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1. Introduction
In this paper we study the linear mapping ϕα which sends a sequence {an}n∈N → {bn}n∈N
where

bn =
1
nα

∑

d|n
dαad, (0.1)

and α is a real parameter. This mapping is just one example of a particular class of ‘matrix’
mappings, where the matrix is of ‘multiplicative Toeplitz’ type; that is, with entries aij of
the form f(i/j) where f is a function on the positive rationals (see, for example, [5]). In
our case f(n) = n−α for n ∈ N and zero otherwise.

First we study ϕα on the spaces lp (1 ≤ p ≤ ∞), giving necessary and sufficient
conditions for ϕα to be a bounded mapping from lp to lq. We settle the question of
boundedness for the ‘boundary’ cases p = 1, q = ∞, and p = q. For the ‘interior’ values
1 < p < q < ∞, the question remains open. Further, for the ‘boundary’ cases, we show
that the operator norm,

‖ϕα‖ = sup
‖a‖p=1

‖ϕα(a)‖q

is intimately related to the Riemann zeta function. For example, for p = q, ‖ϕα‖ = ζ(α)
for α > 1. This result is perhaps implicit in the work of Toeplitz ([14], [15]) who studied
related mappings. Various other authors have studied (sometimes indirectly) the mapping
(see for example, Wintner [16]). Also of relevant interest are the recent papers [4] and [7].

In section 2, we study the mapping when it is unbounded on lp by estimating the
behaviour of

Bp,q,α(N) = sup
‖a‖p=1

( N∑

n=1

|bn|q
)1/q

for large N . We obtain formulas for B1,q,α(N) and Bp,∞,α(N), while for the case p = q,
we obtain approximate formulas. For example, for the case p = q = 2 and writing Bα(N)
for B2,2,α(N),

(log N)1−α

2(1− α) log log N
. log Bα(N) . (1 + (2α− 1)−α)(log N)1−α

2(1− α) log log N
. (1

2 < α < 1)

In the next section, we show that Bα(N) provides a lower bound for maxt≤N |ζ(α+it)|.
For the Dirichlet polynomial, AN (t) =

∑
n≤N annit, and α > 1

2

1
T

∫ T

0
|ζ(α + it)|2|AN (t)|2 dt ∼

∑

m,n≤N

aman(m,n)2α

(mn)α
. (0.2)

But the right-hand side above is also close to 1
ζ(2α)

∑
n≤N |bn|2. We show that (0.2) also

holds for N as large as T λ for some λ > 0 if (an) ∈ l2. Results of this type (with a larger
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range of λ) are well-known (see for example [1] and [8]) especially for α = 1
2 , but under

the condition that an = O(n−α). As a result we find that Bα(N) provides a lower bound
for maxt≤T |ζ(α + it)|: for every ε > 0,

max
t≤T

|ζ(α + it)| ≥ Bα(T
2
3
(α− 1

2
)−ε)

for all T sufficiently large.
Using the lower bounds obtained in §2, one has

max
0≤t≤T

|ζ(α + it)| ≥ exp
{

c
(log T )1−α

log log T

}
, (1

2 < α < 1)

for some c > 0, and max1≤t≤T |ζ(1 + it)| ≥ eγ log log T + O(1). The result for α = 1
is close to best known, but for 1

2 < α < 1, the better bound with log log T replaced by
(log log T )α is available (see [9]). However, with little extra effort, we show in Theorem
3.5 that |ζ(α + it)| is this large for a fairly large set of values from [0, T ] by showing that
for all c > 0 sufficiently small, the measure of the set

{
t ∈ [0, T ] : |ζ(α + it)| > exp

{
c
(log T )1−α

log log T

}}

is at least T (1+2α)/3 for 1
2 < α < 1, while for A sufficiently large, the measure of the set
{

t ∈ [1, T ] : |ζ(1 + it)| > eγ log log T −A

}

is at least T exp{−a log T
log log T } for some a > 0. (By quite different methods a similar (but

superior) result was obtained recently in [2].)
Of interest here is that these bounds are found by (almost) purely arithmetical means,

involving neither detailed estimates of ζ(s) in and near the critical strip nor the Dirichlet
or Kronecker theorems. Indeed, they basically involve estimating the maximum order of
the function

1
d(n)

∑

d|n
σ−α(d)2.

The size of Bα(N) for large N is also closely connected to the largest eigenvalue ΛN (α) of
the N×N -matrix with entries (i,j)2α

(ij)α , which was discussed recently in [7]. The approximate
formulas obtained for Bα(N) then imply similar formulas for ΛN (α); for example, we show

ΛN (1) =
6
π2

(eγ log log N + O(1))2.

Acknowledgement. The author is grateful to the referee for pointing out the recent paper
by Soundararajan [11], in which a “resonator” method was developed and used to find
Ω-results for ζ(1

2 +it). The method employed in this paper regarding Ω-results for ζ(α+it)
is similar in nature. Indeed, we subsequently used Soundararajan’s method to obtain the
upper bounds for Bp,p,α(N) for α > 1

p and the approximate formula for the case α = 1
p .

1.1 Some preliminaries
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(a) For a ∈ lp (1 ≤ p ≤ ∞), let ‖a‖p denote the usual lp-norm:

‖a‖p = ‖(an)‖p =
( ∞∑

n=1

|an|p
)1/p

for p < ∞, ‖a‖∞ = sup
n≥1

|an|.

A linear operator f : lp → lq is bounded if there exists A such that ‖f(x)‖q ≤ A‖x‖p

for all x ∈ lp. As such, the operator norm is defined by ‖f‖ = sup‖x‖p=1 ‖f(x)‖q.

(b) Maximal order of some arithmetical functions
(1) σ−α(n) =

∑
d|n d−α. We have the well-known results (see for example [3]):

(i) lim sup
n→∞

σ−α(n) = ζ(α) for α > 1,

(ii) lim sup
n→∞

σ−1(n)
eγ log log n

= 1 where γ is Euler’s constant,

(iii) max
r≤n

σ−α(r) = exp
{

(1 + o(1))(log n)1−α

(1− α) log log n

}
for 0 < α < 1.

(2) For α, β > 0, let ηα,β(n) denote the multiplicative function

ηα,β(n) =
1

d(n)

∑

d|n
σ−α(d)β.

We have

(i) lim sup
n→∞

ηα,β(n) = ζ(α)β for α > 1,

(ii) max
r≤n

η1,β(r) = (eγ log log n + O(1))β,

(iii) exp
{

(β + o(1))(log n)1−α

2(1− α) log log n

}
≤ max

r≤n
ηα,β(r) ≤ exp

{
(β + o(1))(log n)1−α

(1− α) log log n

}
,

for 0 < α < 1.

Proof. Note that for β > 0, ηα,β(n) ≤ σ−α(n)β. Hence, ηα,β(n) < ζ(α)β for α > 1,
η1,β(n) ≤ (eγ log log n + O(1))β (see [10]), and the upper bound in (iii) holds. We
need therefore only consider lower bounds.

As ηα,β is multiplicative, consider the behaviour at powers of a prime. We have for
p prime and k ∈ N

ηα,β(pk) =
1

k + 1

k∑

r=0

σ−α(pr)β =
1

k + 1

k∑

r=0

(1− p−(r+1)α

1− p−α

)β

=
(
1− 1

pα

)−β
· 1
k + 1

k∑

r=0

{
1 + O

( 1
p(r+1)α

)}
=

(
1− 1

pα

)−β
(

1 + O
( 1

pαk

))
.

(i) Suppose now α > 1. Let n be of the form 2a23a3 . . . P aP where ap = [ log P
log p ]. Note

that log n = ψ(P ), where ψ is the usual Chebyshev function. By the Prime Number
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Theorem, log n ∼ P as n →∞ through such values. Putting k = [ log P
log p ] in the above

gives

ηα,β(n) =
∏

p≤P

ηα,β(pap) =
∏

p≤P

(
1− 1

pα

)−β
· exp

{
O

( 1
log P

∑

p≤P

log p

pα

)}
.

As n →∞, the RHS tends to ζ(α)β, proving the result.

(ii) Now we consider the case α = 1. If we take n as in (i), we only obtain2

η1,β(n) ³ (log log n)β. Instead we take n =
∏

p≤P pbp with bp = [
√

P/p]. Then

η1,β(n) =
∏

p≤P

η1,β(pbp) =
∏

p≤P

(
1− 1

p

)−β
· exp

{
O

( 1√
P

∑

p≤P

1√
p

)}

= (eγ log P )β

(
1 + O

( 1
log P

))
= (eγ log P + O(1))β,

by Merten’s Theorem and the Prime Number Theorem. But log n =
∑

p≤P [
√

P/p] log p ³
P , so that log P = log log n + O(1). Now, if sk is the kth number of this form (i.e.
sk =

∏
p≤pk

pbp where pk is the kth prime), then log sk ³ pk ³ log sk+1. Hence for
sk ≤ n < sk+1, log n ³ log sk and log log n = log log sk + O(1). It follows that

max
r≤n

η1,β(r) ≥ η1,β(sk) = (eγ log log sk + O(1))β = (eγ log log n + O(1))β.

For (iii), we have for n squarefree

ηα,β(n) =
∏

p|n
ηα,β(p) =

∏

p|n

1
2

(
1 +

(
1 +

1
pα

)β)
=

∏

p|n

(
1 +

β

2pα
+ O

( 1
p2α

))
.

In particular, for n = 2.3 . . . P (so that log n ∼ P ), we have

ηα,β(n) =
∏

p≤P

(
1 +

β

2pα
+ O

( 1
p2α

))
= exp

{
β

2
(1 + o(1))

∑

p≤P

1
pα

}

= exp
{

(β + o(1))P 1−α

2(1− α) log P

}
= exp

{
(β + o(1))(log n)1−α

2(1− α) log log n

}
.

Now, if tk is the kth number of the form 2.3 . . . P (i.e. tk = p1 . . . pk), then log tk ∼
k log k ∼ log tk+1. Hence for tk ≤ n < tk+1, log n ∼ k log k. It follows that

max
r≤n

ηα,β(r) ≥ ηα,β(tk) ≥ exp
{

(β + o(1))(log tk)1−α

2(1− α) log log tk

}
= exp

{
(β + o(1))(log n)1−α

2(1− α) log log n

}
.

¤

2Here F (n) ³ G(n) means there exist a, A > 0 such that a < F (n)/G(n) < A for all n under
consideration.
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1.2 General considerations
For α ∈ R, let ϕα be the operator defined by (0.1). We wish to investigate when ϕα is
a bounded mapping from lp to lq (for given 1 ≤ p, q,≤ ∞). Note that ϕα is a linear
bijection on the space of all sequences. Linearity is trivial, and if ϕα(a) = 0 then, by
Möbius inversion, a = 0, showing that ϕα is injective. Finally, given b = (bn), we can
define a = (an) by

an =
1
nα

∑

d|n
µ
(n

d

)
dαbd,

where µ(·) is the Möbius function. Then ϕα(a) = b, showing surjectivity, and hence, bi-
jectivity.

First some general necessary conditions:

ϕα(lp) ⊂ lq =⇒ q ≥ p; (1.1)

ϕα(a) ∈ lq =⇒ α >
1
q
; (1.2)

ϕα(a) ∈ l∞ =⇒ α ≥ 0. (1.2′)

These follow from the elementary inequalities bn ≥ an and bn ≥ a1n
−α, which hold if

an ≥ 0 for all n. (For (1.2), we have bq
n ≥ aq

1n
−qα, so that qα > 1 is necessary for the

convergence of
∑ |bn|q.)

For 1 ≤ p ≤ q ≤ ∞, let r ∈ [1,∞] be defined by 1
r = 1 − 1

p + 1
q , where we use the

convention that 1
∞ = 0. Note that r = 1 if and only if p = q, and r = ∞ if and only if

p = 1 and q = ∞.

Theorem 1.1
Let 1 ≤ p ≤ q ≤ ∞ and let r be as defined above. If r < ∞, then ϕα : lp → lq is bounded
if α > 1

r , with ‖ϕα‖ ≤ r
√

ζ(αr). If r = ∞ (i.e. (p, q) = (1,∞)), then ϕα : l1 → l∞ is
bounded if and only if α ≥ 0, with ‖ϕα‖ = 1.

Furthermore, for the cases p = 1 (any q), q = ∞ (any p), and p = q, we have
‖ϕα‖ = r

√
ζ(αr).

Proof. First we consider the case where 1 < p ≤ q < ∞, so that r < ∞. Let α > 1
r .

Let κ = (1− 1
p)αr and λ = 1

qαr, so that κ > 1− 1
p , λ > 1

q and κ + λ = α.
By Hölder’s inequality,

∑

d|n
dα|ad| =

∑

d|n
dκ · dλ|ad|

p
q · |ad|1−

p
q

≤
(∑

d|n
d

κ
1−1/p

)1− 1
p
(∑

d|n
dλq|ad|p

) 1
q
(∑

d|n
|ad|p

) 1
p
− 1

q

= nκ

(∑

d|n
d−αr

)1− 1
p
(∑

d|n
dαr|ad|p

) 1
q
(∑

d|n
|ad|p

) 1
p
− 1

q

(using κ
1−1/p = λq = αr)

≤ nκζ(αr)1−
1
p ‖a‖1− p

q
p

(∑

d|n
dαr|ad|p

) 1
q

.
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Hence

|bn|q ≤ 1
nαq

(∑

d|n
dα|ad|

)q

≤ ζ(αr)q(1−1/p)‖a‖q−p
p

nλq

∑

d|n
dαr|ad|p,

and so
∑

n≤x

|bn|q ≤ ζ(αr)q(1−1/p)‖a‖q−p
p

∑

n≤x

1
nαr

∑

d|n
dαr|ad|p

= ζ(αr)q(1−1/p)‖a‖q−p
p

∑

n≤x

|an|p
∑

d≤x/n

1
dαr

≤ ζ(αr)q(1−1/p)+1‖a‖q
p.

Hence b ∈ lq and ‖b‖q ≤ ζ(αr)1−1/p+1/q‖a‖p = r
√

ζ(αr)‖a‖p. Thus ϕα : lp → lq is bounded
and ‖ϕα‖ ≤ r

√
ζ(αr).

For 1 = p ≤ q < ∞ (so that r = q), we take κ = 0 and λ = α in the above. Then

∑

d|n
dα|ad| =

∑

d|n
dα|ad|

1
q ·|ad|1−

1
q ≤

(∑

d|n
dαq|ad|

) 1
q
(∑

d|n
|ad|

)1− 1
q

≤ ‖a‖1− 1
q

1

(∑

d|n
dαq|ad|

) 1
q

,

and we proceed as before.

For 1 < p < q = ∞ (so that r = p
p−1), we take κ = α and λ = 0 in the above. Then

∑

d|n
dα|ad| ≤

(∑

d|n
dαr

)1− 1
p
(∑

d|n
|ad|p

) 1
p

≤ nαζ(αr)1−
1
p ‖a‖p,

which implies |bn| ≤ ζ(αr)1−
1
p ‖a‖p, so bn is bounded and this case follows.

For p = q = ∞ (so that r = 1), we have |bn| ≤ ‖a‖∞
∑

d|n d−α ≤ ζ(α)‖a‖∞.
Finally, for p = 1, q = ∞ (so that r = ∞), we see that from condition (1.2′), α ≥ 0 is

necessary, in which case we have

|bn| ≤
∑

d|n

|an/d|
dα

≤
∑

d|n
|an/d| ≤ ‖a‖1,

showing that ‖ϕα‖ ≤ 1.

Now we show that the bound r
√

ζ(αr) is sharp if either p = 1, q = ∞, or p = q.

(i) For p = 1 (which implies r = q), let (an) = (1, 0, 0, . . .) (so that ‖a‖1 = 1). Then
bn = n−α, so that for q < ∞,

∑∞
n=1 bq

n = ζ(αq), and the bound is attained. If q = ∞, we
have maxn≥1 |bn| = 1. Hence ‖ϕα‖ = 1.

(ii) For the case q = ∞, consider 1 < p < ∞ and p = ∞ separately, the p = 1 case
having been dealt with. Here, r = p

p−1 . In the former case, define a = (an) as follows: for
fixed N ∈ N, let

an = n
α

p−1 σαr(N)−1/p if n|N , and zero otherwise.
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Then ‖a‖p = 1 since

∞∑

n=1

|an|p =
∑

n|N
|an|p =

1
σαr(N)

∑

n|N
nαr = 1.

But for this choice of a, we have

bN =
1

Nα

∑

d|N
dαad =

1
Nασαr(N)1/p

∑

d|N
dαr = σ−αr(N)1−1/p,

and σ−αr(N) can be made arbitrarily close to ζ(αr) by choosing N appropriately. Thus
‖ϕα‖ = ζ(αr)1−

1
p = ζ(αr)

1
r .

For the p = q = ∞ case, take an = 1 for all n, then bn =
∑

d|n d−α = σ−α(n), which
can be made arbitrarily close to ζ(α), so that ‖ϕα‖ = ζ(α).

(iii) For the case p = q ∈ (1,∞), define a = (an) as follows: for fixed N ∈ N, let

an =
1

d(N)1/p
if n|N , and zero otherwise.

Then ‖a‖p = 1 and, for n|N (so that d|N whenever d|n), bn = σ−α(n)

d(N)1/p . Hence

∞∑

n=1

|bn|p ≥
∑

n|N
|bn|p =

1
d(N)

∑

n|N
σ−α(n)p = ηα,p(N).

As shown in the preliminaries, ηα,p(N) can be made arbitrarily close to ζ(α)p.
¤

Remark. For each of the cases in which ‖ϕα‖ = r
√

ζ(αr), the condition α > 1
r is also

necessary for the boundedness of ϕα. To see this, note that ζ(αr) becomes arbitrarily
large as α tends to 1

r . Since bn increases as α decreases whenever am ≥ 0 (∀m) it follows
that for α ≤ 1

r ,
∑∞

n=1 |bn|q (or maxn≥1 |bn|) can be made arbitrarily large (with ‖a‖p = 1),
and so ϕα is unbounded for such α.

Let us call the cases where p = 1, q = ∞, or p = q, the boundary cases, since in the
p− q plane, they form the sides of a triangle. For these cases we therefore know precisely
when ϕα is a bounded mapping from lp to lq, as well as knowing the operator norm. What
happens for the remaining cases (1 < p < q < ∞) inside the triangle is not very clear.
Theorem 1.1 gives only a partial answer.

One could perhaps conjecture that the conclusions of Theorem 1.1 are true for these
cases as well.

2. Unbounded operators
For the boundary cases (at least) we know that for α ≤ 1

r , ϕα fails to be a bounded mapping

from lp to lq. In these cases it is of interest to investigate how large q

√∑
n≤N |bn|q (and

maxn≤N |bn| if q = ∞) can become. With this in mind, define the following functions:
with bn defined from a = (an) by (0.1), let

Bp,q,α(N) = sup
‖a‖p=1

( N∑

n=1

|bn|q
)1/q

(q < ∞), Bp,∞,α(N) = sup
‖a‖p=1

max
n≤N

|bn| (q = ∞).

7



We shall consider the three ‘boundary’ cases; p = 1, q = ∞, and p = q in turn.

2.1 The case p = 1
This is the simplest case and is summed up in the following:

Theorem 2.1
For 1 ≤ q < ∞

B1,q,α(N) =
( N∑

n=1

1
nαq

)1/q

, while B1,∞,α(N) =
{

1 if α ≥ 0
N−α if α < 0

.

Proof. Let a ∈ l1 with ‖a‖1 = 1, and suppose q < ∞. From the proof of Theorem 1.1, we
have

|bn|q ≤ 1
nαq

∑

d|n
dαq|ad|.

Hence ∑

n≤N

|bn|q ≤
∑

n≤N

1
nαq

∑

d|n
dαq|ad| =

∑

n≤N

|an|
∑

d≤N/n

1
dαq

≤
∑

n≤N

1
nαq

.

On the other hand, putting a1 = 1 and an = 0 otherwise (so that ‖a‖1 = 1), then bn = 1
nα ,

which gives ∑

n≤N

|bn|q =
∑

n≤N

1
nαq

.

It follows that the maximum is achieved with this choice of a and the result follows.
For q = ∞ (with ‖a‖1 = 1), |bn| ≤

∑
d|n d−α|ad| ≤ min{1, n−α}, and the choice

a = (1, 0, 0, . . .) shows this maximum is achieved. Thus maxn≤N |bn| = min{1, N−α}, as
required.

¤

2.2 The case q = ∞
Next we consider the case when q = ∞. We shall take p > 1, the case p = 1 having been
dealt with.

Theorem 2.2
Let 1 < p ≤ ∞. Then, with r = p

p−1(= 1 if p = ∞), we have

Bp,∞,α(N) = max
n≤N

σ−αr(n)
1
r .

Proof. Suppose first that p < ∞. Let a ∈ lp with ‖a‖p = 1. From the proof of Theorem
1.1, we have

|bn| ≤ 1
nα

(∑

d|n
dαr

)1− 1
p
(∑

d|n
|ad|p

) 1
p

≤ σ−αr(n)1−
1
p .

Thus Bp,∞,α(N) ≤ maxn≤N σ−αr(n)1−
1
p .

For a lower bound, let a = (ak) be the following sequence: fix n ∈ N, and let

an/d =
d
− α

p−1

p
√

σ−αr(n)
if d|n, and zero otherwise.
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Then ‖a‖p = 1 and

bn =
∑

d|n

an/d

dα
=

1
p
√

σ−αr(n)

∑

d|n

1
dαr

= σ−αr(n)1−
1
p .

Thus, given N ≥ 1 and n ≤ N , we can find a such that bn = σ−αr(n)1−
1
p . It follows that

Bp,∞,α(N) = sup‖a‖p=1 maxn≤N |bn| ≥ maxn≤N σ−αr(n)1−
1
p , and hence we have equality.

For p = ∞, let a ∈ l∞ with ‖a‖∞ = 1. Then |bn| ≤ σ−α(n), with equality if an ≡ 1.
Hence

B∞,∞,α(N) = max
n≤N

σ−α(n).

¤

Remark. In Theorem 2.2 we see that although Bp,∞,α(N) tends to infinity as N →∞ for
α ≤ 1 − 1

p , it does not give an example of an a ∈ lp for which maxn≤N |bn| → ∞. In the
appendix, we give such an example.

2.3 The case p = q
This case is much more tricky and interesting. We cannot obtain an exact formula as for
the previous two cases, but only an approximate formula.

Theorem 2.3
Let 1 < p < ∞. Then

Bp,p,1(N) = eγ log log N + O(1) (α = 1)

log Bp,p,α(N) ³ (log N)1−α

log log N
(1

p < α < 1)

log Bp,p, 1
p
(N) ∼ (p− 1)−

1
p

( log N

log log N

)1− 1
p
. (α = 1

p)

Proof. We start with upper bounds. For these we use the methods of [11].
First we note that for any positive arithmetical function g(n),

Bp,p,α(N) ≤
(∑

n≤N

g(n)
nα

) 1
p

·
(

max
n≤N

∑

d|n

1

g(d)
1

p−1 dα

)1− 1
p

. (2.1)

This is because

|bn| =
∣∣∣∣
∑

d|n

1

g(d)
1
p d

α(1− 1
p
)
· g(d)

1
p an/d

d
α
p

∣∣∣∣ ≤
(∑

d|n

1

g(d)
1

p−1 dα

)1− 1
p
(∑

d|n

g(d)|an/d|p
dα

) 1
p

,

using Hölder’s inequality. Writing G(n) =
∑

d|n g(d)−
1

p−1 d−α, we have

∑

n≤N

|bn|p ≤
∑

n≤N

G(n)p−1
∑

d|n

g(d)|an/d|p
dα

≤ max
n≤N

G(n)p−1
∑

d≤N

g(d)
dα

∑

n≤N/d

|an|p.

Taking ‖a‖p = 1, we see that (2.1) follows.
We choose g appropriately, so that the RHS of (2.1) is small.

9



For 1
p < α ≤ 1, choose g(n) to be the following multiplicative function: for a prime

power3 pk
1 let

g(pk
1) =

{
1 if pk

1 ≤ M

(M
pk
1
)β if pk

1 > M .

Here M,β > 0 are constants to be determined later. They may depend on N and α. In
fact, we shall require 1− α < β < (p− 1)α. Note that g(pk

1) ≤ g(p1) for every k ∈ N and
p1 prime.

We estimate the expressions in (2.1) separately. First

∑

n≤N

g(n)
nα

≤
∏
p1

(
1 +

∞∑

k=1

g(pk
1)

pkα
1

)
≤

∏
p1

(
1 +

g(p1)
pα
1 − 1

)
≤ exp

{∑
p1

g(p1)
pα
1 − 1

}
. (2.2)

Thus for α < 1 (for α = 1 we argue slightly differently)

log
∑

n≤N

g(n)
nα

≤
∑

p1≤M

1
pα
1 − 1

+ Mβ
∑

p1>M

1

pβ
1 (pα

1 − 1)
.

(Here we require β > 1−α.) By the prime number theorem, the RHS above is asymptotic
to

M1−α

(1− α) log M
+

M1−α

(α + β − 1) log M
=

βM1−α

(1− α)(α + β − 1) log M
.

Hence

log
∑

n≤N

g(n)
nα

. βM1−α

(1− α)(α + β − 1) log M
. (2.3)

Now consider G(n), which is multiplicative as g is. At the prime powers we have

G(pk
1) =

k∑

r=0

1

pαr
1 g(pr

1)
1

p−1

=
∑
r ≥ 0

pr
1 ≤ M

1
pαr
1

+
1

Mβ/(p−1)

∑
r ≤ k

pr
1 > M

1

p
(α− β

p−1
)r

1

≤ 1 +
1

pα
1 − 1

+
1

Mα(1− p
β

p−1
−α

1 )
.

(Here we require β < (p− 1)α.) Note that this is independent of k. It follows that

G(n) ≤ exp
{∑

p1|n

1
pα
1 − 1

+
1

Mα

∑

p1|n

1

1− p
β

p−1
−α

1

}
.

The RHS is maximised when n is as large as possible (i.e. N) and N is of the form
N = 2.3 . . . P . For such a choice, log N = θ(P ) ∼ P , so that (using the prime number
theorem)

log max
n≤N

G(n) .
∑

p1≤P

1
pα
1 − 1

+
1

Mα

∑

p1≤P

1 ∼ (log N)1−α

(1− α) log log N
+

log N

Mα log log N
. (2.4)

Now choose M = λ log N for λ > 0. (2.1), (2.3) and (2.4) then imply

log Bp,p,α(N) .
(

βλ1−α

p(1− α)(α + β − 1)
+

1− 1/p

(1− α)
+

1− 1/p

λα

)
(log N)1−α

log log N

3Since p is already used, we denote primes by p1 in this proof.
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for every β ∈ (1 − α, (p − 1)α) and λ > 0. Since β
α+β−1 decreases with β, the optimal

choice is to take β arbitrarily close to (p− 1)α. Hence we require infλ>0 h(λ), where

h(λ) =
αλ1−α

(1− α)(pα− 1)
+

1
(1− α)

+
1
λα

.

Since h′(λ) = α
λα+1 ( λ

pα−1 − 1), we see that the optimal choice is λ = pα− 1. Substituting
this value of λ gives

log Bp,p,α(N) .
(
1− 1

p

)(1 + (pα− 1)−α)
(1− α)

(log N)1−α

log log N
.

For α = 1, we use the same function g(n) as before (though with possibly different
values of M and β). From (2.2)

∑

n≤N

g(n)
n

≤
∏

p1≤M

(
1

1− 1
p1

)
·

∏

p1>M

(
1 +

Mβ

pβ
1 (p1 − 1)

)
.

By Merten’s Theorem, the first product is eγ log M + O(1) while Mβ
∑

p1>M p−1−β
1 =

O(1/ log M), so this implies

∑

n≤N

g(n)
n

≤
(
eγ log M + O(1)

)
exp{O(1/ log M)} = eγ log M + O(1). (2.5)

For the G(n) term we have, as for the α < 1 case,

G(pk
1) ≤

1
1− 1

p1

+
1

M(1− p
β

p−1
−1

1 )
.

Thus, with N = 2.3. . . . P ,

G(N) ≤
∏

p1≤P

(
1

1− 1
p1

)(
1 +

1− 1/p1

M(1− pβ−1
1 )

)
=

(
eγ log P + O(1)

)(
1 + O

( P

M log P

))
.

Taking M = log N and noting that P ∼ log N , the RHS is eγ log log N +O(1). Combining
with (2.5) shows that

Bp,p,1(N) ≤ eγ log log N + O(1).

The case α = 1
p . The function g as chosen for α ∈ (1

p , 1] is not suitable for an upper
bound as we would require 1− 1

p < β < 1− 1
p ! Instead we take g to be the multiplicative

function as follows: for a prime power pk
1 let

g(pk
1) = min

{
1,

( M

pk
1(log p1)p

)1− 1
p
}

.

Here M > 0 is independent of p1 and k and will be determined later. Thus g(pk
1) = 1 if

and only if pk
1(log p1)p ≤ M . Note that g(pk

1) ≤ g(p1) ≤ 1 for all k ≥ 1 and primes p1.
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Thus (2.2) holds with α = 1
p and (using the prime number theorem)

log
∑

n≤N

g(n)
n1/p

.
∑

p1. M
(log M)p

1
p
√

p1 − 1
+ M

1− 1
p

∑

p1& M
(log M)p

1
p1(log p1)p−1

∼ M
1− 1

p

(p− 1)(log M)p−1
. (2.6)

(The first sum is of order M
1− 1

p /(log M)p and the main contribution comes from the
second term.)

Regarding G(n), this time we have

G(n) =
∏

pk
1‖n

G(pk
1) ≤

∏

pk
1‖n

(
1 +

k∑

r=1

1

p
r/p
1

+ M
− 1

p

k∑

r=1

log p1

)
,

so that

log G(n) ≤
∑

p1|n

1
p
√

p1 − 1
+ M

− 1
p

∑

pk
1‖n

k log p1 ≤ M
− 1

p log n +
∑

p1|n

1
p
√

p1 − 1
.

The right hand side above is maximal when n = N = 2.3 . . . P , hence

log max
n≤N

G(n) . M
− 1

p log N +
∑

p1≤P

1
p
√

p1
∼ M

− 1
p log N +

(log N)1−
1
p

(1− 1/p) log log N
.

Combining with (2.6), then (2.1) gives

log Bp,p, 1
p

. M
1− 1

p

p(p− 1)(log M)p−1
+ (1− 1/p)M− 1

p log N +
(log N)1−

1
p

log log N
.

The optimal choice for M is easily seen to be M = (p − 1) log N(log log N)p−1, and this
gives the upper bound in (iii).

Now we proceed to give lower bounds.
For a fixed n ∈ N, let

ad =
1

p
√

d(n)
if d|n, and zero otherwise.

Then ‖a‖p = 1 while

bd =
1

p
√

d(n)

∑

c|d

1
cα

=
σ−α(d)
p
√

d(n)
.

Hence for N ≥ n,

∑

k≤N

|bk|p ≥
∑

d|n
bp
d =

1
d(n)

∑

d|n
σ−α(d)p = ηα,p(n).

Thus Bp,p,α(N) ≥ maxn≤N
p
√

ηα,p(n).
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Hence for 1
p < α ≤ 1, the lower bounds follow from the maximal order of ηα,p(n).

For the case α = 1
p , the above choice doesn’t give the correct order and we lose a power

of log log N . Instead we follow an idea of Soundararajan [11]. Let f be the multiplicative
function supported on the squarefree numbers whose values at primes p1 is

f(p1) =
{

(M
p1

)1/p 1
log p1

for M ≤ p1 ≤ R

0 otherwise
.

Here M = (p− 1) log N(log log N)p−1 as before and log R = (log M)2.
Now take an = f(n)F (N)−1/p where F (N) =

∑
n≤N f(n)p so that

∑
n≤N ap

n = 1.
Then by Hölder’s inequality

( N∑

n=1

bp
n

)1/p

≥
N∑

n=1

ap−1
n bn =

1
F (N)

N∑

n=1

f(n)p−1

n1/p

∑

d|n
d1/pf(d)

=
1

F (N)

∑

n≤N

f(n)p−1

n1/p

∑
d ≤ N/n
(n, d) = 1

f(d)p. (2.7)

Now using ‘Rankin’s trick’4 we have, for any β > 0

∑

n≤N

f(n)p−1

n1/p

∑
d ≤ N/n
(n, d) = 1

f(d)p =
∑

n≤N

f(n)p−1

n1/p

( ∑
d ≥ 1

(n, d) = 1

f(d)p −
∑

d ≥ N/n
(n, d) = 1

f(d)p

)

=
∑

n≤N

f(n)p−1

n1/p

(∏

p1-n

(
1 + f(p1)p

)
+ O

(( n

N

)β ∏

p1-n

(
1 + pβ

1f(p1)p
)))

.

(2.8)

The O-term in (2.8) is at most a constant times

1
Nβ

∑

n≤N

f(n)p−1nβ−1/p
∏

p1-n

(
1 + pβ

1f(p1)p
)
≤ 1

Nβ

∏
p1

(
1 + pβ

1f(p1)p + p
β−1/p
1 f(p1)p−1

)
,

while the main term in (2.8) is (using Rankin’s trick again)

∏
p1

(
1 + f(p1)p +

f(p1)p−1

p
1/p
1

)
+ O

(
1

Nβ

∏
p1

(
1 + f(p1)p + p

β−1/p
1 f(p1)p−1

))
.

Hence (2.7) implies

( N∑

n=1

bp
n

)1/p

≥ 1
F (N)

(∏
p1

(
1+f(p1)p+

f(p1)p−1

p
1/p
1

)
+O

(
1

Nβ

∏
p1

(
1+pβ

1f(p1)p+p
β−1/p
1 f(p1)p−1

)))
.

The ratio of the O-term to the main term on the right is less than

exp
{
−β log N +

∑

M≤p1≤R

(pβ
1 − 1)

(
f(p1)p +

f(p1)p−1

p
1/p
1

)}

4If cn > 0, then for any β > 0,
∑

n>x cn ≤ x−β ∑∞
n=1 nβcn.
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which equals

exp
{
−β log N +

∑

M≤p1≤R

(pβ
1 − 1)

(
M

p1(log p1)p
+

M1−1/p

p1(log p1)p−1

)}
.

Take β = (log M)−3. The term involving M1−1/p is at most (log N)1−1/p+ε for every ε > 0,
while the remaining terms in the exponent are (on the prime number theorem in the form
π(x) = li(x) + O(x(log x)−A) for all A)

− β log N + M

∫ R

M

tβ − 1
t(log t)p+1

dt + O

(
log N

(log log N)A

)

= −β log N + βM

∫ R

M

dt

t(log t)p
+ O

(
β2M

∫ R

M

dt

t(log t)p−1

)

∼ −β(p− 1)2
log N log log log N

log log N
,

after some calculations.
Finally, since F (N) ≤ ∏

p1
(1 + f(p1)p), this implies

Bp,p,1/p(N) ≥ 1
2

∏

M≤p1≤R

(
1 +

f(p1)p−1

p
1/p
1 (1 + f(p1)p)

)
,

for all N sufficiently large. Hence

log Bp,p,1/p(N) & M1−1/p
∑

M≤p1≤R

1
p1(log p1)p−1

∼ 1
(p− 1)1/p

( log N

log log N

)1−1/p
.

as required.
¤

Remark. The result for 1
p < α < 1 is

(log N)1−α

2(1− α) log log N
. log Bp,p,α(N) .

(
1− 1

p

)(1 + (pα− 1)−α)
(1− α)

(log N)1−α

log log N
.

It would be nice to obtain an asymptotic formula for log Bp,p,α(N). Indeed, it is possible
to improve the lower bound at the cost of more work by using the method for the case
α = 1

p , but we have not been able to obtain the same upper and lower limits.

3. Connections with ζ(s) and the eigenvalues of certain arithmetical matrices.
Now we restrict ourselves to the case p = q = 2, this being perhaps the most interesting
case. We shall show that the bounds obtained for5 Bα(N) in Theorem 2.3 for 1

2 < α ≤ 1
can be used to obtain information regarding the maximum order of ζ(s) on the line <s = α.

Proposition 3.1
We have, for any α,

∑

n≤N

|bn|2 =
∑

m,n≤N

aman(m,n)2α

mαnα

∑

k≤ N
[m,n]

1
k2α

.

5In this section we write Bα(N) for B2,2,α(N)
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Proof. We have

|bn|2 = bnbn =
1

n2α

∑

c|n,d|n
cαdαacad =

1
n2α

∑

[c,d]|n
cαdαacad,

since c|n, d|n if and only if [c, d]|n. Hence

∑

n≤N

|bn|2 =
∑

c,d≤N

cαdαacad

∑

n≤N,[c,d]|n

1
n2α

=
∑

c,d≤N

cαdαacad

[c, d]2α

∑

k≤ N
[c,d]

1
k2α

,

by writing n = [c, d]k. Since (c, d)[c, d] = cd, the result follows.
¤

Remark. We can use this to show that Bα(N) ³ N
1
2
−α for α < 1

2 . For such α and
‖a‖2 = 1,

∑

n≤N

|bn|2 ≤ AN1−2α
∑

m,n≤N

|aman|(m,n)2α

(mn)α[m,n]1−2α
= AN1−2α

∑

m,n≤N

|aman|(m,n)
(mn)1−α

= AN1−2α
∑

d≤N

d
∑

m, n ≤ N
(m, n) = d

|aman|
(mn)1−α

≤ AN1−2α
∑

d≤N

1
d1−2α

( ∑

m≤N/d

|amd|
m1−α

)2

≤ A′N1−2α
∑

d≤N

1
d1−2α

∑

m≤N/d

|amd|2(log m + 1)2

m1−2α
(by Cauchy-Schwarz)

= A′N1−2α
∑

n≤N

|an|2
n1−2α

∑

d|n
(log d + 1)2 ≤ A′N

1
2
−α

∑

n≤N

|an|2d(n)(log n + 1)2

n1−2α
.

But since d(n)(log n + 1)2 = O(nε) and α < 1
2 , the sum on the right is O(1).

On the other hand, if we take a1 = 1 and an = 0 otherwise, then bn = n−α and

∑

n≤N

|bn|2 =
∑

n≤N

1
n2α

∼ N1−2α

1− 2α
.

Letting N →∞ in Proposition 3.1 gives:

Corollary 3.2
Let α > 1

2 and let a ∈ l2. Then ϕα(a) ∈ l2 if and only if the series

∑

m,n≥1

aman(m,n)2α

mαnα

converges. In which case, we have ‖ϕα(a)‖2
2 = ζ(2α)

∑
m,n≥1

aman(m,n)2α

mαnα .

Also, it follows from Proposition 3.1 that if an ≥ 0 for all n and α > 1
2 , then

∑

n≤N

|bn|2 ≤ ζ(2α)
∑

m,n≤N

aman(m, n)2α

(mn)α
≤ (1 + ε)

∑

n≤N3

|bn|2 (3.2)
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for every ε > 0, whenever N ≥ N0, some N0 = N0(ε). The left-hand inequality is
immediate while the right-hand sum (without the (1 + ε)) is greater than

∑

m,n≤N

aman(m,n)2α

mαnα

∑

k≤ N3

[m,n]

1
k2α

> (ζ(2α)− ε)
∑

m,n≤N

aman(m,n)2α

mαnα

since N3

[m,n] ≥ N for m,n ≤ N .

Theorem 3.3
Let 1

2 < α ≤ 1 and let a ∈ l2 with ‖a‖2 = 1. Let AN (t) =
∑N

n=1 annit. Let N ≤ T λ where
0 < λ < 2

3(α− 1
2). Then for some η > 0,

1
T

∫ T

1
|ζ(α + it)|2|AN (t)|2 dt = ζ(2α)

∑

m,n≤N

aman(m,n)2α

(mn)α
+ O(T−η). (3.3)

Proof. We shall assume 1
2 < α < 1, adjusting the proof for the case α = 1 afterwards. For

α 6= 1, we can integrate from 0 to T since the error involved is at most O(N/T ) = O(T−η).
Starting from the approximation ζ(α + it) =

∑
n≤t n−α−it + O(t−α), we have

|ζ(α + it)|2 =
∣∣∣∣
∑

n≤t

1
nα+it

∣∣∣∣
2

+ O(t1−2α).

Let k, l ∈ N such that (k, l) = 1. Let M = max{k, l} < T . The above gives
∫ T

0
|ζ(α + it)|2

(k

l

)it
dt =

∫ T

0

∣∣∣∣
∑

n≤t

1
nα+it

∣∣∣∣
2(k

l

)it
dt + O(T 2−2α).

The integral on the right is
∫ T

0

∑

m,n≤t

1
(mn)α

(km

ln

)it
dt =

∑

m,n≤T

1
(mn)α

∫ T

max{m,n}

(km

ln

)it
dt.

The terms with km = ln (which implies m = rl, n = rk with r integral) contribute

1
(kl)α

∑

r≤T/M

T − rM

r2α
=

ζ(2α)
(kl)α

T + O
(M2α−1T 2−2α

(kl)α

)
.

The remaining terms contribute at most

2
∑

m, n ≤ T
km 6= ln

1
(mn)α| log km

ln |
≤ 2M2α

∑
m, n ≤ T
km 6= ln

1
(kmln)α| log km

ln |

≤ 2M2α
∑

m1 ≤ kT, n1 ≤ lT
m1 6= n1

1
(m1n1)α| log m1

n1
| ≤ 2M2α

∑
m1, n1 ≤ MT

m1 6= n1

1
(m1n1)α| log m1

n1
|

= O(M2α(MT )2−2α log(MT )) = O(M2T 2−2α log T ),

using Lemma 7.2 from [13]. Hence
∫ T

0
|ζ(α + it)|2

(k

l

)it
dt =

ζ(2α)
(kl)α

T + O(M2T 2−2α log T ).
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It follows that for any positive integers m,n < T ,
∫ T

0
|ζ(α + it)|2

(m

n

)it
dt =

ζ(2α)(m,n)2α

(mn)α
T + O(max{m,n}2T 2−2α log T ).

Thus, with AN (t) =
∑N

n=1 annit,

∫ T

0
|ζ(α + it)|2|AN (t)|2 dt =

∑

m,n≤N

aman

∫ T

0
|ζ(α + it)|2

(m

n

)it
dt

= ζ(2α)T
∑

m,n≤N

aman(m,n)2α

(mn)α
+ O

(
T 2−2α log T

∑

m,n≤N

max{m,n}2|aman|
)

.

The sum in the O-term is at most N2(
∑

n≤N |an|)2 ≤ N3, using Cauchy-Schwarz. Hence

1
T

∫ T

0
|ζ(α + it)|2|AN (t)|2 dt = ζ(2α)

∑

m,n≤N

aman(m,n)2α

(mn)α
+ O

(N3 log T

T 2α−1

)
.

Since N3 ≤ T 3λ and 3λ < 2α− 1, the error term is O(T−η) for some η > 0.
If α = 1 we integrate from 1 to T instead and the O-term above will contain an extra

log T factor, but this is still O(T−η).
¤

We note that with more care, the N3 could be turned into an N2, so that we can take
λ < α− 1

2 in the theorem. This is however not too important for us.

Corollary 3.4
Let 1

2 < α ≤ 1. Then for every ε > 0 and N sufficiently large

max
t≤N

|ζ(α + it)| ≥ Bα(N
2
3
(α− 1

2
)−ε) + O(N−η) (3.4)

for some η > 0.

Proof. Let an ≥ 0 be such that ‖a‖2 = 1, and take N = T λ with λ < 2
3(α− 1

2). By (3.2)
and (3.3)

∑

n≤N

|bn|2 ≤ 1
T

∫ T

0
|ζ(α + it)|2|AN (t)|2 dt + O(T−η)

≤ max
t≤T

|ζ(α + it)|2 1
T

∫ T

0
|AN (t)|2 dt + O(T−η)

= max
t≤T

|ζ(α + it)|2
∑

n≤N

|an|2(1 + O(N/T )) + O(T−η)

using the Montgomery and Vaughan mean value theorem. The implied constants in the
O-terms depend only on T and not on the sequence {an}. Taking the supremum over all
such a, this gives

Bα(N)2 = sup
‖a‖2=1

∑

n≤N

|bn|2 ≤ max
t≤T

|ζ(α + it)|2 + O(T−η),
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for some η > 0, and (3.4) follows.
¤

In particular, this gives the (known) lower bounds

max
t≤T

|ζ(α + it)| ≥ exp
{c(log T )1−α

log log T

}

for 1
2 < α < 1 and maxt≤T |ζ(1 + it)| ≥ eγ log log T + O(1) (obtained by Levinson in [6]).
Morever, we can say more about how often |ζ(α + it)| is as large as this. For A ∈ R

and c > 0, let

FA(T ) =
{

t ∈ [1, T ] : |ζ(1 + it)| ≥ eγ log log T −A

}
. (3.5)

Fα,c(T ) =
{

t ∈ [0, T ] : |ζ(α + it)| ≥ exp
{c(log T )1−α

log log T

}}
. (3.5′)

Consider first the α = 1 case. We have, for N ≤ T λ with 0 < λ < 1
3 ,

∑

n≤N

|bn|2 ≤ 1
T

(∫

FA(T )
+

∫

[1,T ]\FA(T )

)
|ζ(1 + it)|2|AN (t)|2 dt + O(T−η). (3.6)

The second integral on the right is at most

(eγ log log T −A)2 · 1
T

∫ T

0
|AN (t)|2 dt = (eγ log log T −A)2(1 + O(N/T )),

while, by choosing an = d(N)−1/2 for n|N and zero otherwise, the LHS of (3.6) is at least
η1,2(N). Now, every interval [T λ/3, T λ] contains an N of the form6 sk. For such an N ,
η1,2(N) ≥ (eγ log log N − a)2 ≥ (eγ log log T − a′)2 for some a, a′ > 0. Hence for A > a′,

1
T

∫

FA(T )
|ζ(1 + it)|2|AN (t)|2 dt ≥ (eγ log log T − a′)2 − (eγ log log T −A)2 + O(T−η) ≥ 1

for T sufficiently large. But |ζ(1 + it)| = O(log T ) and |AN (t)|2 ≤ d(N), so

1 ≤ 1
T

∫

FA(T )
|ζ(1 + it)|2|AN (t)|2 dt ≤ (log T )2d(N)µ(FA(T ))

T
,

where µ(·) is Lebesque measure. Thus µ(FA(T )) ≥ T/d(N)(log T )2 ≥ T exp{− a log T
log log T }

for some a > 0 (which depends on A only).
Now consider 1

2 < α < 1. Again

∑

n≤N

|bn|2 ≤ 1
T

(∫

Fα,c(T )
+

∫

[0,T ]\Fα,c(T )

)
|ζ(α + it)|2|AN (t)|2 dt + O(T−η). (3.6′)

The second integral on the right is at most

exp
{2c(log T )1−α

log log T

}
· 1
T

∫ T

0
|AN (t)|2 dt = O

(
exp

{2c(log T )1−α

log log T

})
,

6Recall sk =
∏

p≤pk
p
[
√

pk
p

]
. From (1.1), it is easy to see that sk < sk+1 ≤ s

2+o(1)
k .
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while, by choosing an and N as before, the LHS of (3.6′) is at least exp
{

c′(log T )1−α

log log T

}
for

some c′ > 0. Hence for 2c < c′,

1
T

∫

Fα,c(T )
|ζ(α + it)|2|AN (t)|2 dt ≥ exp

{c′(log T )1−α

2 log log T

}
.

We have |ζ(α + it)| = O(T ν) for some ν and |AN (t)|2 ≤ d(N) = O(T ε), so

1
T

∫

Fα,c(T )
|ζ(α + it)|2|AN (t)|2 dt ≤ T 2ν−1+εµ(Fα,c(T )).

Thus µ(Fα,c(T )) ≥ T 1−2ν−ε for all c sufficiently small.
In particular, since ν < 1−α

3 , we have:

Theorem 3.5
Let FA(T ) and Fα,c(T ) denote the sets in (3.5) and (3.5′) respectively. Then for all A

sufficiently large (and positive) µ(FA(T )) ≥ T exp
{−a log T

log log T

}
for some a > 0, and for

all c sufficiently small, µ(Fα,c(T )) ≥ T (1+2α)/3 for all T sufficiently large. Furthermore,
on the Lindelöf Hypothesis, the exponent can be replaced by 1− ε.

Connection with the largest eigenvalue of certain arithmetical matrices
In [7], the eigenvalues of the N × N matrix with entries (i,j)2α

iαjα was discussed. Denote
the largest eigenvalue by ΛN (α). Using deep properties of Dirichlet series (see [4]), it was
shown that for α > 1, ΛN (α), though never larger than ζ(α)2

ζ(2α) , can be made arbitrarily

close to this; i.e. lim supN→∞ ΛN (α) = ζ(α)2

ζ(2α) , while the lim sup is infinite for α ≤ 1. It was
further suggested that an ‘arithmetical proof’ of this would be unlikely. However, since

ΛN (α) = sup
‖a‖2=1

∑

m,n≤N

aman(m,n)2α

mαnα
,

and the supremum (actually maximum) occurs when an ≥ 0, we see from (3.2) that

Bα(N)2

ζ(2α)
≤ ΛN (α) ≤ (1 + o(1))

Bα(N3)2

ζ(2α)
for α > 1

2 .

But by purely arithmetical means we showed in Theorem 1.1 that, for α > 1, ‖ϕα‖ = ζ(α);
i.e. Bα(N) → ζ(α). (Indeed, this depended on the fact that lim supn→∞ ηα,2(n) = ζ(α)2).

Furthermore, from the bounds on Bα(N) obtained in Theorem 2.3, we have corre-
sponding bounds for ΛN (α) for 1

2 ≤ α ≤ 1 for large N , namely:

ΛN (1) =
1

ζ(2)
(eγ log log N + O(1))2,

and

log ΛN (α) ³ (log N)1−α

log log N
for 1

2 < α < 1.

Adjusting (3.2) for α = 1
2 (ζ(2α) gets replaced by

∑
n≤N

1
n) gives

log ΛN (1/2) ³
( log N

log log N

)1/2
.
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APPENDIX
Examples where maxn≤N |bn| → ∞ and

∑
n≤N |bn|p →∞ for a given a ∈ lp

For α ≤ 1
r , ϕα fails to be a bounded operator (for the boundary cases at least). As ϕα

is a ‘matrix’ mapping, it is closed ([12], p.183). For such mappings, if ϕα(lp) ⊂ lq, then
ϕα : lp → lq is necessarily bounded. Since we know this is false for α ≤ 1

r , it follows that
for such α, ϕα(lp) 6⊂ lq; i.e. ∃ a ∈ lp such that ϕα(a) 6∈ lq.

In Theorem 2.2, we see that although Bp,∞,α(N) tends to infinity as N → ∞ for
α ≤ 1− 1

p , it does not give an example of an a ∈ lp for which maxn≥1 |bn| = ∞. Similarly,
in Theorem 2.3, Bp,p,α(N) → ∞ for α ≤ 1 but this does not provide an example of an
a ∈ lp for which

∑
n≥1 |bn|p = ∞. For α ≤ 0, it is easy to construct such examples but for

α > 0 this is not obvious. Below, we provide examples for both cases. For simplicity, we
take p = 2, as both examples can easily be adjusted for general p.
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1. Example for which maxn≤N |bn| → ∞ as N →∞.
First note that although B2,∞,α(N) → ∞ for α ≤ 1

2 , bn is usually quite small (at least
if α > 0). For example, we know from the Remark following Proposition 3.1 that for
α < 1

2 ,
∑

n≤N |bn|2 = O(N1−2α). Thus the set SN = {n ≤ N : |bn| ≥ N−α+ε} satisfies
|SN | = o(N) for every ε > 0, since

cN1−2α ≥
∑

n≤N

|bn|2 ≥
∑

n∈SN

N−2α+2ε = |SN |N−2α+2ε.

Let R be an infinite subset of numbers of the form 2.3 . . . P . Let σ′−α(n) =
∑

d|n,d≤√n d−α.
Now for n ∈ R and d|n with d ≤ √

n, define

an/d =
εn

dα
√

σ′−2α(n)
and zero otherwise.

Here εn > 0 is to be determined later. For this to be well-defined we need n′ > n2 for
consecutive elements n, n′ of R. Hence

∞∑

k=1

a2
k =

∑

n∈R

ε2
n

σ′−2α(n)

∑

d|n,d≤√n

1
d2α

=
∑

n∈R

ε2
n. (A1)

Thus a ∈ l2 with ‖a‖2 = 1 if
∑

n∈R ε2
n = 1, which we shall now assume.

Now, for n ∈ R, we have

bn =
∑

d|n

an/d

dα
=

εn√
σ′−2α(n)

∑

d|n,d≤√n

1
d2α

= εn

√
σ′−2α(n).

But for any given ε > 0, σ′−2α(n) ≥ (1 − ε)σ−2α(n) for n sufficiently large (as long as
α > 0). Thus bn ≥ (1− ε)εn

√
σ−2α(n).

Thus, in order to have an example, we need to choose R and εn in such a way that the
sum in (A1) converges but εn

√
σ−2α(n) is unbounded. This is easily done; for example,

by taking εn = σ−2α(n)−β with 0 < β < 1
2 and making R sufficiently ‘thin’. Indeed, by

choosing R sufficiently thin, εn can be chosen to tend to zero as slowly as we please. Using
the bounds on σ−2α(n), this proves:

Theorem A
(i) Given any function φ(n) increasing to infinity, however slowly, there exists a ∈ l2 such
that ϕ 1

2
(a) = (bn) satisfies

bn = Ω
(√log log n

φ(n)

)
.

(ii) For 0 < α < 1
2 , there exists a ∈ l2 such that ϕα(a) = (bn) satisfies

bn = Ω
(

exp
{c(log n)1−2α

log log n

})

for some c > 0.

Part (i) is best possible, for, writing bn = b′n + b′′n where

b′n =
1√
n

∑

d|n,d≤√n

√
dad and b′′n =

1√
n

∑

d|n,d>
√

n

√
dad.
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We have

|b′n| ≤
1√
n

( ∑

d|n,d≤√n

d

) 1
2
(∑

d|n
|ad|2

) 1
2

≤
(d(n)√

n

) 1
2 → 0,

while

|b′′n| =
∣∣∣∣∣∣

∑

d|n,d<
√

n

an/d√
d

∣∣∣∣∣∣
≤

( ∑

d|n,d<
√

n

1
d

) 1
2
( ∑

d|n,d<
√

n

|an/d|2
) 1

2

≤
√

σ−1(n)
( ∑
√

n≤m≤n

|am|2
) 1

2

= o(
√

σ−1(n)).

Hence bn = o(
√

log log n) in any case.

2. Example for which
∑

n≤N |bn|2 →∞
Again, let R be an infinite subset of numbers of the form 2.3 . . . P . Define an as follows:
for n ∈ R and d|n such that d ≤ n3/4, let

an/d =
εn√
d(n)

, and zero otherwise.

This is well-defined if, for consecutive terms n, n′ of R, we have n′ > n4, which we shall
now assume. Then a ∈ l2 if and only if

∑

n∈R

∑
d|n

d ≤ n3/4

a2
n/d =

∑

n∈R

ε2
n

d(n)

∑
d|n

d ≤ n3/4

1 < ∞.

But the inner sum on the right is at least 1
2d(n), so a ∈ l2 if

∑
n∈R ε2

n converges.
Now, for n ∈ R and d|n such that d ≤ n3/4, we have

bn/d =
∑

c|n
d

an/cd

cα
=

εn√
d(n)

∑

c|n
d

,c≤n3/4

d

1
cα

.

Hence

∑
d|n

d ≤ n3/4

b2
n/d =

ε2
n

d(n)

∑
d|n

d ≤ n3/4

( ∑
c|n

d

c ≤ n3/4
d

1
cα

)2

≥ ε2
n

d(n)

∑
d|n

d ≤ √
n

( ∑
c|n

d

c ≤ n1/4
d

1
cα

)2

≥ (1− ε)ε2
n

d(n)

∑
d|n

d ≤ √
n

σ−α(n/d)2 =
(1− ε)ε2

nσ−α(n)2

d(n)

∑
d|n

d ≤ √
n

1
σ−α(d)2

,

using the fact that n is squarefree, so that (n
d , d) = 1 and σ−α(n) = σ−α(n/d)σ−α(d).

Now, without the restriction d ≤ √
n, the sum on the far right is of order d(n)/σ−α(n) (by

using the results in 1.1 on ηα,β(n)). But

( ∑
d|n

d ≤ √
n

1
)2

≤
∑

d|n
σ−α(d)2

∑
d|n

d ≤ √
n

1
σ−α(d)2

³ d(n)σ−α(n)
∑
d|n

d ≤ √
n

1
σ−α(d)2

.
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Since the LHS is just 1
4d(n)2, it follows that

∑
d|n,d≤√n

1
σ−α(d)2

³ d(n)
σ−α(n) also. In particular,

if N ∈ R

∑

k≤N

b2
k ≥

∑

n≤N,n∈R

∑
d|n

d ≤ n3/4

b2
n/d ≥ A

∑

n≤N,n∈R

ε2
nσ−α(n) ≥ Aε2

Nσ−α(N)

for some A > 0. This can be made to tend to infinity as N →∞. Indeed, by choosing R
as ‘thin’ as we please, we can make εn tend to zero as slowly as we please. Thus:

Theorem B
(i) Given any function φ(n) increasing to infinity, however slowly, there exists a ∈ l2 such
that ϕ1(a) = (bn) satisfies ∑

n≤N

b2
n = Ω

( log log N

φ(N)

)
.

(ii) For 1
2 ≤ α < 1 there exists a ∈ l2 such that ϕα(a) = (bn) satisfies

∑

n≤N

b2
n = Ω

(
exp

{c(log N)1−α

log log N

})

for some c > 0.
Probably with some more effort, the log log N in (i) can be turned into a (log log N)2.

Abstract

In this paper we study the linear mapping that sends a sequence (an) to (bn) where
bn =

∑
d|n d−αan/d. We investigate for which values of α this is a bounded operator

from lp to lq and show the operator norm is closely connected to the Riemann zeta
function.

We consider the unbounded case, in particular on l2, giving formulas (exact and
asymptotic) for the maximal behaviour of the norm

√∑
n≤N |bn|2. We show that these

provide lower bounds for maxt≤N |ζ(α + it)|, giving a new proof that maxt≤T |ζ(α +
it)| ≥ exp{c (log T )1−α

log log T } for some c > 0 for 1
2 < α < 1. Further we show that this lower

bound holds in [0, T ] on a set of measure at least T (1+2α)/3. Analogously, we show
|ζ(1+ it)| ≥ eγ log log T +O(1) in [1, T ] on a set of measure at least T exp{− a log T

log log T }.
We also find connections to the largest eigenvalues of certain arithmetical matrices.
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