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Abstract

Due to the chaotic nature of Numerical Weather Prediction (NWP) models,

medium-range forecasting is usually based on ensemble techniques to quantify

the uncertainty in the forecast products. There are a variety of techniques

used operationally to produce initial perturbations for these ensembles: bred

vectors, singular vectors, ensemble Kalman filters, etc. These different tech-

niques, as well as differences in model formulation, lead to ensembles with

different spatiotemporal dynamics.

Using the recently-developed mean-variance of logarithms (MVL) dia-

gram, together with the TIGGE archive of medium-range ensemble forecasts

from nine different centres, we present an analysis of the dynamics of their

perturbations, and show how the differences between models and perturba-

tion techniques can explain the shape of their characteristic MVL curves.

We also consider the use of the MVL diagram to compare the growth

of perturbations within the ensemble with the growth of the forecast error,

showing that there is a much closer correspondence for some models than

others.

We conclude by looking at how the MVL technique might assist in select-

ing models for inclusion in a multi-model ensemble, and suggest an experi-

ment to test its potential in this context.
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Chapter 1

Introduction

1.1 Predictability and chaos

Beyond very short lead times, deterministic weather forecasts become un-

reliable as the chaotic nature of the atmospheric dynamics limits the pre-

dictability. However, as explained by Palmer (2006), it is not just that the

future state of the system depends on the initial conditions; the degree of

predictability itself also varies. Figure 1.1 illustrates this in the context of a

simple three-variable model (Lorenz 1963). On the left is a high-predictability

initial state, with a neighbourhood in state space that evolves in a consis-

tent way; on the right is a low-predictability state where the neighbourhood

rapidly diverges into very different states.

Thus, as we look to forecast at longer lead times, we must start to consider

probabilistic forecasts. In this framework, instead of predicting a single future

state based on the evolution of a single current state, we aim to predict the

evolution of the probability distribution function (PDF) of the atmospheric

state. There are three main problems to overcome:

� Although the time evolution of a PDF under a chaotic dynamical sys-

tem can be computed explicitly via the Liouville equation (Ehrendorfer

2006) for low-dimensional systems, this approach is not computation-

ally feasible for the high-dimensional models used in numerical weather

prediction (NWP).

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: An illustration of how the predictability of a chaotic system
depends on the initial conditions (Palmer 2006, fig. 1.2).

� We need an estimate of the full PDF at the initialisation time, rather

than just a single “best estimate” analysis of the current state.

� We also need to account for errors in the forecast model itself; otherwise

the forecast PDF is likely to be overconfident.

The usual approach is to take an ensemble of forecasts each starting from

a state which samples the initial (analysis) PDF; the forecast PDF can then

be estimated from the density of ensemble members in the state space (see

figure 1.2). Modern data assimilation techniques provide an estimate of the

analysis error covariance; this allows us to sample the initial PDF provided we

make some assumptions about its distribution (e.g. that the analysis errors

are Gaussian). Model error is typically accounted for either by varying certain

parameters in the model equations between ensemble members, or by using

stochastic models for some of the physical processes.

This approach gives an estimate of the uncertainty in the forecast at

longer lead times, allowing meaningful medium-range forecasts to be pro-

duced. If the ensemble spread is small (i.e. the ensemble members are in

close agreement) at a given lead time, then we can have a high confidence in

the forecast; if the spread is large (i.e. there is little agreement between the

members) then the forecast should not be relied upon too heavily.
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Figure 1.2: An illustration of how ensemble prediction estimates the evolution
of the PDF of an uncertain state (Buizza et al. 2001, fig. 1).
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In a low-dimensional model it is easy to sample a region of state space

effectively, e.g. by taking points randomly or uniformly within an ellipsoid

around the “best-guess” initial conditions. Actual NWP models, however,

may well have ∼ 106 variables; if we are to have a manageable ensemble

size (typically no more than 50 members in operational systems), we can

only span a small subspace of the total state space with our perturbations.

Early experiments in ensemble forecasting (Hollingsworth 1980) showed that

in such cases an ensemble based on random perturbations does not produce

a realistic distribution of forecast states.

Given this restriction, it is important that we choose this subspace to

include those perturbations which will grow the fastest and thus dominate

the uncertainty in the forecast. For the long-term growth of infinitesimal

perturbations, these are the leading Lyapunov vectors; however for shorter-

term growth and/or non-infinitesimal perturbations, this does not necessarily

hold (Boffetta et al. 2002), and there are a number of different techniques

used to select the perturbations: singular vectors, bred vectors, empirical

orthogonal functions, and ensemble Kalman filter-based techniques.

We aim to explore the spatiotemporal dynamics of these perturbations,

and in particular whether there are significant differences in the dynamics of

the various methods, as used in operational medium-range weather forecast-

ing models.

1.1.1 Measuring perturbations

We are interested in the growth over time of perturbations in a spatial field

φ(x, t). The model variables are typically in three spatial dimensions (lat-

itude, longitude and a generalised vertical coordinate). In this investiga-

tion, however, we restrict ourselves to two-dimensional “slices” (e.g. 500 hPa

geopotential height, 2 m temperature).

We define the perturbation field δφ(n) as the difference between the nth

perturbed ensemble member φ(n) and an unperturbed control φ(0):

δφ(n)(x, t) = φ(n)(x, t)− φ(0)(x, t). (1.1)



1.1. PREDICTABILITY AND CHAOS 5

It is well known that, if the system is chaotic, infinitesimal perturbations will

exhibit a long-term average exponential growth with a characteristic rate:

δφ ∼ eλ1t, (1.2)

where λ1 is referred to as the leading Lyapunov exponent. Growth rates

for non-infinitesimal perturbations, and short time scales, however, may be

larger or smaller. In particular, nonlinear effects will prevent the perturba-

tions growing larger than the natural amplitude of the system (i.e. the range

of possible weather is restricted by climatology).

In addition, the perturbations at different points in space typically do

not grow independently, but rather in a spatially-correlated way on a variety

of scales from mesoscale systems to large-scale planetary waves. It is this

spatial correlation with which we are primarily concerned here, seeking a way

to visualise its growth and decay as the perturbations increase in magnitude.

1.1.2 The significance of spatial correlation

What is the significance of the spatial correlation in the perturbation fields?

The answer lies in what it can tell us about predictability. When the forecast

no longer has any skill over climatology, the perturbations are akin to the

difference between arbitrary states drawn from climatology, and we do not

expect to see large-scale correlations. Thus, when large-scale correlation does

exist in the perturbations of the ensemble members, they still contain some

information about the large-scale evolution even if the perturbations are large

in magnitude.

Lopez et al. (2004) show, for a simple model, how small perturbations

initially grow according to the linearised model equations, with growing spa-

tial correlation; as the perturbations become large and enter the nonlinear

regime, the spatial correlation is destroyed and the perturbations tend to

“spatiotemporal white noise”.

In order to understand this growth of spatial correlation in the perturba-

tions in more depth, we will make use of some results from another area of

mathematics – the growth of rough interfaces. In the next section we give
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a brief introduction to the theory, and show how it can be applied to the

spatiotemporal growth of perturbations.

1.2 Interface roughening

There is, perhaps surprisingly, a strong theoretical connection between the

spatiotemporal growth of perturbations in a chaotic system and the fractal

growth of rough interfaces, of which there are many examples in materials

science, biology and elsewhere. We will begin by reviewing some of the basic

ideas involved; a more thorough introduction to interface-growth theory is

given in Barabási & Stanley (1995).

1.2.1 Ballistic deposition

In this model, we consider randomly-distributed particles on a square lattice

falling from the far field onto an initially-flat surface, or “interface” between

the accumulated particles and the free space above. A particle comes to rest

when it neighbours another, permitting both vertical and lateral growth as

shown in figure 1.3.

Figure 1.3: The ballistic deposition (BD) process (Barabási & Stanley 1995,
figs 2.1, 2.2)
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We can characterise the interface at any time t by two functions:

1. its mean height,

h(t) =
1

L

L∑
i=1

hi(t), (1.3)

where hi(t) is the height of the highest particle in column i and L is

the size of the system (i.e. the total number of columns); and

2. its width (the standard deviation of the column heights),

w(t) =

√√√√ 1

L

L∑
i=1

(
hi(t)− h(t)

)2
, (1.4)

which is a measure of the “roughness” of the interface.

1.2.2 Scaling

If we assume that particles fall in each column at a constant average rate,

then the mean height increases linearly with time:

h(t) ∼ t. (1.5)

The interface width grows in a more complex way (typical results from a

numerical simulation are shown in figure 1.4) with initial power-law growth,

w(t) ∼ tβ, (1.6)

until the system becomes saturated at a width

wsat ∼ Lα. (1.7)
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This occurs at the crossover or saturation time

t× ∼ Lz. (1.8)

The exponents in these three power laws are known as:

β – the growth exponent ;

α – the roughness exponent ;

z – the dynamic expnonent.

These exponents are not independent; for continuity at the crossover time

(i.e. for the three straight lines on the previous figure to be concurrent), we

must have

z =
α

β
. (1.9)

They are not only fixed for a given model, but are often found to be common

to a number of models of very different phenomena which are then said to

be in the same “universality class”.

1.2.3 Saturation

The possibility of lateral growth introduces correlations between the height

of nearby columns. Continuing with scaling arguments, we can introduce a

typical correlation length ζ‖ over which such correlation occurs.

Initially, the interface is flat and all growth is vertical (and thus uncor-

related). Once lateral growth occurs, ζ‖ begins to grow. However it cannot

become larger than the total length L of the system.

We make the plausible assumption that saturation corresponds to the

entire interface becoming correlated, i.e.

ζ‖ ∼ L ∼ t
1/z
× (t� t×). (1.10)
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Figure 1.4: The growth of the interface width in a numerical simulation of
the Ballistic Deposition process, on log-log axes (Barabási & Stanley 1995,
fig. 2.3).

We can extrapolate to pre-saturation times to estimate the growth of

these correlations:

ζ‖ ∼ t1/z (t� t×) (1.11)

More sophisticated continuum models of the process – which we will not

discuss here in detail, but see Barabási & Stanley (1995, ch. 6) – can validate

these assumptions.

1.2.4 Self-affinity and fractal structure

Given the relation (1.9) between the three exponents (z = α/β), we obtain

a scaling relation between the correlation length and the interface width:

ζ‖ ∼ w1/α. (1.12)
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We can interpret this by viewing the interface as a self-affine fractal, whose

statistical properties are invariant under a scaling with aspect ratio 1 : α.

This property is important because it allows us to characterise the growth

of the correlation length in terms of the easily-measured interface width.

1.2.5 The Kardar-Parisi-Zhang (KPZ) equation

Based on physical and symmetry principles, the KPZ equation (Kardar et al.

1986) gives a continuum model of the BD process:

∂h(x, t)

∂t
= ν∇2h+

λ

2
(∇h)2 + η(x, t), (1.13)

where hi(t) is considered as the discretisation of h(xi, t), η(x, t) represents

uncorrelated random noise with zero mean, and ν and λ are parameters of

the system.

In fact, this same model can be used to describe a wide range of growth

processes – including, as we shall see shortly, perturbations in chaotic dy-

namical systems.

The exponents α, β and z depend on the dimensionality of x, and are

only easily found analytically for the 1D case, when

α =
1

2
, β =

1

3
, z =

3

2
. (1.14)

This theory of interface growth finds applications in many other fields:

� Deposition processes – BD is an idealised example, but many real-world

processes behave similarly both in nature (e.g. snowfall) and in industry

(e.g. in semiconductor manufacturing).

� Fluid flow in porous media, from the progressive “wetting” of cloth or

paper to the flow of oil through rock.

� The spread of bacterial colonies in a nutrient medium.

Although these systems span a wide range of scales, they exhibit many com-

mon characteristics in terms of the scaling laws and self-affinity discussed
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above. Many examples fall into one of a small number of “universality

classes” with specific values for the exponents α, β and z, of which KPZ

is one particular example.

1.2.6 The link to perturbation growth

By taking the (natural) logarithm of the perturbations (the Hopf-Cole trans-

formation),

h(x, t) = ln |δφ(x, t)|, (1.15)

at each point in space x and time t, it can be shown for many dynamical sys-

tems that h evolves according to the KPZ equation, and thus the associated

results from interface-growth theory apply.

In particular, this means we can use the interface width as a measure of

the spatial correlation of the perturbation field. Pikovsky & Kurths (1994)

demonstrate the applicability of the KPZ equation to the special case of

coupled-map lattices; this is extended to a range of other simple dynamical

systems by Pikovsky & Politi (1998). More recently, Primo et al. (2007) show

that perturbations in an operational weather forecasting model follow similar

scaling laws. Specifically, they find that in the mid-latitudes the growth

corresponds to the 1D KPZ equation; while at the equator the behaviour is

akin to the 2D Edwards-Wilkinson equation – which models a different class

of growing interface, with different values for α, β and z (Barabási & Stanley

1995, ch. 5).

In chapter 2, we will see how this theory can be used to construct a concise

visualisation of the spatiotemporal dynamics of a given ensemble, and how

this can be used to understand aspects of how different models behave.
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Chapter 2

The Mean-Variance of

Logarithms (MVL) diagram

By analogy with the characterisation of a rough interface by its mean height

and width, discussed in section 1.2, we can characterise the perturbation field

by the spatial mean and variance of hi(t) = ln |δφi(t)|:

M(t) =
1

L

L∑
i=1

hi(t) (2.1)

V (t) =
1

L

L∑
i=1

(hi(t)−M(t))2 , (2.2)

where we have discretised the field φi(t) = φ(xi, t) (i = 1, 2, . . . , L). To visu-

alise the spatiotemporal growth of the perturbations, we plot a graph of V (t)

against M(t). While such a curve can be plotted for an individual member of

a forecast ensemble, we typically plot the mean of M and V over all ensemble

members and a number of separate forecast initialisations to obtain a char-

acteristic MVL curve for the model in question. This is the “Mean-Variance

of Logarithms” diagram, introduced by Gutiérrez et al. (2008). Their results

for a simplified model (Lorenz 1996) and its linearisation, using both ran-

dom initial perturbations and bred vectors (see section 3.2.1), are shown in

figure 2.1.

13
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Figure 2.1: MVL diagram for the Lorenz (1996) model and its linearisation,
with random and bred-vector initial perturbations

(Gutiérrez et al. 2008, fig. 2).
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There are a few points to note here:

� M(t) increases with time during perturbation growth, so the progres-

sion is from left to right.

� From initially-random (i.e. spatially uncorrelated) perturbations, the

spatial correlation grows until saturation occurs (just as for the inter-

face width considered in section 1.2)

� In the linearised system, M(t) continues to increase while the spatial

correlation remains saturated; in the nonlinear system, the growth is

curtailed by nonlinear effects which also destroy the spatial correlation

as described by Lopez et al. (2004).

� The bred vectors, on the other hand, have a strong initial spatial corre-

lation and are already saturated. They grow in amplitude, maintaining

this correlation, until the nonlinear effects take over.

� For physical systems, where φ is not dimensionless, M is defined up

to an arbitrary additive constant depending on the constant used to

nondimensionalise δφ before taking the logarithm. V is unaffected, as

this constant will cancel out.

2.1 Computational issues

There are two issues which slightly complicate the implementation of this

method: grid points at which the perturbation is apparently zero, and the

non-uniform distribution of grid points.

The first problem arises due to the use of logarithms and the limited

numerical precision of real-world data sets. If the perturbation at a grid

point xi is too small to be represented in the data set, then it will appear that

δφi = 0, and therefore hi is undefined. For data stored as 32-bit IEEE 754

floating point data, this is likely to occur when |δφ/φ| < 10−7, e.g. a 0.1 mm

perturbation in a geopotential height of 1 km. To solve this problem, we
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calculate hi as:

hi(t) = ln |max {δφi(t), ε}| , (2.3)

where ε is chosen to be an order of magnitude smaller than any perturbation

which could be represented in the given field (e.g. for the above geopotential

height field, ε = 0.01 mm would be appropriate). The exact choice of ε

to represent the range of very small perturbations is somewhat arbitrary,

however in practice has no significant impact on the resulting plots while

removing the undefined values that would otherwise occur.

The second problem is that, when processing data from atmospheric mod-

els, we are generally dealing with a latitude/longitude grid, where the lon-

gitudinal spacing becomes closer toward the poles. The upshot of this is

that the grid points near the equator represent a greater physical area than

those near the poles. To correct for this, we modify (2.1) and (2.2) to use an

area-weighted mean and variance:

M(t) =

L∑
i=1

hi(t) cos θi

L∑
i=1

cos θi

, V (t) =

L∑
i=1

(hi(t)−M(t))2 cos θi

L∑
i=1

cos θi

, (2.4)

where θi is the latitude of the grid point xi. In practice the correction only

has a minor impact on the resulting MVL curves, and is barely noticeable if

the polar regions are not included in the calculation.

2.2 Seasonal model intercomparison: DEME-

TER

The DEMETER project (Palmer et al. 2004) is a multi-model seasonal en-

semble with hindcasts for seven models covering a common 22-year period

(1980–2001).
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Figure 2.2: MVL diagram for 2 m temperature in the DEMETER models
(Fernández et al. 2009, fig. 2).

Fernández et al. (2009) applied the MVL approach to these seven models,

looking at both the 2 m temperature (figure 2.2) and 500 hPa geopotential

height (figure 2.3) fields.

For the 2 m temperature (figure 2.2), many of the models show a strong

initial spatial correlation (large V ), which decreases rapidly before the main

growth stage. This is interpreted as an indication that the initial perturba-

tions have a large-scale spatial structure, but in a manner inconsistent with

the model dynamics (i.e. taking the system away from its attractor); thus this

structure is destroyed in an initial transient phase as the perturbed system

returns to its attractor. This is path (B) in the conceptual picture shown in

figure 2.4.

For the 500 hPa geopotential height (figure 2.3), all the models start with

very little spatial correlation (low V ); this is because in seasonal models the

perturbations are generally introduced in the sea-surface temperature (SST)

fields and so couple strongly to near-surface variables but only weakly to
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Figure 2.3: MVL diagram for 500 hPa geopotential height in the DEMETER
models (Fernández et al. 2009, fig. 3).

higher levels where we see effectively random perturbations – path (A) in

figure 2.4.

The third path (C) in figure 2.4 is not seen in any of the DEMETER

models, and is expected for initial perturbations which are already consistent

with the model dynamics. For seasonal forecasts, the presence of an initial

transient period of hours or days is unlikely to be a problem; however some

of the techniques used in medium-range and short-range ensemble forecasts

are designed to produce such perturbations, as we shall see in chapter 3.

There has also been some work, as yet unpublished, using the MVL di-

agram to compare different techniques for generating initial perturbations,

both in a simplified model (Pazó et al. 2009) and in an operational model

(Primo & Magnusson 2009). We shall return to these in section 3.2.8 after

reviewing the different perturbation techniques used in the medium-range

models.
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Figure 2.4: Conceptual picture of MVL curves for different perturbation
types: (A) random, (B) spatially-correlated but dynamically inconsistent,
and (C) spatially-correlated and dynamically consistent (Fernández et al.
2009, fig. 1).
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Chapter 3

Medium-range models: TIGGE

3.1 TIGGE: the THORPEX Interactive Grand

Global Ensemble

While the DEMETER project provides a useful archive of ensemble forecasts

to analyse, these are seasonal forecast models designed for forecasts on a

much longer timescale than the 15–20 days in which the initial atmospheric

perturbations typically saturate.

Medium-range forecast models, on the other hand, are designed for pre-

cisely this timescale – where there is too much uncertainty for deterministic

forecasts to be useful but before saturation has destroyed all trace of the

initial atmospheric state.

A new project, TIGGE1, provides an archive of medium-range ensemble

forecasts from a range of different operational models from 2007 onwards

(exact start times vary between the different models). A standardised set of

model products is available across the range of models, eliminating the need

to handle each model’s native output separately.

The models and their relevant properties are listed in table 3.1; the geo-

graphical spread of the centres is shown in figure 3.1. Note that Météo-France

has been omitted as their ensemble forecast only runs to a lead time of 60

hours which is too short for this analysis.

1http://tigge.ecmwf.int/

21

http://tigge.ecmwf.int/
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Figure 3.1: Geographical spread of the modelling centres in the TIGGE
archive. Colours correspond to those used in the graphs which follow.

Thus it is now possible to apply the techniques described to analyse the

spatiotemporal behaviour of these models, where the period of growing spa-

tial correlation is within the operational forecast range.

3.2 Perturbation techniques

As is clear from table 3.1, the TIGGE models use a range of different tech-

niques to generate their initial perturbations. In this section we present a

brief overview of these techniques.

3.2.1 Bred Vectors (BV)

In the “bred vector” approach pioneered at NCEP (Toth & Kalnay 1993,

1997) and used at several other centres, random perturbations are grown us-

ing the model equations, allowing the fastest-growing vectors to dominate, in

a manner that aims to mimic the growth of analysis errors in the data assim-

ilation cycle. This is done by running a second short-range forecast from a

randomly-perturbed initial condition alongside the short-range forecast used

for the data assimilation to construct the analysis. After each cycle, the
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forecast perturbation is rescaled to its original magnitude and added to the

new analysis to produce the perturbed initial condition for the next cycle, as

shown in figure 3.2. After a number of such cycles, the resulting perturbation

is added to (or subtracted from) the operational analysis to create the initial

condition for an ensemble member of the actual medium-range forecast run.

Multiple breeding cycles may be run in parallel, starting with different

perturbations, to produce the required number of ensemble members. At

least in the NCEP implementation, a regionally-varying rescaling is also

applied to the perturbations to ensure that their distribution matches the

time-average analysis error.

In this way, the method attempts to find the fastest-growing finite-size

perturbations according to the nonlinear model dynamics, as opposed to the

Lyapunov vectors, which are the fastest-growing infinitesimal ones under the

linearised model dynamics. In addition, because the initial perturbations

are generated as genuine perturbations of the full dynamical model, the per-

turbed initial state is expected to remain close to the model attractor.

NCEP have now moved to a more sophisticated variant of the breeding

technique based on the Ensemble Transform (section 3.2.5); however the

standard bred vector technique remains in use at CMA and KMA.

3.2.2 Singular Vectors (SV)

In the singular-vector technique pioneered at ECMWF (Buizza & Palmer

1995, Molteni et al. 1996), and also used at BOM and (since November

2007) JMA, we find the perturbation vectors with the largest growth over a

finite time interval (typically 48 hours) under the linearised dynamics – in

contrast, the Lyapunov vectors represent the fastest long-term growth.

We take the propagator M(T, T0) of the tangent linear model at the opti-

misation time T0, and its adjoint M∗ with respect to a suitable inner product

( · ; · ) so that

(Mx; y) = (x; M∗y) (3.1)

for any pair of states x and y.
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Figure 3.2: Illustration of the bred vector technique (Toth & Kalnay 1993,
fig. 4).



26 CHAPTER 3. MEDIUM-RANGE MODELS: TIGGE

The operator M∗M is Hermitian, and thus its eigenvectors form an or-

thonormal basis for the state space. These eigenvectors are referred to as the

(right) singular vectors of M ; the square roots of the corresponding eigen-

values of M∗M are the singular values of M . The vectors associated with

the largest singular values represent the perturbations which grow largest, as

measured by the norm induced by the chosen inner product. The “dry total

perturbation energy” inner product and norm are frequently chosen, however

other choices have been used experimentally, for instance “moist total per-

turbation energy” (Ehrendorfer et al. 1999) and “Hessian singular vectors”

(Barkmeijer et al. 1998).

The vectors described above are “initial-time” SVs, which have the fastest

growth over the period [T0, T ] following the analysis time T0 and tend to be

highly localised in space; there are also “final-time” or “evolved” SVs, which

have the fastest growth over the period [−T, T0] preceding the analysis time

and tend to have a larger spatial scale. Many SV implementations (e.g.

BOM) use only initial-time vectors, although ECMWF uses a combination

of initial- and final-time vectors (Bourke et al. 2004). Because the singular

vectors tend to be highly localised, the actual perturbations are generated

by taking linear combinations of the SVs.

Although not shown above for simplicity, a projection operator is often

included in the formulation to maximise the perturbation energy over a spe-

cific portion of the globe (e.g. in the ECMWF implementation separate SVs

are generated for the northern and southern extratropics, and in the vicinity

of tropical cyclones).

3.2.3 Empirical Orthogonal Functions (EOF)

In this technique (Zhang & Krishnamurti 1999), unique to CPTEC amongst

the TIGGE models, random perturbations are grown over a short time period

(typically 36 hours) to produce time series of perturbation fields, which are
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formed into a single matrix W for a model field w

W =


δw1 1 δw1 2 · · · δw1S

δw2 1 δw2 2 · · · δw2S

...
...

. . .
...

δwT 1 δwT 2 · · · δwT S

 , (3.2)

where the S columns are the model grid-points, and the T rows are the time

steps over the calculation period. In the case of the horizontal wind field,

a complex representation δw = δu + i δv is used to represent the zonal and

meridional wind perturbations in a single matrix. These are subjected to an

EOF (or Principal Component) analysis: we define the (N ×N , Hermitian)

covariance matrix

H =
1

T
W ∗W (3.3)

(where ∗ represents the complex conjugate transpose) and express each row

of W (which represents the model output at a given time) in terms of the

basis of eigenvectors of H . The eigenvectors whose coefficients grow most

rapidly with time are then selected for use as initial perturbations in the

ensemble.

The current operational model at CPTEC perturbs the horizontal wind

field (with the two components treated as a single complex field, as described

above) and the temperature field; Mendonça & Bonatti (2009) show that

improvements can be obtained by including additional perturbations in the

pressure and humidity fields.

3.2.4 Ensemble Kalman Filter (EnKF)

In this approach, unique to CMC amongst the TIGGE models (Houtekamer

& Mitchell 2005), an ensemble Kalman filter (Evensen 1994, Houtekamer &

Mitchell 1998) is used for operational data assimilation; in this formulation,

the analysis error covariance is estimated from the covariance of the ensemble

members used in the data-assimilation cycle. By using a sample of these
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ensemble members directly to provide the perturbed initial conditions, it is

assured that the initial perturbations will have the same statistics as the

estimated analysis error, and also that they are consistent with the model

dynamics.

CMC switched to this method in 2005 from an earlier technique which

used multiple runs of an Optimal Interpolation data assimilation scheme with

perturbed observations (Houtekamer et al. 1996).

3.2.5 Ensemble Transform with Rescaling (ETR)

This is a modern variant on the bred-vector technique, used at NCEP (Wei

et al. 2008) since May 2006. Instead of independently rescaling each bred

perturbation after each cycle, the ensemble transform (ET) applies a matrix

transformation to the whole set of n perturbations to produce n−1 orthogo-

nal perturbations scaled according to the analysis error covariances from the

operational (variational) data assimilation scheme. A simplex transforma-

tion (Wang et al. 2004) is then used to produce an ensemble of n members

centred around the operational analysis while preserving the analysis error

covariance. The differences between this method and the original bred-vector

technique are illustrated in figure 3.3.

The “with rescaling” refers to a final step in which the perturbations are

regionally rescaled to fit the expected geographical distribution, in a similar

manner to the regional rescaling step mentioned in section 3.2.1 for bred

vectors.

3.2.6 Ensemble Transform Kalman Filter (ETKF)

The ETKF (Bishop et al. 2001) provides a computationally-efficient way of

calculating analysis perturbations which are approximately consistent with

the EnKF (albeit constrained to be in the subspace spanned by the forecast

perturbations) without running the whole EnKF process. This is particularly

useful where a non-EnKF data assimilation scheme (e.g. 4D-var) is being

used operationally – the ETKF-generated perturbations can be added to the

operational analysis (using a simplex transformation for centring as in the
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Figure 3.3: Illustration of the Ensemble Transform (ET) technique (Zhu &
Toth 2006).

ET case), harnessing much of the ensemble-generating power of the EnKF

without replacing the data assimilation scheme.

It is currently only used operationally at the UK Met. Office (Bowler

et al. 2008), although it has been used experimentally at NCEP (Wei et al.

2006).

3.2.7 Incremental Analysis Update (IAU)

This is an ancillary technique (Bloom et al. 1996) used by the UK Met. Of-

fice to introduce the initial perturbations gradually over the first 6 hours of

the forecast period. This results in an apparent very rapid growth from al-

most zero perturbation amplitude over that initial time period. The reasons

for this are not entirely clear, but may be related to the model’s origin in

short-range ensemble forecasting (Bowler et al. 2008) where transient effects

caused by the instantaneous application of perturbations may degrade fore-
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cast performance over the first few hours if the model is pushed away from

its attractor.

3.2.8 Comparing different perturbation techniques

Although a variety of perturbation techniques are in operational use, it has

proved difficult to separate the differences in performance due to the ini-

tial perturbations from those due to other aspects of the model formulation

(Buizza et al. 2005). To address this, a number of studies have been carried

out comparing different techniques in one model, in terms of ensemble-mean

and probabilistic skill measures:

� Bowler (2006) and Descamps & Talagrand (2007) both compare the

BV, SV, EnKF and ETKF techniques in the context of a simplified

model (Lorenz 1996). Both find that the EnKF and ETKF techniques

have significant advantages due to their initial perturbations better

sampling the analysis error PDF. However on many performance mea-

sures, random perturbations perform equally well; this cannot be ex-

pected to hold for larger models, and shows the limitations of using a

low-dimensional model for such experiments.

� Wei et al. (2008) compare the BV, ET(R) and ETKF techniques using

the operational NCEP model, showing improved probabilistic skill from

the ETR and ETKF methods, with the best results from ETR.

� Magnusson et al. (2008) compare the BV and SV techniques using the

operational ECMWF IFS model, showing conflicting results in different

regions: SV performs better in the NH, but BV performs better in the

tropics, particularly for the early part of the forecast; the two methods

perform similarly in the SH.

� In forthcoming papers, Pazó et al. (2009) and Primo & Magnusson

(2009) apply the MVL technique described in chapter 2 to evaluate the

effect of different initial perturbations on the spatiotemporal dynamics

of the Lorenz (1996) model and the operational ECMWF EPS model

respectively.
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3.3 Previous studies

As TIGGE is a relatively new project, there have been only a small number

of published studies using this data:

� Champion (2008) gives an overview of the different models, and looks

at the differences in (global root-mean-square) perturbation amplitude

and growth rate.

� Park et al. (2008) is focused more on evaluating the performance of the

different models, giving comparative results for root-mean-square error

(RMSE) and ranked probabilistic skill score (RPSS), and also looks at

the issues involved in producing a multi-model ensemble – something

we will consider further in chapter 5.

� Johnson & Swinbank (2009) consider further the calibration of such

a multi-model ensemble (specifically using the ECMWF, NCEP and

UKMO models).

� Pappenberger et al. (2008) and He et al. (2009) look at the application

of the combined ensemble data from TIGGE to flood warning systems.

In the present study, however, we wish to concentrate instead on the spa-

tiotemporal dynamics of the perturbations in these models, and in particular

to ask what the MVL diagram introduced in chapter 2 can tell us about their

behaviour. In particular, can we relate similarities and differences between

the MVL curves of the different ensembles to known similarities and differ-

ences between either the forecast models or the techniques used to generate

the initial perturbations?



32 CHAPTER 3. MEDIUM-RANGE MODELS: TIGGE



Chapter 4

Results

Results from applying the MVL technique to these models over the whole

globe, for a period of 21 days in February 2009, are shown in figure 4.1. The

large number of forecast realisations (models × initialisations × ensemble

members) makes this figure somewhat crowded; figure 4.2 shows the plot for

each model separately. These “spaghetti” plots indicate that the means over

realisations (the bold lines in figures 4.1 and 4.2, and shown on their own

in figure 4.3) are representative of a typical realisation or ensemble member,

although the spread amongst realisations does vary between models. We can

clearly see distinct characteristics of the models in these curves; in particular:

� There is a large range in the initial amplitude M(0) of the perturbations

between different models. This may be partly due to the ensembles

being calibrated to the analysis error estimates produced by different

data assimilation procedures used at each centre. The UKMO curve

is deceptive here, as their perturbations are introduced gradually over

the first 6 hours of the forecast using the Incremental Analysis Update

technique (Bloom et al. 1996); this shows as an artificially-small initial

perturbation with very rapid growth in the first 6-hour time period.

� The BOM, CPTEC, ECMWF and JMA curves show a marked decrease

in variance in the first stage of perturbation growth; this is typically

observed while the model adjusts to initial perturbations which are not

fully consistent with the model dynamics (Fernández et al. 2009). It is

33
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Figure 4.2: Separate thumbnail MVL diagrams for 500 hPa geopotential
height in each of the TIGGE models, across the whole globe, for February
2009.
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Figure 4.3: Mean-over-realisations MVL diagram for 500 hPa geopotential
height in the TIGGE models, across the whole globe, for February 2009.

worth noting that these are precisely those models using the SV and

EOF techniques (see table 3.1), although this is not necessarily the

cause.

� The CMC and KMA curves appear to show a decrease in perturbation

amplitude (leftward motion on the plot) over at least one of the early

time periods, contrary to the expected linear average growth in M ; it

is not clear why this should be the case.

� Although there is some variation in the perturbation amplitude at

which the variance saturates (i.e. the horizontal position of the main

peak on the plot), most of the models behave similarly in this respect,

suggesting that they transition from the linear to the nonlinear regime

at a similar amplitude. The notable exceptions are BOM, CMC and

(especially) KMA, which saturate at a lower or higher amplitude than

the rest.
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There are several questions which arise as to the generality of the above

results. We might reasonably ask whether this picture is valid across the

whole globe, given that (amongst other reasons) the dynamics of tropical

and mid-latitude meteorology are known to be different. We might also

consider seasonal variability: does an equivalent plot for a different month

look similar? (We could also consider interannual variability; however the

TIGGE dataset, unlike DEMETER, doesn’t span a long historical period –

less than two years for most models.) Finally, we are looking here at one

model variable (geopotential height) on one level surface (500 hPa) – are

the dynamics the same at other levels, or for other model variables (e.g.

temperature or wind speed).

Fernández et al. (2009) looked at two of these questions – seasonal vari-

ability and differences between model variables (500 hPa geopotential height

and 2 m temperature) – in the case of the DEMETER seasonal forecast mod-

els. There they found little difference between seasons, but a significant qual-

itative difference in the dynamics between variables, as noted in section 2.2.

4.1 Geographical variability

To investigate variation between different latitude bands, the MVL diagrams

can be calculated separately for each band, as shown in figure 4.4. We have

chosen 0◦−30◦ (tropics) and 30◦−75◦ (extratropics) in each hemisphere; this

captures the relevant features without introducing an unnecessary number

of bands.

It is clear from figure 4.4 that the differences between northern and south-

ern extratropics are slight for most models. The notable exception of KMA is

likely explained by the fact that their initial perturbations are optimised over

only one of these regions (north of 20◦N – see table 3.1); thus the perturba-

tions remain small over the rest of the globe as the fast-growing perturbations

in those regions are not effectively sampled by the ensemble.

On the other hand, there are quite strong differences between the tropics

and extratropics. In all the models, the perturbation amplitude grows larger

in the extratropics than in the tropics by the end of the forecast period. Also,
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while in the extratropics the models all reach a similar “climatological” region

of the diagram by the end of the forecast period, this is less true in the tropics;

this may be due to differences in tropical climatology between the models, or

it may be that the tropical dynamics have a longer predictability time and

so the ensembles have not dispersed to the full range of climatology by the

end of the forecast period.

There are also noticeable differences between the northern and southern

tropics, with a much greater growth in spatial correlation in the north for

all the models (except KMA whose optimisation region covers very little of

the tropics). A seasonal explanation seems likely, perhaps related to the

movement of the inter-tropical convergence zone (ITCZ) – we shall return to

this matter in section 4.2.

We previously noted the initial decrease in variance seen in some of the

models (BOM, CPTEC, ECMWF and JMA); this behaviour appears to have

a geographical component. In the case of ECMWF, it is very pronounced

in the tropics but barely discernible in the extratropics. As ECMWF has a

separate perturbation strategy (also SV-based) for the tropics1, it appears

that this, rather than the perturbations to the extratropics, is the source of

spatial structures which are inconsistent with the model dynamics. CPTEC

is rather different, with a very large transient correlation primarily in the

extratropics. This appears to be an artefact of the perturbation scheme,

which produces perturbations concentrated in an equatorial band (the op-

timisation region is 45◦ S − 30◦N; see figure 4.5). The gradual decrease in

perturbation amplitude outside this region leads to the very high variance

in the extratropics. Mendonça & Bonatti (2009) discuss some of the issues

surrounding this particular model in more detail. In particular, they show

that a combination of additional EOF-based perturbations optimised over

the extratropics and perturbing a more complete set of model variables im-

proves both the geographical distribution of the initial perturbation field and

the skill of the ensemble forecast.

1http://www.ecmwf.int/research/predictability/projects/IC_pert/
tropical_SV/index.html

http://www.ecmwf.int/research/predictability/projects/IC_pert/tropical_SV/index.html
http://www.ecmwf.int/research/predictability/projects/IC_pert/tropical_SV/index.html
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Figure 4.5: Example of initial ensemble state for the CPTEC model, showing
the concentration of perturbations in the tropics (Mendonça & Bonatti 2009,
fig. 1(a)). The shading represents the initial ensemble standard deviation,
with darker shades indicating a larger spread, i.e. larger initial perturbations.

4.2 Seasonal variability

To check for inter-seasonal variations, we compare the previous results for

February 2009 (figures 4.3 and 4.4) with their equivalents for August 2008,

shown in figures 4.6 and 4.7.

The global plots (figures 4.3 and 4.6) show only minor changes between

February and August, as in the DEMETER analysis by Fernández et al.

(2009).

Looking at the plots for individual latitude bands however (figures 4.4

and 4.7) it is clear that, while the seasonal changes in extratropical regions

are small, there is a “reversal” of the north/south split in the tropics observed

in section 4.1: in February the spatial growth is stronger in the northern

tropics, while in August it is stronger in the southern tropics. This suggests

that the difference is not a geographical one between the two tropical regions,
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Figure 4.6: MVL diagrams for 500 hPa geopotential height in the TIGGE
models, across the whole globe, for August 2008.

but rather a seasonal one with more spatial growth in the winter hemisphere.

There are several factors which may be relevant here: the larger and stronger

Hadley cell in the winter hemisphere (Vallis 2006, §11.4), the position of the

ITCZ (associated with widespread convective-scale activity) in the summer

hemisphere and the timing of monsoons. It may be that perturbations in the

summer hemisphere are thus dominated by more more localised convective

and monsoonal effects, compared to the winter hemisphere where large-scale

structures can grow relatively undisturbed.

4.3 Differences between model variables

4.3.1 Near surface: 2 m temperature

We can also contrast the results above for 500 hPa geopotential height with

those for a near-surface variable; for this purpose we use the 2 m temperature
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Figure 4.8: MVL diagrams for 2 m temperature in the TIGGE models, across
the whole globe, for February 2009.

field (or 1.5 m temperature in the case of UKMO, as that is what is provided

in the TIGGE archive). These results (for February 2009) are shown in

figure 4.8. Two anomalous features are immediately apparent: the CPTEC

curve shows a very high variance over the whole forecast period, and NCEP

shows very large oscillations in variance with a period of four data points, i.e.

24 hours. We have already seen anomalous behaviour from CPTEC when

looking at the results for 500 hPa geopotential height, and will return to the

NCEP oscillations later, but these two features distort the vertical scale to

the point where the dynamics of the remaining models are obscured; hence

figure 4.9 shows a rescaled version.

Two things are apparent here. First, there is much less agreement between

the models than for 500 hPa geopotential height, even towards the end of

the forecast period (especially in the tropics, as can be seen in figure 4.10).

Second, the curves are noisier in general and the 24-hour oscillations observed
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Figure 4.9: MVL diagrams for 2 m temperature in the TIGGE models, across
the whole globe, for February 2009 (enlarged).

in the NCEP curve appear to be present in most of the other models, although

with a much smaller amplitude.

There are two clear differences from the Fernández et al. (2009) DEME-

TER analysis (figures 2.2 and 2.3). Because the medium-range models intro-

duce their perturbations in the full initial model state, they do not show the

difference in initial correlation between lower and upper levels that was seen

in the seasonal models. Also, the daily oscillations in the 2 m temperature

plot appear to be unique to medium-range models; however, this could be

misleading since the lower time resolution used for the seasonal models (one

point each day) would be insufficient to resolve such an effect even if it were

present in those models.

Returning to the daily oscillations we saw particularly in the NCEP curve,

we might reasonably ask what causes these. Since all the data points are

zonal averages, we should expect simple diurnal cycles to average out. It is

conceivable however that they do not average out perfectly, perhaps due to
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different effects when the sun is over land and ocean. If this were the case,

we would expect the peaks to occur at approximately the same local time

at all longitudes. However, if we plot time series of V against t for separate

longitude slices (figure 4.11), we can see that there is little phase difference

between the slices – the peaks are at approximately the same universal time.

This suggests that we may be seeing a model artefact with a 24-hour period

(for example introduced by the boundary-layer model required to calculate

2 m temperature from the raw model variables) rather than a representation

of a genuine diurnal effect.

If we look at time series for individual ensemble runs (i.e. the mean over

ensemble members for each separate initialisation time) for the first few days

of the time period (the bold lines in figure 4.12), we see that this oscillation is

not a continuous effect, but occurs in most runs for some portion of the fore-

cast period. There is some variability in these oscillations between individual

ensemble members (the faint lines), but they appear largely in agreement for

each run.

4.3.2 Upper troposphere: 300 hPa meridional wind

For completeness, having looked at a mid-level field (500 hPa geopotential

height) and a near-surface one (2 m temperature), we shall look briefly at

the upper troposphere and consider 300 hPa meridional wind. (Ideally we

would consider the full vector wind field; however the results for the zonal

component are similar and this avoids the extra complexity of implementing

vector-based analysis.)

Figure 4.13 shows the results over the whole globe, and once again these

are broken down into latitude bands in figure 4.14. The plots are relatively

smooth, much like those for 500 hPa geopotential height (figures 4.3 and 4.4).

However the difference between hemispheres in the tropics is less apparent

here, and some models show noticeably different behaviour:

� ECMWF shows very little growth in spatial correlation here after the

initial transient decrease; for 500 hPa geopotential height there is sub-
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Figure 4.11: Mean-over-realisations time series of M (dotted line) and V
(solid line) for 2 m temperature in the NCEP model, for 60◦ longitude slices,
for February 2009.
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Figure 4.12: Separate time series of M (dotted line) and V (solid line) for
2 m temperature in the NCEP model, for the forecasts initialised on 1–12
February 2009 The bold lines show the mean of M(t) and V (t) over ensemble
members; the faint lines show the individual members.
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Figure 4.13: MVL diagrams for 300 hPa meridional wind in the TIGGE
models, over the whole globe, for February 2009.

stantial regrowth. This is particularly true in tropical regions; some

growth can still be seen in the extratropics.

� NCEP also exhibits initial decrease and little regrowth in this case, at

all latitudes; this is in contrast to 500 hPa geopotential height, where

there is strong growth in spatial correlation from the start.

� JMA shows a very high peak spatial correlation for 300 hPa meridional

wind, especially in the tropics, although that for 500 hPa geopotential

height is close to the majority of models.

4.4 Perturbations vs. errors

One question which arises when we look at the spatiotemporal dynamics

of the perturbations in these ensembles is to what extent they mimic the
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dynamics of the actual forecast error, since the main purpose of the ensemble

is to give an estimate of the range of error in our forecast.

A word on definitions is in order at this point. By “perturbation”, we

mean the difference between an ensemble member and the corresponding

control forecast at a particular time; when we talk about “error” we mean

the difference between an ensemble member and the “true state” at that

time. Of course we never know the true state, as we have a limited set of

observational data; thus we use the subsequent analysis for that time as a

“best estimate” of the true state.

With this in mind, we can draw a second MVL plot of the errors, taking

differences from the subsequent analysis valid at each forecast time, rather

than from the corresponding control forecast. For example, when calculating

M(24 h) and V (24 h) for the forecast initialised at 00Z on 1 February, we

consider differences from the analysis (control forecast at t = 0) that was

subsequently generated at 00Z on 2 February as a best estimate of the error

in each ensemble member (we include the control forecast here as a member

of the ensemble). Figure 4.15 compares the evolution of these errors to

the perturbations from the control member which we have been considering

previously. Note that the first point (t = 0) is omitted as for the error curve

it would involve comparing the control forecast to itself, resulting in a zero

difference field with an undefined logarithm; for consistency it is omitted here

from the perturbation curve as well.

For most models, the perturbations and errors appear to evolve with

a similar shape. However, the actual errors never achieve as much spatial

correlation as the perturbations, and the final “climatological” amplitude of

the errors is greater than that of the perturbations. The latter suggests an

incomplete representation of the sources of variability in these models, and

is true even of those using stochastic physics to represent model error (e.g.

NCEP and UKMO, less so ECMWF).

A notable exception is the CMC model, where the two plots are remark-

ably similar. It is unclear however whether this represents a genuine advan-

tage in this model’s perturbation dynamics, or is simply an artefact of using
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Figure 4.15: MVL comparison of perturbations from the control forecast
(usual colour) against the error with respect to a subsequent analysis at the
forecast time (indigo), for 500 hPa geopotential height in each of the TIGGE
models, across the whole globe, for February 2009.
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the same ensemble Kalman filter for perturbation generation and operational

data assimilation.

Note that we have calculated the errors by comparing forecasts against

analyses from the same centre. These analyses are produced by combining

the model dynamics with a set of observations via a data assimilation scheme;

however all three of these components differ between models. In particular,

the contribution of the model dynamics may constrain the sequence of anal-

yses to develop in a more similar way to the ensemble members than the

“true” state (especially if a sparse set of observations are used). It might be

enlightening to instead compare all the models against a single high-quality

re-analysis data set to obtain a “best estimate” of the true errors.

Figure 4.16 shows how the relationship between perturbation and error

evolution varies across the latitude bands.

4.5 Is the control forecast a good reference?

Another question to consider is the validity of using the control forecast as

our reference. Although it is initialised using the best estimate of the true

state, and starts off in a central position in the ensemble spread, it does

not necessarily remain so; this is why the ensemble mean is generally used

as the best estimate of the forecast state. However, the ensemble mean is a

statistical construct rather than a genuine state of the dynamical system, and

thus we cannot necessarily expect perturbations from the ensemble mean to

have the same spatial structure, or for the results linking their spatiotemporal

growth to the KPZ equation (Primo et al. 2007) to remain valid.

In order to eliminate any bias due to giving special status to the control

forecast, while still considering real states of the dynamical system, we can

instead calculate perturbations from the differences between all pairs of en-

semble members (including the control as just another ensemble member).

The disadvantage of this technique however is the computational complexity,

which becomes quadratic in the number of ensemble members (as opposed to

linear when considering only perturbations from the control forecast). Never-

theless, they can still be calculated in a feasible time, and figure 4.17 shows
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Figure 4.16: MVL comparison of perturbations from the control forecast
(usual colour) against the error with respect to a subsequent analysis at the
forecast time, for 500 hPa geopotential height in each of the TIGGE models,
over (from left to right) northern extratropics, northern tropics, southern
tropics and southern extratropics, for February 2009.
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Figure 4.17: MVL diagrams for pairwise perturbations in 500 hPa geopoten-
tial height in the TIGGE models, over the whole globe, for February 2009.
The centres are sorted by Mpeak.

the results for 500 hPa geopotential height. Comparing this to figure 4.3,

there is a slight shifting and smoothing of the curves, but the main features

are unchanged. This suggests that for most purposes there is little to be

gained from the extra computational effort.

4.6 Summary measures

In this section, we present an approach to calculating summary measures

which characterise certain aspects of the MVL diagram, with the aim that

models can be grouped or ranked according to particular characteristics. In

particular, we look at the measures listed in table 4.1 and illustrated in

figure 4.18.

The results for 500 hPa geopotential height in the TIGGE models are

summarised in table 4.2 (these correspond to measurements of the curves
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Symbol Description Equivalent to

tpeak The lead time at which V achieves its
maximum (excluding t = 0 for cases like
CPTEC with an abnormally high initial
value).

ttrgh The lead time at which V achieves its min-
imum prior to tpeak.

Mpeak The value of M at which V achieves its
maximum (excluding t = 0).

M(tpeak)

Mtrgh The value of M at which V achieves its
minimum prior to tpeak.

M(ttrgh)

∆tdrop The time taken to reach minimum V (in
fact this is equal to tpeak since we always
start at t = 0).

tpeak

∆tgrow The time over which the main growth of
spatial correlation occurs.

tpeak − ttrgh

∆Mdrop The change in M over the initial drop in
spatial correlation.

Mtrgh −M(0)

∆Mgrow The change in M over the main growth of
spatial correlation.

Mpeak −Mtrgh

∆Vdrop The change in V over the initial drop in
spatial correlation.

V (ttrgh)− V (0)

∆Vgrow The change in V over the main growth of
spatial correlation.

V (tpeak)− V (ttrgh)

Table 4.1: Summary measures of the MVL diagram.



4.6. SUMMARY MEASURES 57

Figure 4.18: Schematic showing summary measures of the MVL diagram.

in figure 4.4). It is not clear if all of these measures are of practical value;

however there are certain respects in which models can be differentiated:

� The models with an initial decrease in spatial correlation are picked out

by large (negative) values of ∆Vdrop – e.g. CPTEC in the extratropics

and ECMWF in the tropics. Since this indicates an initial transient

period where the model adjusts to the perturbations, such ensembles

should probably not be considered reliable during that initial period,

up to time ttrgh.

� As discussed earlier, most of the models have their peak variance at

a similar value of M in a given latitude band; this is reflected in the

Mpeak values (which e.g. cluster around 3.0 in the extratropics), along

with the exceptions noted previously (e.g. BOM and CMC which have

unusually low and high values respectively in all latitude bands). This

value gives an indication of the perturbation amplitude at which non-

linear effects begin to dominate.

� tpeak gives an indication of the lead time beyond which predictabil-

ity begins to be lost as the spatial structure in the perturbations is

destroyed. However, high values do not necessarily imply that the

forecast remains skilful at such lead times – merely that the ensemble

retains some memory of its initial state.
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75.0°S - 30.0°S

centre t_trgh M_trgh t_peak M_peak dV_drop dt_drop dM_drop dV_grow dt_grow dM_grow

BOM 0 0.1925 30 1.7600 0.0000 0 0.0000 0.3206 30 1.5675

KMA 6 -0.7832 222 2.3520 -0.1234 6 0.1285 0.2680 216 3.1352

ECMWF 6 0.5554 84 2.5089 -0.0179 6 0.1305 0.1442 78 1.9534

NCEP 0 1.6046 132 2.9531 0.0000 0 0.0000 0.1800 132 1.3485

CPTEC 12 0.7314 204 3.0519 -6.0300 12 1.7482 0.1603 192 2.3204

JMA 0 -0.9205 216 3.0689 0.0000 0 0.0000 0.3906 216 3.9895

UKMO 6 1.2324 174 3.3139 -0.1166 6 2.9859 0.2398 168 2.0815

CMC 0 1.8764 156 3.5522 0.0000 0 0.0000 0.2322 156 1.6758

CMA 6 2.0645 162 3.5547 -0.0060 6 0.0749 0.2177 156 1.4901

30.0°S - 0.0°N

centre t_trgh M_trgh t_peak M_peak dV_drop dt_drop dM_drop dV_grow dt_grow dM_grow

KMA 6 -0.8786 36 -0.9089 -0.3901 6 0.1235 0.2195 30 -0.0303

BOM 0 -1.3908 6 -0.6962 0.0000 0 0.0000 0.0441 6 0.6946

JMA 12 0.7463 126 1.1105 -0.1644 12 0.9131 0.2188 114 0.3643

NCEP 6 0.6591 174 1.4209 -0.0108 6 0.0399 0.2538 168 0.7618

UKMO 18 0.6417 216 1.6255 -0.1710 18 3.0919 0.2207 198 0.9838

CPTEC 30 1.2532 270 1.6371 -0.1217 30 -0.3876 0.4503 240 0.3839

CMA 0 1.0498 240 1.8630 0.0000 0 0.0000 0.4219 240 0.8132

ECMWF 30 0.2594 222 1.8769 -0.3103 30 1.6986 0.1566 192 1.6175

CMC 42 1.4886 156 2.1306 -0.0640 42 0.1178 0.1120 114 0.6420

0.0°N - 30.0°N

centre t_trgh M_trgh t_peak M_peak dV_drop dt_drop dM_drop dV_grow dt_grow dM_grow

KMA 0 -0.0543 132 1.1421 0.0000 0 0.0000 0.2276 132 1.1964

BOM 0 -1.3463 228 1.7485 0.0000 0 0.0000 0.2695 228 3.0948

JMA 12 0.9692 198 1.9701 -0.1845 12 0.7397 0.6729 186 1.0009

NCEP 6 0.6931 252 1.9991 -0.0071 6 0.0565 0.4750 246 1.3060

ECMWF 18 -0.0161 222 2.0523 -0.4182 18 1.1990 0.3993 204 2.0685

CPTEC 30 1.1619 336 2.0726 -0.1242 30 -0.3130 0.6534 306 0.9107

CMA 6 1.1339 240 2.1137 -0.0041 6 0.0695 0.7112 234 0.9799

UKMO 18 0.6627 288 2.1291 -0.2152 18 3.1246 0.4901 270 1.4664

CMC 36 1.3796 198 2.4536 -0.0850 36 0.0393 0.3224 162 1.0741

30.0°N - 75.0°N

centre t_trgh M_trgh t_peak M_peak dV_drop dt_drop dM_drop dV_grow dt_grow dM_grow

CPTEC 6 0.4147 42 0.9287 -2.3464 6 3.6156 0.5229 36 0.5140

BOM 0 -0.1409 30 1.4576 0.0000 0 0.0000 0.3426 30 1.5985

KMA 0 1.6539 6 1.6752 0.0000 0 0.0000 0.1483 6 0.0212

JMA 6 0.8544 36 2.2396 -0.0966 6 0.4410 0.2590 30 1.3853

NCEP 6 1.4753 120 2.8182 -0.0171 6 0.0924 0.1797 114 1.3430

ECMWF 6 0.5776 114 2.9690 -0.0110 6 0.1259 0.1760 108 2.3914

CMA 0 1.8736 102 3.0685 0.0000 0 0.0000 0.2472 102 1.1949

UKMO 12 1.4164 150 3.2588 -0.1255 12 3.0812 0.1260 138 1.8424

CMC 0 1.8156 156 3.7095 0.0000 0 0.0000 0.1624 156 1.8939

Table 4.2: Summary measures for 500 hPa geopotential height in the TIGGE
models over each latitude band, for February 2009



4.7. SUMMARY 59

There may well be scope for developing more robust measures, perhaps

by filtering or pre-smoothing the curves; these relatively simple measures are

easily distorted by “noisy” MVL curves that don’t follow a smooth theoretical

path (e.g. KMA outside the northern extratropics).

4.7 Summary

In this chapter we have analysed the spatiotemporal dynamics of the medium-

range ensembles in the TIGGE archive, showing how each model has a dis-

tinct pattern. Concentrating mostly on 500 hPa geopotential height, we saw

a large difference between the perturbation dynamics in the tropics and ex-

tratropics, with a further seasonal variation in the tropics. Looking closer

to the surface, the perturbations in 2 m temperature produced less smooth

MVL curves, with unexplained daily oscillations especially in NCEP. We also

considered how the MVL diagram might be used to compare the dynamics

of perturbations and forecast error. In chapter 5, we turn to the problem

of constructing multi-model ensembles, and examine how the MVL diagram

might be useful in this context.
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Chapter 5

Multi-model ensembles

One of the reasons for looking at the dynamics of the various TIGGE mod-

els, apart from comparing their behaviour as independent ensembles, is to

consider the potential for combining (all or a subset of) them to produce

a multi-model ensemble with better performance (more skilful in either its

ensemble mean or probabilistic forecasts).

5.1 Background

Experiments have been performed using multi-model ensembles for vari-

ous purposes. For instance, Krishnamurti et al. (2006) discuss the appli-

cation of one technique (the “superensemble”), to seasonal, medium-range

and hurricane-track forecasts. The DEMETER project, already mentioned

in section 2.2, has provided a framework for work on multi-model seasonal

forecasting.

In the medium-range, the North American Ensemble Forecasting System

(NAEFS; Zhu & Toth 2006) has been operational since May 2006, combining

the CMC and NCEP models into a single 40-member ensemble. Candille

(2009) shows that the combined ensemble offers improvements over each

individual model and that this is true even for a random 20-member subset

of the combined ensemble, i.e. that the improvement is not just due to the

increased ensemble size.

61
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Johnson & Swinbank (2009) present an experimental multi-model en-

semble based on three of the TIGGE models: ECMWF, NCEP and UKMO,

“chosen because they are all accessible in real time and because they have

similar overall levels of skill”. They also discuss the various calibration steps

which may be desirable when combining ensembles with different statistical

properties: bias correction, weighting and variance adjustment (their effects

are shown in figure 5.1). The combined ensemble outperforms each of the

individual ensembles, although the improvement is much smaller for mean-

sea-level pressure and 500 hPa geopotential height (where the models exhibit

similar forecast errors) than for 2 m temperature (where the forecast errors

differ more between models).

5.2 Using MVL to choose models

Because the MVL diagram gives a concise picture of how the perturbations

evolve in each model, it provides one approach to identifying models which

will produce a dynamically diverse ensemble (Fernández et al. 2009). For

example, referring back to figure 4.3, the NCEP and UKMO curves appear

to have very similar spatiotemporal dynamics (after the first 6 hours, during

which the Incremental Analysis Update takes effect in the UKMO model).

This suggests that combining these ensembles will not add significant dy-

namical diversity, while adding e.g. CMC (as in NAEFS) or ECMWF (as in

Johnson & Swinbank 2009) would increase the diversity.

It would therefore be illuminating to construct a combined NCEP-UKMO

ensemble and compare its performance with the existing NAEFS (CMC-

NCEP) ensemble, to see if this argument is supported by a smaller improve-

ment over the individual ensembles for the former. Alternatively, one could

examine the effect of removing either NCEP or UKMO from the ECMWF-

NCEP-UKMO ensemble of Johnson & Swinbank (2009); the above argument

would suggest that this would retain most of the dynamical diversity of the

full three-model ensemble. The construction of such a new multi-model en-

semble is beyond the scope of this work however.
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Figure 5.1: Calibration of a multi-model ensemble (Johnson & Swinbank
2009, fig. 1).



64 CHAPTER 5. MULTI-MODEL ENSEMBLES

5.3 MVL diagrams of multi-model ensembles

Having considered the use of MVL diagrams in choosing a multi-model en-

semble, we now turn to the question of what the MVL diagram of that

ensemble would look like. It is unclear, however, how we should measure the

perturbations in such an ensemble: should we take each ensemble member

relative to the control forecast from its own model, a (weighted) average of

the different control forecasts, or the multi-model ensemble mean? The latter

two options would introduce the problems discussed in section 4.5 of using

a reference which is not a genuine state of the dynamical system; we thus

take the first option (each ensemble’s members relative to its own control).

This approach has the additional property of being insensitive to differences

in bias between the models (which will affect the control and perturbation

equally and cancel out).

Taking this approach, and considering a multi-model ensemble without

further calibration beyond bias correction and global weighting, each ensem-

ble member produces exactly the same MVL curve as in its own ensemble,

and we simply take the weighted mean of M and V across the members of

all the constituent ensembles. For the case of equal weighting of all ensemble

members, the result for several hypothetical combinations (along with their

individual constituents) is shown in figure 5.2 (only models with a forecast

range of at least two weeks have been included). However, where we combine

models with very different curves (e.g. NCEP and CMC) the mean values

are no longer representative as the ensemble becomes bimodal, as shown in

figure 5.3.
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Figure 5.2: Mean-over-realisations MVL curves for hypothetical multi-model
ensembles

Figure 5.3: “Spaghetti” MVL plot for a combined NCEP/CMC ensemble
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Chapter 6

Summary and conclusions

We have introduced the concept of spatiotemporal growth of perturbations,

and shown how this can be related to the theory of interface growth if we

take the logarithm of the perturbations. Using this theoretical framework,

the MVL diagram provides a concise way to visualise the spatiotemporal

dynamics of a complex model.

Following previous work applying the technique to the DEMETER sea-

sonal weather forecasting models, we have presented an analysis of the TIGGE

medium-range models. In both cases, each model’s MVL curve has a char-

acteristic shape for a given variable, but generally fitting into one of the

expected patterns in figure 2.4. Many features of these curves can be related

to known characteristics of the model (e.g. the poor growth of spatial corre-

lation in the unperturbed regions of some models), although other features

remain unexplained (e.g. the large oscillations in spatial correlation for the

NCEP 2 m temperature field). Looking at separate MVL diagrams for the

tropics and extratropics, we saw that the different dynamics are clearly re-

flected in very different curves for most of the models. There was also much

more seasonal variation in the diagrams for the tropics than those for the

extratropics.

There is a clear distinction between the models using singular-vector and

EOF initial perturbations (which show a large initial drop in spatial cor-

relation before the growth phase at some or all latitudes) and those using

67
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bred-vector and ET/EnKF-based perturbations (which do not). This sug-

gests that the latter produce perturbed states closer to the model attractor;

while this does not necessarily imply greater skill in the medium range, it is

probably important if the ensemble is also to be used for short-range proba-

bilistic forecasts.

We also considered the relationship of the perturbation dynamics to the

evolution of forecast error, showing a wide variation in how closely the MVL

curves for the two agree. There are two major caveats, however, to using

this as an indicator of how well the ensemble captures the true forecast

uncertainty: firstly, while the perturbation (ensemble member minus control)

is the difference between two states of the same dynamical system, the error

(forecast minus analysis) is not, and thus the applicability of the MVL theory

is uncertain; and secondly, the “almost too good to be true” fit for the EnKF-

based CMC suggests that this analysis may be over-sensitive to artefacts of

the interaction between the data assimilation and perturbation generation

schemes.

We briefly presented a number of simple measurements which can be

taken from the MVL diagram to characterise certain aspects of the pertur-

bation growth; it is unclear whether this approach offers any insight beyond

that apparent in the diagram itself, although with further work to make

the measures more robust it could lead to a more systematic approach to

categorising the model dynamics.

In the last chapter, we considered how these results might be applied

to the construction of multi-model ensembles from the TIGGE models by

choosing models with a range of different MVL curves, given the previous

studies which highlight the importance of dynamical diversity between the

constituent ensembles. We proposed an experiment to test the usefulness of

such an approach; this would require the construction of at least one new

multi-model ensemble, but could be an enlightening avenue for further work.
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