) = x− 1
x

+
{

1− {x} if {x} ≤ 1
2

{x} if {x} > 1
2

(x ≥ 1)

(Here, as usual, [x] is the largest integer less than or equal to x and {x} =
x − [x].) We can write F (x) = G(x) − 1

x where G(x + 1) = G(x) + 1. Thus
F (x + 1)− F (x) = 1 + 1

x(x+1) , which decreases to 1, and

F (fn(x))− n = F (n + x)− n = F (x) +
1
x
− 1

n + x
→ G(x) as n →∞.

Hence ρ exists and ρ(x) = G(x), but ρ (and σ) is not strictly increasing.
(ii) A similar example (where f(x) = x + 1) can be constructed where

F (f)− F is increasing and σ is not continuous. We omit the details.
(iii) It is also possible that σ exists (without the condition of monotonicity

of F (f) − F ), but that σ is neither continuous nor strictly increasing. For
example, let f(x) = x + 1 − {x}(1−{x})

[x] and F (x) = x. Then f, F ∈ SIC∞,
OF (f) = 1, and σ exists for all x, x0 ≥ 1. But σ(x) = [x] − [x0] which is
neither continuous nor strictly increasing. (To see this, note that f [k, k +1) =
[k +1, k +2) for every k ∈ N. Thus for x ∈ [1, 2), fn(x) = n+1+αn for some
αn ∈ [0, 1). This leads to

αn = αn−1 −
αn−1(1− αn−1)

n
,

which in turn implies αn → 0 as n → ∞. Thus fn(x) = n + 1 + o(1).)
Furthermore, for this example, OF 6≡ Oσ, since [x + λ]− [x] 6→ λ for λ 6∈ Z.
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For the purposes of fractional iterates it is important to have σ invertible.
In that case Theorem 3.4 also applies. One way to ensure invertibility is
for σ to have a positive derivative. So consider the case when the functions
f and F are differentiable. Under what conditions is σ differentiable? Let
σn(x) = F (fn(x))−F (fn(x0)). Suppose that f, F ∈ D+

∞ and that σ exists. If
σ′n tends uniformly to a limit τ say, then σ is differentiable and σ′ = τ (see for
example, [6] p. 402). The following theorem gives conditions for the existence
of limn→∞ σ′n. Note that

σ′n(x) = F ′(fn(x))(fn)′(x) = F ′(fn(x))
n−1∏
r=0

f ′(fr(x)).

Theorem 3.8. Let f, F ∈ D+
∞ be such that F (f(x)) = F (x) + 1 + δ(F (x)),

where δ(x) → 0 and δ′(x) → 0 in such a way that |δ′(x)| < ε(x) ↘ 0 and∫∞
ε(t)dt converges. Then

lim
n→∞

F ′(fn(x))(fn)′(x) = τ(x)

exist for all x sufficiently large, the convergence being uniform on compact
subsets of a neighborhood of infinity. The function τ is continuous, positive,
and f ′(x)τ(f(x)) = τ(x). Further, F ′(x) ∼ τ(x) as x →∞.

Moreover, σ exists, σ′ = τ , and σ ∈ D+
∞.

Proof. Let τn(x) = (F (fn(x)))′ = F ′(fn(x))(fn)′(x) (> 0). Then

τn+1(x)
τn(x)

=
F ′(fn+1(x))(fn+1)′(x)

F ′(fn(x))(fn)′(x)
=

F ′(f(fn(x)))f ′(fn(x))
F ′(fn(x))

= 1+δ′(F (fn(x))).

Hence

τN (x) = τ0(x)
N−1∏
n=0

(
1 + δ′(F (fn(x)))

)
.

No term in the product equals zero and |δ′(F (fn(x)))| < ε(n/2) for all n and
all x in a fixed bounded interval (since F (fn(·)) ∼ n). As

∑
n ε(n/2) converges

(by comparison with
∫∞

ε(t/2)dt), it follows that τN converges uniformly to
some positive, continuous function τ . Furthermore,

f ′(x)τ(f(x)) = f ′(x) lim
n→∞

F ′(fn(f(x)))(fn)′(f(x))

= lim
n→∞

F ′(fn+1(x))(fn+1)′(x) = τ(x),
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so that f ′(x)τ(f(x)) = τ(x). By iteration, τ(x) = (fn)′(x)τ(fn(x)) for every
n ∈ N. Now consider F ′/τ . We have

F ′(fn(x))
τ(fn(x))

=
F ′(fn(x))(fn)′(x)

τ(x)
=

τn(x)
τ(x)

→ 1 as n →∞.

This convergence is uniform in x on compact subsets of [A,∞) (for some A).
Hence F ′(x)/τ(x) → 1, as required.

To deduce the existence of σ, let Tn(x) =
∫ x

x0
τn(t)dt and T (x) =

∫ x

x0
τ(t)dt,

for x, x0 sufficiently large. Since τn → τ uniformly, Tn → T uniformly on
compact subsets of a neighborhood of infinity. But

Tn(x) =
∫ x

x0

(F (fn))′(t) dt = F (fn(x))− F (fn(x0)),

so σ exists and σ(x) = T (x) =
∫ x

x0
τ(t)dt. Since τ is continuous, we have

σ′ = τ and so σ ∈ D+
∞.

Theorem 3.8 gives a sufficient condition for σ′ > 0 and hence for σ to be
invertible. There are other sufficient conditions (for σ to be invertible). One
such follows from a result of Lévy [5], which was rigorously proved by Szekeres
[9]: if, with the same setup as in Theorem 3.8, we assume δ(x), δ′(x) → 0 and
δ′(·) is of bounded variation, then σ ∈ SIC∞ (and hence is invertible).

3.4 Application to Fractional and Continuous Iteration.

Given a function f , consider the functional equation,

g ◦ g = f. (3.6)

We say g is a 1
2

th-iterate of f . More generally, for a positive rational r = p
q ,

an rth-iterate of f is a function g for which

gq = fp. (3.7)

(Recall that gq denotes the qth-iterate of g, not the qth-power). We shall
restrict ourselves to the case where f is in SIC∞. As for the case of solutions
to the Abel equation (3.1), there are always infinitely many solutions g; if F
solves (3.1), then g(x) = F−1(F (x) + 1

2 ) solves (3.6).
Now suppose we know that for some F , we have OF (f) = 1. If g solves

(3.6) and if OF (g) exists, then it must equal 1
2 . It turns out that this extra

condition (i.e. the existence of OF (g)) distinguishes g uniquely from all the
other solutions of (3.6). Similar considerations apply to (3.7).
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We say f has a continuous iteration fλ (λ ∈ R) if fn = fn for n ∈ Z and
fλ ◦ fµ = fλ+µ for all λ, µ ∈ R. As for the fractional iterates, there are always
(infinitely many) solutions, given by F−1(F (x) + λ) where F solves (3.1).

Theorem 3.9. Let f, F ∈ SIC∞ be such that OF (f) = 1. Suppose also that
the corresponding σ exists (given by (3.4)) and σ ∈ SIC∞. Then

(a) for p, q ∈ N, there exists a unique SIC∞-function g satisfying (3.7) for
which OF (g) exists, namely, σ−1(σ(x) + p

q );

(b) there exists a unique continuous iteration fλ of f satisfying OF (fλ) = λ,
namely, σ−1(σ(x) + λ).

Proof. (a) Since OF (g) exists, we must have OF (g) = p
q = r, say. Now

g ◦ fp = g ◦ gq = gq+1 = gq ◦ g = fp ◦ g.

Hence, for all n ∈ N, g ◦ fnp = fnp ◦ g. Now, for x, x0 sufficiently large,

F (g(fnp(x)))− F (fnp(x0)) = F (fnp(x))− F (fnp(x0)) + r + o(1) → σ(x) + r,

as n →∞, since OF (g) = r. On the other hand,

F (g(fnp(x)))− F (fnp(x0)) = F (fnp(g(x)))− F (fnp(x0)) → σ(g(x)).

Hence σ(g(x)) = σ(x) + r and so g is given uniquely by g(x) = σ−1(σ(x) + r).
Furthermore, this g indeed satisfies OF (g) = r, since Oσ(g) = r and F and σ
are order-equivalent by Theorem 3.4.

(b) In this case, F (fλ(x)) = F (x) + λ + o(1). Hence, as n →∞,

F (fλ(fn(x)))−F (fn(x0)) = F (fn(x))−F (fn(x0))+λ+o(1) = σ(x)+λ+o(1),

and

F (fλ(fn(x)))− F (fn(x0)) = F (fn(fλ(x)))− F (fn(x0)) = σ(fλ(x)) + o(1).

This yields σ(fλ(x)) = σ(x) + λ. Again OF (fλ) = λ, since Oσ(fλ) = λ and
OF,σ = R.

Remark 3.10. The condition that σ ∈ SIC∞ is crucial for both existence
and uniqueness of the fractional iterates satisfying the order condition. For
instance, if σ exists but σ 6∈ SIC∞, then it may happen that there are many
or no solutions g for which g ◦ g = f and OF (g) = 1

2 . By following the proof
of (a), this is equivalent to solving

σ(g(x)) = σ(x) +
1
2
.
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For example, let f and F be as in Remark 3.7 (iii), so that σ(x) = [x]− [x0].
Then there is no function g for which [g(x)] = [x]+ 1

2 , as the LHS is an integer
and the RHS is not.

As a second example, let f(x) = x + 1 and F (x) = K(x)− 1
x , where

K(x) =


0 if 0 ≤ x < 1

2

3x− 3
2 if 1

2 ≤ x < 2
3

1
2 if 2

3 ≤ x < 5
6

3x− 2 if 5
6 ≤ x < 1

,

and K(x+1) = K(x)+1. Thus σ exists and σ(x) = K(x)−K(x0) is continuous
but not strictly increasing. Then there are infinitely many functions g such
that g2 = f and σ(g) = σ + 1

2 ; namely

g(x) =


h(x) if 0 ≤ x < 1

2

x + 1
3 if 1

2 ≤ x < 2
3

h−1(x) + 1 if 2
3 ≤ x < 5

6

x + 2
3 if 5

6 ≤ x < 1

,

and extended to R via g(x + 1) = g(x) + 1 (here h is any strictly increasing
function from [0, 1

2 ] onto [ 23 , 5
6 ]).

Of course, this last example is somewhat artificial, since given f(x) = x+1,
it is plainly absurd to choose F (for which OF (f) = 1) to be such a badly
behaved function.

Examples 3.11. (a) Let f(x) = cx + w(x) where c > 1 and w(x) = o(x).
Taking F (x) = log x

log c , we have OF (f) = 1 and

F ′(f(x))f ′(x)
F ′(x)

− 1 =
xf ′(x)
f(x)

− 1 =
w′(x)− w(x)

cx + w(x)
.

If we assume further that w′(x) = o(1/(log x)(log log x)1+η) for some
η > 0, then (after Theorem 3.8) σ exists and σ ∈ D+

∞. Hence there exists
a unique continuous iteration fλ subject to the condition fλ(x) ∼ cλx
as x →∞.

(b) Let f(x) = x2 + 1. Then, taking F (x) = log log x
log 2 , we have OF (f) = 1

and
F ′(f(x))f ′(x)

F ′(x)
− 1 =

2x2 log x

(x2 + 1) log(x2 + 1)
− 1 ∼ − 1

x2
.
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Thus (after Theorem 3.8) σ exists and σ ∈ D+
∞. Hence there exists a

unique continuous iteration fλ subject to the condition fλ(x) = x2λ+o(1).
In particular, there is a unique g such that

g(g(x)) = x2 + 1 and g(x) = x
√

2+o(1).

Similarly for any other D+
∞-function of the form xα+ε(x) with α > 1 and

ε(x) → 0 in such a way that ε′(x) = o(1/x(log x)1+η) for some η > 0. In
this case take F (x) = log log x

log α . In particular, this includes all polynomial
functions of degree greater than 1.

(c) Let f be a function of positive order α w.r.t. Ξ. If

f ′(x)χ(x)
χ(f(x))

− 1 = o
( 1

Ξ(x)1+δ

)
for some δ > 0, then

σ(x) =
1
α

lim
n→∞

{Ξ(fn(x))− Ξ(fn(x0))}

exists and σ ∈ D+
∞ by Theorem 3.8. All such f have a unique continuous

iteration for which OΞ(fλ) = λα, given by

fλ(x) = σ−1(σ(x) + λ).

Examples (a) and (b) are known in various guises — see for example [8]
where case (a) is shown to hold under the condition w′(x) = o(1/xδ) (some
δ > 0), while case (b) is proven under the assumption ε′(x) = o(1/x1+δ) (some
δ > 0) (see also [13], where an alternative (convexity) condition is also given).
Furthermore, these cases are usually treated separately. On the contrary, our
approach applies in great generality, uniting these varying results.

3.5 Best-Behaved Abel Functions.

The unique fractional and continuous iterates obtained in Theorem 3.8, are not
necessarily ‘best-behaved’ (or ‘most regular’) iterates in some absolute sense,
but ‘best-behaved’ with respect to the function F . If one is interested in ‘best-
behaved’ iterates, then the function F should be chosen as ‘best-behaved’ at
infinity as possible, since the condition OF (f1/2) = 1

2 (or OF (fλ) = λ) is just
a regularity condition at infinity.

In example (a) (similarly (b)), the F is well-chosen in the above sense. For
log x
log c is the best-behaved function G satisfying G(cx) = G(x)+1; if such a G is
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differentiable, then cG′(cx) = G′(x). But then cnG′(cnx) = G′(x) for every n.
If we assume that G′ is continuous and positive, then this implies yG′(y) � 1
as y → ∞. The most regular choice for G is one for which limy→∞ yG′(y)
exists. This forces G′(x) = a/x for some a.

For example (c), the continuous iteration of exponentially growing func-
tions would be the natural choice of iterates if we could show that Ξ is the
‘best-behaved’ solution of the Abel equation for exp. In fact, Ξ can be seen not
to be the best choice in this regard. For in this case, Ξ′ = 1/χ is continuous,
but χ not differentiable at each of the points e1

n. In [10], Szekeres claimed
to have obtained such a function based on the complete monotonicity of the
solution of the related Abel equation for ex − 1.

The point to be stressed here is that, once a function F (like log) has been
accepted as having regular growth, it can be used to take orders with, and in
this way the most regular fractional iterates can be found of a large class of
functions.
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