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Abstract

Ice crystal aggregation is of great importance in understanding and predicting precipi-

tation in the UK. It is also highly influential in climate prediction through its influence

on cloud properties. It is therefore important to keep striving for a better understanding

of the mechanism and better methods for its reproduction in models.

Many previous models and studies have assumed relationships on ice particle param-

eters, including fitted area- and mass-diameter relationships. However, these relation-

ships eliminate the variability of these parameters and mean that no account is taken

of the effect of the individual snowflake’s shape.

This dissertation reviews previous research into ice crystal aggregation modelling and

observations. It also investigates the problem using a new modified Monte Carlo model

which employs fall speed equations that are based on the individual particle’s shape, as

every snowflake has its own geometry, and consequently fall speed. Investigation into

the fall speeds showed that the dispersion of the fall speeds between large snowflakes

of different sizes does not reduce to negligible amounts as previously expected in other

studies. This was also reflected in the results on the relationship between the parame-

ters N0 and λ characterising the slope and intercept of the approximately exponential

snowflake size distribution. It was found that λ steadily decreased to values of λ below

10cm−1 contradicting other studies that have suggested that the relationship would alter

dramatically at this point, possibly as a result of aggregation slowing to a negligible rate

through a reduction in the dispersion of fall velocities for large snowflakes. Comparison

with radar data showed that the new modified Monte Carlo model also provided an rea-

sonable reproduction of the obervered approximately exponential relationship between

reflectivity and time.

The results were also compared to results produced by simplified models, employing

fall speed calculations not dependent on individual particle’s shapes. Comparison plots

of the radar reflectivity against time for the models showed that the simplified models

exhibited a much slower aggregation rate. The implications for using data from radar to

observe properties of ice crystals in clouds using Doppler spectra were also investigated.
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Chapter 1

Ice Crystals, Snow Flakes and

Aggregation

This first chapter aims to provide the background knowledge on which this project

is based or direct the reader to where it can be obtained. This chapter will provide

an overview to the relevance of aggregation to the weather and climate, though ice

nucleation and growth processes in clouds.

1.1 Why is it important?

Modelling and understanding what happens to ice crystals in clouds is integral to fur-

thering our understanding and ability to model the weather and the climate.

Correctly predicting precipitation is of paramount importance for many things from

agriculture to flood warnings in towns and shipping forecasts and this in turn depends on

the understanding of the processes which create it. In the United Kingdom the majority

of the rain that falls is attributable to melting ice particles. This is due to the Bergeron

Findeisen Process, see section 1.2, which occurs where a small number of ice crystals

grow large at the expense of liquid water droplets. The large ice crystals then fall and

become an efficient source of precipitation and furthermore can seed liquid clouds.

It is also important for improving modelling and understanding the climate. At any

point in time around 1/4 of the surface of the earth is covered by cirrus clouds [23] which

are composed of ice crystals and aggregate snowflakes. The climatic effect of cirrus clouds

is in general a warming. As seen in the Intergovernmental Panel on Climate Change

(IPCC)’s fourth assessment report [27, p. 38], clouds are one of the biggest uncertainties

in predictions of climate change. Deep stratiform ice clouds associated with weather

1



CHAPTER 1. ICE CRYSTALS, SNOW FLAKES AND AGGREGATION 2

fronts could have a cooling effect due to their optical thickness, reflecting solar radiation

back into space. Therefore it is important to understand the growth of ice crystals in

these clouds in order to predict their radiative properties better. Sensitivity studies with

the ECMWF global forecast model have shown that changes in the parameterised ice

particle fall speeds, within a realistic range, can have a large impact changing the global

mean net flux by as much as 10Wm−2, as seen in [28, fig. 1]. It is also important to

improve ice particle aggregation modelling as it is an important growth mechanism, and

increases the fall speeds because of this.

1.2 Nucleation

Ice clouds form as moist air rises in the atmosphere. The associated fall in pressure

causes the air to expand adiabatically and to cool. As the air becomes supersaturated

water droplets are formed on cloud condensation nuclei, of which the atmosphere has

an ample supply. If the droplet is cooled to a sufficiently low temperature then it will

freeze, forming an ice crystal by one of two mechanisms: homogeneous nucleation and

heterogeneous nucleation.

In general homogeneous nucleation is reserved for clouds where the temperature is

−40◦C or lower and as such is mainly the reserve of high clouds like cirrus. For the

droplet to freeze through homogeneous nucleation, some of the water molecules within

the droplet must form into an ice-like lattice structure. If this happens by chance then

the droplet then freezes around these lattice structures. Experimental observations

have shown that this occurs at ≈ −40◦C for the size of droplets that are relevant to the

atmosphere [29].

Heterogeneous nucleation however can occur when the temperature is above −40◦C

and requires the presence of aerosols to serve as a nucleus around which freezing can

occur. Only certain substances are effective as an ice nuclei and this includes clay par-

ticles and desert dust; artificial nuclei include silver iodide and dry ice, the latter being

the basis of cloud seeding. The effectiveness of ice nuclei increases as the temperature

reduces. Due to the relative sparseness of ice nuclei, ice crystals formed through het-

erogeneous nucleation and supercooled water droplets co-exist in clouds. However this

situation can result in the Bergeron Findeisen Process which occurs because the satura-

tion vapour pressure over ice is always greater than that over liquid water. This causes

the ice crystal to grow in the water saturated conditions, which depletes the available

water vapour, making the air subsaturated with respect to the water droplets, which

causes them to evaporate. Thus the ice crystals grow large at the expense of the water
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droplets.

1.3 Growth mechanisms

Initially the ice crystals grow by the deposition of water vapour onto the surface of the

ice crystal. This dominates the growth of the particle near the top of the cloud where

the ice crystals are small and have small fall speeds. As the crystals get larger and they

begin to fall through the cloud their growth is often dominated by aggregation. Aggre-

gation occurs when ice crystals collide and may form a bond attaching them to each

other therefore forming an ‘aggregate’. The mechanics involved in the bond are still a

matter of research. Sticking mechanisms that have been suggested include: mechani-

cal interlocking, sintering, vapour deposition, electrical forces also known as attraction

and a ‘sticky’ liquid-like layer on the surface of the ice crystal. In older observational

studies it was suggested that ice crystal aggregation became inefficient in temperatures

< −20◦C. However, as improvements have been made in the imaging probes used to ob-

tain measurements from aircraft, aggregates have been found at temperatures of −40◦C

and below [26]. In [30] Mason suggests that the bonding between ice crystals is in part

due to interlocking and to sintering, where the surface attempts to minimise surface

energy in the places the crystals touch forming a bridge between the crystals. Mason

further suggests that if the air surrounding the two particles is supersaturated over ice

then vapour deposition on the surface of the crystals ‘may act as cement’ [30, p. 249].

In [30] the assumption, that aggregation is not efficient at temperatures below −20◦C,

is further dispelled with references to a study by Hosler et al [31] where adhesion of ice

spheres are measured at temperatures down to −80◦C. Aggregate formation is not the

only possible outcome of two ice crystals colliding, they may simply change paths or

break on impact.

There is one other mechanism by which ice crystals can grow and that is riming.

This is when the falling ice crystal gains size as supercooled water droplets in its path

deposit upon it. This dissertation will concentrate only on the growth of ice crystals in

glaciated clouds by aggregation, where bonds between crystals are formed on impact,

figure 1.2 shows some examples of aggregates.

1.4 Ice crystal types

There are many different ice crystal types, described by their geometrical appearance,

degree of riming and degree of aggregation.
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Figure 1.1: Some examples of ice crystal types, from left to right, hexagonal plate, bullet
rossette and dendrite, taken from [25] and [26]

Figure 1.2: Some examples of aggregates, from left to tight, dendrite aggregate,
snowflakes composed of dendrite aggregates, needle-like crystal aggregate, taken from
[30] and [32].

Figure 1.1 shows some example of different crystal types and figure 1.2 has images

of examples of aggregates of different crystal types.

There are several different categorisation systems which generally focus in particular

on one aspect. Different types are usually identified in studies using images, and data

for different types is usually treated separately.

Different types of ice crystal are known to grow at different temperatures and hu-

midities as shown in figure 1.3. Planar growth, of plates and dendrites, is seen in tem-

peratures between approximately −10◦C and −20◦C. Columns are observed to grow

in approximate temperature regimes of < −20◦C and −3◦C to −10◦C. Plates are also

observed growing for temperatures above −3◦C. The more complex ice crystals shapes

of the branched and dendritic types grow at higher supersaturations. Bullet rossettes

and side planes form at the coldest temperatures below −20◦C.

As a crystal grows larger it begins to fall, which sometimes will take the crystal into

a different temperature regime. This can cause a mixture of crystal types, like plates
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Figure 1.3: Diagram depicting the conditions, in temperature and humidity, in which
various ice crystal types form, taken from [32]

growing on the end of column crystals as seen figure 1.4.

Figure 1.4: Examples of plate ice crystals growing by vapour deposition on the end of
column ice crystals, taken from [33]



Chapter 2

Previous observations and

modelling of snowflake fall speeds

and aggregation

In this chapter I hope to familiarise the reader with previous work on the subject of

ice crystal aggregation both in observation and modelling. Previous models and their

results are clearly very important in order to build a basis on which to build future

improved models, however, observational studies are also very important for models

and modelling. They serve as a benchmark against which a model’s accuracy can be

measured. As modelling techniques and models improve and have greater refinement

there is a demand for increasingly detailed observational measurements and less fallible

techniques and instrumentation.

This chapter firstly provides a review of previous work on aggregation, particularly

those which relate to the fall speeds of ice particles. These are particularly important

as the fall speeds control the aggregation process through collisions produced by ice

particles falling at different velocities. Then observational measurements, taken from

aircraft, of snowflakes in stratiform clouds are also reviewed, to give indication of the

effect of aggregation on ice particle size distributions, and suggestions for what other

processes may be occurring in those clouds. The final part of this chapter shall detail

and discuss how other studies have attempted to model the process.

6



CHAPTER 2. SNOWFLAKE FALL SPEEDS AND AGGREGATION 7

2.1 Observations and modelling of ice particle fall

velocities

2.1.1 Observational studies

In their 1974 [13] Locatelli and Hobbs claimed that although experimental observations

had been gathered before, the data sets available were “still scatty and inadequate for

many purposes” and some “show inconsistencies” with an overall pattern not yet obvious

[13, p. 2185].

Locatelli and Hobbs measured the fall speed of particles using two parallel light

beams placed vertically above one another. Any decrease in the intensity of either

beam is recorded as the passing of the ice particle through that beam. As the exact

distance between the two beams is known the time difference between a particle passing

through the first and the second beam can be used to calculate its fall speed. A thin

piece of plastic, ‘Handiwrap’ below the beams was used to catch the particles so other

observations could be made. The dimensions of the particles were then taken using

microphotographs and after the particles were melted the size of the remaining water

droplet (or sometimes droplets in the case of aggregates) enabled an estimate of the

mass to be obtained.

Through an advance in data gathering technique, there are still potential problems.

It is possible for two particles to be passing through the beams at the same time and

though this can be monitored and any data from such an occurrence ignored, it makes

the method very time consuming. The possibility of a very large particle crossing both

beams at once is negated by separating the two beams by twice as much as the dimension

of the largest particle. Although Locatelli and Hobbs highlight the problem of having

too many classifications of ice particles, they use the same classification system, Magono

and Lee [14], as the problem was highlighted in.

The study did produce some important general patterns within the data for different

particle types. With enough data for a particular particle type, the physical properties

were presumed to fit a relationship of the form y = axb and a logarithmic conversion

of the data was used to find a and b. For most of the particle types studied, Locatelli

and Hobbs produced an estimated relationship for velocity-dimension, velocity-mass and

mass-dimension which can be found in the table in [13, p. 2188].

In comparing their findings with those of other studies Locatelli and Hobbs look at a

study by Zikmunda and Vali [15]. In this study a basic relationship of y = a+ blogD is

assumed rather than y = axb. By using graphical representations of these relationships
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and the gathered data for particular particle types, Locatelli and Hobbs argue that their

assumption is closer to reality than Zikmunda and Vali.

In [13], general features of the measurements were examined and general relationships

between particles were determined using best fits. The velocity-diameter relationship

is approximated, for different types of aggregates. As can be seen in figure 2.1 the

Figure 2.1: Best Fit curves for velocity-diameter relationship as shown in [13, p. 2194]

velocity-diameter relationship is of a similar form for all aggregate types, though the

scale differs. It can be particularly observed that on average, given sufficient observations

of large aggregates, the velocity at larger sizes of aggregates tends to flatten out.

Locatelli and Hobbs also investigated the mass-diameter relationship approximating

it in a similar manner to the velocity-diameter relationship to produce general relation-

ships, as seen in figure 2.2. The mass-diameter relationship for all types aggregates

are very similar. These power law relationships for mass and diameter are important

for converting measurements taken of a particle’s diameter and converting it into an

approximation of its mass, as is seen in many airborne observational studies, and for pa-

rameterising ice particles in NWP models, for example the Met Office’s Unified model.

They also gain importance in light of the fact that a power law relationship for mass and

diameter is often assumed in subsequent studies of models of fall speeds and aggregation

in clouds.

Barthazy and Schefold conducted a more recent investigation into fall speeds of

crystals according to their type and the degree of riming [20]. Like Locatelli and Hobbs

they also employed ground-based instrumentation in order to gain more accurate fall

speed measurements though, as for Locatelli and Hobbs, this limits the results to snowfall



CHAPTER 2. SNOWFLAKE FALL SPEEDS AND AGGREGATION 9

Figure 2.2: Best fit curves for the mass-diameter relationship as shown in [13, p. 2194]

that reaches the ground. The measurements are gathered using the hydrometeor velocity

and shape detector, HSVD, an optical instrument that measures the velocity using two

beams of light as Locatelli and Hobbs [13] had done but which also took images as the

beams were broken, eliminating some of the problems Locatelli and Hobbs had faced,

meaning more measurements could be made. The image is a side-view of the particle

and is used to calculate the diameter of the particle, the particle’s type and the degree

of riming was ascertained by taking samples on microscope slides. When a crystal type

and riming degree is ascertained for a particular sample all HSVD gathered data in the

30 seconds preceding or following the gathering of that sample is presumed to have the

same type and riming degree. This is not of course what occurs in reality but is useful

for investigative purposes.

Barthazy and Schefold used two separate equation forms to fit the data a power law

and an exponential function:

v (D) = αDβ

v (D) = a
(
1− e−bD

)
where a, b, α and β are constant coefficients.

They found that both of these fits depended on the degree of riming measured only

when used on the data attributed to needle and plate crystals types. For the data on

needle and plate crystals there was an observable increase in the degree of riming which
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corresponded to an increase in fall speed. Though the fall speeds of all crystal types and

riming degrees exhibit generally similar relationships in these observations it is necessary

to recall the way in which these types and degrees were attributed to them and how this

may have mixed the data for each to a certain degree. For aggregates, the estimated

power-law velocity-diameter relationships were similar to those of Locatelli and Hobbs

and for the largest unrimed aggregates the velocity appears almost constant on average.

2.1.2 Theoretical treatment of the ice particle’s fall speed

Empirical expressions, often in the form of power laws, for the fall speeds of ice particles

have been estimated from observational data and used in many studies and NWP models,

for example the Met Office model [17].

In his paper [5] published in 1996, Mitchell sets forward an improved method of cal-

culation of the terminal velocity of ice particles from their size and shape and compares

the results with previous studies.

The drag force on a particle in a fluid is given by:

FD =
1

2
ρav

2ACD (2.1)

where ρa is the density of the air, v the velocity of the particle, A the area projected by

the particle perpendicular to the flow and CD is the drag coefficient. For large Reynolds

numbers Re = DV/νk, e.g. large snowflakes, the drag coefficient is approximately

constant, and Mitchell estimates that in this situation CD = C0 = 0.6. For smaller

Reynolds numbers the drag coefficient is not constant but varies with the Reynolds

number CD = CD (Re).

The terminal velocity, v, can then be calculated by equating the gravitational force

mg with the drag force, thus producing the formula:

v =

(
2mg

ρaACD

) 1
2

(2.2)

Unfortunately CD is itself a function of Re and therefore of v.

In order to avoid this dependence on v in the calculation, Mitchell utilises the Best

or Davies Number, X. The Best Number can be calculated without using v:

X = CDRe2 =
2mgρaD

2

Aη2
(2.3)

where D is the maximum dimension of the particle, η is the dynamic viscosity, Re the
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Reynolds number of the particle. The Best number depends on the projected area, mass

and maximum dimension of the particle.

Given knowledge of the particle shape or measurements of mass, area and the maxi-

mum dimension the best number can be calculated directly. A number of experimental

and observational studies have measured Re-X relationships; Mitchell attempts to unify

them into a single theory. Once Re has been calculated from X, the terminal velocity

can be directly calculated from:

v =
Reνk
D

=
Reρa
Dη

(2.4)

where ν is the kinematic viscosity and η is the dynamic viscosity.

Boundary layer theory is applied to the problem as hypothesized for a sphere by

Abraham [6]. The particle is assumed to have an attached boundary layer surrounding

it of width δ as shown in Figure 2.3. The ice particle and boundary layer are treated as a

solid body, and the flow around the assembly of the particle with its attached boundary

layer is assumed to be inviscid.

Figure 2.3: Boundary layer view of an ice particle

So we now simply require the drag on the entire assembly, Σ, of the ice particle and

its surrounding boundary layer. From equation (2.1) the drag is:

FD =
1

2
ρv2C0AΣ (2.5)
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where AΣ is the projected area of the ice particle and the attached boundary layer. C0

the drag coefficient is now constant as the flow around Σ is inviscid, corresponding to

νk << 1 and therefore the Reynolds number of the assembly is large. Mitchell assumes

that AΣ can be estimated by:

AΣ = π [req + δ]2 (2.6)

where req is the radius of the sphere equivalent in projected area to that of the ice

particle. Boundary layer theory provides the equation:

δ =
δ0req√

Re
(2.7)

where δ0 is a constant, as in [5].

Combining equations 2.1, 2.3, 2.6 and 2.7 A general relationship between Re and X

is then produced:

Re =
δ2

0

4

(1 +
4X1/2

δ2
0C

1/2
0

)1/2

− 1

2

(2.8)

This continuous analytical relationship can be used to calculate the terminal velocity,

provided the mass and area-dimensional relationships are known, or can be estimated

with a good degree of accuracy.

Previous observational studies [7], [8] have leaned toward the power-law relationship:

Re = aXb (2.9)

and subsequent fall speed expression:

v =
aν

D

(
2mD2g

ρaν2A

)b
(2.10)

Mitchell proposes a simple method to parameterise the Best number, using mass and

area projected normal to the flow expressed in the form of a power law of the maximum

dimension:

m = αDβ (2.11)

A = γDσ (2.12)

So obtaining the expression:

X =
2αgρaD

β+2−σ

γη2
(2.13)
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Based on equation (2.8) the Re-X relationship can be approximated by:

Re = 0.04394X0.970, 0.01 < X ≤ 10.0 (2.14)

Re = 0.06049X0.831, 10 < X ≤ 585 (2.15)

Re = 0.2072X0.638, 585 < X ≤ 1.56x105 (2.16)

Re = 1.0865X0.499, 1.56x105 < X ≤ 108 (2.17)

Though (2.8) is a continuous function it can be approximated using this series of power

Figure 2.4: The dashed line represents equation (2.8) and its approximations (2.15),
(2.16) and (2.17) are given by the straight solid lines, taken from [5, p. 1715]

laws over a limited range.

So these parameters can be input as a and b into the equation derived from (2.11),

(2.12) and (2.10):

v = aν

(
2αg

ρaν2γ

)b
Db(β+2−σ)−1 (2.18)

with α, β, γ and σ dependent on the projected area and mass of the particle. A table

compiled from several sources is contained in the paper [5] containing values for the

parameters dependent on the particle type and its size.

Mitchell and Heymsfield published refinements to the method in 2005 [9]. They

made a minor correction to the method for turbulent flow around aggregates at very
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high Reynolds numbers. This only has implications for the very largest ice particles

however.

Mitchell and Heymsfield compared several different Re-X relationships from dif-

ferent studies: The second highest (short dashed) curve in Figure (2.5) represents

Figure 2.5: Figure taken from [5, p. 1639] illustrating the different Re-X relationships
produced

Khvorostyanov and Curry’s solution [10]. They expressed (2.8) in the form of a power

law Re = a (X)Xb(X) using parameters equivalent to δ0 = 9.06 and C0 = 0.292, which

Mitchell and Heymsfield argue are more appropriate for modelling smooth rigid spheres

like water drops than ice particles and aggregates. Heymsfield et al. [11] used mea-

surements of aggregates to propose a Re-X relationship that suggested that equation

(2.8) overestimates the fall speeds of the largest snowflakes by 15%. However, Mitchell

and Heymsfield [9, p. 1638] suggest that caution needs to be exercised towards these

measurements due to possible systematic bias in the measurement of the projected area.

This Re-X relationship is illustrated in Figure 2.5 by the lowest (dotted) line though the

possible bias would effect it by overestimating the area and therefore underestimating

the Best number, X. The second lowest (solid) line is produced by (2.8) with δ0 = 5.83

and C0 = 0.6 as used in Mitchell’s 1996 paper [5]. Mitchell and Heymsfield hypothesise

that deviations of the lowest (dotted) line from the second lowest (solid) line are due to

alterations in δ0 and/or C0, since for X > 106 CD ≈ C0 ≈ 0.6 [12], it is likely that these
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alterations are in δ0. From (2.8) an increase in δ0 for aggregates could account for a

decreased Reynolds number with respect to the Best number as the lowest line in Figure

(2.5) from [11] suggests, it would also produce an increase in the effective area of the

assembly Σ in boundary layer theory and therefore a decrease in the terminal velocity.

For aggregates Mitchell and Heymsfield propose the following altered relationship

for aggregates:

Re =
δ2

0

4

(1 +
4X1/2

δ2
0C

1/2
0

)1/2

− 1

2

− a0X
b0 (2.19)

where for a0 = 1.7 × 10−3 and b0 = 0.8. This equation provides the best fit to the

available fall speed data and is the fall speed equation that will be used in modelling the

aggregation of ice crystals in chapter 3. The additional second term in the equation is

proposed to account for the dilation of δ0 and subsequent increase in the effective area

as they found simply adjusting constants δ0 and C0 was not sufficient.

The Monte Carlo model in section 2.3.3 and chapter 3 resolves the geometry of the

aggregates, therefore the mass, the projected area and the maximum dimension are all

known and need not be estimated by power-law relationships as it is in other studies.

The Best number can be calculated using (2.3) and the Reynolds number by (2.19).

Then the terminal velocity can be calculated using the relationship (2.4) rearranged to

give υt = Reν/D = Reρa/Dη.

2.2 Observations of aggregation in ice clouds

Lo and Passarelli Jr.’s 1982 study [16] was published as an attempt to produce observa-

tional data that could give a 4-dimensional (in space and time) picture of the properties

of the ice crystals throughout their growth history. A major constraint on the solution

of this problem is that all the data be gathered by just one aeroplane in just a single

flight. Another question is whether the technology will be able to differentiate between

the effects of different physical processes.

Another significant factor in the development of the sampling procedure is the hor-

izontal movement of particles exhibited by all ice particles even in steady conditions.

To produce a simple model of this behaviour, assuming a steady, finite source, Lo and

Passarelli used the equation:

X = X0 +
S

2

(Z0 − Z)2

v
(2.20)
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where X is the particle’s horizontal position with respect to its origin X0, S is the

shear, Z is the particle’s below position with respect to its origin Z0 and v is the fall

speed. However as different size particles have different fall speeds this impacts on the

horizontal advection they undergo. Using only two different fall speeds Lo and Passarelli

demonstrate graphically how the advection experienced by one set of particles of one

size is different than that experienced by a set of larger particles, however there is an

overlap between these regions as seen in figure 2.6.

Figure 2.6: Plots of particle trajectories for a steady state line source, top plot, and
time-dependent line source, bottom plot, taken from [16, p. 698]

This means that given a steady, finite source there will be a finite region in which

horizontal advection can be ignored and the particle growth can be measured as a 1-

dimensional problem. Similarly through modelling a source which produces ice particles

for only a limited time it can be shown that even if a source is not steady there will always

be a region which acts as if the source were in a steady state. Using these two findings

Lo and Passarelli surmised that the problem of a horizontally finite, time-dependent

source could be reduced to 1-dimension if the aeroplane were to follow these regions,

which correspond to a infinite, steady source and no horizontal advection, described.

This all presumes finite limits on the fall speeds, which for aggregates [13] suggests is

entirely plausible.

Using this modelled behaviour as a guide, Lo and Passarelli proposed a spiral flight

path where the fall speed and horizontal drift attempted to match that of the average

particle. If the ideal conditions were met, with the diameter of the loops remaining

smaller than the area over which the observed atmospheric properties were uniform

and the overall condition was as steady as possible, then the flight path is known as

the advecting spiral descent (ASD). ASD is designed to be relative to the movement

of the air rather than the aircraft’s position geographically simplifying the problem as
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Lagrangian co-ordinates simplify many problems in fluid dynamics in a way Eulerian

co-ordinates would be too cumbersome to do. The data gathered was collected using a

Particle Measuring Systems (PMS) 200-Y probe which took 1-dimensional laser images.

These were then used to count and size the particles.

The results gathered suggested a size-spectrum approximately of the form:

N (D) = N0e
−λD (2.21)

where N (D) ∆D is the concentration of particles in the size range [D,D + ∆D], N0 is

the intercept and λ the distribution slope. Lo and Passarelli focus on the evolution of

parameters N0 and λ as the aircraft descends along its Lagrangian spiral.

Figure 2.7: N0-λ evolutions from three separate spirals, taken from [13, p. 702]

As can be seen in figure 2.7, a general pattern of early growth in N0 and small

decreases in λ, changing into the second stage where N0 decreases as well as λ, before

finally stage three is seen where neither N0 or λ decrease or increase in any significant
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way. In figure 2.7 the third spiral is seen to only exhibit behaviour from stages 2 and

3. Lo and Passarelli attribute distinct physical processes to these stages, the first being

possibly deposition growth and the second stage aggregation, where the numbers of

small particles decrease as they collide and are collided with to produce new larger ones.

The third stage is more difficult to attribute, with particle breakup being one possible

candidate. This would mean that if a snowflake gets very large it fragments into smaller

pieces, stopping the size distribution getting broader, and this could cause λ to stop

decreasing at 10cm−1. This last stage is one which is particularly interesting as it

cannot be definitively attributed to any particular physical process without significant

doubt.

2.3 Other Models of ice aggregation

Many models of ice aggregation have been produced, many building on previous studies

and incorporating new advancements in knowledge or techniques.

2.3.1 Passarelli’s 1978 model

In 1978 Passarelli [19] attempted to produce a simple analytical model which would

approximate both vapour deposition and aggregation. He had noted that, although

the methods and technologies involved in gathering observational data on precipitation

had been advancing, the interpretation of these results had not been making the same

progress. Many of his predecessors and contemporaries had been employing numerical

integration of the complex equations that result from the known physical properties of

precipitation. However, this is a very cumbersome and expensive technique and often

produces overly complex and confused results.

Passarelli assumed that the precipitation was steady and within a vertically hetero-

geneous cloud and that the size distribution of the ice particles satisfied:

n (D) = N0e
−λD (2.22)

as found by Lo and Passarelli [16] from their aircraft measurements. In order to gain

solutions for N and λ Passarelli solves the two first-order ordinary differential equations

(ODEs) produced by the moment conservation equations for the total mass and the

total radar reflectivity, Z. These two moments may be used to derive N0 and λ, see

section 3.4.2, and the total radar reflectivity is proportional to the second moment of the

mass distribution as seen in section 3.5. In order to simplify the ODEs enough to solve
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them the aggregates are assumed to be spherical so that the mass diameter relationship

(2.23) can be used.

m = πρD3/6 (2.23)

where ρ is the density of the individual aggregate. The density is assumed to be constant

as a function of D but this is not consistent with observations, for example Locatelli and

Hobbs found m ∝ D2 which gives ρ ∝ 1/D so (2.23) is possibly an oversimplification.

The fall speeds of the aggregates are also approximated using a power law, v = aDb

as per Locatelli and Hobbs, where the parameters a and b depend on the type of ice

crystals involved in the aggregates. Lastly the precipitation is assumed to be steady

and that any vertical flux in the mass and reflectivity is principally due to the fallspeed.

This results in N0 and λ being solved as functions of height below a set level, though if

the cloud is assumed to be spatially homogeneous then N0 and λ are also functions of

time and can be compared to previous studies results.

This model was used to predict the size distribution of ice particles as a function of

time. Its results were exponential, due to its initial assumption, and therefore appear

linear when plotted on a logarithmic-linear scale. When [19, p. 122] Passarelli com-

pared this to contemporary studies which used numerical integration to model raindrop

coalescence; its results did not capture all the detail of the full numerical integration,

but seemed to give a reasonable approximation. However, this model is an advancement

in taking a new look at the techniques and direction that studies of aggregation could

take.

2.3.2 Snow Growth Model(SGM)

Mitchell, Huggins and Grubisic detailed their derivation of and the results gained from

the SGM in a paper in 2005 [18]. This model was based on analysis started by Passarelli

in [19] as discussed above. Once again the several relationships are assumed including:

n (D) = N0e
−λD (2.24)

m = aDb (2.25)

A = αDβ (2.26)

They also solved the moment conservation equations for the concentration and the

total radar reflectivity as part of their derivation of the SGM. The SGM breaks away

from many previous studies and takes supersaturation as its input instead of a vertical

profile of the ice water content and temperature. The SGM produced results on size
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distributions that appear to correspond favourably to the observational data as seen

in section 2.2. One interesting analysis from the results was an investigation into the

evolution of N0 and λ. The predicted N0 and λ relationship evolves into approximately

Figure 2.8: Predicted relationship between N0 and λ by SGM, taken from [18, p. 11]

a straight line with a gradient of 2 in log-log space with N0 and λ steadily decreasing

until the last 3 points. This relationship is similar to the observational findings of Lo

and Passarelli [16] which can be seen in figure 2.7. Mitchell et al attribute the power-law

relationship, displayed as a straight line in figure 2.8 to the dominance of aggregation

in this period. The aggregation is hypothesised to keep broadening the size distribution

until the system is dominated by large snowflakes which tend to fall at similar speeds, see

section 2.1. The reduced range of fall speeds leads to aggregation eventually becoming

negligible. This causes the growth to be dominated by deposition which increases λ

steepening the size distribution causing the behaviour in the last 3 plotted points in

the bottom left of figure 2.8, which is a similar cut off point to that found by Lo and

Passarelli of 10cm−1.
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2.3.3 A Monte Carlo Model of aggregation

This project is based on the model produced in work by Westbrook et al [1],[2] and [3]

which aimed to model the growth of particles by differential sedimentation in particular,

the aggregation of ice crystals in clouds.

In order to simplify the system the following assumptions were made:

1. the cloud is assumed to be dilute, meaning that the mean free path between the

collisions of clusters is large compared to the average distance between clusters.

This allows the model to ignore spatial correlations and concentrate solely on

individual collisions between pairs of clusters.

2. it is assumed that clusters are randomly orientated and that these orientations do

not change during collisions or close encounters with another cluster.

3. hydrodynamic interaction does not effect the collision trajectories, so any effect of

wakes or boundary layers of a cluster on surrounding clusters are ignored

4. all collisions successfully result in aggregation with a permanent, rigid bond at the

point of initial contact

To sample collisions a rate of “close approach” is formulated:

Consider two clusters, i and j, and ascribe to each a radius ri and rj; these radii

enclose the whole of their respective clusters. Each cluster has a fall speed, vi and vj.

The rate of close approach is then calculated thus:

Γij = π (ri + rj)
2 |vi − vj| (2.27)

Pairs of clusters are randomly selected with a probability proportional to Γij. In

this way trajectories in which pairs of particles come close to each other are sampled.

Once a pair is selected, one trajectory from all the possible close approaches is chosen at

random, and the particles are tracked along this. If a collision occurs then the clusters

are aggregated. This method means an unbiased sample of collisions between particles

can be gained.

As has been previously shown in section 2.1.2 in [5] Mitchell showed (2.10) that:

v ∼ νk
D

(
mD2g

ρaν2
kA

)α
(2.28)

with 0.5 ≤ α ≤ 1. Westbrook et al assumed that A ∝ D2 based on observational data
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Figure 2.9: To sample collisions a rate of close approach is formulated, this image is
taken from [2]

and their results on the fractal dimensions of the aggregates from their simulations.

Then substituting this relationship into 2.28 we acquire the equation:

v ∼ νk
r

(
mg

ρν2
k

)α
(2.29)

In this equation α is an adjustable parameter and D = 2r.

Initially all the particles are rods, half with length and mass of unity and the other

twice as big and massive. This is so there exists some i and j such that |vi − vj| 6= 0.

Previous studies of aggregation suggest that once sufficient aggregation has occurred

the system is insensitive to initial conditions (so having this divide should not impact

on the results). From other aggregation models an educated guess can be made that as

m, s→∞ behaviour will satisfy this relationship:

nm (t) = s (t)−2 φ

[
m

s (t)

]
(2.30)

s (t) =
∑
i

m2
i /
∑
i

mi
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Where nm is the number of clusters of mass m at time t, S is the characteristic clus-

ter mass and φ is the rescaled distribution and a function of m/s (t). There is some

theoretical justification for assuming (2.30) in Van Dongen and Ernst’s 1985 study [4]

in which they show that (2.30) satisfies the Smoluchowski equation seen below. The

scaling function, φ, in (2.30) was confirmed using the simulation data and comparison

with aircraft measured size distributions. The particle diameter distribution was also

measured in these simulations, and found to be approximately exponential, in agreement

with the observational data presented in section 2.2.

Other models and studies suggest that the clusters produced by aggregation are

likely to be fractal in nature or statistically self-similar. This means that the spatial

correlations within the aggregate are similar across a range of different scales, a power

law scaling relating them. Though in reality aggregates may differ slightly from this,

which can be explained through physical reasoning. As each additional ice crystal that

collides and aggregates with the aggregate it forms a protrusion. These protrusions

are more efficient at colliding and therefore collecting other ice crystals, which leads

to aggregates forming with an open, fractal, structure. The simulation results give a

relationship between the mass and radius of the cluster which agrees with the suggestion

that the clusters are fractal. As a fractal nature would imply, for any cluster it is found

that m ∼ rdf where the fractal dimension df is found to be a function of the parameter

α as shown in figure 2.10. Note that df ≈ 2 for α = 1/2 which corresponds well to

experimental data from Locatelli and Hobbs, who estimated df ≈ 1.9, and Heymsfield

et al who found df ≈ 2.09.

The Smoluchowski equation is often used to describe cluster-cluster aggregation

dnk (t)

dt
=

1

2

∑
i+j=k

Kijni (t)nj (t)−
j=1∑
∞

Kkjnj (t) (2.31)

where nk (t) is the number of crystals in the system of mass k at time t and the kernel K

is a symmetric matrix where element Ki,j governs the rate of aggregation between pairs

of clusters of masses i and j. This is a simplification of the simulated system since the

aggregation rate is assumed to depend only on particle masses. Then equation (2.27)

may be written as:

Kij ∼
∣∣iα−1/df − jα−1/df

∣∣ (i1/df + j1/df
)2

(2.32)

Analytical solutions to the Smoluchowski equation have only been found for simple

cases, where Ki,j is constant, i + j or ij. Obviously the Ki,j for this model, equation,

(2.32) is not of this form and an analytical solution was not found.
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Figure 2.10: The fractal dimension df as a function of α, circles are data from the
simulation, taken from [2]. Note the physical values of α are between 1/2 and 1

However, substituting (2.30) into the Smoluchowski equation, with the assumption

that average cluster mass, s, is large enough relative to the initial conditions, Van dongen

and Ernst [4] found some properties of solutions. Assuming i << j the elements of the

Kernal scale as:

Kij ∼ iµjν (2.33)

where µ = 0 and ν = α + d−1
f for the kernel (2.32).

Westbrook et al then argued that ν = 1 since:

• if ν > 1 then the result is unphysical. The Smoluchowski equation predicts the

formation of a big cluster in zero time. For finite system it is expected that a

few very large clusters will grow very rapidly, which will then dominate the dy-

namics and bond with all of the small particles through aggregation. Through

this aggregation the smaller particles will fill the gaps in the large particles’ struc-

tures making them increasingly compact. This causes df to increase and ν to

subsequently decrease, until the system reaches ν ≤ 1

• if ν < 1 then the result is similar with the feedback increasing ν back to 1. In this

case more collisions occur between similar size clusters which leads to more open

structures. This causes df to decrease and therefore ν to increase.

This argument that ν = 1 was found to be a good fit to the simulation data as shown

by the solid line in figure 2.10. For inertial flow, if α = 1/2 then df = 2, which is in
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agreement with observational studies including Locatelli and Hobbs [13].



Chapter 3

A refined Monte Carlo model of

aggregation

The new results presented here were produced using a modified version of the Westbrook

et al Monte Carlo model described in section 2.3.3. The model attempts to simulate

the aggregation of hexagonal plate ice crystals in a deep stratiform ice cloud with an

improved representation of the aggregate fall speed using equation (2.19). Key variables

are defined by the user:

• the initial number of crystals, n.

• the aspect ratio, t/2a, of those crystals, see figure 3.1 where t is the plate thickness

and 2a is the diameter across its hexagonal face.

• the finishing diameter, Df , when the average diameter of all the particles within

the simulation reaches this number the simulation finishes.

• the initial crystal size, t, half the monomers are chosen to have this size, the other

half are twice as big.

• a random seed, to allow the user to produce ‘ensembles’ of different simulations

with the same parameters.

• the wobble, W , the degrees by which the crystals will be able to tilt from the hor-

izontal within the simulation. Experimental data [32] shows that planar crystals

tend to be orientated with their major axes horizontal with a small amount of

wobble, dependent on the Reynolds number. Here it is assumed that the crystal

orientation is uniformly distributed between 0◦ − 10◦.

26
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Figure 3.1: Diagram of parameters

Other variables are also adjustable by the user however they pertain to more specific

measurements and outputs. We assume that the aggregates are randomly oriented as

they have little symmetry and there is little observational evidence either way.

3.1 Mass Diameter relationships

As discussed in Chapter 2 observational studies are used in the process of assessing

a model’s success in reproducing reality. The relationship between the mass and the

diameter of aggregates frequently forms a fundamental part of these studies. Most

observations suggest a power-law relationship m ∝ Ddf where df is the fractal dimension

as discussed in section 2.3.3.

In order to gauge how the model is predicting this relationship each aggregate is

assigned to a bin according to its diameter after a simulation has run. The number of

particles in each bin and each bin’s collective mass is then ascertained. The model then

outputs this data cataloguing, for each bin, the lowest possible diameter for aggregates

in the bin with the average mass of the aggregates in the bin, using the collective mass

and the number of particles in the calculation. From this we can observe whether the

model is reproducing the observed mass-diameter power-law relationship.

Figures 3.2 and 3.3 show the relationship between the mass and diameter. Firstly

figure 3.2, where the same parameter values are observed with only the random seeds

changed, which provides a sample of the same outcomes for the one set of parameter

values or for one ‘cloud’. Secondly, in 3.3 different parameter values are employed to

give an idea of the sensitivity of the mass-diameter relationship, and consequently the

model, to the different parameters. By looking at both these ways of ‘randomising’ the

results, despite the obvious noise in the plots, we can hopefully be more confident in

the universality of the results. In order to really judge the relationships being produced

here it is best to look at the results on logarithmic scales in log-log space.

As can be seen in the loglog plots in Figures 3.4 and 3.5 the relationship between mass
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Figure 3.2: Plot of Mass-Diameter relationship for 5 runs with different random seeds

and diameter appears to be approximately m = aDdf where df ≈ 2. This relationship

agrees many of physical observations and studies. In Locatelli and Hobbs [13] it is

estimated that df = 1.9 from data extrapolated from sample aggregates of plates, side

planes, bullets and columns in ground based observations. Aircraft observations by

Heymsfield et al [11] yielded df = 2.04 for aggregates of bullet rosette crystals in cirrus

clouds and df = 2.08 for aggregate of side plane crystals. Mitchell [5] gives estimates of

df between 2.1 and 2.2, depending on the individual crystal types in the aggregation.

This agreement lends support to the model and its close approximation to physical

reality, at least in this fundamental area.

This result also agrees with C.D.Westbrook’s findings in [1], [2] and [3] using the

unmodified model. Westbrook found an approximate relationship of m ∝ D2.05±0.1 for

his simulations and df = 2 from analysis of the Smoluchowski equations for α = 1
2
.

In these studies the approximately quadratic relationship is discussed as a possible

result of the hydrodynamic power law for the particle fall speeds as discussed in section

2.3.3. Those calculations used the less realistic fall speed calculations based on equation

(2.17). The new model presented here uses the full fall speed relationship (2.19) allowing

the particles to span a range of hydrodynamic regimes, and also explicitly includes a

calculation of the projected area rather than simply assuming A ∝ D2 as Westbrook

et al did. This gives us more confidence that we are capturing the physics of the

collisions correctly. Therefore, only the larger particles’ fall speeds are calculated using
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Figure 3.3: Mass-diameter relationships from runs with different values for param-
eters (n, t/2a,Df , t,W, seed) listed run a to e: (5000, 0.1, 605, 20e− 6, 10, 1948),
(10000, 0.1, 800, 20e− 6, 10, 1983), (7500, 0.1, 750, 25e− 6, 10, 1946),
(5000, 0.15, 500, 20e− 6, 10, 1911), (2500, 0.1, 650, 20e− 6, 10, 1578).

a similar equation to [1]. Yet the mass-diameter relationship still remains approximately

quadratic, this could suggest that this relationship, or at least the methods by which it

is currently studied, is biased towards the larger particles. It is also possible that the

aggregation is largely controlled by the larger crystals capturing the smaller crystals so

the fall speeds of the larger crystals are more influential and control df .

3.2 Velocity Diameter Relationships

The fall speed, in both observation and modeling, holds a significant amount of interest

in modern research into aggregation and many theories are being proposed, tested or

modified in the pursuit of a better understanding of reality. In Mitchell and Heymsfield’s

[9, p.1642] paper and Mitchell et al’s [18] paper they predict that for all aggregates with

large diameters the fall speeds will not differ greatly. This reduction in the dispersion

of fall speeds for larger aggregates is then advocated by Mitchell and Heymsfield as

a reason why aggregation at larger dimensions (approximately ≥ 2mm) may occur at

increasingly negligible rates, in an effort to explain the observations of Lo and Passrelli

in section 2.2 where they found that the size distributions did not broaden further than

λ = 10cm−1.
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Figure 3.4: Plot of Mass-Diameter relationship from Figure 3.2 on logarithmic scales,
the solid black line indicates a m ∝ D2 relationship

The model uses a similar technique as that used to output the necessary informa-

tion for the mass-diameter relationship. The data from aggregates is allotted to bins

according to its diameter and the average velocity for each bin is calculated.

It can be seen in figure 3.6 that the mean velocity for each diameter bin does conform

in general, excluding noise, to the theory that Mitchell and Heymsfield proposed in [9]

and Mitchell et al referenced in [18] with the fall speed flattening out as D increases

past 1mm. However, just looking at the mean velocity is not the whole picture.

Figures 3.7 and 3.8 show the detailed situation, displaying the velocity against the

diameter of each aggregate in the simulation. These figures are just a selection of

what the model consistently produced, which demonstrate that, when the simulation

is run for any significant length, the larger aggregates, with diameters greater than

2mm, have a considerable amount of dispersion in their fall speeds for a given particle

diameter. Similar results can be seen in plots of Locatelli and Hobb’s observational data

[13]. Although the fall speed equations used in the model are those used by Mitchell

and Heymsfield, the model applies them more realistically than in [9]. In [9] area-

and mass-diameter power-law relationships are assumed which are 1-to-1 functions and

predetermined, whereas the model uses each aggregate’s individual area and mass, and

of course ‘every snowflake is different’. The new model presented here is believed to

be more physically realistic in this respect, by allowing the individual geometry of each
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Figure 3.5: Mass-Diameter relationships from figure 3.3 in log-log space, the solid black
line indicates a m ∝ D2 relationship

aggregate to influence these parameters and through them the fall speeds.

As there is less data for the higher diameters a fairer measurement needs to be

employed to estimate the variation of the velocities as a function of aggregate diameter.

Figures 3.9 and 3.10 display the mean and standard deviation of the velocities for

each bin against the diameter for runs with the same parameters as figures 3.7 and 3.8.

The standard deviation is calculated for each bin using:

σ =

√√√√ 1

nr

nr∑
i=1

(vi − v̄) (3.1)

where nr is the number of aggregates in the bin, v1 . . . vnr are the individual velocities

of the aggregates assigned to this bin and v̄ is the mean velocity for this bin. As the

standard deviation measures the variation taking into consideration the number of points

in each dataset it is a good measure to use in this situation, ignoring those bins with

only one value.

There does appear to be some decrease in the standard deviation from ≈ 0.4ms−1

variation at 500µm to ≈ 0.2ms−1 at 2mm, however, this is still significant and represents

18% of the mean value. These results suggest that the natural variability in aggregates

shape could lead to enhanced aggregation rates, a factor which was neglected in Mitchell

and Heymsfield’s analysis, and suggests that, in this model at least, any reduction in
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Figure 3.6: Mean velocity-Diameter plots for varied runs, using the same parameter
values as figure 3.3

aggregation when aggregates become large is not due to them all having the same fall

speeds.

3.3 Diameter - time relationship

Throughout the simulation, every time an aggregation occurs the model calculates the

average diameter, using all particles within the simulation, and then outputs this with

the time. Time within the model is determined for each close approach using equation

(2.27) and the number of clusters left in the simulation.

The average diameter continues to grow throughout the simulation. The points in

the plot corresponding to the lowest diameters can be ignored as they correspond to the

initial monomers and as such are not necessarily physically relevant. From figure 3.11

it appears that growth generally increases in a steady manner. The apparent ‘jumps’ in

time are a product of a finite number of particles in the simulation and a close approach

occurring for a pair of clusters for which the corresponding probability (2.27) was low.
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Figure 3.7: Plot of velocity against mass for individual aggregates, with n = 10000,
t/2a = 0.1, Df = 800 and t = 20x10−6

3.4 N0 - λ

The parameters N0 and λ are often studied and are used to describe the relationship

between the concentration and diameter as has been previously introduced in 2.21. It is

the evolution of these parameters throughout aggregation and therefore our simulation

which is of particular interest. Lo and Passarelli [16] separated the evolution into three

stages discussed in 2.2. Of these sections it is the third that is of the most interest as it

is not yet widely accepted as attributable to any particular mechanism.

It is necessary to attempt to estimate the values of N0 and λ from the data in the

simulation as direct calculation is not possible. This was first attempted by programming

the model to output the size distribution at given points during the simulation.

The example of the evolution of size distribution from the model in figure 3.12 is typ-

ical. Though the size distribution could be exponential for large D, as predicted by the

well-used assumption n (D) = N0e
−λ, the noise in the data in these plots overwhelmed

any possible underlying relationship making it impractical to estimate N0 and λ, or

indeed to reliably confirm that n (D) was exponential. Attempts using wider diameter
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Figure 3.8: Plot of velocity against mass for individual aggregate, with n = 7500,
t/2a = 0.1, Df = 750 and t = 25x10−6

bins used to gather the data in the model were unsuccessful in reducing the amount of

noise to the point where a discernible relationship was apparent.

3.4.1 Moments

The next method attempted, with the hope of overcoming the problem of noise, involved

the calculation of moments from the data. The ith absolute moment Mn of a probability

function f (x) about a point a is calculated thus:

Mi =

∫ ∞
−∞
|x− a|i f (x) dx (3.2)

For the relationship N (D) = N0e
−γD, D replaces x, a = 0 and N (D) replaces f (x) in

3.2 and as N is output from the model as a positive discrete function the integration

becomes a summation over all the bins with a lower limit of 0:

Mi =
∞∑
0

DiN (D) ∆x (3.3)
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Figure 3.9: Mean and Standard deviation of velocity, with n = 10000, t/2a = 0.1,
Df = 800 and t = 20x10−6

However the Mi can also be written as:

Mi = N0

∫ ∞
0

Diexp (−λD) dD = N0
Γ (i+ 1)

λi+1
(3.4)

By equating 3.3 and 3.4 and using Γ (i) = (i− 1)! equations to estimate λ and N0 are

created applicable for any i in the natural numbers:

λ = (i+ 1)
Mi

Mi+1

(3.5)

N0 =
Miλ

i+1

i!
(3.6)

The model output λ and N0 for each individual moment and an average estimate cal-

culated from these for predetermined points in the simulation. However, initial results

were not very successful and appeared to give very little correlation. This was possibly

due to the inclusion of the lower order moments, which are in their calculation weighted

towards the smaller diameter end of the spectrum and the monomers. As this part of
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Figure 3.10: Mean and Standard Deviation of velocity, with n = 7500, t/2a = 0.1,
Df = 750 and t = 25x10−6

the simulation is not yet independent of its initial conditions it is not appropriate or

physically correct to lend such weight to this data. So the model was made to work only

on medium order moments:

In Figure 3.13 the evolutions of N0 and λ in general agree with the second stage

noted by Lo and Passarelli [16], that of a mutual reduction. Some of the plots seem to

exhibit behaviour towards the end that may be consistent with stage 3 though it occurs

at slightly higher values with most studies placing it at around 10cm−1. The lack of

consistency between the different derived N0-λ curves in figure 3.13 may suggest that

either the size distribution was so noisy as to strongly effect the moments used, or that

deviations from the assumed exponential shape N = N0e
−λD biased the estimates of N0

and λ.

3.4.2 Integrating the size distribution

Here we will investigate an alternative approach to estimating N0 and λ.

Many studies and models have been based on the assumption that the size distribu-
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Figure 3.11: A typical plot of average Diameter against time produced by the model

tion satisfies the relationship:

N (D) = N0e
−λD (3.7)

where N (D) ∆D is the concentration of particles in the size range [D,D + ∆D], N0

is the intercept and λ the distribution slope. However, in attempts to measure N0

and λ using the plots of the size distribution, output at allocated times during the

simulation, was not entirely successful due to the amount of noise in the plot, see figure

3.12. However if equation (3.7) was integrated from the largest size downwards, an

exponential relationship would still be retained as seen in (3.8):

I =

∫ ∞
D

N (D′) dD′ =

∫ ∞
D

N0e
−λD′

dD′ = /
N0

λ
e−λD (3.8)

Once again, at appointed times in the simulation, the model allocates the aggregates

to bins determined by their diameter and the number of aggregates, or frequency, in each

bin is recorded. As this method of obtaining the size distribution results in a discrete,

rather than a continuous, function the integration in (3.8) becomes a sum. For each bin,

beginning with the bin corresponding to the largest recorded diameter, the integrated
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Figure 3.12: Size Distribution evolution example in log-linear space

size distribution, I, is calculated by summing the frequency of current bin to the I of its

neighbouring bin. This results in the plot show that much of the noise seen in figure 3.12

is eliminated; this is the advantage of integration where the noise is accumulated and,

to an extent, cancels itself out. The resulting curves in figure 3.14 show that I (D) is

approximately exponential which confirms that n (D) is also approximately exponential,

an important relationship for the model to capture and reproduce.

Figure 3.14 is plotted in log10I-D space which means that the relationship, using

logarithmic rules, becomes:

log10I

log10e
=
log10

N0

λ

log10e
+ logee

−λD (3.9)

log10I = log10N0 − log10λ− (log10e)λD (3.10)

Therefore, a best fit can be used to estimate the gradient from each slope, so it can be

ascribed to − (log10e)λ, the intercept can also be estimated and it is log10N0 − log10λ.

Figure 3.15 shows us a relationship between N0 and λ which, for higher values of

N0 and λ, is as expected and represents the ‘stage 2’ which Lo and Passarelli observed



CHAPTER 3. A REFINED MONTE CARLO MODEL OF AGGREGATION 39

Figure 3.13: Evolutions of N0 and λ estimated in different runs using moments 4 to 9

[16] as it is discussed in section 2.2. However unlike the results produced by Mitchell

et al the relationship continues to values of λ < 10cm−1 = 1000m−1. Mitchell et al’s

prediction for the change in the N0 and λ relationship was based on the similarity of

the velocities of larger particles leading to a reduction in aggregation. This new model,

as had been suggested in 3.2, shows evidence that possibly contradicts Mitchell et al’s

predictions and suggest that aggregation can in principle continue to broaden the size

distribution even when the particles are large.

3.4.3 Other Studies

There are many competing theories on the relationship between N0 and γ particularly

what occurs at around λ = 10cm−1 and what drives this behaviour. Lo and Passarelli

[16] examine the behaviour around λ = 10cm−1 in their observations to find all cease

to evolve, indicating that the a balance within the size distribution has occurred with

smaller particles that aggregate being replaced and the larger particles that aggregation

is producing are reducing in number. Lo and Passarelli propose that this behaviour is

consistent with a mechanism of the largest snowflakes breaking up on impact, which is a
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Figure 3.14: Evolution of cumulative size distribution

mechanism not included in this new model, though they concede that it could potentially

be the product of instrument-artifact.

Mitchell et al. [18], as discussed in section 2.3.2, used results from their Snow Growth

Model to attempt to validate the Mitchell and Heymsfield hypothesis, suggesting that

the change between the power-law relationship seen in stage 2 and the more static rela-

tionship in stage 3 was due to aggregation ceasing to be the dominant growth mechanism

for the ice crystals. This would mean that the velocities of larger ice crystals would have

to be very similar making the possibility of collision and therefore aggregation negligible.

However, the present study has shown that there may still be significant dispersion in

the fall speeds of larger ice crystals, see section 3.2.

More recently studies have emerged that support an instrument-based explanation

for the behaviour of N0 and γ. Korolev and Isaac’s 2004 study [21] and Field et al’s

2006 study [22] both investigate the hypothesis that Optical Array Probes (OAP) and

High Volume Precipitation Spectrometers (HVPS) have been providing incorrect data

for observational studies due to the shattering of particles on the instruments. When

a large particle shatters on the probe inlet, its contribution to n (D) is lost but the

smaller pieces of it that remain could be counted by the optical probes. In many earlier

observational studies this process was not known of so any readings from the shattered
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Figure 3.15: Using results from figure 3.14 and basic fitting produces this N0-λ relation-
ship

particles would not to be rejected from a study and it could cause there to be a skew in

the data, especially further into the aggregation process or equivalently lower down the

cloud where the particles are larger. This could possibly account for the behaviour seen

later on in the evolution of the N0-γ plot, as suggested by Heymsfield et al in [34], who

argues the true values of λ continue to decrease past ≈ 10cm−1.

3.5 Calculating Radar Observables

Another method of measurement frequently employed in Meteorology is radar. Doppler

radar is sensitive to the concentration, size, fall speed and types of hydrometers including

ice crystals, within clouds. Radars emit pulses of radiation, typically between 3mm

and 10cm in wavelength, and Rayleigh scattering by the snowflakes leads to some of

the wave being reflected back, and the intensity and time taken are measured by the

radar. An example time series from a vertically pointing 8.6mm radar at the Chilbolton

observatory in Hampshire is shown in figure 3.16 and the radar is pictured in figure 3.17.

It is possible to see a thick stratiform ice cloud with rain at the ground and the cloud

top at 8000m to 9000m for the time period studied in this dissertation, 0300-0800 hours.
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Figure 3.16: Time series from data taken using 8.6mm radar at Chilbolton observatory
on 15.01.08

It is of the reflectivity that we are most concerned, with higher values of reflectivity

lower in the cloud corresponding to the larger hydrometers. Reflectivity is measureed

by assessing the intensity of the returned pulses and is expressed in dBZ, a logarithmic

unit. For Rayleigh scattering, the reflectivity can be related to the data obtained from

the model as:

dBZ = 10log10M2 + A (3.11)

where M2 is the second moment of the particles mass distribution, and as such is

Figure 3.17: Image of the Galileo (left) and Copernicus (right) radars at Chilbolton
observatory in Hampshire. The data in this study is taken from Copernicus, the 8.6mm
radar. This image is taken from [37]
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weighted towards the larger snowflakes, and A is a constant calculated by:

10log10

(
36 |Kice|2

0.93π2ρ2
ice

)

as seen in [35]. The Doppler velocity, vd, is also measured which is equivalent to the

average speed that the particles are moving towards the radar.

Figure 3.18: Plot 10log10M2 against time for different conditions, the pink dashed, line
represents a linear fit of the relationship

Comparison of the general form of the results with radar data can be undertaken,

however, a numerical comparison of the absolute dBZ values would be meaningless due

to the unknown scale of ice production at the cloud top. The similarity in the shape of

these plots supports the fact that the initial conditions on the ice crystals in the model

do not affect the result in figure 3.18 and we observe that the second moment of the

mass distribution grows approximately exponentially with time.

Figure 3.19 is constructed by the method outlined in Westbrook et al’s paper [35].

The highest data point with a measurable reflectivity in the vertical profile is taken to

be the height of the cloud top, htop, which is presumably where the ice is formed. From
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Figure 3.19: Radar data for reflectivity with fitted linear relationships (pink), measured
15 January 2008 at 4-4.30 (right) and 4.30-5.30 (left), the melting layer is shown at
approximately 7250 seconds (left) 9500(right)

here the ice grows and falls, and the average velocity of the particles through the vertical

profile is known from the Doppler velocity, vd measurements. From these the time a

particle has taken to get to a particular height, h, can be calculated thus:

t =

∫ htop

h

v−1
d dh (3.12)

as per equation 2 of [35], this represents an ‘average’ fall time for the ice particles. Then

dBZ is plotted as a function of t.

Both figures 3.18 and 3.19 show an approximately linear relationship between dBZ

or 10log10M2 and time indicating that the model is capturing the evolution of the ice ag-

gregation in a realistic way. The jump in reflectivity towards the end of the plots in 3.19

represents the point where the ice crystals are melting and as such won’t be reproduced

by the model. These results once again support the model as a close approximation

to reality, although we note some non-exponential structure in figure 3.19. This non-

exponential structure may be associated with other physical processes or feedbacks in

the cloud like evaporation, riming or deposition that is not included in this new model.

The data from the radar has also had to be averaged over time periods of 1
2
− 1 hours

to account for the fact that the cloud is not perfectly homogeneous in the horizontal.
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Investigating the influence of

velocity dispersion on aggregation

Two other papers have considered the effects of velocity dispersion on aggregation, the

first by Passarelli and Srivastava [38] and the second by Sasyo and Matsuo [39]. However,

the new modified Monte Carlo model employed in this dissertation has the advantage

over these previous studies as it explicitly resolves the shape of individual particles. Like

many previous studies, including Passarelli, as seen in section 2.3.1 and Mitchell et al,

as discussed in section 2.3.2, these two studies both assumed the existence of a 1-to-1

relationship between particle mass and diameter. They did however use an assumed

probability distribution of different fall speeds as a function of D in the calculation of

the collision rate. This produced a dispersion in the velocity that was uniform around

the mean. Both studies found that the effect of variability in the fall speeds was to

increase the growth rate significantly. Passarelli and Srivastava also discovered that the

size spectrum broadens and reflectivity increased.

Mitchell et al stated in their 2006 paper [18] that their results supported a hypothesis

that the rate of aggregation slows to such a negligible rate when a particle’s diameter gets

large that it appears to stop. This has been previously discussed in sections 2.3.2 and 3.2.

It is based on the theory that for large particles the dispersion of fall speeds is very small

and as such Ki,j ∝ |vi − vj| (Di +Dj)
2, which corresponds to the rate of aggregation

between two particles i and j, is very small. However, results from this model have

shown the evidence to support the idea that the dispersion between fall speeds for large

particles is not negligible, see figures 3.7 - 3.10. For large particles however, (Di +Dj)
2

is large and so only a small dispersion in the velocities may be needed, thus |vi − vj| 6= 0,

for a reasonable rate of aggregation. Therefore it is necessary to investigate whether

calculating the fall speeds of individual particles based on geometry, and therefore not

45



CHAPTER 4. INVESTIGATING THE INFLUENCE OF VELOCITY DISPERSION46

stopping aggregation for larger particles as is done in the model, produces very different

results than if a simpler relationship was used to calculate the fall speed as Mitchell et

al did in [18].

4.1 Comparison with a simplified velocity-mass re-

lationship

There are two ways in which the calculation of a particle’s velocity can be simplified to

the level used in many studies. The first is to use a simple power law of the form v = amb

and the second is to use power laws for the mass-radius and area-radius relationships

which can be substituted into the velocity equations already in use in the model, thereby

eliminating any dependence of the velocity on an individual particle’s geometry.

In order to produce a 1-to-1 velocity-mass relationship, against which the model can

be tested, the full simulation is run with a given set of conditions and the velocities

and masses of each particle output. This allows a best fit to be found and from this

a velocity-mass relationship for the conditions can be established. The simpler model,

S1, is then produced as exactly the same as the original model but with all velocity

calculations replaced by a simple function of mass.

The 1-1, power-law, mass-radius and area-radius relationships are found using a sim-

ilar method. The second simpler model, S2, is produced by inputting dummy variables

for the radius and area as a function of mass into the fall speed equation, (2.19). The

dummy variables are constructed using the power law relationships for mass against

radius and area against radius.

The averaged plots and fitted power-law relationships are shown in figure 4.1 for one

arbitrarily chosen simulation. The assumption of a power-law relationship appears to

fit well with the data; however, it is the model’s sensitivity to this assumption which is

of interest to us.

In figure 4.2 it is obvious that the results from the simpler models, S1 and S2, have

a much slower growth. This is as previous studies, including those by Passarelli and

Srivastava [38] and the second by Sasyo and Matsuo [39], predicted. It is also physically

intuitive: as the dispersion in velocities between the particles of larger sizes increased so

did their probability of collision and consequently aggregation, therefore greater numbers

of aggregations are likely to take place as are collisions between larger particles, which

have a significant impact on the results. This second moment, proportional to the radar

reflectivity, is used to compare the new modified Monte Carlo model with the simpler
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Figure 4.1: The plots and fitted power law relationships are shown for mean velocity
against mass, mean area against radius and mean mass against radius.

versions instead of the averaged diameter because the simpler models by-pass the actual

shapes of the particles and the diameter is effectively made a function of mass. This

means that the diameter does not play a role in the growth.

4.2 Effect of velocity dispersion on Doppler radar

measurements

Doppler radar can be used to measure properties of ice crystals in clouds. As discussed

in section 3.5 these include the Doppler velocity, which is equivalent to the average

speed at which the particles falls towards the radar, and the reflectivity, higher values

of which correspond to the larger hydrometers seen lower in the cloud. However the

Doppler spectrum measurements acquired from radars may hold the key for more de-

tailed and extensive observational data. There is the potential to obtain estimates for

parameters including the ice water content and average particle size. This would require
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Figure 4.2: Plot of M2 vs time for the three models using variable values n = 50000,
t/2a = 0.1, t = 20× 10−6 W = 10 finishing at 2500 seconds

assumptions: that a relationship between the velocity and mass exists and that the size

distribution follows a known function, probably exponential. We therefore must check

whether making these assumptions in this situation is reasonable or if assuming the

velocity can be calculated using a simple velocity-mass relationship produces an altered

spectrum.

To test this, the summation of the mass squared,
∑
m2, will be studied as a function

of the velocity. The Doppler spectrum, which is ∝
∑

binm
2/bin width as a function of

v, is produced using the assumed 1-to-1 velocity mass fit and is compared with the

‘real’ spectrum where all the variability of different snowflake shapes are taken account

of. To produce a plot of this without the assumptions, a ‘normal’ output, the particles

will be allocated to bins according to their velocity. The mass for each particle is then

squared and added to the
∑
m2 that corresponds to its velocity-designated bin. The

total
∑
m2 for each bin is then plotted against the velocity. To assume the relationship

between velocity and mass a ‘simplified’ output is calculated. The particles are binned

by mass, rather than velocity, and each particle’s mass is squared and added to the∑
m2 corresponding to the bin. Before the data collected for each bin is output by the
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model the velocity is calculated assuming the velocity-mass relationship. This is done

using the method for a velocity-mass relationship described for the S2 model in section

4.1.

Figure 4.3: Plot of results of ‘normal’ and v (m) fitted Doppler spectrum

Figure 4.3 shows that the Doppler spectrum produced with and without the under-

lying assumptions. The plots both exhibit noise which is to be expected as all the plots

produced using a method that involved using bins have done so. The general form of the

spectrum, without assuming a velocity-mass relationship, appears to be approximately

parabolic in shape. When a velocity-mass relationship is assumed then the spectrum

produced appears to match the ‘normal’ spectrum in the centre however as the velocity

becomes large the
∑
m2 does not decrease as expected, but remains at a reasonably

high level. This behaviour was common throughout all attempted parameter variations.

In general the assumptions that are needed to obtain estimates of ice crystal pa-

rameters appear to be reasonable; however the behaviour exhibited for larger velocities

is unexpected. It is possible that this behaviour is an artifact of the method by which

these results where produced within the model but this behaviour is an issue that merits

further investigation.
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Conclusions

5.1 Summary

In this dissertation the effect of the variability in snowflake shape on aggregation was

studied and found to be influential in some results but not all.

A literature review of previous studies on aggregation was used to build the picture

produced so far. Particular attention was paid to studies which related to the fall speeds

of ice particles as the fall speeds control the aggregation process through collisions pro-

duced by ice particles falling at different velocities. Calculations of the fall speed from

Mitchell and Heymsfield [9] were used within a new modified Monte Carlo model to

produce a model that accounted for the effects of individual snowflakes shapes. Obser-

vational studies and results were also reviewed, to be used later for comparison, as were

other models.

The results presented in this dissertation are produced using a modified version of the

Westbrook et al Monte Carlo model described in section 2.3.3. The ice crystals used in

the model are hexagonal plates, this is a compromise as although it has been argued by

Jiusto and Weickmann in [36] that large snowflakes would be expected to predominately

be aggregates of dendritic crystals, this would be very computationally expensive to

model, especially accounting for the individual geometry of each aggregate. The results

shown here and in Westbrook et al [2] suggest that many of the results are insensitive

to the choice of initial crystal. The model also uses an improved representation of the

aggregate fall speed using equation (2.19) so the particles now span a range of flow

regimes rather than all existing in the same one, and their projected area is explicitly

calculated.

The effects of these modifications on the new Monte Carlo model were tested, as

50
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was the model’s sensitivity to parameter changes. This was first done by observing the

the mass-diameter relationship. Previous observations and studies, including Locatelli

and Hobbs [13] and Heymsfield et al [11] have suggested that a realistic mass-diameter

relationship would be of the form m ∝ Ddf where df ≈ 2. As shown in section 3.1 with

figures 3.2 to 3.5 this appears to be true within the model irrespective of the parameters

used. Therefore the model has managed to capture an important relationship found in

observational studies.

The plots produced of the size distribution, seen in figure 3.12, could be exponential

in nature as suggested by the generally accepted relationship n(D) = N0exp (−λD).

However the noise in the plots is too great for any definitive conclusions to be made on

this. Integration from the largest particle size downwards allowed the exponential shape

to be confirmed as shown in section 3.4.2.

A large part of this dissertation has tested the results from the new modified Monte

Carlo model against hypotheses and results from other studies. Particular focus has

been paid to the hypotheses that concern the evolution of velocity and aggregation for

larger particles.

The evolution of average diameter through time was also studied as one measure of

the aggregation rate. Figure 3.11 is typical of the plots studied, with steady growth

appearing to continue even as the size distribution gets broader. This contradicts the

study by Mitchell and Heymsfield [9] where they hypothesised that as the size dis-

tribution broadened aggregation would cease to be the dominant growth mechanism.

However as the model only simulates aggregation and a steady growth in the average

diameter is still observed as it becomes large then the rate of aggregation is clearly not

decreasing.

Mitchell and Heymsfield’s hypothesis was based upon the assumption that the dis-

persion of fall speeds between large snowflakes of different sizes reduces to negligible

amounts if their diameters are large enough. While the bin averaged velocity against

diameter plots, as seen in figure 3.6, did seem to conform to this assumption, when a

more detailed picture was investigated it appeared that the situation was more complex.

Plots of fall speeds of individual aggregates against its diameter, as seen in figures 3.7

and 3.8, revealed the prospect that, within this model at least, for larger diameters

the dispersion between fall speeds was not negligible and was produced by variability

in snowflake shape. This was further investigated using measurements of the standard

deviation, as it has no bias on the quantity of data points available for each diameter

bin. The standard deviation of the velocity did decrease as the diameter of the particle

became large. However, as displayed in figures 3.9 and 3.10 it in no way became a neg-
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ligible amount. Around the diameter sizes that Mitchell and Heymsfield suggested the

fall speed variability would become negligible the standard deviation remains at almost

20% of the average fall speed.

The relationship between the parameters N0 and λ was also investigated, as this has

been a focus of interest in many studies, including Lo and Passarelli [16] and Mitchell et

al [18]. Several methods were attempted to estimate the evolution of the relationship.

The first of these methods involved plotting the evolution of the size distribution and

produced no real results due to problems with noise. The next method used moments of

the size distribution and was successful in producing a recognisable relationship between

N0 and λ when the lower order moments were ignored. These results showed a relation-

ship that was approximately a power-law which was as expected and in that appeared

to recreate the ‘stage 2’ of N0 and λ evolution as observed by [16] and predicted by the

Snow Growth Model in [18]. However, the ‘stage 3’, to which most study is currently

devoted to and Mitchell et al attributed to a significant reduction in the aggregation

rate, at λ 10cm−1 could not be reached by this method. Using any variation in the mo-

ments within the calculation produced very different N0 − λ curves, indicating that the

method was unreliable. The last method attempted was an estimation of the integration

of the size distribution and a study of its evolution. This method not only reproduced

the afore-mentioned ‘stage 2’ of a power law but continued this relationship past the

marker of λ ≈ 10cm−1 set by Mitchell et al and Lo and Passarelli for the radical change

in behaviour. As this modified Monte Carlo model concentrates solely on aggregation

this suggests that aggregation does not slow significantly which relates well to the results

produced by the model on the dispersion of fall speeds for larger diameters but conflicts

with the hypothesis given in Mitchell et al’s study.

This continuation of the N0 and λ power law relationship for λ < 10cm−1 also con-

flicts with airborne observations produced by Lo and Passarelli [16]. However, Lo and

Passarelli did not attribute the change in the relationship, only suggesting that it may

be due to the break-up of particles, whereas the model is restricted to aggregation, so

another mechanism or feedback may be the cause of the observed ‘stage 3’ behaviour.

Another possibility is that it could be caused by the instrumentation used to gather the

data for [16]. In studies by Field et al [22] and Korolev and Isaac [21] the effects of ice

crystals shattering on the houses of the probes or in the turbulence and wind shear cre-

ated by them in similar experiments are studied. This would mean that the data would

be lost from the observations about many large particles as they shatter but the smaller,

shattered pieces of it could remain and be counted within the observations. These read-

ings would not have been rejected or accounted for, and could cause the observations to
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produce incorrect size distributions, especially further into the aggregation process or

equivalently lower down the cloud where there is a greater concentration of large parti-

cles. The effect of particles shattering would be to produce incorrect size distributions

with an increased number of small particles and a decreased number of large particles

than is there in reality, leading to a steeper size distribution and a larger λ that the true

value. This is in its effect analogous to the natural break-up mechanism suggested by

Lo and Passarelli as the cause for the ‘stage 3’ behaviour in their observations. Korolev

and Isaac used an observed correlation between the maximum observed particle size and

the frequency of images containing multiple fragments of particles being observed in the

data to substantiate the idea. Their results suggested that for aggregates, within the

images taken for airborne observations, the percentage of images containing shattered

particles could be as high as 10%. Field et al’s study also suggests that the impact of

the shattering particles on the results would be significant with the difference in con-

centrations in particle size distributions being changed by up to a factor of 4 for some

studies. They also showed evidence that the broader the size distribution became, which

corresponds to the lower values of λ, the greater the effect the shattering would have on

the results. This could possibly explain the results seen in Lo and Passarelli’s results

for N0 and λ as suggested very recently by Heymsfield et al in [34] however it is in no

way certain.

The second moment of the particle mass distribution was used to produce compar-

isons with data on reflectivity, Z taken from the 8.6mm Doppler radar at the Chilbolton

observatory in Hampshire. This parameter has been observed to grow approximately

exponentially with time, as seen in section 3.5, so it appears as a linear relationship on

a logarithmic scale, dBZ units, of the data from the model. The data from the model

is output at 10 ∗ log10M2 which is proportional to dBZ and is observed in figure 3.18 to

also have an approximately exponential relationship with time in agreement with the

radar data, see figure 3.19. This supports Westbrook et al’s [35] hypothesis that this

exponential relationship is a “signature” signature of the mechanism of aggregation.

Lastly the modified Monte Carlo model was compared with simplified versions us-

ing assumptions of power-law relationships that are prevalent in studies on ice crystal

aggregation. The results showed that the simpler models grew at a significantly slower

rate than the new modified Monte Carlo model. This suggests that the effect of the vari-

ability in snowflake shapes is influential and cannot be in general ignored, and suggests

that fitted relationships as used to define many variables in many studies, are possibly

not the best method of snowflake modelling.

The implications of the velocity dispersion on using radar measurements to obtain
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more extensive observations on ice clouds was also investigated as this would involve

the assumption of a calculable velocity-mass relationship. The results showed that for

most velocities, and hence diameters, the effect on the Doppler spectrum was not too

discernible. However, for the highest velocities there was an unexpected change with the∑
m2 remaining large when to produce the observed parabolic shape it should reduce.

This behaviour is intriguing and merits further investigation.

5.2 Possible further work

As results in this dissertation have shown the dispersion of velocity and its effects merit

further investigation. As well as investigation into the wider issue of its effects the

results have exposed several areas that also merit further study.

More sensitivity tests should possibly be carried out looking at the mass-diameter

relationship and velocity dispersion amongst others.

With further availability of more powerful computational units bigger simulations

could be run to improve the statistics on results like the size distribution.

The behaviour of the Doppler spectrum plot for large velocities is interesting and it

would be interesting to see if it is an artifact of the method used in producing the plot.

Other mechanisms could be built into the model and this could be evaluated to see

how this changes the results and how the mechanisms react to each other. In particular

calculation of the efficiency of aggregation against deposition as a growth mechanism in

various temperature and super-saturation regimes in order to process how these affect

which mechanism is dominant.



Bibliography

[1] Westbrook, C. D., R. C. Ball, P. R. Field and A. J. Heymsfield: Uni-

versality in Snowflake Aggregation Geophysical Research Letters, 31, 2004, L15104.

[2] Westbrook, C. D., R. C. Ball, P. R. Field and A. J. Heymsfield: Theory

of growth by differential sedimentation, with application to snowflake formation

Physical Review, 70, 2004, 021403.

[3] Westbrook, C. D.: Universality in snowflake formation Phd thesis, 2004.

[4] Van Dongen, P. G. J. and M. H. Ernst: Dynamical scaling in the kinetics of

clustering Phys. Rev. Lett., 54, 1985, 1396-1399.

[5] Mitchell, D. L.: Use of Mass- and Area-Dimensional Power Laws for Determin-

ing Precipitation Particle Terminal Velocities Journal of the Atmospheric Sciences,

53, 1996, 1710–1722.

[6] Abraham, F. F.: Functional dependence of drag coefficient of a sphere on

Reynolds number Phys. Fluids, 13, 1970, 2194–2195.

[7] Knight, N. C. and A. J. Heymsfield: Measurement and interpretation of

hailstone density and terminal velocity Journal of the Atmospheric Sciences, 40,

1983, 1510–1516.

[8] Heymsfield, A. J. and M. Kajikawa: An improved approach to calculating

terminal velocities of plate-like crystals and graupel Journal of the Atmospheric

Sciences, 44, 1987, 1088–1099.

[9] Mitchell, D. L. and A. J. Heymsfield: Refinements in the Treatment of Ice

Particle Terminal Velocities Highlighting Aggregates Journal of the Atmospheric

Sciences, 62, 2005, 1637–1644.

55



BIBLIOGRAPHY 56

[10] Khvorostyanov, V. I. and J. A. Curry: Terminal velocities of droplets and

crystals: Power laws with continuous parameters over size spectrum Journal of the

Atmospheric Sciences, 59, 2002, 1872–1884.

[11] Heymsfield, A. J., S. Lewis, A. Bansemer, J.Iaquinta, L. M. Miloshe-

vich, M. Kajikawa, C. Twothy and M. R. Poellot: A general approach

for deriving the properties of cirrus and stratiform ice cloud particles Journal of

the Atmospheric Sciences, 59, 2002, 3–29.

[12] Bohm, H. P.: A general equation for the terminal fall speed of solid hydrometers

Journal of the Atmospheric Sciences, 46, 1989, 2419–2427.

[13] Locatelli, J. D. and P. V. Hobbs: Fall Speeds and Masses of Solid Precipita-

tion Particles Journal of Geophysical Research, 79, 1974, 2185–2197.

[14] Magono, C. and C. V. Lee: Meteorological classification of natural snow crys-

tals Journal Fac. Sci. Hokkaido Univ., Ser. 7.2, 1966, 321–362.

[15] Zikmunda, J. and B. Vali: Fall patterns and fall velocities of rimed ice crystals

Journal of Atmospheric Sciences, 29, 1972, 1334–1347.

[16] Lo, K. K. and R. E. Passarelli: The growth of snow in winter storms: An

airborne observational study Journal of Atmospheric Sciences, 39, 1982, 697–706.

[17] Wilson, D. R., S. P. Ballard: A microphysically based precipitation scheme

for the UK meteorological office unified model Quarterly Journal of the Royal Me-

teorological Society, 125, 1999, 1607–1636.

[18] Mitchell, D. L., A. Huggins and V. Grubisic: A new snow growth model

with application to radar precipitation estimates Atmospheric Research, 82, 2006,

2–18.

[19] Passarelli Jr, R. E.: An approximate analytical model of the vapor deposition

and aggregation growth of snowflakes Journal of the Atmospheric Sciences, 35,

1978, 118–124.

[20] Barthazy, E. and R. Schefold: Fall velocity of snowflakes of different riming

degree and crystal types Atmospheric Research, 82, 2006, 391–398.

[21] Korolev, A. and Isaac, G. A.: Shattering during sampling by OAPs and

HVPS. Part I: Snow Particles Journal of atmospheric and oceanic technology, 22,

2005, 528–542.



BIBLIOGRAPHY 57

[22] Field, P. R., A. J. Heymsfield and A. Bansemer: Shattering and parti-

cle interarrival times measured by optical array probed in ice clouds Journal of

Atmospheric and Oceanic Technology, 23, 2006, 1357–1371.

[23] Baran, A. J.: On the scattering and absorption properties of cirrus cloud Journal

of Quantitive Spectroscopy and Radiative Transfer, 89, 2004, 17–36.

[24] Heymsfield, A. J., G-J van Zadelhoff, D. P. Donovon, F. Fabry, R. J.

Hogan and A. J. Illingworth: Refinements to ice particle mass dimensional

and terminal velocity relationships for ice clouds. Parts I and II Journal of the

Atmospheric Sciences, 64, 2007, 1047–1067 and 1068–1088.

[25] http://snowflakebentley.com, Dedicated to Wilson “Snowflake” Bentley’s life’s

work and images, (last checked on 04.08.2008).

[26] Field, P. R., and A. J. Heymsfield: Aggregation and scaling of ice crystal

size distributions Journal for Atmospheric Sciences, 60, 2003, 544–560.

[27] Intergovernmental Panel on Climate Change (IPCC): Climate Change

2007: Synthesis Report, Avaliable from http://www.ipcc.ch, 2007.

[28] A. J. Heymsfield and J. Iaquinta: Cirrus Crystal Terminal Velocities Journal

of Atmospheric Sciences, 57, , 916–938.

[29] Rogers, R. R. and M. K. Yau: A short course in cloud physics, Oxford: Perg-

amon, 1989.

[30] Mason, B. J.: The physics of clouds, Oxford University Press, 1971.

[31] Hosler, C. L., D. C. Jensen and L. Goldshlak: On the aggregation of ice

crystals to form snow Journal of Meteorology, 14, 1957, 415–420.

[32] Pruppacher and Klett: Microphysics of clouds and precipitation, Kluwer Aca-

demic publishers, 1997.

[33] Bentley, W. A., and W. J. Humphreys: Snow crystals, Dover, 1962.

[34] Heymsfield, A. J., P. Field and A. Bansemer: Exponential size distributions

for snow, Journal of Atmospheric Sciences, Not yet published.

[35] Westbrook, C. D., R. J. Hogan, A. J. Illingworth and E. J. O’Connor:

Theory and observations of ice particle evolution in cirrus using Doppler radar:

Evidence for aggregation Geophysical Research Letters, 34, 2007, LO2824.



BIBLIOGRAPHY 58

[36] Jiustoa, J. E. and H. K. Weickmann: Types of Snowfall Bulletin of American

Meteorological Society, 54, 1973, 1148–1162.

[37] http://www.met.rdg.ac.uk/radar/ufam/copernicus.html, The University of

Reading Meteorology department’s radar group’s page on the cloud radars at

Chilbolton, (last checked on 14.08.2008).

[38] Passarelli R. E. Jr, and R. C. Srivastava: A new aspect of snowflake

aggregation theory Journal of Atmospheric science, 36, 1979, 484.

[39] Sasyo Y. and T. Matsuo: Effects of the variations of falling velocities of

snowflakes on their aggregation Journal Met. Soc. Japan, 63, 1985, 249.


