Maximal order of a class of multiplicative functions ${ }^{1}$

Titus W. Hilberdink

Abstract

In this paper we obtain the maximal order of the multiplicative function given at the prime powers by $f\left(p^{k}\right)=\exp \{h(k) l(p)\}$ where $h(\cdot)$ and $l(\cdot)$ are increasing and decreasing functions respectively with $l(p)$ regularly varying of index $-\alpha(0 \leq \alpha<1)$. For example, we show that under appropriate conditions $$
\max _{n \leq N} \log f(n) \sim\left(\sum_{n=1}^{\infty} \Delta h(n)^{1 / \alpha}\right)^{\alpha} L(\log N)
$$ where $L(x)=\sum_{p \leq x} l(p)$ and $\Delta h(n)=h(n)-h(n-1)$. 2010 AMS Mathematics Subject Classification: 11N37, 11N56. Keywords: Arithmetical functions, maximal order.

Introduction

We consider a class of multiplicative functions $f(n)$ which at the prime powers are given by

$$
\begin{equation*}
f\left(p^{k}\right)=e^{h(k) l(p)} \quad p \in \mathbb{P}, k \in \mathbb{N}_{0} \tag{0.1}
\end{equation*}
$$

In particular, we are interested in the maximal order of such functions ${ }^{2}$. If $l(p)$ is constant, then f is a prime-independent multiplicative function and the maximal order has been discussed by various authors (see for example, [7], [8], [9] and references therein). Thus, for example, Shui [8] has proven that (using our notation) if $f\left(p^{k}\right)=e^{h(k)}$ where $0 \leq h(k) \leq A k^{\beta}$ with $0<\beta<1$ and some A, then

$$
\limsup _{n \rightarrow \infty} \frac{\log f(n) \log \log n}{\log n}=\max _{k \geq 1} \frac{h(k)}{k} .
$$

In this case, the maximal order occurs for n of the form $\left(\prod_{p \leq P} p\right)^{m}$ where m maximises $h(k) / k$. Results such as the above were then applied to find the maximal order of divisor-like functions.

For non prime-independent multiplicative functions not much work appears to have been done. In [10], Tóth and Wirsing consider a class of multiplicative functions which are at most of order $\log \log n$ including $\frac{n}{\varphi(n)}$, but their results do not overlap with ours.

For the function $\sigma_{-\alpha}(n)=\sum_{d \mid n} d^{-\alpha}$, Gronwall [3] showed 100 years ago that for $0<\alpha<1$, the maximal order is given by

$$
\exp \left\{\frac{1+o(1)}{1-\alpha} \cdot \frac{(\log n)^{1-\alpha}}{\log \log n}\right\}
$$

Notice that in this case

$$
\sigma_{-\alpha}\left(p^{k}\right)=1+\frac{1}{p^{\alpha}}+\ldots+\frac{1}{p^{k \alpha}}=\exp \left\{\frac{1+o(1)}{p^{\alpha}}\right\}
$$

which is of the form (0.1) in an asymptotic sense, with $h(k)$ constant and $l(p)=p^{-\alpha}$. In fact, the maximum order occurs for n of the form $\prod_{p \leq P} p$, and to find this maximum is then relatively easy, using the prime number theorem. More generally, if f is multiplicative and given by (0.1) and both h and l are decreasing (and non-negative), then the maximum order of $f(n)$ again occurs for n of the form $\prod_{p \leq P} p$, since $f\left(p^{k}\right) \leq f(p)$ and $f(q) \leq f(p)$ for primes p, q with $p<q$. As such, $\log n=\theta(P) \sim P$ by the prime number theorem and multiplicativity of $f(n)$ gives

$$
\log f(n)=h(1) \sum_{p \leq P} l(p)=h(1) L(P)
$$

[^0]where $L(x)=\sum_{p \leq x} l(p)$. If now we assume that $L(y) \sim L(x)$ whenever $y \sim x$, then $\log f(n) \sim$ $h(1) L(\log n)$ (for such n) and this represents the maximal order.

In this article, we consider the less trivial (and perhaps more interesting) case is where h is increasing, while keeping l decreasing. As such we shall see that the maximal order occurs for $n=\prod_{p \leq P} p^{a_{p}}$ with a_{p} decreasing. The problem then reduces to finding the optimal a_{p} which maximises $f(n)$. A simple lower bound for the maximal order can be found by taking $a_{p}=1$ for all $p \leq P$, giving (under some mild conditions on L)

$$
\limsup _{n \rightarrow \infty} \frac{\log f(n)}{L(\log n)} \geq h(1)
$$

With some extra conditions, we also have $\log f(n) \ll L(\log n)$ and the question reduces to finding this limsup. First, we require some bound on the growth of h with respect to L if we want $\log f(n) \ll L(\log n)$. For if $n=2^{k}$, then

$$
\log f(n)=\log f\left(2^{k}\right)=l(2) h(k)=l(2) h\left(\frac{\log n}{\log 2}\right)
$$

so $h(k)=o(L(k))$ is necessary. A futher natural condition is that L should be regularly varying (see $\S 1$. for the definition). In fact, for our main results we shall assume that L is regularly varying of index $1-\alpha$ for some $\alpha \in[0,1)$, while

$$
h(k) \ll k^{\beta} \quad \text { for some } \beta<1-\alpha
$$

As such, $L(y) \sim L(x)$ whenever $y \sim x$ and $L(x)=x^{1-\alpha+o(1)}$.
Finally, we prove a slightly stronger result in that we find an asymptotic formula for $\max _{n \leq N} \log f(n)$.
Let $\Delta h(n)=h(n)-h(n-1)$ for $n \in \mathbb{N}$. Note that $h(0)=0$ (by definition) and so $\Delta h(1)=h(1)$. Our main result is:

Theorem 1

Let f be multiplicative and given at the prime powers by (0.1), where we assume that h is increasing and l is decreasing. Further suppose that $L(x)=\sum_{p \leq x} l(p)$ is regularly varying of index $1-\alpha$, where $0 \leq \alpha<1$, and $h(n) \ll n^{\beta}$ for some $\beta<1-\alpha$. Then

$$
\max _{n \leq N} \log f(n) \sim R_{\alpha} L(\log N)
$$

where

$$
\begin{equation*}
R_{\alpha}=\sup _{a_{n} \searrow 0} \frac{\sum_{n=1}^{\infty} \Delta h(n) a_{n}^{1-\alpha}}{\left(\sum_{n=1}^{\infty} a_{n}\right)^{1-\alpha}}=\sup _{\substack{a_{n}>0 \\ \sum_{n=1}^{\infty} a_{n}=1}} \sum_{n=1}^{\infty} \Delta h(n) a_{n}^{1-\alpha} . \tag{0.2}
\end{equation*}
$$

The supremum here is over all decreasing sequences a_{n}, not identically zero, for which $\sum_{1}^{\infty} a_{n}$ converges. In various cases we can evaluate R_{α} more explicitly. In particular we note that by Hölder's inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Delta h(n) a_{n}^{1-\alpha} \leq\left(\sum_{n=1}^{\infty} \Delta h(n)^{1 / \alpha}\right)^{\alpha}\left(\sum_{n=1}^{\infty} a_{n}\right)^{1-\alpha} \tag{0.3}
\end{equation*}
$$

and $R_{\alpha} \leq\left(\sum_{n=1}^{\infty} \Delta h(n)^{1 / \alpha}\right)^{\alpha}$ always. The case of equality leads to:

Theorem 2

Let f be as in Theorem 1 and suppose further that $\Delta h(n)$ decreases with n. Then

$$
\max _{n \leq N} \log f(n) \sim\left(\sum_{n=1}^{\infty} \Delta h(n)^{1 / \alpha}\right)^{\alpha} L(\log N)
$$

Note that the series $\sum_{n=1}^{\infty} \Delta h(n)^{1 / \alpha}$ converges if $\Delta h(n)$ decreases as $\Delta h(n) \leq \frac{h(n)}{n}$, so $\Delta h(n)^{1 / \alpha} \ll n^{-\gamma}$ where $\gamma=\frac{1-\beta}{\alpha}>1$.

In the case $\alpha=0, R_{\alpha}$ can be evaluated and gives:

Theorem 3

Let f be multiplicative and given at the prime powers by (0.1), where h is increasing and l is decreasing and L is regularly varying of index 1 . Suppose that $h(n) \ll n^{\beta}$ for some $\beta<1$. Then

$$
\max _{n \leq N} \log f(n) \sim\left(\max _{n \in \mathbb{N}} \frac{h(n)}{n}\right) L(\log N)
$$

The form (0.1) (with h increasing and l decreasing) may seem restrictive, but actually the results apply to cases where (0.1) holds in an asymptotic sense. We illustrate this in example 5(b). Indeed, the example

$$
f(n)=\frac{1}{d(n)} \sum_{d \mid n} \sigma_{-\alpha}(d)^{2}
$$

for which $\log f\left(p^{k}\right)=\frac{2 k}{(k+1) p^{\alpha}}\left(1+O\left(\frac{1}{p^{\alpha}}\right)\right)$, motivated the present results.
The rest of the paper is organised as follows. First we recall the notion of regular variation, then in section 2 we find lower bounds for $\log f(n)$, to be followed in section 3 by upper bounds and the proofs of the results.

In section 4 , we show how to evaluate R_{α} in case $\Delta h(n)$ is not decreasing and $\alpha \neq 0$. Finally, we present some examples.

1. Some preliminaries

Notation We write $f \ll g$ to mean $f=O(g)$; i.e. $|f(x)| \leq A g(x)$ for some constant A and all x sufficiently large. We write $f \lesssim g$ to mean $f(x) \leq(1+o(1)) g(x)$, and similarly for $f \gtrsim g$. Finally, $f \prec g$ means $f(x)=o(g(x))$, while $f \succ g$ is the same as $g \prec f$.

Regular Variation

A function $\ell:[A, \infty) \rightarrow \mathbb{R}$ is regularly varying of index ρ if it is measurable, eventually positive, and

$$
\begin{equation*}
\ell(\lambda x) \sim \lambda^{\rho} \ell(x) \quad \text { as } x \rightarrow \infty \text { for every } \lambda>0 \tag{1.1}
\end{equation*}
$$

(see [2] for a detailed treatise on the subject). We shall sometimes denote this by $\ell \in \mathcal{R}_{\rho}$. If $\rho=0$, then ℓ is said to be slowly varying. For example, $x^{\rho}(\log x)^{\tau}$ is regularly varying of index ρ for any τ. Trivially, if $\ell_{1} \in \mathcal{R}_{\rho}$ and $\ell_{2} \in \mathcal{R}_{\sigma}$, then $\ell_{1} \ell_{2} \in \mathcal{R}_{\rho+\sigma}$, while $\ell_{1}^{\lambda} \in \mathcal{R}_{\rho \lambda}$.

The Uniform Convergence Theorem says that (1.1) is automatically uniform for λ in compact subsets of $(0, \infty)$. In particular, $\ell(x) \sim \ell(y)$ whenever $x \sim y$. We shall make use of Karamata's Theorem: for ℓ regularly varying of index ρ,

$$
\int_{A}^{x} \ell \sim \frac{x \ell(x)}{\rho+1} \quad \text { if } \rho>-1, \quad \int_{x}^{\infty} \ell \sim-\frac{x \ell(x)}{\rho+1} \quad \text { if } \rho<-1
$$

while if $\rho=-1, \int^{x} \ell$ is slowly varying and $\int^{x} \ell \succ x \ell(x)$.
We shall also make use of Potter's bounds (see [2], p.25): if ℓ is regularly varying of index ρ then for any chosen $A>1$ and $\delta>0$, there exists $X=X(A, \delta)$ such that

$$
\frac{\ell(y)}{\ell(x)} \leq A \max \left\{\left(\frac{y}{x}\right)^{\rho+\delta},\left(\frac{y}{x}\right)^{\rho-\delta}\right\} \quad \text { for } x, y \geq X
$$

The notion of regular variation extends to sequences ([2], p.52). For l defined on $\mathbb{P}-$ the set of primes, we say l is regularly varying of index ρ if there exists a $\tilde{l} \in \mathcal{R}_{\rho}$, defined on $[2, \infty)$ such that $\tilde{l}(p)=l(p)$. As such, we can always take \tilde{l} to be the step function defined by $\tilde{l}(x)=l(p)$ for $p \leq x<p^{\prime}$ where p and p^{\prime} are consecutive primes, which we shall do from now on, and we denote this extension by l.

We note that if l is decreasing, regular variation of l (of index >-1) is equivalent to regular variation of L, where $L(x)=\sum_{p \leq x} l(p)$. Indeed, by the Prime Number Theorem and Karamata's Theorem, if l is regularly varying of index $-\alpha$ and $\alpha<1$, then

$$
\begin{equation*}
L(x)=\int_{2-}^{x} l(t) d \pi(t) \sim \int_{2}^{x} \frac{l(t)}{\log t} d t \sim \frac{x l(x)}{(1-\alpha) \log x} \tag{1.2}
\end{equation*}
$$

which is regularly varying of index $1-\alpha$. Conversely, if $L \in \mathcal{R}_{1-\alpha}$ for some $\alpha<1$ and l is decreasing, then for every $\lambda>1$

$$
l(\lambda x)(\pi(\lambda x)-\pi(x)) \leq L(\lambda x)-L(x)=\sum_{x<p \leq \lambda x} l(p) \leq l(x)(\pi(\lambda x)-\pi(x))
$$

Using $L \in \mathcal{R}_{1-\alpha}$ and $\pi \in \mathcal{R}_{1}$ and dividing by $L(x)$ gives

$$
\frac{\lambda^{1-\alpha}-1}{\lambda-1} \lesssim \frac{l(x) \pi(x)}{L(x)} \lesssim \frac{\lambda^{1-\alpha}-1}{\lambda-1} \lambda^{\alpha},
$$

and on letting $\lambda \rightarrow 1$, (1.2) follows again, so that $l \in \mathcal{R}_{-\alpha}$.

2. Lower bounds for $\log f(n)$

Proposition 2.1

Let f be multiplicative with $f\left(p^{k}\right)=\exp \{h(k) l(p)\}$. Put $n=\prod_{p \leq P} p^{[g(P / p)]}$, where $g:[1, \infty) \rightarrow \mathbb{R}$ is continuous, strictly increasing without bound, and $g(1)=1$. Then

$$
\begin{align*}
\log n & =\sum_{r \geq 1} \theta\left(\frac{P}{g^{-1}(r)}\right) \tag{2.1}\\
\log f(n) & =\sum_{r \geq 1} \Delta h(r) L\left(\frac{P}{g^{-1}(r)}\right) \tag{2.2}
\end{align*}
$$

where $\theta(x)=\sum_{p \leq x} \log p$ and $L(x)=\sum_{p \leq x} l(p)$.
Of course the series are finite, ending when $g^{-1}(r)>P / 2$.
Proof. We have

$$
\log n=\sum_{p \leq P}\left[g\left(\frac{P}{p}\right)\right] \log p=\sum_{r \geq 1} r \sum_{\substack{p \leq P \\ \text { st }[g(P / p)]=r}} \log p
$$

But $[g(P / p)]=r \Longleftrightarrow \frac{P}{g^{-1}(r+1)}<p \leq \frac{P}{g^{-1}(r)}$, so

$$
\log n=\sum_{r \geq 1} r\left(\theta\left(\frac{P}{g^{-1}(r)}\right)-\theta\left(\frac{P}{g^{-1}(r+1)}\right)\right)=\sum_{r \geq 1} \theta\left(\frac{P}{g^{-1}(r)}\right)
$$

For (2.2), we have

$$
\begin{aligned}
\log f(n) & =\sum_{p \leq P} h\left(\left[g\left(\frac{P}{p}\right)\right]\right) l(p)=\sum_{r \geq 1} h(r) \sum_{\substack{p \leq P \\
\text { st }[g(P / p)]}} l(p) \\
& =\sum_{r \geq 1} h(r)\left(L\left(\frac{P}{g^{-1}(r)}\right)-L\left(\frac{P}{g^{-1}(r+1)}\right)\right)=\sum_{r \geq 1}(h(r)-h(r-1)) L\left(\frac{P}{g^{-1}(r)}\right),
\end{aligned}
$$

as required.

Proposition 2.2

Let $g:[1, \infty) \rightarrow \mathbb{R}$ be continuous, strictly increasing without bound, and $g(1)=1$. Suppose further that $\sum_{1}^{\infty} 1 / g^{-1}(n)$ converges. Let l be regularly varying of index $-\alpha$, with $\alpha \in(0,1)$, and h increasing such that $h(k)=O\left(k^{\beta}\right)$ for some $\beta<1-\alpha$. Then

$$
\begin{aligned}
& \text { (1) } \sum_{p \leq x}\left[g\left(\frac{x}{p}\right)\right] \log p \sim\left(\sum_{n=1}^{\infty} \frac{1}{g^{-1}(n)}\right) x \\
& \text { (2) } \sum_{p \leq x} h\left(\left[g\left(\frac{x}{p}\right)\right]\right) l(p) \sim\left(\sum_{n=1}^{\infty} \frac{\Delta h(n)}{g^{-1}(n)^{1-\alpha}}\right) L(x),
\end{aligned}
$$

where $L(x)=\sum_{p \leq x} l(p)$.
Proof. (1) Let $G(x)$ denote the sum on the left in (1). Then from the proof of (2.1), we see that

$$
G(x)=\sum_{n \leq g(x)} \theta\left(\frac{x}{g^{-1}(n)}\right)
$$

By the Prime Number Theorem, we can write $\theta(x)=x+\eta(x)$ where $\eta(x)=o(x)$. Let $\lambda=\sum_{1}^{\infty} 1 / g^{-1}(n)$. The term involving x is

$$
x \sum_{n \leq g(x)} \frac{1}{g^{-1}(n)} \sim \lambda x
$$

Now, given $\varepsilon>0$, there exists x_{0} such that $|\eta(x)| \leq \varepsilon x$ for $x \geq x_{0}$. Note that $x / g^{-1}(n) \geq x_{0}$ for $n \leq g\left(x / x_{0}\right)$. Hence

$$
\left|\sum_{n \leq g\left(x / x_{0}\right)} \eta\left(\frac{x}{g^{-1}(n)}\right)\right| \leq \varepsilon \sum_{n \leq g\left(x / x_{0}\right)} \frac{x}{g^{-1}(n)}<\varepsilon \lambda x .
$$

For the remaining range $g\left(x / x_{0}\right)<n \leq g(x)$, the terms are $O(1)$ and so the sum is $O(g(x))$. But $g^{-1}(n) \succ n$ (since $\left.\frac{n / 2}{g^{-1}(n)} \leq \sum_{n / 2}^{n} \frac{1}{g^{-1}(n)} \rightarrow 0\right)$ so that $g(x)=o(x)$. Thus $G(x) \sim \lambda x$ follows.
(2) Let $H(x)$ denote the LHS of (2). From the proof of (2.2) we see that

$$
\begin{equation*}
H(x)=\sum_{n \leq g(x)} h(n)\left\{L\left(\frac{x}{g^{-1}(n)}\right)-L\left(\frac{x}{g^{-1}(n+1)}\right)\right\}=\sum_{n \leq g(x)} \Delta h(n) L\left(\frac{x}{g^{-1}(n)}\right) . \tag{2.3}
\end{equation*}
$$

Since h is increasing,

$$
H(x) \geq \sum_{n \leq N} \Delta h(n) L\left(\frac{x}{g^{-1}(n)}\right) \sim \sum_{n \leq N} \frac{\Delta h(n)}{g^{-1}(n)^{1-\alpha}} L(x)
$$

for every $N \in \mathbb{N}$, by regular variation of L. Note that by Hölder's inequality

$$
\sum_{n \leq N} \frac{\Delta h(n)}{g^{-1}(n)^{1-\alpha}} \leq A\left(\sum_{n \leq N} \frac{1}{n^{\frac{1-\beta}{\alpha}}}\right)^{\alpha}\left(\sum_{n \leq N} \frac{1}{g^{-1}(n)}\right)^{1-\alpha}<\infty
$$

Hence $^{3} \sum_{n \geq 1} \frac{\Delta h(n)}{g^{-1}(n)^{1-\alpha}}<\infty$ and $H(x) / L(x) \gtrsim \sum_{n=1}^{\infty} \frac{\Delta h(n)}{g^{-1}(n)^{1-\alpha}}$.
For the range $n>N$, we use the bound $h(n) \leq A n^{\beta}$ in the middle expression of (2.3) and Potter's bounds on L

$$
\frac{L\left(\frac{x}{g^{-1}(n)}\right)}{L(x)} \leq \frac{A_{1}}{g^{-1}(n)^{1-\alpha-\delta}}
$$

for every $\delta>0$ (some A_{1}). But with δ sufficiently small,

$$
\sum_{n>N} \frac{1}{n^{1-\beta} g^{-1}(n)^{1-\alpha-\delta}} \leq\left(\sum_{n>N} \frac{1}{n^{\frac{1-\beta}{\alpha+\delta}}}\right)^{\alpha+\delta}\left(\sum_{n>N} \frac{1}{g^{-1}(n)}\right)^{1-\alpha-\delta}
$$

[^1]Both sums converge, and so tend to zero as $N \rightarrow \infty$. Thus the result follows.

Proposition 2.3

Let f be multiplicative and given at the prime powers by (0.1), and assume that h and l satisfy the conditions of Proposition 2.2. Then, with R_{α} given by (0.2),

$$
\max _{n \leq N} \log f(n) \gtrsim R_{\alpha} L(\log N)
$$

Proof. It is clear that in the definition of R_{α} we may range over strictly decreasing a_{n} rather than just decreasing. Thus, given $\varepsilon>0$, there exists a strictly decreasing a_{n} for which $\sum a_{n}<\infty$ and

$$
\frac{\sum_{n=1}^{\infty} \Delta h(n) a_{n}^{1-\alpha}}{\left(\sum_{n=1}^{\infty} a_{n}\right)^{1-\alpha}}>R_{\alpha}-\varepsilon .
$$

Without loss of generality we may assume $a_{1}=1$, as we may replace a_{n} by a_{n} / a_{1}. Let g be an increasing bijection on $[1, \infty)$ such that $g\left(1 / a_{n}\right)=n$. Then $a_{n}=1 / g^{-1}(n)$ so that $\sum \frac{1}{g^{-1}(n)}<\infty$. Take n of the form

$$
\begin{equation*}
n=\prod_{p \leq P} p^{[g(P / p)]} \tag{2.4}
\end{equation*}
$$

As such, Proposition 2.2 implies

$$
\log n \sim\left(\sum_{r=1}^{\infty} a_{r}\right) P \quad \text { and } \quad \log f(n) \sim\left(\sum_{r=1}^{\infty} \Delta h(r) a_{r}^{1-\alpha}\right) L(P)
$$

as $P \rightarrow \infty$ through the primes. Using the fact that L is regularly varying of index $1-\alpha$,

$$
\begin{equation*}
\frac{\log f(n)}{L(\log n)} \sim \frac{\sum_{r=1}^{\infty} \Delta h(r) a_{r}^{1-\alpha}}{\left(\sum_{r=1}^{\infty} a_{r}\right)^{1-\alpha}}>R_{\alpha}-\varepsilon \tag{2.5}
\end{equation*}
$$

Now note that if n and n^{\prime} are consecutive numbers of the form (2.4) (i.e. $n^{\prime}=\prod_{p \leq P^{\prime}} p^{\left[g\left(P^{\prime} / p\right)\right]}$ where P^{\prime} is the prime after P) then, with $\lambda=\sum_{n \geq 1} a_{n}$,

$$
\log n^{\prime} \sim \lambda P^{\prime} \sim \lambda P \sim \log n
$$

Hence, with \tilde{N} denoting the largest number of the form (2.4) below N,

$$
\max _{n \leq N} \log f(n) \geq \log f(\tilde{N}) \gtrsim\left(R_{\alpha}-\varepsilon\right) L(\log \tilde{N}) \sim\left(R_{\alpha}-\varepsilon\right) L(\log N)
$$

This holds for every $\varepsilon>0$, hence it must also hold for $\varepsilon=0$.

3. Upper bounds and proofs of Theorems 1-3

The lower bound obtained in Proposition 2.3 already gives the maximum order of $\log f(n)$ for n of the form $\prod_{p \leq P} p^{[g(P / p)]}$ with g an increasing bijection on $[1, \infty)$ such that $\sum g^{-1}(n)^{-1}$ converges. We have to show that no other n gives still larger values of $\log f(n)$.

Lemma 3.1

Let f be multiplicative with $f\left(p^{k}\right)=e^{h(k) l(p)}$ for $p \in \mathbb{P}, k \in \mathbb{N}_{0}$, where h is increasing and l is decreasing. Then the maximal size of $f(n)$ occurs when n is of the form

$$
\begin{equation*}
n=\prod_{p \leq P} p^{a_{p}} \tag{3.1}
\end{equation*}
$$

with a_{p} decreasing with p. More precisely, if n is as in (3.1) and $a_{p_{i}}<a_{p_{j}}$ for some $i<j$ (where p_{i} is the $i^{\text {th }}$-prime) then there exists $n^{\prime}<n$ such that $f\left(n^{\prime}\right) \geq f(n)$.

Proof. Let n be as in (3.1) with $a_{p_{i}}<a_{p_{j}}$ for some $i<j$ and put $n^{\prime}=\prod_{p \leq P} p^{a_{p}^{\prime}}$ where

$$
a_{p}^{\prime}=a_{p} \quad \text { if } p \neq p_{i}, p_{j}, \text { and } a_{p_{i}}^{\prime}=a_{p_{j}}, a_{p_{j}}^{\prime}=a_{p_{i}} .
$$

Then $n^{\prime} / n=\left(p_{i} / p_{j}\right)^{a_{p_{j}}-a_{p_{i}}}<1$, while

$$
\log \frac{f\left(n^{\prime}\right)}{f(n)}=\left(h\left(a_{p_{j}}\right)-h\left(a_{p_{i}}\right)\right)\left(l\left(p_{i}\right)-l\left(p_{j}\right)\right) \geq 0 .
$$

Proof of Theorem 1. By Lemma 3.1, we need only consider n of the form (3.1) with a_{p} decreasing. Suppose, without loss of generality, that $a_{P} \geq 1$. Then

$$
\log n=\sum_{p \leq P} a_{p} \log p \geq \sum_{p \leq P} \log p=\theta(P),
$$

while $\log f(n)=\sum_{p \leq P} h\left(a_{p}\right) l(p)$. Consider $\sum_{p \leq \delta \log n} h\left(a_{p}\right) l(p)$ for $\delta>0$ (small). Using $h(k) \ll k^{\beta}$, we have

$$
\begin{align*}
& \sum_{p \leq \delta \log n} h\left(a_{p}\right) l(p) \ll \sum_{p \leq \delta \log n} a_{p}^{\beta} l(p)=\sum_{p \leq \delta \log n}\left(a_{p} \log p\right)^{\beta}\left(\frac{l(p)^{\frac{1}{1-\beta}}}{(\log p)^{\frac{\beta}{1-\beta}}}\right)^{1-\beta} \\
& \leq(\log n)^{\beta}\left(\sum_{p \leq \delta \log n} \frac{l(p)^{\frac{1}{1-\beta}}}{(\log p)^{\frac{\beta}{1-\beta}}}\right)^{1-\beta}, \tag{3.2}
\end{align*}
$$

by Hölder's inequality. Now $\frac{l(p) \frac{1}{1-\beta}}{(\log p)^{\frac{1}{1-\beta}}}$ is regularly varying of index $-\frac{\alpha}{1-\beta}$, which is greater than -1 . Thus by Karamata's Theorem and the prime number theorem,

$$
\begin{equation*}
\sum_{p \leq x} \frac{l(p)^{\frac{1}{1-\beta}}}{(\log p)^{\frac{\beta}{1-\beta}}}=\int_{2-}^{x} \frac{l(t)^{\frac{1}{1-\beta}}}{(\log t)^{\frac{\beta}{1-\beta}}} d \pi(t) \sim \frac{x l(x)^{\frac{1}{1-\beta}}}{\left(1-\frac{\alpha}{1-\beta}\right)(\log x)^{\frac{1}{1-\beta}}} . \tag{3.3}
\end{equation*}
$$

Hence (3.2) gives

$$
\sum_{p \leq \delta \log n} h\left(a_{p}\right) l(p) \ll(\log n)^{\beta} \frac{(\delta \log n)^{1-\beta} l(\delta \log n)}{\left(1-\frac{\alpha}{1-\beta}\right)^{1-\beta} \log \log n} \sim \frac{\delta^{\eta}(1-\alpha) L(\log n)}{\left(1-\frac{\alpha}{1-\beta}\right)^{1-\beta}}
$$

where $\eta=1-(\alpha+\beta)>0$. Let $\varepsilon>0$. Thus we can find $\delta>0$ such that $\sum_{p \leq \delta \log n} h\left(a_{p}\right) l(p)<\varepsilon L(\log n)$. As such

$$
\begin{equation*}
\log f(n)<\sum_{\delta \log n<p \leq P} h\left(a_{p}\right) l(p)+\varepsilon L(\log n) . \tag{3.4}
\end{equation*}
$$

From (3.4) and the fact that $\log f(n)$ is sometimes as large as $c L(\log n)$, it follows that for the maximal order we must have $P>\delta \log n$ for δ sufficiently small. Now for every prime p,

$$
\log n \geq a_{p} \sum_{q \leq p} \log q=a_{p} \theta(p)
$$

(here q runs over the primes $\leq p$). So, for the range of p under consideration (i.e. $\delta \log n<p \leq P$) and using $\theta(x) \geq a_{0} x$ for some absolute constant a_{0},

$$
\begin{equation*}
a_{p} \leq \frac{\log n}{\theta(p)} \leq \frac{1}{a_{0} \delta} . \tag{3.5}
\end{equation*}
$$

The bound is independent of n, only depending on α, β and ε, and so a_{p} takes only finitely many values, say $a_{p} \in\{1, \ldots, M\}$. Let

$$
T_{r}=\sum_{\substack{\delta \log n<p \\ a_{p} \geq r}} l(p) .
$$

Then

$$
\begin{equation*}
\sum_{\delta \log n<p \leq P} h\left(a_{p}\right) l(p)=\sum_{r=1}^{M} h(r) \sum_{\substack{\delta \log n<p \leq P \\ a_{p}=r}} l(p)=\sum_{r=1}^{M} h(r)\left(T_{r}-T_{r+1}\right)=\sum_{r=1}^{M} \Delta h(r) T_{r} \tag{3.6}
\end{equation*}
$$

Since a_{p} decreases with p, we have $a_{p} \geq r \Leftrightarrow p \leq q_{r}$, for some q_{r} (depending on r and P), decreasing with r. Thus $q_{r} \leq q_{1}=P$. For a non-zero contribution, we require $q_{r}>\delta \log n \geq \delta \theta(P)$, so that $a_{0} \delta<\frac{q_{r}}{P} \leq 1$. By the uniform convergence theorem for regular variation, $L\left(q_{r}\right)=L\left(\frac{q_{r}}{P} \cdot P\right) \sim\left(\frac{q_{r}}{P}\right)^{1-\alpha} L(P)$ and

$$
\begin{equation*}
\sum_{\delta \log n<p \leq P} h\left(a_{p}\right) l(p) \leq \sum_{r=1}^{M} \Delta h(r) L\left(q_{r}\right) \sim\left(\sum_{r=1}^{M} \Delta h(r)\left(\frac{q_{r}}{P}\right)^{1-\alpha}\right) L(P) \tag{3.7}
\end{equation*}
$$

Also

$$
\log n=\sum_{p \leq P} a_{p} \log p \geq \sum_{r=1}^{M} r \sum_{\substack{p \leq P \\ a_{p}=r}} \log p \geq \sum_{r=1}^{M} \sum_{\substack{p \leq P \\ a_{p} \geq r}} \log p=\sum_{r=1}^{M} \theta\left(q_{r}\right) \sim\left(\sum_{r=1}^{M} \frac{q_{r}}{P}\right) P
$$

by the Prime Number Theorem, so

$$
\begin{equation*}
L(\log n) \gtrsim\left(\sum_{r=1}^{M} \frac{q_{r}}{P}\right)^{1-\alpha} L(P) \tag{3.8}
\end{equation*}
$$

Finally (3.4), (3.7) and (3.8) give

$$
\limsup _{n \rightarrow \infty} \frac{\log f(n)}{L(\log n)} \leq \frac{\sum_{r=1}^{M} \Delta h(r)\left(\frac{q_{r}}{P}\right)^{1-\alpha}}{\left(\sum_{r=1}^{M} \frac{q_{r}}{P}\right)^{1-\alpha}}+\varepsilon \leq R_{\alpha}+\varepsilon
$$

This holds for all $\varepsilon>0$, so the above holds with $\varepsilon=0$. Combining with Proposition 2.3 concludes the proof of Theorem 1.

Proof of Theorem 2. We already noted in the introduction that $R_{\alpha} \leq S_{\alpha}$ where

$$
S_{\alpha}=\left(\sum_{n=1}^{\infty} \Delta h(n)^{1 / \alpha}\right)^{\alpha}
$$

But equality holds in (0.3) if $a_{n}=c \Delta h(n)^{1 / \alpha}$ for some constant c. So we choose a_{n} as such (with $c>0$) which is valid as $\Delta h(n)^{1 / \alpha}$ is decreasing and summable. Thus $R_{\alpha}=S_{\alpha}$ in this case.

Proof of Theorem 3. Consider $\alpha=0$. For $M \in \mathbb{N}$, let

$$
R_{0}(M)=\sup _{0 \leq a_{M} \leq \ldots \leq a_{1}} \frac{\sum_{n=1}^{M} \Delta h(n) a_{n}}{\sum_{n=1}^{M} a_{n}},
$$

the supremum being over all a_{1}, \ldots, a_{M} satisfying $a_{1} \geq \ldots \geq a_{M} \geq 0$. It is clear that $R_{0}(M) \rightarrow R_{0}$ as $M \rightarrow \infty$. We show that

$$
\begin{equation*}
R_{0}(M)=\max _{n \leq M} \frac{h(n)}{n} \tag{3.9}
\end{equation*}
$$

Let $a_{1} \geq \ldots a_{M} \geq 0$ and put $b_{n}=a_{n}-a_{n+1}(n=1, \ldots, M)$ with $a_{M+1}=0$. So $a_{n}=\sum_{r=n}^{M} b_{r}$. Then

$$
\sum_{n=1}^{M} \Delta h(n) a_{n}=\sum_{n=1}^{M} \Delta h(n) \sum_{r=n}^{M} b_{r}=\sum_{r=1}^{M} b_{r} \sum_{n=1}^{r} \Delta h(n)=\sum_{r=1}^{M} b_{r} h(r),
$$

while $\sum_{n=1}^{M} a_{n}=\sum_{r=1}^{M} r b_{r}$. Thus

$$
R_{0}(M)=\sup _{b_{1}, \ldots, b_{M} \geq 0} \frac{\sum_{n=1}^{M} h(n) b_{n}}{\sum_{n=1}^{M} n b_{n}}=\sup _{c_{1}, \ldots, c_{M} \geq 0} \frac{\sum_{n=1}^{M} \frac{h(n)}{n} c_{n}}{\sum_{n=1}^{M} c_{n}}
$$

on putting $n b_{n}=c_{n}$. The expression on the right is $\leq \max _{n \leq M} \frac{h(n)}{n}$ while, choosing $c_{k}=1$ and $c_{n}=0$ for $n \neq k$ (k any fixed integer from $1, \ldots, M$), we find $R_{0}(M) \geq \frac{h(k)}{k}$. Thus (3.9), and hence, Theorem 3 follows. Note that the supremum is a maximum since $h(n) / n \rightarrow 0$.

4. On the value of R_{α}

The evaluation of R_{α} is an intriguing optimization problem in its own right. In the case $\alpha=0$ and the case where $\Delta h(n)$ is decreasing one obtains simple explicit formulas for R_{α}. In general, one can still evaluate R_{α} but there does not appear to be an elegant formula.

We can turn it into a finite-dimensional problem by defining, for $M \in \mathbb{N}$,

$$
R_{\alpha}(M)=\sup _{\substack{a_{1} \geq a^{M} \geq a_{M} \geq 0 \\ \sum_{n=1}^{M=} a_{n}=1}} \sum_{n=1}^{M} \Delta h(n) a_{n}^{1-\alpha} .
$$

We first prove that where $\Delta h(n)$ is increasing, we must take a_{n} constant. In fact, we prove this for a slightly more general problem:

Lemma 4.1

Let $\alpha \in(0,1), \ell=\left(l_{1}, \ldots, l_{M}\right) \in \mathbb{N}^{M}$ and $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{M}\right) \in \mathbb{R}^{M}$ with each $\lambda_{i} \geq 0$ and consider

$$
R_{\alpha}(\Lambda, \ell ; M)=\max _{\substack{a_{1} \geq \geq \geq a_{M} \geq 0 \\ \sum_{r=1} l_{r} a_{r}=1}} \sum_{m=1}^{M} \lambda_{m} l_{m} a_{m}^{1-\alpha}
$$

(i) Suppose that $\lambda_{k}<\lambda_{k+1}$ for some $k \in\{1, \ldots, M-1\}$. Then for the above maximum, we must take $a_{k}=a_{k+1}$.
(ii) If $\lambda_{k} \geq \lambda_{k+1}$ for every k, then $R_{\alpha}(\Lambda, \ell ; M)=\left(\sum_{m=1}^{M} \lambda_{m}^{1 / \alpha} l_{m}\right)^{\alpha}$.

Proof. (i) In any case $a_{k} \geq a_{k+1}$, so it suffices to show that if $a_{k}>a_{k+1}$ then there exists $a^{\prime}=$ $\left(a_{1}^{\prime}, \ldots, a_{M}^{\prime}\right)$ with $a_{1}^{\prime} \geq \ldots \geq a_{M}^{\prime} \geq 0$ and $\sum_{m=1}^{M} l_{m} a_{m}^{\prime}=1$ for which

$$
\begin{equation*}
\sum_{m=1}^{M} \lambda_{m} l_{m} a_{m}^{\prime 1-\alpha}>\sum_{m=1}^{M} \lambda_{m} l_{m} a_{m}^{1-\alpha} \tag{4.1}
\end{equation*}
$$

So, suppose $a_{k}>a_{k+1}$. Let $a_{n}^{\prime}=a_{n}$ for $n \neq k, k+1$ and put

$$
a_{k}^{\prime}=a_{k+1}^{\prime}=\frac{l_{k} a_{k}+l_{k+1} a_{k+1}}{l_{k}+l_{k+1}}
$$

As such, $a_{1}^{\prime} \geq \ldots \geq a_{M}^{\prime} \geq 0$ (since $\left.a_{k+1}<a_{k}^{\prime}<a_{k}\right)$ and $\sum_{m=1}^{M} l_{m} a_{m}^{\prime}=1$ (since $l_{k} a_{k}^{\prime}+l_{k+1} a_{k+1}^{\prime}=$ $\left.l_{k} a_{k}+l_{k+1} a_{k+1}\right)$ while

$$
\begin{align*}
\sum_{m=1}^{M} \lambda_{m} l_{m} a_{m}^{\prime 1-\alpha}- & \sum_{m=1}^{M} \lambda_{m} l_{m} a_{m}^{1-\alpha}=\left(\lambda_{k} l_{k}+\lambda_{k+1} l_{k+1}\right)\left(a_{k}^{\prime}\right)^{1-\alpha}-\left(\lambda_{k} l_{k} a_{k}^{1-\alpha}+\lambda_{k+1} l_{k+1} a_{k+1}^{1-\alpha}\right) \\
& =\lambda_{k+1} a_{k}^{1-\alpha}\left\{\frac{\left(l_{k} s+l_{k+1}\right)}{\left(l_{k}+l_{k+1}\right)^{1-\alpha}}\left(l_{k}+l_{k+1} t\right)^{1-\alpha}-\left(l_{k} s+l_{k+1} t^{1-\alpha}\right)\right\} \tag{4.2}
\end{align*}
$$

where $s=\frac{\lambda_{k}}{\lambda_{k+1}}$ and $t=\frac{a_{k+1}}{a_{k}}$. Note that $0 \leq s, t<1$. Now put

$$
F(x, y)=F_{m, n}(x, y)=\frac{(m x+n)(m+n y)^{1-\alpha}}{(m+n)^{1-\alpha}}-\left(m x+n y^{1-\alpha}\right) \quad(m, n \in \mathbb{N})
$$

So the RHS of (4.2) is $\lambda_{k+1} a_{k}^{1-\alpha} F_{l_{k}, l_{k+1}}(s, t)$. We claim that for any $x, y \in[0,1], F(x, y) \geq 0$ with equality if and only if $x=y=1$. For

$$
\begin{aligned}
F(x, y) \geq 0 \quad \forall x, y \in[0,1] & \Longleftrightarrow \frac{(m x+n)(m+n y)^{1-\alpha}}{(m+n)^{1-\alpha}} \geq m x+n y^{1-\alpha} \quad \forall x, y \in[0,1] \\
& \Longleftrightarrow m x\left\{1-\left(\frac{m+n y}{m+n}\right)^{1-\alpha}\right\} \leq n\left\{\left(\frac{m+n y}{m+n}\right)^{1-\alpha}-y^{1-\alpha}\right\} \quad \forall x, y \in[0,1] \\
& \Longleftrightarrow m\left\{1-\left(\frac{m+n y}{m+n}\right)^{1-\alpha}\right\} \leq n\left\{\left(\frac{m+n y}{m+n}\right)^{1-\alpha}-y^{1-\alpha}\right\} \quad \forall y \in[0,1]
\end{aligned}
$$

since the LHS is largest when $x=1$. Rearranging, we see that this holds if and only if $G(y) \geq 0$ for $0 \leq y \leq 1$ where

$$
G(y)=(m+n)^{\alpha}(m+n y)^{1-\alpha}-m-n y^{1-\alpha} .
$$

But $G^{\prime}(y)=(1-\alpha) n y^{-\alpha}\left(\left(\frac{m y+n y}{m+n y}\right)^{\alpha}-1\right)<0$ for $0<y<1$. Thus G is strictly decreasing in $[0,1]$. Since $G(1)=0$ the result follows.

For the second part, note that by Hölder's inequality

$$
\sum_{m=1}^{M} \lambda_{m} l_{m} a_{m}^{1-\alpha}=\sum_{m=1}^{M} \lambda_{m} l_{m}^{\alpha}\left(l_{m} a_{m}\right)^{1-\alpha} \leq\left(\sum_{m=1}^{M} \lambda_{m}^{1 / \alpha} l_{m}\right)^{\alpha}
$$

Equality holds if $\lambda_{m}^{1 / \alpha}=c a_{m}$ for some constant c, which is feasible if λ_{m} is decreasing.

Determining R_{α}.

Thus, in the evaluation of $R_{\alpha}(\Lambda, \ell ; M)$, for the optimal solution we need to take a_{n} constant on intervals where λ_{k} is strictly increasing. Partition $\{1, \ldots, M\}$ into consecutive intervals ${ }^{4} \mathcal{L}_{1}, \ldots, \mathcal{L}_{M^{\prime}}$ and λ_{n} is strictly increasing on each \mathcal{L}_{r}. Thus we can write $\mathcal{L}_{r}=\left\{L_{r-1}+1, \ldots, L_{r}\right\}$ for $r=1, \ldots, M^{\prime}$ where L_{r} is a strictly increasing sequence of integers with $L_{0}=0$ and $L_{M^{\prime}}=M$, and $\lambda_{n+1}>\lambda_{n}$ for $L_{r-1}<n<L_{r}$, while $\lambda_{n+1} \leq \lambda_{n}$ for $n=L_{r}\left(1 \leq r<M^{\prime}\right)$. (If λ_{k} is decreasing, we must take $\mathcal{L}_{r}=\{r\}$.) As such, we take a_{n} constant on each \mathcal{L}_{r}. Writing

$$
l_{r}^{\prime}=\sum_{n \in \mathcal{L}_{r}} l_{n} \quad \text { and } \quad b_{r}=a_{L_{r}}
$$

gives $\sum_{n=1}^{M} l_{n} a_{n}=\sum_{r=1}^{M^{\prime}}\left(\sum_{n \in \mathcal{L}_{r}} l_{n}\right) a_{L_{r}}=\sum_{r=1}^{M^{\prime}} l_{r}^{\prime} b_{r}=1$, while

$$
\sum_{n=1}^{M} \lambda_{n} l_{n} a_{n}^{1-\alpha}=\sum_{r=1}^{M^{\prime}}\left(\sum_{n \in \mathcal{L}_{r}} \lambda_{n} l_{n}\right) b_{r}^{1-\alpha}=\sum_{r=1}^{M^{\prime}} \lambda_{r}^{\prime} l_{r}^{\prime} b_{r}^{1-\alpha}
$$

where $\lambda_{r}^{\prime}=\frac{1}{l_{r}^{\prime}} \sum_{n \in \mathcal{L}_{r}} \lambda_{n} l_{n}$. Thus

$$
R_{\alpha}(\Lambda, \ell ; M)=\max _{\substack{b_{1} \geq, \geq b_{M^{\prime}} \geq 0 \\ \sum_{r=1}^{M^{\prime} l_{r}^{\prime} b_{r}=1}}} \sum_{m=1}^{M^{\prime}} \lambda_{m}^{\prime} l_{m}^{\prime} b_{m}^{1-\alpha}=R_{\alpha}\left(\Lambda^{\prime}, \ell^{\prime} ; M^{\prime}\right)
$$

where $\Lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{M^{\prime}}^{\prime}\right)$ and $\ell^{\prime}=\left(l_{1}^{\prime}, \ldots, l_{M^{\prime}}^{\prime}\right)$. Note that $M^{\prime}<M$, unless λ_{n} is decreasing, in which case $R_{\alpha}(M)$ can be evaluated. Now apply Lemma 4.1 to this optimization problem and continue the process repeatedly. Thus

$$
R_{\alpha}(\Lambda, \ell ; M)=R_{\alpha}\left(\Lambda^{\prime}, \ell^{\prime} ; M^{\prime}\right)=\cdots=R_{\alpha}\left(\Lambda^{*}, \ell^{*} ; M^{*}\right)
$$

[^2]where the process stops when Λ^{*} is a decreasing set. This is guaranteed to happen when $M^{*}=1$, but could happen earlier. Notice that at each stage, the forms for Λ and l are the same. Consider for example the second stage, where we have partitioned $\left\{1, \ldots, M^{\prime}\right\}$ into consecutive intervals $\mathcal{L}_{1}^{\prime}, \ldots, \mathcal{L}_{M^{\prime \prime}}^{\prime}$ with corresponding $\ell^{\prime \prime}$ and $\Lambda^{\prime \prime}$. Then
$$
l_{k}^{\prime \prime}=\sum_{n \in \mathcal{L}_{k}^{\prime}} l_{n}^{\prime}=\sum_{n \in \mathcal{L}_{k}^{\prime}} \sum_{m \in \mathcal{L}_{k}} l_{m}=\sum_{n \in \mathcal{L}} l_{n}
$$
for some consecutive set \mathcal{L} (dependent on k). Likewise
$$
\lambda_{k}^{\prime \prime} l_{k}^{\prime \prime}=\sum_{n \in \mathcal{L}_{k}^{\prime}} \lambda_{n}^{\prime} l_{n}^{\prime}=\sum_{n \in \mathcal{L}_{k}^{\prime}} \sum_{m \in \mathcal{L}_{k}} \lambda_{m} l_{m}=\sum_{n \in \mathcal{L}} \lambda_{n} l_{n}
$$

In particular, this holds for ℓ^{*} and Λ^{*}. Rewriting, the above shows that the optimal solution always has the form ${ }^{5}$

$$
R_{\alpha}(\Lambda, \ell ; M)=\left(\sum_{k=1}^{K}\left(q\left(m_{k}\right)-q\left(m_{k-1}\right)\right)\left(\frac{s\left(m_{k}\right)-s\left(m_{k-1}\right)}{q\left(m_{k}\right)-q\left(m_{k-1}\right)}\right)^{1 / \alpha}\right)^{\alpha}
$$

where $q(r)=l_{1}+\cdots+l_{r}$ and $s(r)=\lambda_{1} l_{1}+\cdots+\lambda_{r} l_{r}$, for some sequence of integers m_{k} satisfying $0=m_{0}<m_{1}<\cdots<m_{K}=M$. Being optimal, this requires that

$$
\frac{s\left(m_{k}\right)-s\left(m_{k-1}\right)}{q\left(m_{k}\right)-q\left(m_{k-1}\right)}
$$

is decreasing.
For the special case $l_{k} \equiv 1$ and $\lambda_{k}=\Delta h(k), q(r)=r$ and $s(r)=h(r)$. Thus

$$
R_{\alpha}(M)=\left(\sum_{k=1}^{K}\left(m_{k}-m_{k-1}\right)\left(\frac{h\left(m_{k}\right)-h\left(m_{k-1}\right)}{m_{k}-m_{k-1}}\right)^{1 / \alpha}\right)^{\alpha}
$$

for some such sequence m_{k} for which $\frac{h\left(m_{k}\right)-h\left(m_{k-1}\right)}{m_{k}-m_{k-1}}$ decreases.

5. Examples and final comments

Now we illustrate our results with a few examples.
(a) Let f be multiplicative with $f\left(p^{k}\right)=\exp \left\{k^{\beta} p^{-\alpha}\right\}$ where $0<\alpha<1$ and $0<\beta<1-\alpha$ for prime powers p^{k}. Thus $h(k)=k^{\beta}$, which is increasing and $\Delta h(k)$ is stricly decreasing as can be readily verified. In this case $L(x) \sim \frac{x^{1-\alpha}}{(1-\alpha) \log x}$. Thus, by Theorem 2,

$$
\max _{n \leq N} \log f(n) \sim\left(\sum_{n=1}^{\infty}\left(n^{\beta}-(n-1)^{\beta}\right)^{1 / \alpha}\right)^{\alpha} \frac{(\log N)^{1-\alpha}}{(1-\alpha) \log \log N}
$$

(For $\alpha=0$ the RHS is $\frac{\log N}{\log \log N}$.) In some cases the constant can be evaluated in terms of ζ-values. For example, taking $\beta=\frac{1}{2}$ and $\alpha=\frac{1}{3}$,

$$
\sum_{n=1}^{N}(\sqrt{n}-\sqrt{n-1})^{3}=4 N^{3 / 2}+3 \sqrt{N}-6 \sum_{n=1}^{N} \sqrt{n} \rightarrow-6 \zeta\left(-\frac{1}{2}\right)
$$

after suitable manipulations. By the functional equation for $\zeta(s)$ this equals $\frac{3}{2 \pi} \zeta\left(\frac{3}{2}\right)$. That is, the maximal order of the multiplicative function with $f\left(p^{k}\right)=\exp \{\sqrt{k} / \sqrt[3]{p}\}$ is

$$
\exp \left\{\left(\frac{3}{2} \sqrt[3]{\frac{3}{2 \pi} \zeta\left(\frac{3}{2}\right)}+o(1)\right) \frac{(\log N)^{2 / 3}}{\log \log N}\right\}
$$

[^3](b) Theorem 2 can also be used in cases where $\log f\left(p^{k}\right)$ is not the form $h(k) l(p)$, but only asymptotically of this form. In [5], the maximal order of the function
$$
\eta_{\alpha, \gamma}(n)=\frac{1}{d(n)} \sum_{d \mid n} \sigma_{-\alpha}(d)^{\gamma}
$$
was required, where $\sigma_{-\alpha}(n)=\sum_{d \mid n} d^{-\alpha}$ and $d(n)=\sigma_{0}(n)$. It was shown that for $\alpha \in(0,1)$ and any $\gamma>0$
$$
\max _{n \leq N} \log \eta_{\alpha, \gamma}(n) \asymp \frac{(\log N)^{1-\alpha}}{(1-\alpha) \log \log N}
$$
but the true maximal order was left open. With Theorem 2, this can now be established.
Note that $\eta_{\alpha, \gamma}(n)$ is multiplicative with
\[

$$
\begin{aligned}
\eta_{\alpha, \gamma}\left(p^{k}\right) & =\frac{1}{k+1} \sum_{r=0}^{k} \sigma_{-\alpha}\left(p^{r}\right)^{\gamma}=\frac{1}{k+1}\left(1+\sum_{r=1}^{k}\left(1+\frac{1}{p^{\alpha}}+O\left(\frac{1}{p^{2 \alpha}}\right)\right)^{\gamma}\right) \\
& =1+\frac{\gamma k}{(k+1) p^{\alpha}}+O\left(\frac{1}{p^{2 \alpha}}\right)=\exp \left\{\frac{\gamma k}{(k+1) p^{\alpha}}+O\left(\frac{1}{p^{2 \alpha}}\right)\right\}
\end{aligned}
$$
\]

the implied constants being independent of k (and p). Let $s(n)$ denote the multiplicative function with $s\left(p^{k}\right)=\exp \left\{\frac{\gamma k}{(k+1) p^{\alpha}}\right\}$. Then $\eta_{\alpha, \gamma}(n)=s(n) t(n)$ and from the above, $\sigma_{-2 \alpha}(n)^{-\kappa} \leq t(n) \leq$ $\sigma_{-2 \alpha}(n)^{\kappa}$ for some $\kappa>0$. It follows that $\log t(n) \ll(\log n)^{1-2 \alpha+\varepsilon}$ for every $\varepsilon>0$. Thus the maximal order of $\log \eta_{\alpha, \gamma}(n)$ is the same as for $\log s(n)$, which can be found from Theorem 2. In this case $h(k)=\frac{\gamma k}{k+1}$ which is increasing and $\Delta h(k)=\frac{\gamma}{k(k+1)}$ which is decreasing, while $l(p)=p^{-\alpha}$. Theorem 2 now gives

$$
\max _{n \leq N} \log \eta_{\alpha, \gamma}(n) \sim \max _{n \leq N} \log s(n) \sim \gamma\left(\sum_{n=1}^{\infty}\left(\frac{1}{n(n+1)}\right)^{1 / \alpha}\right)^{\alpha} \frac{(\log N)^{1-\alpha}}{(1-\alpha) \log \log N}
$$

For particular values of α the constant may be evaluated. Take, say, $\alpha=\frac{1}{2}$. Then the sum above becomes

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)^{2}=\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}-\frac{2}{n(n+1)}\right)=2 \zeta(2)-3
$$

Hence, with say $\gamma=2$,

$$
\max _{n \leq N} \log \eta_{\frac{1}{2}, 2}(n) \sim 4 \sqrt{\frac{\pi^{2}}{3}-3} \frac{\sqrt{\log N}}{\log \log N}
$$

(c) Let f be multiplicative with $\log f\left(p^{k}\right)=h(k) l(p)$ where $h(k)=[\sqrt{k}]$. This time $h(k)$ is increasing but $\Delta h(k)$ is not, as $\Delta h(k)=1$ for k a square and zero otherwise. Note that to apply Theorem 1, we require $\alpha<\frac{1}{2}$. To calculate R_{α} we use the method in $\S 4$. Thus

$$
R_{\alpha}=\sup _{\substack{a_{n} \not \sum_{0} \\ \sum_{n=1}^{a_{n} a_{n}=1}}} \sum_{n=1}^{\infty} \Delta h(n) a_{n}^{1-\alpha}=\sup _{\substack{a_{n} x_{n} \\ \sum_{n=1}^{a_{n}} a_{n}=1}} \sum_{m=1}^{\infty} a_{m^{2}}^{1-\alpha} .
$$

Putting $b_{1}=a_{1}, b_{2}=a_{2}=a_{3}=a_{4}, b_{3}=a_{5}=\cdots=a_{9}$ etc. for the optimal solution gives

$$
R_{\alpha}=\sup _{\substack{b_{n} \geq 0 \\ \sum_{n=1}^{\infty}(2 n-1) b_{n}=1}} \sum_{n=1}^{\infty} b_{n}^{1-\alpha}=\left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{\frac{1-\alpha}{\alpha}}}\right)^{\alpha}
$$

by taking the optimal choice $b_{n}=c(2 n-1)^{-1 / \alpha}$ for some $c>0$. Thus, if l is decreasing and regularly varying of index $-\alpha$ with $0<\alpha<\frac{1}{2}$ then

$$
\max _{n \leq N} \log f(n) \sim\left(1-2^{1-\frac{1}{\alpha}}\right)^{\alpha} \zeta\left(\frac{1}{\alpha}-1\right)^{\alpha} \sum_{p \leq \log N} l(p)
$$

Final comments

The constant appearing in the asymptotic formula in the theorems has the form of an l^{p}-norm. For $a=\left(a_{n}\right)$ the l^{p} - norm is defined for $1 \leq p<\infty$ and $p=\infty$ respectively by

$$
\|a\|_{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p}, \quad\|a\|_{\infty}=\sup _{n \in \mathbb{N}}\left|a_{n}\right| .
$$

Writing $\alpha=1 / p(p>1)$ we therefore see that, given the conditions of Theorem 2,

$$
\max _{n \leq N} \log f(n) \sim\|\Delta h\|_{p} L(\log N)
$$

while for Theorem 3, with $\alpha=0$ corresponding to $p=\infty$

$$
\max _{n \leq N} \log f(n) \sim\left\|h_{1}\right\|_{\infty} L(\log N)
$$

where $h_{1}(n)=h(n) / n$.
This type of formula is strangely similar to an asymptotic formula found for the following 'quasi'-norm of an arithmetical operator (see [6]). Let

$$
M_{f}(T)=\sup _{\substack{g \in \mathcal{M}^{2} \\\|g\|_{2}=T}} \frac{\|f * g\|_{2}}{\|g\|_{2}}
$$

where \mathcal{M}^{2} is the set of square-summable multiplicative functions and $*$ is Dirichlet convolution. Taking $f \in \mathcal{M}^{2}$ to be completely multiplicative such that $f(p)$ is regularly varying with index $-\alpha$, it was proven in [6] that for $\frac{1}{2}<\alpha<1$

$$
\log M_{f}(T) \sim\left(\frac{1}{2} B\left(\frac{1}{\alpha}, 1-\frac{1}{2 \alpha}\right)\right)^{\alpha} F(\log T \log \log T)
$$

where $F(x)=\sum_{p \leq x} f(p)$. Here $B(x, y)$ is the beta-function. Writing $p=1 / \alpha$, the constant can be rewritten as $\left\|h^{\prime}\right\|_{p}$ where $h(x)=\sqrt{1-e^{-2 x}}$. With some heurstic reasoning, it was further suggested in the case where $f(n)=n^{-\alpha}$ that $M_{f}(T)$ represents the maximal order of $\zeta(\alpha+i t)$ up to height T; i.e.

$$
\max _{|t| \leq T} \log |\zeta(\alpha+i t)| \sim\left\|h^{\prime}\right\|_{p} \frac{(\log T)^{1-\alpha}}{(1-\alpha)(\log \log T)^{\alpha}}
$$

where $\left\|h^{\prime}\right\|_{p}=\left(\int_{0}^{\infty}\left|h^{\prime}\right|^{p}\right)^{1 / p}$ is now the L_{p}-norm. The similarity of form between these 'discrete' and 'continuous' cases is rather striking, and suggests that there might be a more general framework which combines these formulae.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[2] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Cambridge University Press, 1987.
[3] T. H. Gronwall, Asymptotic expressions in the Theory of Numbers, Trans. Amer. Math. Society 14 (1913) 113-122.
[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th edition, Oxford University Press, 1979.
[5] T. W. Hilberdink, An arithmetical mapping and applications to Ω-results for the Riemann zeta function, Acta Arith. 139 (2009) 341-367.
[6] T. W. Hilberdink, 'Quasi'-norm of an arithmetical convolution operator and the order of the Riemann zeta function, (to appear in Functiones et Approximatio Commentarii Mathematici).
[7] J. Knopfmacher, Abstract Analytic Number Theory, Dover Edition, 1990.
[8] P. Shui, The maximum orders of multiplicative functions, Quart. J. Math. Oxford $\mathbf{3 1}$ (1980) 247-252.
[9] D. Suryanarayana and R. Sita Rama Chandra Rao, On the true maximal order of a class of arithmetical functions, Math. Jour. Okoyama Univ. 17 (1975) 95-101.
[10] L. Tóth and E. Wirsing, The maximal order of a class of multiplicative arithmetical functions, Annales Univ. Sci. Budapest 22 (2003) 353-364.

APPENDIX

To put the results into a broader context, we consider a few classes of multiplicative functions of the form (0.1) where h and l satisfy slightly altered assumptions.
(a) Case where h is increasing, l decreasing and such that $\sum_{p} l(p)<\infty$. In this case we find the maximal order of $\log f(n)$ is of $\operatorname{size} h\left(\left[\frac{\log n}{\log 2}\right]\right)$. More precisely, with $\lambda=\sum_{p} l(p)$

$$
l(2) h\left(\left[\frac{\log n}{\log 2}\right]\right) \leq \log f(n) \leq \lambda h\left(\left[\frac{\log n}{\log 2}\right]\right)
$$

where the RHS inequality holds for all n and the LHS for infinitely many n, namely, $n=2^{k}$.
Proof. Let $n=\prod_{p \leq P} p^{a_{p}}$ where a_{p} can be taken to be decreasing after Lemma 3.1. Thus $\log n=$ $\sum_{p \leq P} a_{p} \log p \geq a_{2} \log 2$ and

$$
\log f(n)=\sum_{p \leq P} h\left(a_{p}\right) l(p) \leq h\left(a_{2}\right) \sum_{p} l(p)=\lambda h\left(a_{2}\right) \leq \lambda h\left(\left[\frac{\log n}{\log 2}\right]\right)
$$

On the other hand, with $n=2^{k}, \log f(n)=l(2) h(k)=l(2) h\left(\frac{\log n}{\log 2}\right)$.
(b) Case where h and Δh are increasing, and l decreasing. Now the maximum for f occurs when $n=2^{k}$ and

$$
\max _{n \leq N} f(n)=\exp \left\{l(2) h\left(\left[\frac{\log n}{\log 2}\right]\right)\right\} .
$$

To see this, suppose $p \mid n$ where p is an odd prime, so $n=2^{k} \ldots p^{l}$ for some $k, l \in \mathbb{N}$. After Lemma 3.1 we can take $k \geq l$. Then, with $n^{\prime}=\frac{2}{p} n$,

$$
\frac{f\left(n^{\prime}\right)}{f(n)}=\frac{f\left(2^{k+1}\right) f\left(p^{l-1}\right)}{f\left(2^{k}\right) f\left(p^{l}\right)}=\exp \{l(2) \Delta h(k+1)-l(p) \Delta h(l)\} \geq 1
$$

Thus, with K such that $2^{K} \leq N<2^{K+1}$

$$
\max _{n \leq N} f(n)=f\left(2^{K}\right)=e^{l(2) h(K)}=\exp \left\{l(2) h\left(\left[\frac{\log n}{\log 2}\right]\right)\right\}
$$

[^0]: ${ }^{1}$ To appear in Annales Universitatis Scientarium Budapest.
 ${ }^{2}$ More accurately, the maximal order of $\log f$; here the maximal order of F is loosely defined to be any real positive function G such that $\lim \sup _{n \rightarrow \infty} \frac{F(n)}{G(n)}=1$. In practise, one chooses the simplest possible G.

[^1]: ${ }^{3}$ This incidentally shows that R_{α} is finite.

[^2]: ${ }^{4}$ That is; sets of the form $\{k, k+1, k+2, \ldots, l\}$ where $k, l \in \mathbb{N}$.

[^3]: ${ }^{5}$ Another way to see this is to realise that at each stage more consecutive $a_{n} \mathrm{~s}$ are equated until the corresponding $\lambda_{n}^{\prime} \mathrm{s}$ (or $\lambda_{n}^{\prime \prime} \mathrm{s}$ etc.) are decreasing.

