A lower bound for the Lindelöf function associated to generalised integers ${ }^{1}$

Titus W. Hilberdink

Abstract

In this paper we study generalised prime systems for which the integer counting function $N_{\mathcal{P}}(x)$ is asymptotically well-behaved, in the sense that $N_{\mathcal{P}}(x)=\rho x+O\left(x^{\beta}\right)$, where ρ is a positive constant and $\beta<\frac{1}{2}$. For such systems, the associated zeta function $\zeta_{\mathcal{P}}(s)$ has finite order for $\sigma=\Re s>\beta$, and the Lindelöf function $\mu_{\mathcal{P}}(\sigma)$ may be defined.

We prove that for all such systems, $\mu_{\mathcal{P}}(\sigma) \geq \mu_{0}(\sigma)$ for $\sigma>\beta$, where

$$
\mu_{0}(\sigma)=\left\{\begin{array}{cl}
\frac{1}{2}-\sigma & \text { if } \sigma<\frac{1}{2} \\
0 & \text { if } \sigma \geq \frac{1}{2}
\end{array}\right.
$$

Introduction

A generalised prime system (or g-prime system) \mathcal{P} is a sequence of positive reals $p_{1}, p_{2}, p_{3}, \ldots$ satisfying

$$
1<p_{1} \leq p_{2} \leq \cdots \leq p_{n} \leq \cdots
$$

and for which $p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. From these can be formed the system \mathcal{N} of generalised integers or Beurling integers; that is, the numbers of the form

$$
p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

where $k \in \mathbb{N}$ and $a_{1}, \ldots, a_{k} \in \mathbb{N}_{0}{ }^{2}$
Such systems were first introduced by Beurling [3] and have been studied by many authors since then (see in particular [2]).

Much of the theory concerns connecting the asymptotic behaviour of the g-prime and ginteger counting functions, $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, defined respectively by ${ }^{3}$

$$
\pi_{\mathcal{P}}(x)=\sum_{p \in \mathcal{P}, p \leq x} 1 \quad \text { and } \quad N_{\mathcal{P}}(x)=\sum_{n \in \mathcal{N}, n \leq x} 1
$$

The methods invariably involve the associated Beurling zeta function, defined formally by

$$
\begin{equation*}
\zeta_{\mathcal{P}}(s)=\prod_{p \in \mathcal{P}} \frac{1}{1-p^{-s}}=\sum_{n \in \mathcal{N}} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

In this paper, we shall be concerned with g-prime systems \mathcal{P} for which

$$
\begin{equation*}
N_{\mathcal{P}}(x)=\rho x+O\left(x^{\beta}\right) \tag{2}
\end{equation*}
$$

for some $\beta<\frac{1}{2}$ and $\rho>0$. (For example, for the rational primes when $\mathcal{N}=\mathbb{N}$, this is true with $\beta=0$ and $\rho=1$.)

[^0]For such systems, the product and series (1) converge for $\Re s>1$ and $\zeta_{\mathcal{P}}(s)$ has an analytic continuation to the half-plane $\Re s>\beta$ except for a simple pole at $s=1$ with residue ρ. Indeed, writing $N_{\mathcal{P}}(x)=\rho x+E(x)$ with $E(x)=O\left(x^{\beta}\right)$, we have for $\Re s>1$,

$$
\begin{aligned}
\zeta_{\mathcal{P}}(s) & =\int_{1-}^{\infty} x^{-s} d N_{\mathcal{P}}(x)=s \int_{1}^{\infty} \frac{N_{\mathcal{P}}(x)}{x^{s+1}} d x=s \int_{1}^{\infty} \frac{\rho x+E(x)}{x^{s+1}} d x \\
& =\frac{\rho s}{s-1}+s \int_{1}^{\infty} \frac{E(x)}{x^{s+1}} d x
\end{aligned}
$$

The integral on the right converges for $\Re s>\beta$ and is an analytic function for such s.
Furthermore, $\zeta_{\mathcal{P}}(s)$ has finite order for $\Re s>\beta$; i.e. $\zeta_{\mathcal{P}}(\sigma+i t)=O\left(|t|^{A}\right)$ as $|t| \rightarrow \infty$ for some constant A for $\sigma>\beta$ (indeed, in our case this is true with $A=1$). We can therefore define, as is usual, the Lindelöf function $\mu_{\mathcal{P}}(\sigma)$ to be the infimum of all real numbers λ such that $\zeta_{\mathcal{P}}(\sigma+i t)=O\left(|t|^{\lambda}\right)$. It is well-known that, as a function of $\sigma, \mu_{\mathcal{P}}(\sigma)$ is non-negative, decreasing, and convex (and hence continuous) (see, for example, [5]). Since $\mu_{\mathcal{P}}(\sigma)=0$ for $\sigma>1$, and (from above) $\mu_{\mathcal{P}}(\sigma) \leq 1$ for $\sigma>\beta$, it follows by convexity that

$$
\mu_{\mathcal{P}}(\sigma) \leq \frac{1-\sigma}{1-\beta} \quad \text { for } \beta<\sigma \leq 1
$$

For $\mathcal{P}=\mathbb{P}($ so that $\mathcal{N}=\mathbb{N})$, the Lindelöf Hypothesis is the conjecture that $\mu_{\mathbb{P}}(\sigma)=\mu_{0}(\sigma)$ for all σ, where

$$
\mu_{0}(\sigma)=\left\{\begin{array}{cc}
\frac{1}{2}-\sigma & \text { if } \sigma<\frac{1}{2} \\
0 & \text { if } \sigma \geq \frac{1}{2}
\end{array}\right.
$$

In this paper we prove that for all g-prime systems satisfying $(2), \mu_{\mathcal{P}}(\sigma)$ must be at least as large as $\mu_{0}(\sigma)$; i.e.

$$
\mu_{\mathcal{P}}(\sigma) \geq \mu_{0}(\sigma) \quad \text { for } \sigma>\beta
$$

This is, of course, trivial for $\sigma \geq \frac{1}{2}$, so we shall only concern ourselves with $\beta<\sigma<\frac{1}{2}$.
For the proof we employ the same methods (but strengthened) as those used in [4], where (essentially) it was shown that $\mu_{\mathcal{P}}(\sigma)>0$ for any $\sigma<\frac{1}{2}$, in order to prove that for such systems we have $\psi_{\mathcal{P}}(x)-x=\Omega\left(x^{\frac{1}{2}-\delta}\right)$ for every $\delta>0^{4}$.

Main result

Theorem 1

Let \mathcal{P} be a g-prime system for which

$$
N_{\mathcal{P}}(x)=\rho x+O\left(x^{\beta}\right)
$$

for some $\beta<\frac{1}{2}$ and $\rho>0$. Let $\mu_{\mathcal{P}}(\sigma)$ and $\mu_{0}(\sigma)$ be as defined above. Then for $\sigma>\beta$, we have

$$
\mu_{\mathcal{P}}(\sigma) \geq \mu_{0}(\sigma)
$$

Proof. As mentioned above, we need only consider $\beta<\sigma<\frac{1}{2}$.
Suppose, for a contradiction, that we have $\mu_{\mathcal{P}}(\sigma)<\frac{1}{2}-\sigma$ for some $\sigma \in\left(\beta, \frac{1}{2}\right)$. Then we can write

$$
\mu_{\mathcal{P}}(\sigma)=\frac{1}{2}-\sigma-\delta
$$

[^1]for some $\delta>0$.
Let $\zeta_{N}(s)=\sum_{n \leq N} n^{-s}$, where the sum ranges over $n \in \mathcal{N}$ (for clarity, we shall drop the subscript \mathcal{P} throughout this proof). By identical arguments as those used in [4], we find that there exists constants $c_{1}, c_{2}>0$ such that for $R \geq c_{1} N$,
\[

$$
\begin{equation*}
\sum_{r=1}^{R} \int_{0}^{2 r-1}\left|\zeta_{N}(\sigma+i t)\right|^{2} d t \geq c_{2} R^{2} N^{1-2 \sigma} \tag{3}
\end{equation*}
$$

\]

Also, writing $s=\sigma+i t$, and following the arguments in [4], we have

$$
\zeta_{N}(s)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{\zeta_{\mathcal{P}}(s+w) N^{w}}{w} d w+O\left(\frac{N^{c}}{T(c+\sigma-1)}\right)+O\left(\frac{N^{1-\sigma}}{T} \sum_{\substack { \frac{N}{2}<\begin{subarray}{c}{n<2 N \\
n \in \mathcal{N}{ \frac { N } { 2 } < \begin{subarray} { c } { n < 2 N \\
n \in \mathcal { N } } }\end{subarray}} \frac{1}{|n-N|}\right)
$$

for $|t|<T, c>1-\sigma$ and $N \notin \mathcal{N}$.
Now push the contour in the integral to the left as far as $\Re w=-\eta$, where $\eta>0$, picking up the residues at $w=0$ and $w=1-s$ (since $|t|<T)$. Here, η is chosen sufficiently small such that $\sigma-\eta>\beta$ and $\mu_{\mathcal{P}}(\sigma-\eta)<\frac{1}{2}-\sigma$. This is possible since $\mu_{\mathcal{P}}(\cdot)$ is continuous. Thus $\zeta_{\mathcal{P}}(\sigma-\eta+i t)=O\left(|t|^{\frac{1}{2}-\sigma-\delta^{\prime}}\right)$ for some $\delta^{\prime}>0$.

The contribution along the horizontal line $[-\eta+i T, c+i T]$ is, in modulus, less than

$$
\frac{1}{2 \pi} \int_{-\eta}^{c} \frac{N^{y}\left|\zeta_{\mathcal{P}}(\sigma+y+i(t+T))\right|}{\sqrt{y^{2}+T^{2}}} d y=O\left(N^{c} T^{-\frac{1}{2}-\sigma-\delta^{\prime}}\right)
$$

Similarly on $[-\eta-i T, c-i T]$. For the integral along $\Re w=-\eta$, we have

$$
\begin{aligned}
\left|\frac{1}{2 \pi i} \int_{-\eta-i T}^{-\eta+i T} \frac{\zeta_{\mathcal{P}}(s+w) N^{w}}{w} d w\right| & \leq \frac{N^{-\eta}}{2 \pi} \int_{-T}^{T} \frac{\left|\zeta_{\mathcal{P}}(\sigma-\eta+i(t+y))\right|}{\sqrt{\eta^{2}+y^{2}}} d y \\
& =O\left(N^{-\eta} \int_{-T}^{T} \frac{T^{\frac{1}{2}-\sigma-\delta^{\prime}}}{\sqrt{\eta^{2}+y^{2}}} d y\right) \\
& =O\left(N^{-\eta} T^{\frac{1}{2}-\sigma-\delta^{\prime}} \log T\right)
\end{aligned}
$$

The residues at $w=0$ and $w=1-s$ are, respectively, $\zeta_{\mathcal{P}}(s)$ and $\rho N^{1-s} /(1-s)=O\left(\frac{N^{1-\sigma}}{|t|+1}\right)$. Putting these observations together and letting $c=1-\sigma+\frac{1}{\log N}\left(\right.$ so that $\left.N^{c}=e N^{1-\sigma}\right)$, we have

$$
\begin{align*}
\zeta_{N}(\sigma+i t)=\zeta_{\mathcal{P}}(\sigma+i t) & +O\left(\frac{N^{1-\sigma}}{|t|+1}\right)+O\left(N^{1-\sigma} T^{-\frac{1}{2}-\sigma-\delta^{\prime}}\right)+O\left(N^{-\eta} T^{\frac{1}{2}-\sigma-\delta^{\prime}} \log T\right) \\
& +O\left(\frac{N^{1-\sigma} \log N}{T}\right)+O\left(\frac{N^{1-\sigma}}{T} \sum_{\substack{\frac{N}{2}<n<2 N \\
n \in \mathcal{N}}} \frac{1}{|n-N|}\right) \tag{4}
\end{align*}
$$

for $|t|<T$ and $N \notin \mathcal{N}$.
Fix $\alpha \in\left(0, \frac{1}{4 \rho}\right)$, and let $N \rightarrow \infty$ in such a way that $(N-\alpha, N+\alpha) \cap \mathcal{N}=\emptyset$. This is possible for if not, then $n^{\prime}<n+4 \alpha$ (where n and n^{\prime} are consecutive g-integers), which leads to $N(x) \gtrsim \frac{1}{4 \alpha} x-$ a contradiction as $\frac{1}{4 \alpha}>\rho$.

For such N, we can bound the final sum in (4) as follows. We have

$$
\begin{aligned}
\sum_{\substack{\frac{N}{2}<n<2 N \\
n \in \mathcal{N}}} \frac{1}{|n-N|} & =\sum_{\substack{\alpha \leq|n-N|<\sqrt{N} \\
n \in \mathcal{N}}} \frac{1}{|n-N|}+\sum_{\substack{\sqrt{N} \leq|n-N|<\frac{N}{2} \\
n \in \mathcal{N}}} \frac{1}{|n-N|}+O(1) \\
& =O(N(N+\sqrt{N})-N(N-\sqrt{N}))+O\left(\frac{N\left(\frac{3}{2} N\right)}{\sqrt{N}}\right)+O(1) \\
& =O(\sqrt{N}),
\end{aligned}
$$

using $N(x)=\rho x+O\left(x^{\beta+\varepsilon}\right)$ with $\beta<\frac{1}{2}$. (In fact, the better estimate $O\left(N^{\beta+\varepsilon}\right)$ is possible by splitting the sum over smaller ranges, but $O(\sqrt{N})$ suffices for our purposes.) Hence (4) becomes

$$
\begin{equation*}
\zeta_{N}(\sigma+i t)=\zeta_{\mathcal{P}}(\sigma+i t)+O\left(\frac{N^{1-\sigma}}{|t|+1}\right)+O\left(\frac{N^{1-\sigma}}{T^{\frac{1}{2}+\sigma+\delta^{\prime}}}\right)+O\left(N^{-\eta} T^{\frac{1}{2}-\sigma-\delta^{\prime}} \log T\right)+O\left(\frac{N^{\frac{3}{2}-\sigma}}{T}\right) . \tag{5}
\end{equation*}
$$

Choosing $T=N^{1+\eta}$ makes the last three O-terms all $O\left(N^{\frac{1}{2}-\sigma-\eta^{\prime}}\right)$ for some $\eta^{\prime}>0$. Using the hypothetical bound $\zeta_{\mathcal{P}}(\sigma+i t)=O\left(|t|^{\frac{1}{2}-\sigma-\delta^{\prime}}\right)$, (5) becomes

$$
\zeta_{N}(\sigma+i t)=O\left(|t|^{\frac{1}{2}-\sigma-\delta^{\prime}}\right)+O\left(\frac{N^{1-\sigma}}{|t|+1}\right)+O\left(N^{\frac{1}{2}-\sigma-\eta^{\prime}}\right) .
$$

Using the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\sum_{r=1}^{R} \int_{0}^{2 r-1}\left|\zeta_{N}(\sigma+i t)\right|^{2} d t & =O\left(\sum_{r=1}^{R} \int_{0}^{2 r-1} t^{1-2 \sigma-2 \delta^{\prime}} d t\right)+O\left(\sum_{r=1}^{R} \int_{0}^{2 r-1} \frac{N^{2-2 \sigma}}{(t+1)^{2}} d t\right) \\
& +O\left(\sum_{r=1}^{R} \int_{0}^{2 r-1} N^{1-2 \sigma-2 \eta^{\prime}} d t\right) \\
& =O\left(R^{3-2 \sigma-2 \delta^{\prime}}\right)+O\left(R N^{2-2 \sigma}\right)+O\left(R^{2} N^{1-2 \sigma-2 \eta^{\prime}}\right) .
\end{aligned}
$$

Taking R to be of slightly larger order than N, say $R=N \log N$, the RHS becomes $o\left(R^{2} N^{1-2 \sigma}\right)$, which contradicts (3).

Remark. The result is best possible - at least if we assume the Lindelöf Hypothesis. If $\mathcal{P}=\mathbb{P}$, then (2) holds with $\beta=0$ and, on the Lindelöf Hypothesis, $\mu_{\mathcal{P}}=\mu_{0}$. However, it is conceivable that the result might be subject to further improvements if (2) holds with $\beta>0$. The example below shows this is not the case - again on the assumption of the Lindelöf Hypothesis.

Let $\beta \in\left(0, \frac{1}{2}\right)$ and denote by \mathcal{P} the g -prime system made up of p and $p^{1 / \beta}$ where p varies over all the primes; i.e.

$$
\mathcal{P}=\mathbb{P} \cup\left\{p^{\frac{1}{\beta}}: p \in \mathbb{P}\right\} .
$$

For this system, $N_{\mathcal{P}}(x)$ satisfies (2). Indeed,

$$
N_{\mathcal{P}}(x)=\sum_{n \leq x^{\beta}}\left[\frac{x}{n^{1 / \beta}}\right]=\sum_{n \leq a^{\beta}}\left[\frac{x}{n^{1 / \beta}}\right]+\sum_{n \leq b}\left[\left(\frac{x}{n}\right)^{\beta}\right]-\left[a^{\beta}\right][b],
$$

for any $a b=x$ (see [1] for such manipulations). Putting $a=x^{\lambda}$, we obtain

$$
\begin{aligned}
N_{\mathcal{P}}(x) & =x \sum_{n \leq x^{\lambda \beta}} \frac{1}{n^{1 / \beta}}+x^{\beta} \sum_{n \leq x^{1-\lambda}} \frac{1}{n^{\beta}}-x^{\lambda \beta+1-\lambda}+O\left(x^{\lambda \beta}\right)+O\left(x^{1-\lambda}\right) \\
& =x\left(\zeta\left(\frac{1}{\beta}\right)-\frac{\beta}{1-\beta} x^{-\lambda \beta\left(\frac{1}{\beta}-1\right)}+O\left(x^{-\lambda \beta\left(\frac{1}{\beta}\right)}\right)\right) \\
& +x^{\beta}\left(\frac{x^{(1-\lambda)(1-\beta)}}{1-\beta}+\zeta(\beta)+O\left(x^{-(1-\lambda) \beta}\right)-x^{\lambda \beta+1-\lambda}+O\left(x^{\lambda \beta}\right)+O\left(x^{1-\lambda}\right)\right. \\
& =\zeta\left(\frac{1}{\beta}\right) x+\zeta(\beta) x^{\beta}+O\left(x^{\lambda \beta}\right)+O\left(x^{1-\lambda}\right) .
\end{aligned}
$$

Choosing $\lambda=\frac{1}{1+\beta}$ so that $\lambda \beta=1-\lambda$ minimises the error. This gives

$$
N_{\mathcal{P}}(x)=\zeta\left(\frac{1}{\beta}\right) x+\zeta(\beta) x^{\beta}+O\left(x^{\frac{\beta}{1+\beta}}\right)
$$

The associated Beurling zeta function is $\zeta(s) \zeta(s / \beta)$. On the Lindelöf Hypothesis, it follows that $\mu_{\zeta(\cdot / \beta)}(\sigma)=0$ for $\sigma \geq \frac{\beta}{2}$. Thus $\mu_{\mathcal{P}}(\sigma) \leq \frac{1}{2}-\sigma$ for $\beta<\sigma<\frac{1}{2}$. By Theorem 1, we must have \geq as well, so in fact there is equality; i.e.

$$
\mu_{\mathcal{P}}(\sigma)=\frac{1}{2}-\sigma,
$$

for $\beta<\sigma<\frac{1}{2}$.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[2] P. T. Bateman and H. G. Diamond, Asymptotic distribution of Beurling's generalised prime numbers in: Studies in Number Theory 6, Prentice-Hall, 1969, pp. 152-212.
[3] A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés, I, Acta Math. 68 (1937), 255-291.
[4] T. W. Hilberdink, Well-behaved Beurling primes and integers, J. Number Theory 112 (2005) 332344.
[5] E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University Press, 1986.
Titus W. Hilberdink, Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK.
E-mail address: t.w.hilberdink@reading.ac.uk

[^0]: ${ }^{1}$ Journal of Number Theory 122 (2007) 336-341.
 ${ }^{2}$ Here and henceforth, $\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, and $\mathbb{P}=\{2,3,5, \ldots\}$ - the set of primes.
 ${ }^{3}$ We write $\sum_{p \in \mathcal{P}}$ to mean a sum over all the g-primes, counting multiplicities. Similarly for $\sum_{n \in \mathcal{N}}$.

[^1]: ${ }^{4}$ Here $\psi_{\mathcal{P}}(x)$ is the generalised Chebychev function: $\psi_{\mathcal{P}}(x)=\sum_{p^{k} \leq x, p \in \mathcal{P}, k \in \mathbb{N}} \log p$ (counting multiplicities).

