Ω-results for Beurling's zeta function and lower bounds for the generalised Dirichlet divisor problem ${ }^{1}$

Titus W. Hilberdink

Abstract

In this paper we study generalised prime systems for which the integer counting function $N_{\mathcal{P}}(x)$ is asymptotically well-behaved, in the sense that $N_{\mathcal{P}}(x)=\rho x+O\left(x^{\beta}\right)$, where ρ is a positive constant and $\beta<\frac{1}{2}$. For such systems, the associated zeta function $\zeta_{\mathcal{P}}(s)$ is holomorphic for $\sigma=\Re s>\beta$. We prove that for $\beta<\sigma<\frac{1}{2}, \int_{0}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t=\Omega\left(T^{2-2 \sigma-\varepsilon}\right)$ for any $\varepsilon>0$, and also for $\varepsilon=0$ for all such σ except possibly one value.

The Dirichlet divisor problem for generalised integers concerns the size of the error term in $N_{k \mathcal{P}}(x)-\operatorname{Res}_{s=1}\left(\zeta_{\mathcal{P}}(s)^{k} x^{s} / s\right)$, which is $O\left(x^{\theta}\right)$ for some $\theta<1$. Letting α_{k} denote the infimum of such θ, we show that $\alpha_{k} \geq \frac{1}{2}-\frac{1}{2 k}$.

Keywords: Beurling's generalised primes, Dirichlet divisor problem. AMS Mathematics subject classification 2010: 11N80.

1. Introduction

A generalised prime system (or g-prime system) \mathcal{P} is a sequence of positive reals $p_{1}, p_{2}, p_{3}, \ldots$ satisfying

$$
1<p_{1} \leq p_{2} \leq \cdots \leq p_{n} \leq \cdots
$$

and for which $p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. From these can be formed the system \mathcal{N} of generalised integers or Beurling integers; that is, the numbers of the form

$$
p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

where $k \in \mathbb{N}$ and $a_{1}, \ldots, a_{k} \in \mathbb{N}_{0} .{ }^{2}$ Such systems were first introduced by Beurling [2] and have been studied by many authors since then (see in particular [1]). Define the g-integer counting function $N_{\mathcal{P}}(x)$ and the associated Beurling zeta function, respectively, by

$$
N_{\mathcal{P}}(x)=\sum_{n \in \mathcal{N}, n \leq x} 1, \quad \zeta_{\mathcal{P}}(s)=\sum_{n \in \mathcal{N}} \frac{1}{n^{s}} .
$$

(Here, $\sum_{n \in \mathcal{N}}$ means a sum over all the g -integers, counting multiplicities.) In this paper, we shall be concerned with g-prime systems for which

$$
\begin{equation*}
N_{\mathcal{P}}(x)=\rho x+O\left(x^{\beta}\right), \tag{1.1}
\end{equation*}
$$

for some $\beta<\frac{1}{2}$ and $\rho>0$. Then $\zeta_{\mathcal{P}}(s)$ is defined and holomorphic for $\Re s>1$, and has an analytic continuation to the half-plane $\Re s>\beta$ except for a simple pole at $s=1$ with residue ρ. Furthermore, $\zeta_{\mathcal{P}}(s)$ has finite order for $\Re s>\beta$; i.e. $\zeta_{\mathcal{P}}(\sigma+i t)=O\left(|t|^{\lambda}\right)$ for some λ for $\sigma>\beta$. Let $\mu_{\mathcal{P}}(\sigma)$ denote the infimum of all such λ. It is well-known that $\mu_{\mathcal{P}}(\sigma)$ is non-negative,

[^0]decreasing, and convex (and hence continuous) (see, for example, [5]). For $\mathcal{P}=\mathbb{P}$ (so that $\mathcal{N}=\mathbb{N})$, the Lindelöf Hypothesis is the conjecture that $\mu_{\mathbb{P}}(\sigma)=\mu_{0}(\sigma)$ for all σ, where
\[

\mu_{0}(\sigma)=\left\{$$
\begin{array}{cl}
\frac{1}{2}-\sigma & \text { if } \sigma<\frac{1}{2} \\
0 & \text { if } \sigma \geq \frac{1}{2}
\end{array}
$$.\right.
\]

In [4], it was proven that for all g -prime systems satisfying (1.1), $\mu_{\mathcal{P}}(\sigma)$ must be at least as large as $\mu_{0}(\sigma)$: i.e. $\mu_{\mathcal{P}}(\sigma) \geq \frac{1}{2}-\sigma$ for $\sigma \in\left(\beta, \frac{1}{2}\right)$. In this paper we prove a stronger result by considering the mean square behaviour of $\zeta_{\mathcal{P}}(\sigma+i t)$. For $\sigma>\beta$, define $\nu_{\mathcal{P}}(\sigma)$ to be the infimum of numbers λ such that

$$
\int_{1}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t=O\left(T^{1+2 \lambda}\right)
$$

As in the case of $\mu_{\mathcal{P}}(\sigma), \nu_{\mathcal{P}}(\sigma)$ is non-negative and convex decreasing (cf. [6], §7.8). Trivially, $\nu_{\mathcal{P}}(\sigma) \leq \mu_{\mathcal{P}}(\sigma)$. We show here that $\nu_{\mathcal{P}}(\sigma) \geq \mu_{0}(\sigma)$. In fact we prove slightly more.

Theorem 1

Let \mathcal{P} be a g-prime system for which (1.1) holds for some $\beta<\frac{1}{2}$ and $\rho>0$. Then $\nu_{\mathcal{P}}(\sigma) \geq \mu_{0}(\sigma)$ for $\sigma \in\left(\beta, \frac{1}{2}\right)$. Furthermore,

$$
\begin{equation*}
\int_{0}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t=o\left(T^{2-2 \sigma}\right) \tag{1.2}
\end{equation*}
$$

can hold for at most one value of σ in this range. In this case $T^{2 \sigma-2} \int_{0}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t$ is unbounded for all other values of σ.

Remark. For $\mathcal{P}=\mathbb{P}$, we have $\nu_{\mathcal{P}}(\sigma)=\mu_{0}(\sigma)$, which shows the first part of Theorem 1 is best possible. However, in this case we have the asymptotic formula

$$
\int_{1}^{T}|\zeta(\sigma+i t)|^{2} d t \sim \frac{\zeta(2-2 \sigma)}{(2 \pi)^{1-2 \sigma}(2-2 \sigma)} T^{2-2 \sigma}
$$

for $0<\sigma<\frac{1}{2}$, showing that the exceptional value need not exist. In fact it seems unlikely an exceptional value exists and hence that $\int_{0}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t=\Omega\left(T^{2-2 \sigma}\right)$ for all $\sigma \in\left(\beta, \frac{1}{2}\right)$, but we cannot quite show this. Furthermore it seems plausible that we should have $\int_{0}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t \geq$ $C_{\sigma} T^{2-2 \sigma}$ for some $C_{\sigma}>0$.

2. Dirichlet divisor problems for g-primes

For a g -prime system satisfying (1.1) (with $\beta<1$), we can study the equivalent of the Dirichlet divisor problem concerning the error term in the asymptotic formula for the average of the 'generalised divisor' function. For $k \in \mathbb{N}$, let $k \mathcal{P}$ denote the g-prime system obtained from \mathcal{P} by letting every g-prime from \mathcal{P} be counted k times. (If an original g-prime has multiplicity m, then in the new system it will have multiplicity $k m$.) The Beurling zeta function of $k \mathcal{P}$ is

$$
\zeta_{k \mathcal{P}}(s)=\zeta_{\mathcal{P}}(s)^{k} .
$$

By standard methods using Perron's formula,

$$
N_{k \mathcal{P}}(x)=\operatorname{Res}_{s=1}\left\{\frac{\zeta_{\mathcal{P}}(s)^{k}}{s} x^{s}\right\}+\Delta_{\mathcal{P}, k}(x)=x P_{k-1}(\log x)+\Delta_{\mathcal{P}, k}(x),
$$

where $P_{k-1}(\cdot)$ is a polynomial of degree $k-1$ and $\Delta_{\mathcal{P}, k}(x)=O\left(x^{\theta}\right)$ for some $\theta<1$, depending on k. Let α_{k} denote the infimum of such θ. The generalised Dirichlet divisor problem is the problem of determining α_{k}. Also let β_{k} denote the infimum of ϕ for which

$$
\int_{0}^{x} \Delta_{\mathcal{P}, k}(y)^{2} d y=O\left(x^{1+2 \phi}\right)
$$

Trivially, $\beta_{k} \leq \alpha_{k}$.
For \mathbb{P}, it is known that

$$
\begin{equation*}
\alpha_{k} \geq \beta_{k} \geq \frac{1}{2}-\frac{1}{2 k} \tag{2.1}
\end{equation*}
$$

and it is conjectured that there is equality throughout (actually $\beta_{k}=\frac{1}{2}-\frac{1}{2 k}$ for all k is equivalent to the Lindelöf Hypothesis - see [6], Theorem 13.4). We use Theorem 1 to show that (2.1) remains true for \mathcal{P} satisfying (1.1). In fact we have the following two corollaries:

Corollary 2

Let \mathcal{P} satisfy (1.1) for some $\beta<\frac{1}{2}$. Then for $\sigma \in\left(\beta, \frac{1}{2}-\frac{1}{2 k}\right)$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2 k}}{|\sigma+i t|^{2}} d t \tag{2.2}
\end{equation*}
$$

diverges. Further, if $\frac{1}{2}-\frac{1}{2 k}$ is not the exceptional value in (1.2), then the integral also diverges for $\sigma=\frac{1}{2}-\frac{1}{2 k}$.

Corollary 3

Let \mathcal{P} satisfy (1.1) for some $\beta<\frac{1}{2}$. With α_{k} and β_{k} as above, $\alpha_{k} \geq \beta_{k} \geq \max \left\{\beta, \frac{1}{2}-\frac{1}{2 k}\right\}$.

3. Proofs

Proof of Theorem 1. If $\nu_{\mathcal{P}}\left(\sigma^{\prime}\right)<\frac{1}{2}-\sigma^{\prime}$ for some $\sigma^{\prime} \in\left(\beta, \frac{1}{2}\right)$ then, by continuity of $\nu_{\mathcal{P}}(\cdot)$, $\nu_{\mathcal{P}}(\sigma)<\frac{1}{2}-\sigma$ throughout some interval around σ^{\prime} and (1.2) holds for all such σ; in particular for two such values. We shall show that this is impossible.

Suppose, for a contradiction, that (1.2) holds for $\sigma=\sigma_{0}, \sigma_{1}$ where $\beta<\sigma_{0}<\sigma_{1}<\frac{1}{2}$.
For $N \geq 1$ let $\zeta_{N, \mathcal{P}}(s)=\sum_{n \leq N} n^{-s}$, where the sum ranges over $n \in \mathcal{N}$. As was stated in [4] (and shown in [3]), for $\sigma<\frac{1}{2}$ there exist constants $c_{1}, c_{2}>0$ such that for $R \geq c_{1} N$,

$$
\begin{equation*}
\sum_{r=1}^{R} \int_{0}^{2 r-1}\left|\zeta_{N, \mathcal{P}}(\sigma+i t)\right|^{2} d t \geq c_{2} R^{2} N^{1-2 \sigma} \tag{3.1}
\end{equation*}
$$

Also, writing $s=\sigma+i t$, and following the arguments in [3], we have

$$
\begin{equation*}
\zeta_{N, \mathcal{P}}(s)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{\zeta_{\mathcal{P}}(s+w) N^{w}}{w} d w+O\left(\frac{N^{c}}{T(c+\sigma-1)}\right)+O\left(\frac{N^{1-\sigma}}{T} \sum_{\substack{\frac{N}{2}<n<2 N \\ n \in \mathcal{N}}} \frac{1}{|n-N|}\right) \tag{3.2}
\end{equation*}
$$

for $|t|<T, c>1-\sigma$ and $N \notin \mathcal{N}$. We shall put $c=1-\sigma+\frac{1}{\log N}$ and choose N in such a way that $(N-\alpha, N+\alpha) \cap \mathcal{N}=\emptyset$. (As was shown in [4], this is possible for arbitrarily large N if
$0<\alpha<\frac{1}{4 \rho}$.) With this choice of N, the final sum in (3.2) was shown to be $O(\sqrt{N})$. As such (3.2) becomes

$$
\begin{equation*}
\zeta_{N, \mathcal{P}}(s)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{\zeta_{\mathcal{P}}(s+w) N^{w}}{w} d w+O\left(\frac{N^{\frac{3}{2}-\sigma}}{T}\right) . \tag{3.3}
\end{equation*}
$$

Now put $\sigma=\sigma_{1}$ and push the contour in the integral to the left as far as $\Re w=\sigma_{0}-\sigma_{1}<0$, picking up the residues at $w=0$ and $w=1-s$ (since $|t|<T)$.

The contribution along the horizontal line $\left[\sigma_{0}-\sigma_{1}+i T, c+i T\right]$ is, in modulus, less than

$$
\frac{1}{2 \pi T} \int_{\sigma_{0}-\sigma_{1}}^{c} N^{y}\left|\zeta_{\mathcal{P}}\left(\sigma_{1}+y+i(t+T)\right)\right| d y
$$

Using the uniform bound $\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|=O\left(t^{\frac{1-\sigma}{1-\beta}+\varepsilon}\right)$, this is at most a constant times

$$
\begin{equation*}
\frac{1}{T} \int_{\sigma_{0}-\sigma_{1}}^{1-\sigma_{1}} T^{\frac{1-\sigma_{1}-y}{1-\beta}+\varepsilon} N^{y} d y+\frac{1}{T} \int_{1-\sigma_{1}}^{1-\sigma_{1}+\frac{1}{\log N}} T^{\varepsilon} N^{y} d y=O\left(T^{\frac{\beta-\sigma_{0}}{1-\beta}+\varepsilon} N^{\sigma_{0}-\sigma_{1}}\right)+O\left(T^{\varepsilon-1} N^{1-\sigma_{1}}\right) \tag{3.4}
\end{equation*}
$$

Similarly on $\left[\sigma_{0}-\sigma_{1}-i T, c-i T\right]$.
The integral along $\Re w=\sigma_{0}-\sigma_{1}$ is at most

$$
\begin{align*}
\frac{N^{\sigma_{0}-\sigma_{1}}}{2 \pi} \int_{-T}^{T} \frac{\left|\zeta_{\mathcal{P}}\left(\sigma_{0}+i(t+y)\right)\right|}{\sqrt{\left(\sigma_{1}-\sigma_{0}\right)^{2}+y^{2}}} d y & =O\left(N^{\sigma_{0}-\sigma_{1}} \int_{1}^{2 T} \frac{\left|\zeta_{\mathcal{P}}\left(\sigma_{0}+i y\right)\right|}{y} d y\right) \\
& =o\left(N^{\sigma_{0}-\sigma_{1}} T^{\frac{1}{2}-\sigma_{0}}\right) \tag{3.5}
\end{align*}
$$

using 3 the hypothetical bound $\int_{0}^{T}\left|\zeta_{\mathcal{P}}\left(\sigma_{0}+i t\right)\right|^{2} d t=o\left(T^{2-2 \sigma_{0}}\right)$.
The residues at $w=0$ and $w=1-s$ are, respectively, $\zeta_{\mathcal{P}}(s)$ and $\rho N^{1-s} /(1-s)=O\left(\frac{N^{1-\sigma_{1}}}{|t|+1}\right)$. Putting (3.3), (3.4), and (3.5) together gives

$$
\zeta_{N, \mathcal{P}}\left(\sigma_{1}+i t\right)=\zeta_{\mathcal{P}}\left(\sigma_{1}+i t\right)+O\left(\frac{N^{1-\sigma_{1}}}{|t|+1}\right)+O\left(N^{1-\sigma_{1}} T^{\varepsilon-1}\right)+o\left(N^{\sigma_{0}-\sigma_{1}} T^{\frac{1}{2}-\sigma_{0}}\right)+O\left(\frac{N^{\frac{3}{2}-\sigma_{1}}}{T}\right)
$$

for $|t|<T$. (Note that the first O-term in (3.4) is superfluous since $\frac{\beta-\sigma_{0}}{1-\beta}<\frac{1}{2}-\sigma_{0}$.) Hence, using $(a+b+c+d+e)^{2} \leq 5\left(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\right)$, we have
$\left|\zeta_{N, \mathcal{P}}\left(\sigma_{1}+i t\right)\right|^{2} \leq 5\left|\zeta_{\mathcal{P}}\left(\sigma_{1}+i t\right)\right|^{2}+O\left(\frac{N^{2-2 \sigma_{1}}}{t^{2}+1}\right)+O\left(N^{2-2 \sigma_{1}} T^{2 \varepsilon-2}\right)+o\left(N^{2 \sigma_{0}-2 \sigma_{1}} T^{1-2 \sigma_{0}}\right)+O\left(\frac{N^{3-2 \sigma_{1}}}{T^{2}}\right)$.
Now apply $\sum_{r=1}^{R} \int_{0}^{2 r-1} \ldots d t$ to both sides to give (for $2 R-1<T$)

$$
\begin{aligned}
& \sum_{r=1}^{R} \int_{0}^{2 r-1}\left|\zeta_{N, \mathcal{P}}\left(\sigma_{1}+i t\right)\right|^{2} d t=O\left(\sum_{r=1}^{R} \int_{0}^{2 r-1}\left|\zeta_{\mathcal{P}}\left(\sigma_{1}+i t\right)\right|^{2} d t\right)+O\left(\sum_{r=1}^{R} \int_{0}^{2 r-1} \frac{N^{2-2 \sigma_{1}}}{(t+1)^{2}} d t\right) \\
& \quad+O\left(R^{2} N^{2-2 \sigma_{1}} T^{2 \varepsilon-2}\right)+O\left(\frac{R^{2} N^{3-2 \sigma_{1}}}{T^{2}}\right)+o\left(R^{2} N^{2\left(\sigma_{0}-\sigma_{1}\right)} T^{1-2 \sigma_{0}}\right) \\
& \quad=o\left(R^{3-2 \sigma_{1}}\right)+O\left(R N^{2-2 \sigma_{1}}\right)+O\left(R^{2} N^{2-2 \sigma_{1}} T^{2 \varepsilon-2}\right)+O\left(\frac{R^{2} N^{3-2 \sigma_{1}}}{T^{2}}\right)+o\left(R^{2} N^{2\left(\sigma_{0}-\sigma_{1}\right)} T^{1-2 \sigma_{0}}\right)
\end{aligned}
$$

[^1]using (1.2) for σ_{1}. Let $T=2 R$. The left-hand side above is at least $c_{2} R^{2} N^{1-2 \sigma_{1}}$ by (3.1) if $R \geq c_{1} N$. Dividing both sides through by $R^{2} N^{1-2 \sigma_{1}}$ gives
\[

$$
\begin{equation*}
c_{2} \leq o\left(\left(\frac{R}{N}\right)^{1-2 \sigma_{1}}\right)+O\left(\frac{N}{R}\right)+O\left(N R^{2 \varepsilon-2}\right)+O\left(\frac{N^{2}}{R^{2}}\right)+o\left(\left(\frac{R}{N}\right)^{1-2 \sigma_{0}}\right) \tag{3.6}
\end{equation*}
$$

\]

Put $R=K N$ where $K \geq c_{1}$ is a fixed, but arbitrary, constant. Letting $N \rightarrow \infty$, the o-terms both tend to zero as does the middle O-term. Hence

$$
c_{2} \leq \frac{A}{K}+\frac{B}{K^{2}}
$$

for some absolute constants A, B. But K can be made arbitrarily large, so this gives a contradiction.

For the final part, suppose (1.2) holds for $\sigma=\sigma_{0}$ say. If $\int_{0}^{T}\left|\zeta_{\mathcal{P}}\left(\sigma^{\prime}+i t\right)\right|^{2} d t=O\left(T^{2-2 \sigma^{\prime}}\right)$ for some $\sigma^{\prime} \in\left(\beta, \frac{1}{2}\right)$ with $\sigma^{\prime} \neq \sigma_{0}$, then (1.2) actually holds for all σ between σ_{0} and σ^{\prime}. (This follows from the Phragmen-Lindelöf Theorem for a strip (see [6], $\S 7.8$, with ε in the place of $C)$). This was shown to be impossible, and hence $T^{2 \sigma-2} \int_{0}^{T}\left|\zeta_{\mathcal{P}}\left(\sigma^{\prime}+i t\right)\right|^{2} d t$ must be unbounded for all $\sigma \neq \sigma_{0}$.

Now we apply Theorem 1 to find lower bounds in the Dirichlet divisor problem. Note that Theorem 1 actually shows that given $\varepsilon>0$,

$$
\int_{T / 2}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t=\Omega\left(T^{2-2 \sigma-\varepsilon}\right)
$$

for if it was $o\left(T^{2-2 \sigma-\varepsilon}\right)$, then by telescoping it would follow that $\int_{0}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t=o\left(T^{2-2 \sigma-\varepsilon}\right)$ which is false.

Proofs of Corollaries 2 and 3. By Hölder's inequality,

$$
\int_{T / 2}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2 k} d t \geq \frac{2^{k-1}}{T^{k-1}}\left(\int_{T / 2}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t\right)^{k}
$$

for every $k \in \mathbb{N}$. By Theorem 1, given $\varepsilon>0, \int_{T / 2}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t \geq a T^{2-2 \sigma-\varepsilon}$ for some $a>0$ and some arbitrarily large T. Hence for such T,

$$
\int_{T / 2}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2 k} d t \geq a^{k} T^{k(1-2 \sigma)+1-\varepsilon k}
$$

It follows that

$$
\int_{T / 2}^{T} \frac{\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2 k}}{|\sigma+i t|^{2}} d t \geq a^{\prime} T^{k(1-2 \sigma)-1-\varepsilon k}
$$

for some $a^{\prime}>0$. But for $\sigma<\frac{1}{2}-\frac{1}{2 k}$, we have $k(1-2 \sigma)-1>0$. Hence for ε sufficiently small, $k(1-2 \sigma)-1-\varepsilon k>0$ also, and so $\int_{T / 2}^{T} \frac{\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2 k}}{|\sigma+i t|^{2}} d t \nrightarrow 0$ as $T \rightarrow \infty$, and Corollary 2 follows. Of course, if $\frac{1}{2}-\frac{1}{2 k}$ is not the exceptional value in Theorem 1 , then we can take $\varepsilon=0$ in the above and the result also holds for $\sigma=\frac{1}{2}-\frac{1}{2 k}$.

Let γ_{k} be the infimum of $\sigma($ with $\sigma>\beta)$ for which $\int_{-\infty}^{\infty} \frac{\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2 k}}{|\sigma+i t|^{2}} d t$ converges. By Corollary $2, \gamma_{k} \geq \frac{1}{2}-\frac{1}{2 k}$. An identical argument as in the $\mathcal{P}=\mathbb{P}$ case (see [6], Theorem 12.5) shows that $\gamma_{k}=\beta_{k}$. (The argument is simply based upon Parseval's formula for Mellin transforms, which in this case is the identity

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2 k}}{|\sigma+i t|^{2}} d t=\int_{0}^{\infty} \frac{\Delta_{\mathcal{P}, k}(x)^{2}}{x^{1+2 \sigma}} d x
$$

for σ in some interval $(\theta, 1)$ with $\theta<1$.) Hence $\beta_{k} \geq \frac{1}{2}-\frac{1}{2 k}$.

4. On the line $\sigma=\frac{1}{2}$

In this article, we have considered the mean-value along vertical lines $\Re s=\sigma$ with $\sigma<\frac{1}{2}$. This raises the question of what happens on the line $\sigma=\frac{1}{2}$. For $\mathcal{P}=\mathbb{P}$, we have $\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} d t \sim$ $T \log T$, so do we have $\int_{0}^{T}\left|\zeta_{\mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t=\Omega(T \log T)$ in general? As in the $\sigma<\frac{1}{2}$ case, we relate the behaviour of the mean-square value at $\sigma=\frac{1}{2}$ to the behaviour of the mean-square for some $\sigma=\sigma_{0}<\frac{1}{2}$.

Theorem 4

Let \mathcal{P} be a g-prime system for which (1.1) holds. If $\int_{1}^{T} \frac{\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|}{t} d t=o\left((T \log T)^{\frac{1}{2}-\sigma}\right)$ for some $\sigma \in\left(\beta, \frac{1}{2}\right)$, then $\int_{0}^{T}\left|\zeta_{\mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t=\Omega(T \log T)$.

Note that the assumption is implied by $\int_{1}^{T}\left|\zeta_{\mathcal{P}}(\sigma+i t)\right|^{2} d t=o\left(T^{2-2 \sigma}(\log T)^{1-2 \sigma}\right)$.
Sketch of Proof. We follow the proof of Theorem 1 as much as possible, this time taking $\sigma_{1}=\frac{1}{2}$.
Using the argument in [3] for $\sigma=\frac{1}{2},(3.1)$ becomes: there exist constants $c_{1}, c_{2}>0$ such that for $R \geq c_{1} N / \log N$,

$$
\begin{equation*}
\sum_{r=1}^{R} \int_{0}^{2 r-1}\left|\zeta_{N, \mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t \geq c_{2} R^{2} \log N \tag{4.1}
\end{equation*}
$$

To see this, note that we have

$$
\int_{0}^{T}\left|\zeta_{N, \mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t=T \sum_{n \leq N}^{*} \frac{1}{n}+2 \sum_{n \leq N} \frac{1}{\sqrt{n}} \sum_{m<n} \frac{S_{m, n}(T)}{\sqrt{m}}
$$

where $S_{m, n}(T)=\frac{\sin (T \log (n / m))}{\log (n / m)}$. (Here $m, n \in \mathcal{N}$ and the $*$ indicates that any multiplicities must be squared.) In any case, we have $\sum_{n \leq N}^{*} \frac{1}{n} \geq \sum_{n \leq N} \frac{1}{n} \geq k_{1} \log N$ for some $k_{1}>0$. ${ }^{4}$ For $m \leq \frac{n}{2}$, $\left|S_{m, n}(T)\right| \leq 1 / \log 2$, so this part of the double sum is $O\left(\sum_{n \leq N} \frac{1}{\sqrt{n}} \sum_{m \leq n / 2} \frac{1}{\sqrt{m}}\right)=O(N)$. Thus, for some positive constants k_{1}, k_{2}, independent of T and N,

$$
\int_{0}^{T}\left|\zeta_{N, \mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t \geq k_{1} T \log N+2 \sum_{n \leq N} \frac{1}{\sqrt{n}} \sum_{\frac{n}{2}<m<n} \frac{S_{m, n}(T)}{\sqrt{m}}-k_{2} N
$$

Putting $T=2 r-1$ for $r=1,2, \ldots, R$, and summing both sides gives, on noticing that $\sum_{r=1}^{R} \sin \left((2 r-1) \log \frac{n}{m}\right)=\frac{\sin ^{2}(R \log n / m)}{\sin (\log n / m)} \geq 0$ since $0<\log n / m<\log 2$,

$$
\sum_{r=1}^{R} \int_{0}^{2 r-1}\left|\zeta_{N, \mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t \geq k_{1} R^{2} \log N-k_{2} R N
$$

[^2]and (4.1) follows.
In (3.2), we need a better estimate for the final sum. Let $M \in \mathbb{N}$. Then, with N such that $(N-\alpha, N+\alpha) \cap \mathcal{N}=\emptyset$,
\[

$$
\begin{aligned}
\sum_{\substack{\frac{N}{2}<n<2 N \\
n \in \mathcal{N}}} \frac{1}{|n-N|} & =\sum_{m=1}^{M} \sum_{\substack{\frac{m-1}{M}}|n-N|<\alpha N^{\frac{m}{M}}} \frac{1}{|n-N|}+O(1) \\
& \leq \frac{1}{\alpha} \sum_{m=1}^{M} \frac{1}{N^{\frac{m-1}{M}}}\left(N\left(N+\alpha N^{m / M}\right)-N\left(N-\alpha N^{m / M}\right)\right)+O(1) \\
& =O\left(N^{1 / M}\right)+O\left(N^{\beta}\right),
\end{aligned}
$$
\]

using (1.1). Since M is arbitrary, this is $O\left(N^{\beta+\varepsilon}\right)$ for every $\varepsilon>0$ in any case. Thus (3.3) becomes

$$
\zeta_{N, \mathcal{P}}(s)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{\zeta_{\mathcal{P}}(s+w) N^{w}}{w} d w+O\left(\frac{N^{\frac{1}{2}+\beta+\varepsilon}}{T}\right)
$$

The analysis up to (3.5) remains the same (with $\sigma_{0}=\sigma$ and $\sigma_{1}=\frac{1}{2}$) but in (3.5) we use the bound assumed in the statement to give $o\left(N^{\sigma-\frac{1}{2}}(T \log T)^{\frac{1}{2}-\sigma}\right)$. The arguments following (3.5) remain valid and we put $T=2 R$ again, but this time we divide through by $R^{2} \log N$. On assuming $\int_{0}^{T}\left|\zeta_{\mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t=o(T \log T),(3.6)$ now becomes

$$
c_{2} \leq o\left(\frac{\log R}{\log N}\right)+O\left(\frac{N}{R \log N}\right)+O\left(\frac{N R^{2 \varepsilon-2}}{\log N}\right)+O\left(\frac{N^{1+2 \beta+2 \varepsilon}}{R^{2}}\right)+o\left(\left(\frac{R \log R}{N}\right)^{1-2 \sigma} \frac{1}{\log N}\right) .
$$

Put $R=K N / \log N$ where $K \geq c_{1}$ is a fixed, but arbitrary, constant. Letting $N \rightarrow \infty$, all the terms tend to zero except the first O-term. Hence

$$
c_{2} \leq \frac{A}{K}
$$

for some absolute constant A. As K can be made arbitrarily large, this gives a contradiction. Hence $\int_{0}^{T}\left|\zeta_{\mathcal{P}}\left(\frac{1}{2}+i t\right)\right|^{2} d t=\Omega(T \log T)$.

References

[1] P. T. Bateman and H. G. Diamond, Asymptotic distribution of Beurling's generalised prime numbers in: Studies in Number Theory 6, Prentice-Hall, 1969, pp. 152-212.
[2] A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés, I, Acta Math. 68 (1937), 255-291.
[3] T. W. Hilberdink, Well-behaved Beurling primes and integers, J. Number Theory 112 (2005) 332344.
[4] T. W. Hilberdink, A lower bound for the Lindelöf function associated to generalised integers, J. Number Theory 122 (2007) 336-341.
[5] E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University Press, 1986.
[6] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Second edition, Oxford University Press, 1986.

Titus W. Hilberdink, Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK.
E-mail address: t.w.hilberdink@reading.ac.uk

[^0]: ${ }^{1}$ Journal of Number Theory 130 (2010) 707-715.
 ${ }^{2}$ Here, $\mathbb{N}=\{1,2,3, \ldots\}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, and $\mathbb{P}=\{2,3,5, \ldots\}$ - the set of primes.

[^1]: ${ }^{3}$ If $f \geq 0$ and $\int_{0}^{T} f^{2}=o\left(T^{\lambda}\right)($ some $\lambda>1)$, then $\int_{T / 2}^{T} \frac{f(y)}{y} d y \leq \frac{2}{T} \int_{0}^{T} f \leq \frac{2}{T} \sqrt{T \int_{0}^{T} f^{2}}=o\left(T^{\frac{\lambda-1}{2}}\right)$, and $\int_{1}^{T} \frac{f(y)}{y} d y=o\left(T^{\frac{\lambda-1}{2}}\right)$ follows.

[^2]: ${ }^{4}$ This follows readily from $N_{\mathcal{P}}(x) \sim \rho x$.

