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Abstract

In this paper we study Dirichlet convolution with a given arithmetical function f as a linear
mapping ϕf that sends a sequence (an) to (bn) where bn =

∑
d|n f(d)an/d. We investigate

when this is a bounded operator on l2 and find the operator norm. Of particular interest is
the case f(n) = n−α for its connection to the Riemann zeta function on the line <s = α. For
α > 1, ϕf is bounded with ‖ϕf‖ = ζ(α).

For the unbounded case, we show that ϕf : M2 → M2 where M2 is the subset of l2 of
multiplicative sequences, for many f ∈M2. Consequently, we study the ‘quasi’-norm

sup
‖a‖ = T

a ∈ M2

‖ϕfa‖
‖a‖

for large T , which measures the ‘size’ of ϕf on M2. For the f(n) = n−α case, we show this
quasi-norm has a striking resemblance to the conjectured maximal order of |ζ(α + iT )| for
α > 1

2
.
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Introduction
Given an arithmetical function f(n), the mapping ϕf sends (an)n∈N to (bn)n∈N, where

bn =
∑

d|n
f(d)an/d. (0.1)

Writing a = (an), ϕf maps a to f ∗ a where ∗ is Dirichlet convolution. This is a ‘matrix’ mapping,
where the matrix, say M(f), is of ‘multiplicative Toeplitz’ type; that is,

M(f) = (aij)i,j≥1

where aij = f(i/j) and f is supported on the natural numbers (see, for example, [6], [7]).
Toeplitz matrices (whose ijth-entry is a function of i − j) are most usefully studied in terms

of a ‘symbol’ (the function whose Fourier coefficients make up the matrix). Analogously, the
Multiplicative Toeplitz matrix M(f) has as symbol the Dirichlet series

∞∑
n=1

f(n)nit.

Our particular interest is naturally the case f(n) = n−α when the symbol is ζ(α − it). We are
especially interested how and to what extent properties of the mapping relate to properties of the
symbol for α ≤ 1.

These type of mappings were considered by various authors (for example Wintner [15]) and most
notably Toeplitz [13], [14] (although somewhat indirectly, through his investigations of so-called
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“D-forms”). In essence, Toeplitz proved that ϕf : l2 → l2 is bounded if and only if
∑∞

n=1 f(n)n−s

is defined and bounded for all <s > 0. In particular, if f(n) ≥ 0 then ϕf is bounded on l2 if and
only if f ∈ l1; furthermore, the operator norm is ‖ϕf‖ = ‖f‖1. We prove this in Theorem 1.1
following Toeplitz’s original idea. For example, for f(n) = n−α, ϕf is bounded on l2 for α > 1
with operator norm ζ(α). In this special case, the mapping was studied in [7] for α ≤ 1 when it is
unbounded on l2 by estimating the behaviour of the quantity

Φf (N) = sup
‖a‖2=1

( N∑
n=1

|bn|2
)1/2

for large N . Approximate formulas for Φf (N) were obtained and it was shown that, for 1
2 < α ≤ 1,

Φf (N) is a lower bound for max1≤t≤T |ζ(α + it)| with N = Tλ (some λ > 0 depending on α only).
In this way, it was proven that the measure of the set

{
t ∈ [1, T ] : |ζ(1 + it)| ≥ eγ log log T −A

}

is at least T exp
{−a log T

log log T

}
(some a > 0) for A sufficiently large, while for 1

2 < α < 1 one has

max
t≤T

|ζ(α + it)| ≥ exp
{

c(log T )1−α

log log T

}

for some c > 0 depending on α only, as well providing an estimate for how often |ζ(α + iT )| is
as large as the right-hand side above. The method is akin to Soundararajan’s ‘resonance’ method
and incidentally shows the limitation of this approach for α > 1

2 since |ζ(α + iT )| is known to be
of larger order.

In this paper we study the unbounded case in a different way, by restricting the domain. Thus
in section 2, we show that for many multiplicative f , in particular for f completely multiplicative,
ϕf (M2) ⊂ M2 even though ϕf (l2) 6⊂ l2. Here M2 is the set of multiplicative functions in l2. As
a result we consider, for such f , the ‘quasi’-norm

Mf (T ) = sup
‖a‖ = T

a ∈ M2

‖ϕfa‖
‖a‖

and obtain approximate formulae for large T (here ‖ · ‖ is the usual l2-norm). We find that for the
particular case f(n) = n−α (α > 1

2 ), this quasi-norm has a striking similarity to the conjectured
maximal order of |ζ(α + iT )|. For example, with α = 1 (i.e. f(n) = 1/n) we prove

Mf (T ) = eγ(log log T + log log log T + 2 log 2− 1) + o(1), (0.2)

while for 1
2 < α < 1

log Mf (T ) ∼ B( 1
α , 1− 1

2α )α

(1− α)2α

(log T )1−α

(log log T )α
,

where B(x, y) is the Beta function. Writing Zα(T ) = max1≤t≤T |ζ(α+it)|, Granville and Soundarara-
jan [3] proved that Z1(T ) is at least as large as (0.2) minus a log log log log T term for some arbi-
trarily large T and they conjectured that it equals (0.2) (possibly with a different constant term).
For 1

2 < α < 1, Montgomery [9] found

log Zα(T ) ≥
√

α− 1/2
20

(log T )1−α

(log log T )α

and, using a heuristic argument, conjectured that this is (apart from the constant) the cor-
rect order of log Zα(T ). Further, in a recent paper (see [8]), Lamzouri suggests log Zα(T ) ∼
C(α)(log T )1−α(log log T )−α with some specific constant C(α) (see also the remark after Theorem
3.1).
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Similarly one can study the quantity

mf (T ) = inf
‖a‖ = T

a ∈ M2

‖ϕfa‖
‖a‖ .

With f(n) = n−α this is shown to behave like the known and conjectured minimal order of
|ζ(α + iT )| for α > 1

2 . It should be stressed here that, unlike the case of Φf (N) which was shown
to be a lower bound for Zα(T ) in [7], we have not proved any connection between ζ(α + iT ) and
Mf (T ). Even to show Mf (T ) is a lower bound would be very interesting.

Our results, though motivated by the special case f(n) = n−α, extend naturally to completely
multiplicative f for which f |P is regularly varying (see section 2 for the definition).

Addendum. I would like to thank the anonymous referee for some useful comments and for pointing
out a recent paper by Aistleitner and Seip [1]. They deal with an optimization problem which is
different yet curiously similar. The function exp{cα(log T )1−α(log log T )−α} appears in the same
way, although their cα is expected to remain bounded as α → 1

2 . It would be interesting to inves-
tigate any links further.

1. Bounded operators

Notation: Let l1 and l2 denote the usual spaces of sequences (an)n∈N, with norms ‖a‖1 =
∑ |an|

and ‖a‖2 = (
∑ |an|2)1/2 respectively. After section 1 we shall, for ease of notation, just write ‖ · ‖

for ‖ · ‖2 since it is the norm we will use.
A linear mapping ϕ : l2 → l2 is bounded if there exists C > 0 such that ‖ϕx‖2 ≤ C‖x‖2 for all

x ∈ l2. As such, we define the operator norm by

‖ϕ‖ = sup
x6=0

‖ϕx‖2
‖x‖2 = sup

‖x‖2=1

‖ϕx‖2.

We shall assume from now on that f(n) ≥ 0 for all n ∈ N. We are particularly interested in
the case where ϕf acts on l2. Define the function

Φf (N) = sup
‖a‖2=1

√ ∑

n≤N

|bn|2,

where bn is given in terms of an by (0.1). Note that the supremum will occur when an ≥ 0 for all
n and when

∑
n≤N a2

n = 1.

Suppose now that f ∈ l1; i.e. ‖f‖1 =
∑∞

n=1 f(n) < ∞. Then

|bn|2 =
∣∣∣∣
∑

d|n

√
f(d) ·

√
f(d)an/d

∣∣∣∣
2

≤
∑

d|n
f(d)

∑

d|n
f(d)|an/d|2 ≤ ‖f‖1

∑

d|n
f(d)|an/d|2.

Hence
∑

n≤N

|bn|2 ≤ ‖f‖1
∑

n≤N

∑

d|n
f(d)|an/d|2 = ‖f‖1

∑

d≤N

f(d)
∑

n≤N/d

|an|2 ≤ ‖f‖21‖a‖22.

Thus
Φf (N) ≤ ‖f‖1. (1.1)

Following Toeplitz [14], we show that this inequality is sharp.

Theorem 1.1
Let f be a non-negative arithmetical function and f ∈ l1. Then Φf (N) → ‖f‖1 as N →∞. Thus
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ϕf : l2 → l2 is bounded if and only if f ∈ l1, in which case ‖ϕf‖ = ‖f‖1.

Proof. After (1.1), and since Φf (N) increases with N , we need only provide a lower bound for
an infinite sequence of Ns. Let an = d(N)−

1
2 for n|N and zero otherwise (N to be chosen later),

where d(·) is the divisor function. Thus a2
1 + . . . + a2

N = 1 and

Φf (N) ≥
∑

n≤N

anbn =
1

d(N)

∑

n|N

∑

d|n
f(d) =

1
d(N)

∑

d|N
f(d)d

(N

d

)
, (1.2)

say. We choose N such that it has all divisors d up to some (large) number, and that d(N/d)
d(N) is

close to 1 for each such divisor d of N . Take N of the form

N =
∏

p≤P

pαp where αp = [ log P
log p ].

Thus every natural number up to P is a divisor of N . For a divisor d =
∏

p≤P pβp of N , we have

d(N/d)
d(N)

=
∏

p≤P

(
1− βp

αp + 1

)
.

If we take d ≤ √
log P , then pβp ≤ √

log P for every prime divisor p of d. Hence, for such p,
βp ≤ log log P

2 log p and βp = 0 if p >
√

log P . Thus for d ≤ √
log P ,

d(N/d)
d(N)

=
∏

p≤√log P

(
1− βp

αp + 1

)
≥

∏

p≤√log P

(
1− log log P

2 log P

)
=

(
1− log log P

2 log P

)π(
√

log P )

,

where π(x) is the number of primes up to x. Since π(x) = O( x
log x ), it follows that for all P

sufficiently large, the expression in (1.2) is at least
(
1− A√

log P

) ∑

d≤√log P

f(d)

for some constant A. The sum can be made as close to ‖f‖1 as we please by increasing P .
¤

2. Unbounded operators on l2

Now we investigate when ϕf is unbounded on l2 (i.e. f 6∈ l1). In a similar generalisation of
Theorem 1.1 of [7], one can readily show that both ϕf : l1 → l2 and ϕf : l2 → l∞ are bounded if
and only if f ∈ l2, with ‖ϕf‖ = ‖f‖2 in either case. So here we shall assume that f ∈ l2 \ l1. In
the appendix we see that, for all cases of interest at least, if f 6∈ l2, then ϕfa 6∈ l2 for all a except
a = 0.

For unbounded operators, there are different ways of measuring the ‘unboundedness’. One way,
which was done in [7] for the case f(n) = n−α, is to restrict the range by looking at a restricted
norm; i.e. by considering Φf (N) for given N . Another way is to restrict the domain to a set S
say, such that ϕf (S) ⊂ l2 and to consider the size of

sup
a∈S,‖a‖=N

‖ϕfa‖
‖a‖ for large N .

For f completely multiplicative one is naturally led to consider S = M2 — the set of square
summable multiplicative functions. It is also natural to consider regularly varying functions.

Regular Variation. A function ` : [A,∞) → R is regularly varying of index ρ if it is measurable
and

`(λx) ∼ λρ`(x) as x →∞ for every λ > 0
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(see [2] for a detailed treatise on the subject). For example, xρ(log x)τ is regularly-varying of
index ρ for any τ . The Uniform Convergence Theorem says that the above asymptotic formula
is automatically uniform for λ in compact subsets of (0,∞). Note that every regularly varying
function of non-zero index is asymptotic to one which is strictly monotonic and continuous. We
shall make use of Karamata’s Theorem: for ` regularly varying of index ρ,

∫ x

` ∼ x`(x)
ρ + 1

if ρ > −1,
∫ ∞

x

` ∼ −x`(x)
ρ + 1

if ρ < −1,

while if ρ = −1,
∫ x

` is slowly varying (regularly varying with index 0) and
∫ x

` Â x`(x).

Notation. Let M2 and M2
c denote the subsets of l2 of multiplicative and completely multiplica-

tive functions respectively. Further, write M2+ for the non-negative members of M2 and similarly
for M2

c+.

2.1 The size of ‖ϕf‖ on M2

Now we consider ϕf on the subset M2 of multiplicative functions in l2. We suppose, as in section
2, that f ∈ l2 \ l1 so that ϕf is unbounded. This implies there exist a ∈ l2 such that ϕf (a) 6∈ l2

(by the closed graph theorem). However, if f is multiplicative then, as we shall see, ϕf (M2) ⊂ l2

in many cases (and hence ϕf (M2) ⊂M2).

Lemma 2.1
Let f, g ∈M2 be non-negative. Then f ∗ g ∈M2 if and only if

∑
p

∑

m,n≥1

∞∑

k=0

f(pm)g(pn)f(pm+k)g(pn+k) converges. (2.1)

Proof. Let h = f ∗ g. Since h is multiplicative,
∞∑

n=1

h(n)2 < ∞⇐⇒
∑

p

∑

k≥1

h(pk)2 < ∞.

Let k ≥ 1 and p prime. Then

h(pk) =
k∑

r=0

f(pr)g(pk−r) = f(pk) + g(pk) +
k−1∑
r=1

f(pr)g(pk−r).

Using the inequality a2 + b2 + c2 ≤ (a + b + c)2 ≤ 3(a2 + b2 + c2) we have

(k−1∑
r=1

f(pr)g(pk−r)
)2

≤ h(pk)2 ≤ 3f(pk)2 + 3g(pk)2 + 3
(k−1∑

r=1

f(pr)g(pk−r)
)2

.

Since
∑

p,k≥1 f(pk)2 and
∑

p,k≥1 g(pk)2 converge we find that
∑

p,k≥1 h(pk)2 converges if and only
if

∑
p

∞∑

k=2

(k−1∑
r=1

f(pr)g(pk−r)
)2

converges.

But
∞∑

k=2

(k−1∑
r=1

f(pr)g(pk−r)
)2

=
∞∑

k=1

∑

1≤r,s≤k

f(pr)f(ps)g(pk−r+1)g(pk−s+1) (2.2)

≤ 2
∞∑

k=1

k∑
s=1

s∑
r=1

f(pr)f(ps)g(pk−r+1)g(pk−s+1)

= 2
∞∑

r=1

∞∑

k=1

∞∑
s=0

f(pr)f(ps+r)g(pk+s)g(pk).
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On the other hand, the RHS of (2.2) is greater than

∞∑

k=1

k∑
s=1

s∑
r=1

f(pr)f(ps)g(pk−r+1)g(pk−s+1).

Hence h ∈M2 if and only if

∑
p

∑

m,n≥1

∞∑

k=0

f(pm)g(pn)f(pm+k)g(pn+k) converges.

¤

Let M2
0 denote the set of M2 functions f for which f ∗ g ∈M2 whenever g ∈M2; that is,

M2
0 = {f ∈M2 : g ∈M2 =⇒ f ∗ g ∈M2}.

Thus for f ∈M2
0, ϕf (M2) ⊂M2. We shall see that it may happen that f, g ∈M2 but f ∗g 6∈ M2.

So M2
0 6= M2. The following gives a criterion for multiplicative functions to be in M2

0.

Proposition 2.2
Let f ∈M2 be such that

∑∞
k=1 |f(pk)| converges for every prime p and that

∑∞
k=1 |f(pk)| ≤ A for

some constant A independent of p. Then f ∈M2
0.

On the other hand, if f ∈ M2 with f ≥ 0 and for some prime p0, f(pk
0) decreases with k and∑∞

k=1 f(pk
0) diverges, then f 6∈ M2

0.

Proof. Without loss of generality we can take f ≥ 0. Let g ∈ M2 (again w.l.o.g. g ≥ 0) with
αp =

∑∞
k=1 g(pk)2. Thus

∑
p αp converges. By the Cauchy-Schwarz inequality,

( ∞∑
n=1

g(pn)g(pn+k)
)2

≤
∞∑

n=1

g(pn)2
∞∑

n=1

g(pn+k)2 ≤ αpαp = α2
p.

Thus by Lemma 2.1, f ∗ g ∈M2 if

∑
p

αp

∞∑
m=1

f(pm)
∞∑

k=0

f(pm+k) converges.

By assumption, the inner sum over k is bounded by a constant (independent of p), and hence so
is the sum over m. This implies the convergence of the above. Hence f ∗ g ∈M2.

Now suppose
∑∞

k=1 f(pk
0) diverges for some prime p0. Then with g ∈M2 and g(pk

0) decreasing
(to zero) we have

(f ∗ g)(pk
0) =

k∑
r=0

f(pr
0)g(pk−r

0 ) ≥ g(pk
0)

k∑
r=0

f(pr
0) = g(pk

0)ck,

where ck ↗∞. Thus
∑

k(f ∗ g)(pk
0)2 ≥ ∑

k g(pk
0)2c2

k. But we can always choose g(pk
0) decreasing

so that
∑

k g(pk
0)2 converges while, for the given sequence ck,

∑
k g(pk

0)2c2
k diverges. (Choose

g(pk
0)2 = 1

ck−1
− 1

ck
.)

Thus f ∗ g 6∈ M2; i.e. f 6∈ M2
0.

¤
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Thus, in particular, M2
c ⊂ M2

0. For f ∈ M2
c if and only if |f(p)| < 1 for all primes p and∑

p |f(p)|2 < ∞. Thus
∞∑

k=1

|f(pk)| = |f(p)|
1− |f(p)| ≤ A,

independent of p (since f(p) → 0).

The “quasi-norm” Mf (T )
Let f ∈ M2

0. From above we see that ϕf (M2) ⊂ M2 but, typically, ϕf is not ‘bounded’ on M2

(if f 6∈ l1) in the sense that ‖ϕfa‖/‖a‖ is not bounded by a constant for all a ∈ M2. It therefore
makes sense to define, for T ≥ 1,

Mf (T ) = sup
a ∈ M2

‖a‖ = T

‖ϕfa‖
‖a‖ .

We aim to find the behaviour of Mf (T ) for large T .
We shall consider f completely multiplicative and such that f |P is regularly varying of index

−α with α > 1/2 in the sense that there exists a regularly varying function f̃ (of index −α) with
f̃(p) = f(p) for every prime p.

Our main result here is the following:

Theorem 2.3
Let f ∈M2

c, such that f ≥ 0 and f |P is regularly varying of index −α where α ∈ ( 1
2 , 1). Then

log Mf (T ) ∼ c(α)f̃(log T log log T ) log T

where f̃ is any regularly varying extension of f |P and

c(α) =
B( 1

α , 1− 1
2α )α

(1− α)2α

and B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is the Beta function.

For the proof, we obtain upper and lower bounds for log Mf (T ) which are asymptotic to each
other. For the lower bounds, we require a formula for ‖ϕfa‖ when a ∈M2

c . This follows from the
following rather elegant formula:

Lemma 2.4
For f, g ∈M2

c, ‖f ∗ g‖
‖f‖‖g‖ =

|〈f, g〉|
‖fg‖ ,

where 〈·, ·〉 denotes the usual inner product for l2.

Proof. We have

‖f ∗ g‖2 =
∞∑

n=1

|(f ∗ g)(n)|2 =
∞∑

n=1

∑

c,d|n
f(c)f(d)g

(n

c

)
g
(n

d

)

=
∑

c,d≥1

f(c)f(d)
∞∑

m=1

g
(m[c, d]

c

)
g
(m[c, d]

d

)

=
∞∑

m=1

|g(m)|2
∑

c,d≥1

f(c)f(d)g
( d

(c, d)

)
g
( c

(c, d)

)
.
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Collecting those terms for which (c, d) = k, writing c = km, d = kn, and using complete multi-
plicativity of f (‖f ∗ g‖

‖g‖
)2

=
∞∑

k=1

|f(k)|2
∑

m, n ≥ 1
(m, n) = 1

f(m)f(n)g(m)g(n).

But

|〈f, g〉|2 =
∑

m,n≥1

f(m)f(n)g(m)g(n) =
∞∑

d=1

|f(d)g(d)|2
∑

m, n ≥ 1
(m, n) = 1

f(m)f(n)g(m)g(n),

so the result follows.
¤

Thus for f, a ∈M2
c ,

‖ϕfa‖
‖a‖ =

‖f‖ · |∑∞
n=1 f(n)an|

(
∑∞

n=1 |f(n)an|2)1/2
.

Since |an| ≤ 1, as a corollary we have:

Corollary 2.5
For f, a ∈M2

c, ∣∣∣∣
∞∑

n=1

f(n)an

∣∣∣∣ ≤
‖ϕfa‖
‖a‖ ≤ ‖f‖

∣∣∣∣
∞∑

n=1

f(n)an

∣∣∣∣.

Note that by complete multiplicativity,
∞∑

n=1

f(n)an =
∏
p

1
1− f(p)ap

=
∏
p

exp
{

f(p)ap + O(|f(p)ap|2)
}

,

and
∑

p |f(p)ap|2 ≤
∑

p |f(p)|2 = O(1), so that

log
‖ϕfa‖
‖a‖ = <

∑
p

f(p)ap + O(1). (2.3)

Proof of Theorem 2.3. We consider first upper bounds. The supremum occurs for a ≥ 0 which we
now assume. Write a = (an), ϕfa = b = (bn). Define αp and βp for prime p by

αp =
∞∑

k=1

a2
pk and βp =

∞∑

k=1

b2
pk .

By multiplicativity of a and b we have T 2 = ‖a‖2 =
∏

p(1 + αp) and ‖b‖2 =
∏

p(1 + βp). Thus

‖ϕfa‖
‖a‖ =

∏
p

√
1 + βp

1 + αp
.

Now for k ≥ 1

bpk =
k∑

r=0

f(pr)apk−r = apk + f(p)bpk−1 .

Thus
b2
pk = a2

pk + 2f(p)apkbpk−1 + f(p)2b2
pk−1 .

Summing from k = 1 to ∞ and adding 1 to both sides gives

1 + βp = 1 + αp + 2f(p)
∞∑

k=1

apkbpk−1 + f(p)2(1 + βp). (2.4)
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By Cauchy-Schwarz,

∞∑

k=1

apkbpk−1 ≤
( ∞∑

k=1

a2
pk

∞∑

k=1

b2
pk−1

)1/2

=
√

αp(1 + βp),

so, on rearranging

(1 + βp)−
2f(p)

√
αp(1 + βp)

1− f(p)2
≤ 1 + αp

1− f(p)2
.

Completing the square we find
(√

1 + βp −
f(p)√αp

1− f(p)2

)2

≤ 1 + αp

(1− f(p)2)2
.

The term on the left inside the square is non-negative for p sufficiently large since f(p) → 0; in fact
from (2.4), 1 + βp ≥ 1+αp

1−f(p)2 which is greater than f(p)2αp

(1−f(p)2)2 if f(p) ≤ 1/
√

2. Rearranging gives

√
1 + βp

1 + αp
≤ 1

1− f(p)2

(
1 + f(p)

√
αp

1 + αp

)
.

Let γp =
√

αp

1+αp
. Taking the product over all primes p gives

‖ϕfa‖
‖a‖ ≤ A‖f‖2

∏
p

(1 + f(p)γp) ≤ A′ exp
{∑

p

f(p)γp

}
(2.5)

for some constants A,A′ depending only on f . (We can take A = 1 if f(p) ≤ 1/
√

2.) Note that
0 ≤ γp < 1 and

∏
p

1
1−γ2

p
= T 2.

Let ε > 0 and put P = log T log log T . We split up the sum on the RHS of (2.5) into p ≤ aP ,
aP < p ≤ AP and p > AP (for a small and A large). First

∑

p≤aP

f(p)γp ≤
∑

p≤aP

f(p) ∼ a1−αP f̃(P )
(1− α) log P

< εf̃(log T log log T ) log T, (2.6)

for a sufficiently small2. Next, using the fact that log T 2 = log
∏

p
1

1−γ2
p
≥ ∑

p γ2
p , we have (since

f̃2 is regularly-varying of index −2α)

∑

p>AP

f(p)γp ≤
( ∑

p>AP

f(p)2
∑

p>AP

γ2
p

)1/2

.
(

2A1−2αP f̃(P )2 log T

(2α− 1) log P

)1/2

∼ f̃(log T log log T ) log T

Aα−1/2
√

α− 1/2
< εf̃(log T log log T ) log T (2.7)

for A sufficiently large. This leaves the range aP < p ≤ AP .
Note that the result follows from the case f(n) = n−α. For, by the uniform convergence

theorem for regularly varying functions
∣∣∣f(p)−

(P

p

)α

f̃(P )
∣∣∣ < εf(p) (2.8)

for aP < p ≤ AP and P sufficiently large, depending only on ε. The problem therefore reduces to
maximising ∑

aP<p≤AP

γp

pα

2Using
∑

p≤x f(p) ∼ ∫ x
2

f̃(t)
log t

dt ∼ xf̃(x)
(1−α) log x

, since f̃ is regularly-varying of index −α.
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subject to 0 ≤ γp < 1 and
∏

p
1

1−γ2
p

= T 2. The maximum clearly occurs for γp decreasing (if
γp′ > γp for primes p < p′, then the sum increases in value if we swap γp and γp′). Thus we may
assume that γp is decreasing.

By interpolation we may write γp = g( p
P ) where g : (0,∞) → (0, 1) is continuously differentiable

and decreasing. Of course g will depend on P . Let h = log 1
1−g2 , which is also decreasing. Note

that
2 log T =

∑
p

h
( p

P

)
≥

∑

p≤aP

h
( p

P

)
≥ h(a)π(aP ) ≥ cah(a) log T,

for P sufficiently large, for some constant c > 0. Thus h(a) ≤ Ca (independent of T ).
Now, for F : (0,∞) → [0,∞) decreasing,

∑

ax<p≤bx

F
( p

x

)
=

x

log x

∫ b

a

F + O
( xF (a)

(log x)2
)
, (2.9)

where the implied constant is independent of F (and x). For, on writing π(x) = li(x) + e(x), the
LHS is

∫ bx

ax

F
( t

x

)
dπ(t) = x

∫ b

a

F (t)
log xt

dt +
∫ b

a

F (t) de(xt)

=
x

log θx

∫ b

a

F +
[
F (t)e(xt)

]b

a
−

∫ b

a

e(xt) dF (t) (some θ ∈ [a, b])

=
x

log x

∫ b

a

F + O
( xF (a)

(log x)2
)
,

on using e(x) = O( x
(log x)2 ) and the fact that F is decreasing. Thus by (2.9)

2 log T ≥
∑

aP<p≤AP

h
( p

P

)
∼ P

log P

∫ A

a

h ∼ (log T )
∫ A

a

h.

Since a and A are arbitrary,
∫∞
0

h must exist and is at most 2. Also, by (2.9)

∑

aP<p≤AP

γp

pα
=

1
Pα

∑

aP<p≤AP

g
( p

P

)( p

P

)−α

∼ P 1−α

log P

∫ A

a

g(u)
uα

du.

Hence by (2.8),

∑

aP<p≤AP

f(p)γp ∼ f̃(P )Pα
∑

aP<p≤AP

γp

pα
∼ P f̃(P )

log P

∫ A

a

g(u)
uα

du.

As a,A are arbitrary, it follows from above and (2.5), (2.6), (2.7) that

log
‖ϕfa‖
‖a‖ ≤

(∫ ∞

0

g(u)
uα

du + o(1)
)

f̃(log T log log T ) log T.

Thus we need to maximize
∫∞
0

g(u)u−αdu subject to
∫∞
0

h ≤ 2 over all decreasing g : (0,∞) →
(0, 1). Since h is decreasing,

1
2
xh(x) ≤

∫ x

x/2

h.

The RHS can be made as small as we please for x sufficiently small or large (as
∫∞
0

h converges).
In particular, xh(x) → 0 as x → ∞ and as x → 0+. In fact, for the supremum, we can consider
just those g (and h) which are continuously differentiable and strictly decreasing, since we can

10



approximate arbitrarily closely with such functions. On writing g = s ◦ h where s(x) =
√

1− e−x,
we have

∫ ∞

0

g(u)
uα

du =
[g(u)u1−α

1− α

]∞
0
− 1

1− α

∫ ∞

0

g′(u)u1−α du

= − 1
1− α

∫ ∞

0

s′(h(u))h′(u)u1−α du =
1

1− α

∫ h(0+)

0

s′(x)l(x)1−α dx,

where l = h−1, since
√

ug(u) → 0 as u →∞. The final integral is, by Hölder’s inequality at most

(∫ h(0+)

0

s′1/α
)α(∫ h(0+)

0

l

)1−α

. (2.10)

But
∫ h(0+)

0
l = − ∫∞

0
uh′(u)du =

∫∞
0

h ≤ 2, so

∫ ∞

0

g(u)
uα

du ≤ 21−α

1− α

(∫ ∞

0

s′1/α
)α

.

A direct calculation shows that3
∫∞
0

(s′)1/α = 2−1/αB( 1
α , 1− 1

2α ). This gives the upper bound.

The proof of the upper bound leads to the optimum choice for g and the lower bound. We
note that we have equality in (2.10) if l/(s′)1/α is constant; i.e. l(x) = cs′(x)1/α for some constant
c > 0 — chosen so that

∫∞
0

l = 2. This means we take

h(x) = (s′)−1
((x

c

)α)
= log

(
1
2

+
1
2

√
1 +

( c

x

)2α
)

.

from which we can calculate g. In fact, we show that we get the required lower bound by just
considering an completely multiplicative. To this end we use (2.3), and define ap by:

ap = g0

( p

P

)
,

where P = log T log log T and g0 is the function

g0(x) =

√
1− 2

1 +
√

1 + ( c
x )2α

,

with c = 21+1/α/B( 1
α , 1 − 1

2α ). As such, by the same methods as before, we have ‖a‖ = T 1+o(1)

and

log
‖ϕαa‖
‖a‖ =

∑
p

f(p)g0

( p

P

)
+ O(1) ∼ P f̃(P )

log P

∫ ∞

0

g0(u)
uα

du.

By the choice of g0, the integral on the right is B( 1
α ,1− 1

2α )α

(1−α)2α , as required.
¤

Remark. From the above proof, we see that the supremum (of ‖ϕfa‖/‖a‖) over M2
c is roughly

the same size as the supremum over M2; i.e. they are log-asymptotic to each other. Is it true that
these respective suprema are closer still; eg. are they asymptotic to each other for 1

2 < α < 1?

3. The special case f(n) = n−α.
In this case we can take f̃(x) = x−α which is regularly varying of index −α. Here we shall write
ϕα for ϕf and Mα for Mf .

3The integral is 2−1/α
∫∞
0 e−x/α(1− e−x)−1/2αdx = 2−1/α

∫ 1
0 t1/α−1(1− t)−1/2αdt.
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Theorem 3.1
We have

M1(T ) = eγ(log log T + log log log T + 2 log 2− 1 + o(1)), (3.1)

while for 1
2 < α < 1,

log Mα(T ) =
(

B( 1
α , 1− 1

2α )α

(1− α)2α
+ o(1)

)
(log T )1−α

(log log T )α
. (3.2)

Remark. As noted in the introduction, these asymptotic formulae bear a strong resemblance to
the (conjectured) maximal order of |ζ(α + iT )|. It is interesting to note that the bounds found
here are just larger than what is known about the lower bounds for Zα(T ) = max1≤t≤T |ζ(α+ it)|.
In a recent paper (see [8]), Lamzouri suggests log Zα(T ) ∼ C(α)(log T )1−α(log log T )−α with some
specific function4 C(α) (for 1

2 < α < 1). We note that the constant appearing in (3.2) is not C(α)
since, for α near 1

2 , the former is roughly 1√
α− 1

2

, while C(α) ∼ 1√
2α−1

. For α = 1, see the comment

in the introduction.
It would be very interesting to be able to extend these ideas (and results) to the α = 1

2 case. As
we show in the appendix, we cannot do this by restricting ϕ 1

2
to smaller domains in l2. Somehow

the analogy — if such exists — between Mα and Zα breaks down just here.

Proof of Theorem 3.1. For 1
2 < α < 1 the result follows from Theorem 2.3, so we only concern

ourselves with α = 1.
For an upper bound we use (2.5) with f(p) = 1/p (and A = 1). Thus

‖ϕ1a‖
‖a‖ ≤ ζ(2)

∏
p

(
1 +

γp

p

)
.

Again, the maximum of the RHS (subject to 0 ≤ γp < 1 and
∏

p
1

1−γ2
p

= T 2) occurs for γp

decreasing. Let P = log T log log T and a,A be arbitrary constants such that A > 1 > a > 0. Split
the product into the ranges p ≤ aP , aP < p ≤ AP and p > AP . We have

ζ(2)
∏

p≤aP

(
1 +

γp

p

)
≤ ζ(2)

∏

p≤aP

(
1 +

1
p

)
= eγ(log aP + o(1))

by Merten’s Theorem, while the product over p > AP is at most

exp
{ ∑

p>AP

γp

p

}
≤ exp

{( ∑

p>AP

1
p2

∑

p>AP

γ2
p

) 1
2
}
≤ exp

{√
2 log T

∑

p>AP

1
p2

}
.

But
∑

p>AP 1/p2 ∼ 1/AP log P ∼ 1/A log T (log log T )2, so

∏

p>AP

(
1 +

γp

p

)
≤ 1 +

2√
A log log T

for all large enough T . Combining the above two estimates gives

ζ(2)
∏

p ≤ aP
p > AP

(
1 +

γp

p

)
≤ eγ

(
log2 T + log3 T + log a +

2√
A

+ o(1)
)
.

For the remaining range aP < p ≤ AP we write, as before, γp = g( p
P ) where g : (0,∞) → (0, 1) is

decreasing. Then

log
( ∏

aP<p≤AP

(
1 +

g(p/P )
p

))
∼

∑

aP<p≤AP

g(p/P )
p

∼ 1
log P

∫ A

a

g(u)
u

du,

4Lamzouri has C(α) = G1(α)αα−2α(1− α)α−1, where G1(x) =
∫∞
0 u−1−1/x log(

∑∞
n=0

(u/2)2n

(n!)2
)du.
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by (2.9). Thus

‖ϕ1a‖
‖a‖ ≤ eγ

(
log2 T + log3 T +

∫ A

a

g(u)
u

du−
∫ 1

a

1
u

du +
2√
A

+ o(1)

)

for all A > 1 > a > 0. We need to minimise the constant term. Since g(u) < 1, the minimum
occurs for a arbitrarily small. On the other hand

∫∞
A

g(u)
u du ≤ ( 1

A

∫∞
A

g2)1/2 = o(1/
√

A), so the
constant is minimized for arbitrarily large A; i.e. it is at most

∫∞
1

g(u)
u du− ∫ 1

0
1−g(u)

u du. Thus

M1(T ) ≤ eγ(log log T + log log log T + κ + o(1)) where κ = sup{L(g) : g ∈ G}.

Here L(g) =
∫∞
1

g(u)
u du − ∫ 1

0
1−g(u)

u du and G is the set of all decreasing g : (0,∞) → (0, 1) for
which

∫∞
0

log 1
1−g2 ≤ 2. As in the proof of Theorem 2.3, let h = log 1

1−g2 so that g = s ◦ h where
s(x) =

√
1− e−x. Now we show κ = 2 log 2− 1. Trivially, by Cauchy-Schwarz, we have

L(g) ≤
√∫ ∞

1

1
u2

du

∫ ∞

1

g(u)2 du ≤
√∫ ∞

0

h ≤
√

2,

so κ ≤ √
2.

Note that the supremum is achieved for
∫∞
0

h = 2. For if
∫∞
0

h < 2, then we can always
increase g by a small amount while keeping it less than 1 and decreasing, while

∫
h is increased

by a prescribed amount – just take g1 = k ◦ g where k : (0, 1) → (0, 1) is increasing and k(x) > x.
With k(x)− x sufficiently small,

∫
h1 ≤ 2 while L(g1) > L(g).

Further, we may take the supremum over g for which g is continuously differentiable and strictly
decreasing, since they can approximate functions in G arbitrarily closely.

Now, for L(g) to be finite (i.e. > −∞) we need
∫ 1

0
1−g(u)

u du to converge. For x ∈ (0, 1),

∫ √
x

x

1− g(u)
u

du ≥ (1− g(x))
∫ √

x

x

1
u

du =
1
2
(1− g(x)) log

1
x

.

The LHS tends to 0 as x → 0+, so we must have

(1− g(x)) log x → 0 as x → 0+.

In particular, g(x) → 1 as x → 0+ (so h(x) →∞ as x → 0+). Also, as in Theorem 2.3, xh(x) → 0
as x →∞. Now, with g = s ◦ h,

∫ ∞

1

g(u)
u

du = [g(u) log u]∞1 −
∫ ∞

1

s′(h(u))h′(u) log u du =
∫ h(1)

0

s′(y) log l(y) dy,

where l = h−1 is the inverse function of h. Also,
∫ 1

0

1− g(u)
u

du = [(1− g(u)) log u]10 +
∫ 1

0

s′(h(u))h′(u) log u du = −
∫ ∞

h(1)

s′(y) log l(y) dy.

Hence L(g) =
∫∞
0

s′ log l and
∫∞
0

l = 2.
Now, using Jensen’s inequality

∫
log fdµ ≤ log(

∫
fdµ) for µ a probability measure ([11], p.62),

we have
∫ ∞

0

s′ log(l/s′) =
∫ ∞

0

log(l/s′) ds ≤ log
(∫ ∞

0

l/s′ ds

)
= log

(∫ ∞

0

l

)
= log 2. (3.3)

Hence ∫ ∞

0

s′ log l ≤ log 2 +
∫ ∞

0

s′ log s′ = log 2 +
∫ 1

0

log
(1− u2

2u

)
du = 2 log 2− 1,
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after some calculation.

The proof of the upper bound leads to the optimum choice for g and the lower bound. We
note that we have equality in (3.3) if l/s′ is constant; i.e. l(x) = cs′(x) for some constant c > 0 —
chosen so that

∫∞
0

l = 2 (i.e. we take c = 2). Thus, actually κ = 2 log 2− 1 and the supremum is
achieved for the function g0, where

g0(x) =

√√√√1− 2

1 +
√

1 + ( 2
x )2

.

In fact, we show that we get the required lower bound by just considering an completely multi-
plicative. To this end we use Corollary 2.5, and define ap by:

ap = g0

( p

P

)
,

where P = log T log log T . As such, by the same methods as before, we have ‖a‖ = T 1+o(1). Let
a > 0 and P = log T log log T . By Corollary 2.5

‖ϕ1a‖
‖a‖ ≥

∏
p

1
1− ap

p

=
∏

p≤aP

1
1− 1

p

∏

p≤aP

1

1 + 1−ap

p−1

∏

p>aP

1
1− ap

p

. (3.4)

Using Merten’s Theorem, the first product on the right is eγ(log aP + o(1)), while the second
product is greater than

exp
{
−

∑

p≤aP

1− ap

p− 1

}
≥ 1− 2

∑

p≤aP

1− g0(p/P )
p

.

The sum is asymptotic to a
log P

∫ a

0
1−g0(u)

u du < ε
log P , for any given ε > 0, for sufficiently small a.

The third product in (3.4) is greater than

exp
{ ∑

p>aP

ap

p

}
= exp

{
(1 + o(1))

log P

∫ ∞

a

g0(u)
u

du

}

by (2.9). Thus

‖ϕ1a‖
‖a‖ ≥ eγ

(
log P +

∫ ∞

a

g0(u)
u

du + log a− ε

)
≥ eγ

(
log P + L(g0)− ε

)

for a sufficiently small. As L(g0) = 2 log 2− 1 and ε arbitrary, this gives the required lower bound.
¤

Lower bounds for ϕα and some further speculations
We can study lower bounds of ϕα via the function

mα(T ) = inf
a ∈ M2

‖a‖ = T

‖ϕαa‖
‖a‖ .

Using very similar techniques, one obtains analogous results to Theorem 3.1:

1
m1(T )

=
6eγ

π2
(log log T + log log log T + 2 log 2− 1 + o(1))

and

log
1

mα(T )
∼ B( 1

α , 1− 1
2α )α(log T )1−α

(1− α)2α(log log T )α
for 1

2 < α < 1.
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We see that mα(T ) corresponds closely to the conjectured minimal order of |ζ(α+ iT )| (see [3] and
[9]). We omit the proofs, but just point out that for an upper bound (for 1/mα(T )) we use

‖a‖
‖ϕαa‖ ≤

∏
p

(
1 +

γp

pα

)
,

which can be obtained in much the same way as (2.5). For the lower bound, we choose ap as −1
times the choice in Theorem 3.1 and use Corollary 2.5.

The above formulae suggest that the supremum (respectively infimum) of ‖ϕαa‖/‖a‖ with
a ∈ M2 and ‖a‖ = T are close to the supremum (resp. infimum) of |ζα| on [1, T ]. One could
therefore speculate further that there is a close connection between ‖ϕαa‖/‖a‖ (for such a) and
|ζ(α + iT )|, and hence between Zα(T ) and Mα(T ). Recent papers by Gonek [4] and Gonek and
Keating [5] suggest this may be possible, or at least that Mα is a lower bound for Zα. On the
Riemann Hypothesis, it was shown in [4] (Theorem 3.5) that ζ(s) may be approximated for σ > 1

2
up to height T by the truncated Euler product

∏

p≤P

1
1− p−s

for P ¿ T .

Thus one might expect that, with a ∈ M2
c+ maximizing ‖ϕαa‖

‖a‖ subject to ‖a‖ = T , and A(s) =∏
p≤P

1
1−app−s (with P ¿ T ),

∫ T

−T

|ζ(α− it)|2|A(it)|2 dt ∼
∫ T

−T

∏

p≤P

∣∣∣(1− pit

pα
)(1− app

it)
∣∣∣
−2

dt =
∫ T

−T

∏

p≤P

|Bp(it)|2 dt

where Bp(s) =
∑

k≥0 bpkp−ks. The heuristics of Gonek and Keating now suggests this is asymptotic
to

2T
∏

p≤P

∑

k≥0

b2
pk ∼ 2T‖ϕαa‖2

if P Â log T log log T (for the last step). Thus it would follow that

Zα(T )2 ≥
∫ T

−T
|ζ(α− it)|2|A(it)|2 dt
∫ T

−T
|A(it)|2 dt

∼ 2T‖ϕαa‖2
2T‖a‖2 ∼ Mα(T )2

and hence Zα(T ) & Mα(T ).
As mentioned before, this would contradict Lamzouri’s suggestion (that log Zα(T ) ∼ C(α)(log T )1−α(log log T )−α)

since C(α) < c(α) (notation from Theorem 2.3) for α sufficiently close to 1
2 at least. It is unclear

to the author which possibility is more likely.
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Appendix
Here we show that if f 6∈ l2, we cannot hope to ‘capture’ ϕf by considering the mapping on some non-trivial
subset of l2.

Proposition A1
Suppose

∑
p |f(p)|2 diverges, where p ranges over the primes. Then ϕfa ∈ l2 for a ∈ l2 if and only if a = 0.

Proof. Suppose there exists a ∈ l2 with a 6= 0 such that ϕfa ∈ l2. Let am be the first non-zero coordinate
for a. Let b = (bn) = ϕfa ∈ l2. Consider bpm for p prime such that p 6 |m. We have

bpm =
∑

d|pm

f(d)apm/d = amf(p) + k(p),

where k(p) =
∑

d|m f(d)apm/d. Since

∑
p

|k(p)|2 ≤
∑

p

(∑

d|m
|f(d)|2

∑

d|m
|apm/d|2

)
≤ A

∑

d|m

∑
p

|apm/d|2 < ∞,

and
∑

p |bpm|2 converges, we must have

|am|2
∑

p

|f(p)|2 < ∞.

This is a contradiction.
¤
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