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Abstract

Self-organised criticality (SOC) is a theory of the underlying dynamics of a class of non-

equilibrium dynamical systems that are associated with complex, scale-free phenomena.

Recently, there has been growing empirical evidence proposed that links the Tropical Con-

vective System (TCS) to SOC. This has broad implications for both the theory of SOC

and the understanding of the underlying nature of the dynamics of convection.

As of now, there has not been a simple model devised for the TCS that is able to an-

ticipate the scale-free phenomena that occurs. In this exploratory study we identify the

dynamical features of the TCS that are suspected to relate to a self-organised critical

system, highlighting cold-pools as the prominent organisation mechanism. We then adapt

and extend an existing SOC model to formulate the dynamics of the TCS as cellular au-

tomation process.

Our numerical simulation produces examples of both spatial and temporal power-law rela-

tionships in a region of parameter space that is physically close to what can be associated

with the TCS. We show that our model is robust to simple modifications, which has impor-

tant consequences for its application to physical reality. The model is however, unable to

directly reproduce the current empirical evidence for SOC in the TCS. We conclude that

for this to be fully realised, a future model must be devised with a specific meteorological

diagnostic in mind.
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Chapter 1

Introduction

1.1 Complexity and self-organised criticality

A complex system is composed of many degrees of freedom (DOF) which through mu-

tual interaction produce emergent behaviour that is not predicted from the individual

behaviour of the DOF alone. The emergent behaviour is referred to as ‘complex’ due to

having large variability and lacking a characteristic response size [1]. This variability can

apply both spatially and temporally and is mathematically connected to scale-invariant

phenomena: fractal structures (space) and 1/f behaviour (time).

Self-organised criticality (SOC) was introduced as universal mechanism that could in prin-

ciple explain how emergent complex behaviour arises [2]. It is a theory of the underlying

dynamics of a class of systems that all share a very general, characteristic behaviour. SOC

deals with slowly driven systems that exhibit threshold behaviour and interaction between

their DOF. The scope of the theory of SOC is incredibly broad. Examples of its appli-

cation include avalanches in granular piles, earthquakes in seismic systems, and (perhaps

more speculatively!) extinctions and mutations in biological evolution [1].

The theoretical foundations of the subject are linked to an area of physics that is well

understood; the statistical mechanics of critical phenomena and continuous phase tran-

sitions [3]. There is however, a lack of a general mathematical formalism for SOC, and

the non-equilibrium systems that it deals with are less well understood than equilibrium

systems [4]. The SOC approach has also been criticised because it neglects many of the

1



CHAPTER 1. INTRODUCTION 2

specific details of the systems it has been applied to and produces very general statistical

statements rather than precise predictions [1]. Nevertheless, if viewed as trying to answer

the question: ‘How and why does complex behaviour arise?’, not: ‘What will a particular

outcome be?’, then SOC is a compelling framework to apply.

1.2 The tropical convective system: a meteorological

application of SOC?

The atmosphere is one of the most well observed and measured natural systems. Since

the mid 1990s there has been growing evidence that a broad range of atmospheric phe-

nomena exhibit wide variability and scale-free behaviour [5], [6]. This contrasts with the

traditional meteorological viewpoint, where characteristic scales are assumed to be linked

to specific phenomena. In recent years, the Tropical Convective System (TCS) has been

isolated as a prominent example of this, with time-series of convective events exhibiting

1/f behaviour [7], and power-law relationships identified in satellite data for tropical rain

[8].

The dynamics of the TCS contain many features that are potentially identifiable with

SOC. The TCS is slowly driven through long-wave radiative cooling, surface heating and

evaporation which leads to conditional instability (a dynamical threshold), and the onset

of convection. Convective events occur over a wide range of spatial and temporal scales,

ranging from isolated storms that last for less than an hour to meso-scale convective clus-

ters which span for hundreds of kilometres and last for days at a time. The underlying

organisational mechanisms of the TCS are much debated, with some recent work em-

phasising short range thermodynamical interactions that are linked to the formation of a

‘cold-pool’ following a deep convective event [9].

SOC could potentially provide the underlying framework, that unites the observations

of scale-free phenomena and the non-equilibrium dynamical features of the TCS. As of

now, there has not been a simple model devised for the TCS that is able to anticipate

the scale-free phenomena which occurs [8]. The central aim of this project is to identify

the features of the TCS that could potentially relate to a self-organised critical dynamical

system and then use these features to construct a phenomenological model.
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1.3 Report structure

The report structure is outlined below:

• Chapter 2 outlines the theory of SOC and its relationship to scale-free behaviour.

The application of SOC to the seismic system is used to clarify what can be expected

of the application of SOC to a ‘real world’ system.

• Chapter 3 outlines the empirical evidence for why the TCS is considered as a good

candidate for exhibiting elements of self-organised critical behaviour. A qualitative

overview is provided of the main dynamical features of the TCS.

• Chapter 4 identifies more precisely the features of the TCS that are suspected to be

linked to SOC. This is done using atmospheric physics principles.

• Chapter 5 develops a simple numerical model of the TCS based upon an existing

SOC algorithm. Scale-invariant diagnostics are explored in what is deemed to be a

meteorological limit.

• Chapter 6 concludes the project and proposes future directions of study.

SOC is a largely unfamiliar concept to most meteorologists, and the details of the TCS

are largely unfamiliar to most mathematicians. However, this project endeavours to be as

self-contained as possible. Chapters 2 and 3 are primarily a literature review and Chapters

4 and 5 contain the majority of the original work.



Chapter 2

Self-organised criticality

SOC was introduced in 1987 by Bak, Tang and Weissenfield [2] as an explanation of how

scale-free behaviour can arise in a class of non-equilibrium dynamical systems. Scale-free

behaviour is certainly not unique to SOC, and the first section of this chapter outlines

what is meant by this. SOC is then introduced, using a sand-pile to illustrate the key

dynamical features. The simulation and mathematical formalism of self-organised critical

systems is discussed. Finally, the seismic system is used as a ‘case-study’ to illustrate the

application of SOC to a ‘real world’ physical system.

2.1 Scale-free behaviour

2.1.1 Power-law relationships, scale-invariance and fractals

Empirical power-law relationships arise in a broad variety of natural and man-made phe-

nomena. Examples include earthquake magnitudes, city population sizes and fossil ex-

tinction records [1]. A power-law relationship is defined as polynomial relationship of the

form

p(x) ∝ x−α, (2.1)

where α ∈ R is the exponent or scaling parameter [10]. Frequently p(x) is a probability

density function, and α > 1 is required for the distribution to be normalisable. Power laws

have the property that they are scale-invariant. This can be seen by making the scaling

4



CHAPTER 2. SELF-ORGANISED CRITICALITY 5

transformation p(x) → p(λx) where λ ∈ R is a scale factor. The relationship

p(λx) = λ−αp(x), (2.2)

follows. This is interpreted as a rescaling of p(x) that is independent of x. A power-

law relationship therefore lacks a characteristic scale. ‘Scale-free behaviour’ is generally

understood to be less strict than the relationship (2.2), and corresponds to approximate

scale-invariant behaviour in empirical (or simulational) data sets.

(a) (b)

Figure 2.1: (a) City population against rank [11] - (double-logarithmic scale), (b) Koch snowflake
fractal [12]

It follows from (2.1) that a power-law corresponds to a straight line on a double loga-

rithmic plot with the gradient being −α. A double logarithmic plot of city population

against size rank for cities in 5 different countries is shown in Figure 2.1(a) and illustrates

this point. In practice, discerning if a data set strictly follows a power-law is a highly

complicated procedure. Problems can arise through applying standard linear regression

techniques and analysing the tail of the data [10].

The fractal dimension of an object can often be related to the exponent of a power law.

An example is the Koch snowflake curve (Figure 2.1(b)) which has a fractal dimension

given by Ln = (4
3
)n where Ln is the length of a line segment after n magnifications [12].

Spatial power-laws are therefore often referred to as ‘fractal behaviour’ and this is used

concurrently in the SOC literature.
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2.1.2 1/f behaviour

Experimental data that is recorded at discrete intervals over an extended period of time

can be recorded as a time-series Λ(t). Examples from meteorology include air temperature

and precipitation. Applying harmonic analysis, the power spectrum S(f) is defined by the

square of the Fourier transform of Λ(t)

S(f) = lim
τ→∞

1

2τ

∣∣∣∣∫ τ

−τ

Λ(t) exp(i2πft)dt

∣∣∣∣2 , (2.3)

where τ is the time period. As observational data is recorded over a finite interval, an

approximation is made when taking the limit τ → ∞. It is an observed fact that many

natural systems have power spectra that exhibit a power-law regime of the form S(f) ∝
f−α. Figure 2.2(a) shows 3 important classes of power-law time signals that frequently

arise in natural systems. The signals correspond to:

1. α = 0: White behaviour - ‘Random, uncorrelated fluctions about a mean value’

2. α = 1: 1/f behaviour - ‘Noisy, pulse like episodes embedded in quieter peroids’

3. α = 2: Brownian behaviour - ‘Correlated, experiencing drifting tendancies’ [7]

(a) (b)

Figure 2.2: (a) Classes of time signal: α = 0 (upper), α = 1 (centre), α = 2 (lower), [7], (b) 1/f
power spectrum from classical music signal [13]
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Analysis of 1/f signal behaviour shows that the statistical correlations between different

points in time do not exist. A simple argument for why this is the case considers the

Fourier transform of the auto-correlation function G(t) of a stationary time signal [4].

This is given by

G(t) = lim
τ→∞

1

τ

∫ τ

0

Λ(t0)Λ(t0 + t)dt0,

where the corresponding Fourier transform relation (neglecting normalisation factors) is

S(f) = lim
τ→∞

∫ τ

0

G(t) cos(2πft)dt. (2.4)

It is then assumed that power-law relationships of the form; S(f) ∼ f−α and G(t) ∼ t−β

exist. Making the substitution x = 2πft into (2.4) gives the result

f−α ∼ f (β−1) lim
τ→∞

∫ τ

0

x−β cos(x)dx,

and assuming that the integral converges it follows that f−α ∼ f (β−1). For β close to 0

α is close to 1 and the power spectrum is thus close to S(f) ∼ f−1. This corresponds to

long time correlations, as the assumed form of G(t) corresponds to a slow fall-off. This is

interpreted that no characteristic time-scale to Λ(t) exists and 1/f behaviour is therefore

often referred to as a ‘fractal in time’. For the special case of β = 0, α = 1 this argument

breaks down and details are given in [4].

Scientists from many disciplines are interested in 1/f behaviour as it is a ubiquitous natural

phenomena. Examples include the flow of the river Nile, the luminosity of stars and

classical music (shown in Figure 2.2(b)), [1]. Frequently it can be difficult to distinguish

true signals from a background noise and power spectra with α ∈ [0.8, 1.4] is often taken

as a practical definition of 1/f behaviour by experimental and observational scientists [14].

2.2 The theory of self-organised criticality

2.2.1 Statistical mechanical background

The term ‘criticality’ originates from equilibrium statistical mechanics and is connected to

continuous phase transitions. Continuous phase transitions are governed by the concept of

universality which unites seeming unrelated systems such as magnets and superconductors
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under the same theoretical framework. The critical point of a phase transition is reached

by precise ‘tuning’ of a control parameter, (frequently temperature), and is characterised

by a scale-free response to perturbation. This amounts to the system exhibiting a differ-

ent response when perturbed at different regions at different times - the dynamics of the

system are global and an ‘average system-response’ does not exist [3].

In statistical mechanics ‘self-organisation’ refers to the ability of certain non-equilibrium

systems to develop structures and patterns in the absence of significant control or tuning

by an external agent. SOC refers to self-organising systems exhibiting an analogue to the

critical behaviour observed during a continuous phase transition. The difference being is

that a SOC system does not require precise external tuning to reach the critical point

- rather, the critical state is reached through the mutual interaction of the DOF in the

system [4].

2.2.2 The application of SOC to natural systems

A sand-pile was one of the first systems that was proposed to exhibit self-organised critical

behaviour. It was thought to represent the canonical form of the dynamical features of

an SOC system and was used to illustrate the key principles of the theory [1], [2]. Figure

2.3(a) is a schematic diagram of the sand-pile system, described below:

• The sand-pile is ‘driven’ by adding grains of sand one by one at random positions.

• Due to friction, the grains get stuck upon impact and form a ‘landscape’ consisting

of slopes of varying angles.

• Avalanches occur when the local slope exceeds a threshold value, resulting in a

transfer of grains to neighbouring regions and dissipation at the boundary.

• Upon repeated addition of grains, the sand-pile proceeds to evolve toward a steady

state where the addition of grains is balanced by dissipation at the boundary.

• In this state, (the ‘critical state’), avalanches of all sizes can occur. The dynamics

of the system is global and well defined statistical laws that are emergent properties

of the system arise.
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(a) (b)

Figure 2.3: (a) Sand-pile conceptual model [1], (b) Rice-pile experiment [16]

It is a necessary condition for SOC that a system is able to produce both a temporal power

law relationship (generally 1/f behaviour) and a spatial power law. In the case of the sand-

pile, 1/f behaviour arises from the time series of avalanche sizes and a spatial power law

relationship arises from considering the probability of an avalanche being of a given radial

extent [4]. A further characteristic of an SOC system is a time-scale separation between

periods of slow drive and fast pulse-like energy release. In the case of the sand-pile this

corresponds to the time-scale separation between grains being slowly added and stored as

potential energy in the system, and the fast release of kinetic energy in an avalanche.

The original sand-pile system was a numerical simulation. In reality, sand-piles have

insufficient friction to reach the critical state. However, experiments performed upon

ricepiles show that a critical state emerges [15]. Figure 2.3(b) demonstrates how the static

friction between rice grains is sufficient to produce a build up of potential energy in the

system, thus allowing for large avalanches to occur. Due to the simplicity of the conceptual

sand-pile argument and the success of the rice-pile experiment, granular piles now stand

as a metaphor for the theory of SOC [4].

2.2.3 Numerical simulation and mathematical formalism

SOC systems are typically modelled using a cellular automation algorithm. This consists

of a set of grid cells that evolve through a number of discrete iterations according to

a set of simple rules. These rules are based both upon a global driving property and
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the states of neighbouring cells. Cells represent the DOF of the system and store a

‘dynamic variable’, (such as the height of a granular column). Complexity arises through

the repeated application of the simple rules applied to many DOF, rather than complicated

behaviour of the DOF in isolation.

There is a degree of variation in the models that have successfully been shown to exhibit

SOC, with both stochastic and deterministic automata algorithms obtaining a critical

state. In addition, a SOC model can exhibit a degree of internal dissipation and the

dynamic variable does not always have to be conserved. There is however, a limited

number of automata algorithms that have been discovered which exhibit SOC. Due to this

limitation, the development of a model often precedes an application. An example of this

is the ‘stochastic forest fire model’ which was proposed in abstraction from any real-world

application and has since been used to model disease epidemics [17].

In contrast with equilibrium statistical mechanics a general mathematical formalism has

not been developed (or does not exist) with which the behaviour of SOC systems can be

analysed. Nevertheless, analytic approaches specific to a given system have been devel-

oped which have greatly aided understanding and increased the credibility of the field.

For example, an analytic approximation of the sand-pile algorithm has shown that the

criticality that is observed is not a result of simulations on a system of a finite size [4].

The analytic approximations are often constructed using a mean-field approach. This

amounts to approximating the discrete cellular automata by a set of equations of motion

that is reminiscent of the continuum limit applied in fluid dynamics. The hope is that a

mean-field approach is qualitatively, rather that quantitatively correct [4].

2.3 The OFC earthquake model

It is a widely held view that the seismic system is one of the most successful applications

of SOC to date. Motivated by an empirical power-law, a cellular automation model based

upon the dynamics of an earthquake fault was developed by Olami, Feder and Christensen

[18], (from herein OFC). This section summarises the key results and development stages

of the study.
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(a) (b)

Figure 2.4: The Gutenburg-Richter law for earthquakes: (a) Empirical data set [19], (b) Numer-
ical simulation [18], (both double-logarithmic scale)

2.3.1 Empirical motivation

The Gutenburg-Richter law is a statistical statement that expresses the relationship be-

tween the magnitude and total number of earthquakes in a given region over a fixed time

period. A well defined power-law relationship is observed, with the number of earthquakes

n of energy E greater than a fixed energy E0 given by n(E > E0) ∝ E−β
0 where β is a

non-integral exponent [18]. Figure 2.4(a) illustrates this relationship for earthquakes in

the United Kingdom. Earthquakes, therefore can be viewed as not possessing a character-

istic size. The SOC approach to the seismic system provides the underlying framework to

explain this.

2.3.2 Development from basic physics

The OFC earthquake model is an idealisation of the dynamical processes that occur in

an earthquake fault zone. The simplifications that are made seek to capture the essence

of the basic phenomena whilst disregarding any features that over complicate the model.

Figure 2.5 is a schematic of this physical idealisation. A summary of the steps that are

taken in reaching this is as follows:
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• The initial picture is complicated. Convection currents beneath the Earth’s crust

cause tectonic plates to move relative to each other that in turn cause strain to build

up in a boundary region (the fault). This strain is released as an earthquake.

• An idealisation is made. The fault is represented by a 2D network of coupled spring-

block oscillators which constitute the DOF of the system.

• These spring-blocks are driven by the relative motion of two rigid planar surfaces,

that represent the boundaries between the fault and the adjacent tectonic plate.

• Equations of motion are then derived from the strain force exerted upon each block.

• The initiation of a quake is defined by the force on a block exceeding a threshold

value, resulting in a block slipping and transfer of momentum to neighbouring blocks.

A chain reaction may result until the system of blocks fully relaxes.

Figure 2.5: A schematic diagram of the OFC spring-block earthquake model [18]

2.3.3 Numerical simulation

From the spring-block model a cellular automation algorithm using the force on each

spring-block Fij as a dynamical variable is developed. The model is defined upon a L×L

lattice indexed by (i,j ). Lattice vertices are block centres and forces are stored in a matrix

F . The algorithm sequence is defined as follows, [4], [18]:
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Initialisation:

• Random, uniformly distributed initial forces Fij ∈ [0, Fc) are assigned to each block

where Fc is a threshold force.

Drive:

• System is globally perturbed: Fij −→ Fij + ν, ∀ij where ν is an increment of force.

Threshold, relaxation and interaction:

• Test if Fij > Fc - if so then: Fij −→ 0 and Fi±1j −→ Fi±1j + µFi±1j and Fij±1 −→
Fij±1 + µFij±1 where µ ∈ (0, 0.25] determines the level of conservation.

• Repeat until Fij ≤ Fc, ∀ij. Once condition is met, re-drive system.

Figure 2.6: The OFC earthquake model cellular automation iteration process



CHAPTER 2. SELF-ORGANISED CRITICALITY 14

In order to gain an insight toward simulating SOC systems, we reproduced the OFC al-

gorithm. A sequence of output slides is shown in Figure 2.6. Slide 1 corresponds to the

system in a sub-threshold state - (warmer colours correspond to higher values of Fij).

The system is driven by identifying the greatest value of Fij and then globally perturbing

the system by and increment ν that makes this site above threshold. This is shown in

slide 2 with the above threshold block notated by a circle. Slide 3 shows relaxation to

zero (notated by white), of the above threshold block and the transfer of force to nearest

neighbours. (The conservation parameter µ = 0.20 was used in the simulation). Nearest

neighbours that are now above threshold are notated by a circle. These in turn relax

in slide 4. Slides 5-6 demonstrate how this process is repeated until all blocks are sub-

threshold.

The energy of a quake is defined as being proportional to the number of individual re-

laxations per global perturbation. In this case the energy is 5 units. With the exception

of initialisation, the model is fully deterministic. Open boundary conditions are imple-

mented. Physically this corresponds to momentum being dissipated at the boundaries of

the fault. Periodic boundary conditions have been experimented with for the OFC model,

with the notable result that this removes the criticality of the system [4].

The simulations used by OFC were typically on a system size L2 ∈ [103, 104] and are

able to reproduce the Gutenburg-Richter law. This is shown in Figure 2.4(b). The differ-

ent lines correspond to different system sizes. The ‘cut-off’ at high energies is a typical

feature of a SOC simulation and is related to the finite size of the model. The model is

viewed as being one of the most robust SOC algorithms and can even predict features such

as regional variation in the exponent of the power-law relationship [18].

2.4 The consequences of Chapter 2 for the project

SOC is a broad field of research, spanning mathematics, physics and computer science de-

partments around the world. Different research groups concentrate upon different aspects

of the theory, ranging from abstract mathematical formalism, to analysing empirical data

sets.
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This project is particularly concerned with the application of SOC to a ‘real world’ physical

system: the TCS. We are therefore primarily interested in relating physical features of

tropical convection to SOC, and then using this to construct a phenomenological model.

The case-study of the seismic system is an excellent example of what this development

process could entail and influences the approach that we take in the rest of the project,

progressing from: identifying empirical power-law relationships (Chapter 3); to isolating

the elements of the dynamics that are SOC (Chapter 4); to formulating a simple cellular

automation model (Chapter 5).



Chapter 3

The case for self-organised criticality

in the tropical convective system

The purpose of this chapter is to review why the TCS is currently considered as being good

candidate for exhibiting self-organised critical behaviour. The main features of convection

in the tropics are outlined with particular reference to convective cells, their organisation

and the quasi-equilibrium hypothesis. A set of observational studies that all strongly

support the conjecture that the TCS is a self-organised critical system are then outlined.

3.1 Convection in the tropics

3.1.1 Meteorological scales

The association of meteorological phenomena with a characteristic spatial and temporal

scale is generally successful in the extra-tropics. A prominent example is quasi-geostrophic

theory which provides much of the theoretical basis for the understanding of the dynamics

of extra-tropical cyclones. In contrast with the extra-tropics, relating the dynamics of

the tropical atmosphere to a characteristic scale is largely unsuccessful. This is in large

part due to the difficulty in comprehending the moist convective processes, that are the

dominant feature of tropical meteorology. It is observed that convective storms can occur

at a variety of scales, ranging from isolated thunderstorms that last for less than an hour

to systems that extend over hundreds of kilometres and exist for days at a time. Linked to

the lack of a characteristic scale is a lack of understanding about the underlying convec-

16
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tive dynamics, with a fully satisfactory description of both the ensemble and individual

convective clouds remaining elusive [21].

3.1.2 Convective clouds and organisational structures

Over the tropical ocean convective clouds dominate the structure of the atmosphere and

form through the local ascent of buoyant parcels of air. Convective clouds can be classified

into two broad categories; shallow cumulus and deep cumulus. Shallow cumulus typically

extend from 1000m to 3000m, are of horizontal dimensions of order 100 to 250m and are

generally non-precipitating. Deep cumulus clouds extend throughout the depth of the

troposphere (approximately 1000m to 8000m), are of horizontal dimensions of order 1km

and produce heavy precipitation. Mature deep cumulus clouds are often referred to as

cumulonimbus clouds and are frequently associated with thunderstorms. Examples are

shown in Figures 3.1(a) and 3.1(b).

There are various mechanisms that can initiate the formation of a convective cloud: ad-

vective moisture convergence, radiative cooling, and boundary layer fluxes of moisture

and heat all contribute. Collectively these macro-physical processes are referred to as the

‘large-scale forcing’. In response to the large-scale forcing, parcels of air near the surface

become unstable and are able to ascend and condense. Sufficiently deep convection pro-

duces precipitation. Associated with condensation is the release of latent heat into the

troposphere. Convective downdrafts may also form when the precipitation does not reach

the surface, but rather evaporates into sub-saturated air. Following a downdraft is the

formation of a ‘cold pool’ of boundary layer air that can trigger convection in neighbouring

regions of the atmosphere. This has been highlighted in some recent studies as a promi-

nent organisational mechanism for tropical convection [9].

Convective clouds are frequently refered to as convective cells due to the circulatory motion

that they induce. Convective cells can be thought of as representing the basic element of

a convective system, and when formulating tropical convection as an SOC system, convec-

tive cells are thought to represent a DOF. Observations show that tropical convection cells

frequently organise into structures that extend far beyond that of individual convective

cells. These structures can be linear and are referred to as squall lines or can be non-linear

and are referred as a meso-scale convective systems [22].
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(a) (b)

Figure 3.1: Convective clouds: (a) Shallow cumulus, (b) Mature deep cumulus/cumulonimbus
[20]

There are various mechanisms that are known to organise tropical convection, includ-

ing: wind shear, interaction with large scale waves (such as gravity and Kelvin waves)

and the aforementioned cold pool mechanism. Cold pools have a particular significance

to SOC as they can be viewed as a short range interaction mechanism between regions of

the atmosphere. In contrast with wind-shear and interaction with large scale waves, cold

pools are ubiquitous. The SOC model physics developed in Chapter 4 will therefore focus

upon the role of the cold pool.

3.1.3 The quasi-equilibrium hypothesis

The Quasi-Equilibrium (QE) hypothesis was introduced by in 1974 by Arakawa and Schu-

bert as a simplifying statistical assumption that could be used to understand the dynamics

of a cumulus cloud ensemble [23]. Central to the QE hypothesis is the separation in the

timescales between convective adjustment time, (which refers to how long convection takes

to adjust itself to changes within the convective ensemble), and variations in large-scale

forcing. This was envisaged in the 1974 paper as: ‘When the timescale of the large-scale

forcing is sufficiently larger than the adjustment time, the past history, within the scale

of the adjustment time can be represented by the current large-scale forcing. This means

that the cumulus ensemble follows a sequence of quasi equilibria with the large scale forc-

ing...we call this the quasi-equilibrium assumption.’. From an energetics perspective this
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simply amounts to convection consuming potential energy at the rate at which it is pro-

duced by large scale forcing.

Observational studies broadly support QE. For example, QE predicts that the vertical

profiles of temperature and moisture are constrained to be close to a saturated-adiabatic

parcel ascent [24], (we explain what is meant by this in Chapter 4). QE also constitutes the

framework from which much of the understanding and parameterisation of tropical con-

vection is based upon [25]. It is however a statistical rather than an actual equilibrium,

and can only be considered as a leading order approximation: in reality, the tropical at-

mosphere is a slowly driven non-equilibrium system [26]. QE has the most problems when

applied to smaller spatial and temporal scales and many aspects of the theory are still

debated. Issues include the time response of a convective cloud ensemble to a change in

forcing [27]; and exploring the validity of the time-scale separation in terms of ‘convective

memory’ [28].

3.2 Observational studies

3.2.1 European rainfall statistics

The suggestion that SOC is present in the atmosphere was first made as early by Vat-

tay and Harnos (1994) [5]. They showed that the daily average air humidity fluctuations

from central Europe over the interval of a year exhibited approximate 1/f behaviour. It

was speculated that the presence of an atmospheric threshold; saturation, linked this to

SOC. This viewpoint was consolidated by Peters and Christensen (2002) [6]. Using rainfall

statistics and physical analogues to the seismic system it was argued that the atmosphere

has the physical attributes of an SOC system. The results proved central to the credibil-

ity of the idea that the atmosphere contains elements of SOC dynamics with an article

appearing in New Scientist magazine [29].

In order to reach their conclusions, Peters and Christensen analysed a time series from

radar measurements with a one minute resolution, that was collected at a site on the

German Baltic coast over an 8 month period from January to July 1999. Defining ‘rain

events’ as the basic entities of the phenomena, it was demonstrated the number density

of rain events per year is inversely proportional to the size of event. This occurs over a
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regime spanning at least three orders of magnitude, with the data following a well defined

power-law. Furthermore, the number density of ‘rain event duration per year’ was shown

to demonstrate a similar power-law relationship when plotted against the event duration.

These results are shown in Figures 3.2(a) and 3.2(b) and indicate that no typical size or

time scale exists for rain event sizes and durations. An analogy was drawn between the

Gutenburg-Richter law (Section 2.3.1, Figure 2.4(a)) and the rainfall data. This lead to

the suggestion that a mechanism in the atmosphere may have some parallels with the

seismic system and be an instance of SOC.

(a) (b)

Figure 3.2: Rain event power-law relationships: (a) Number density of rain events against event
size, (b) Number density of rain event duration against versus event duration, (both double-
logarithmic scale)

3.2.2 1/f behaviour in the Pacific

In recent years, data from the tropics has been used to further support the case that the

atmosphere contains elements of SOC. This data has the advantage of isolating convection

as the dominant process that is being studied. A detailed analysis of tropical convective

variability using Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response

Experiment (TOGA-COARE) data was carried out by Yano et al. (2003) [7] . Using time

series data from 13 sites in the western Pacific, approximate 1/f behaviour was found to

occur in atmospheric surface variables over an interval from 1 hour to 10 days. Figures
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3.3(a) and 3.3(b) show the time series and power spectra that were recorded at one of

the observation sites. It is evident that rain events, are correlated to large fluctuations in

temperature, moisture mixing ratio and wind speed.

(a) (b)

Figure 3.3: TOGA-COARE data from site in mid-Pacific: (a) Time series, (b) Power spectra,
for: air temperature Tair, moisture mixing ratio q, wind speed |v| and rain rate R, [7]

Specifically, it was established that power-law regimes with α ∈ [0.8, 1.4] were present

for air temperature , moisture mixing ratio and wind speed. This is consistent with the

experimental bounds for 1/f behaviour outlined in Section 2.1.2. It was suggested that the

origin of the 1/f behaviour lay in ‘intermittent pulse-like convective events’. It was also

highlighted that in its current interpretation QE does not predict the scale-free behaviour

observed.

3.2.3 Critical phenomena in tropical rain

A more recent study by Peters and Neelin (2006) [8] used tropical rainfall data and predic-

tions from the theory of critical phenomena to approach the search for SOC in the tropical

atmosphere from a more direct perspective. The data sets that the study analysed were

comprehensive; satellite microwave data from each major global ocean basin over a 5 year

period from 2000 to 2005 at a 20 km grid resolution. Analysing the relationship between
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vertically integrated water vapour and precipitation, they demonstrated that above a crit-

ical value of vertically integrated water vapour precipitation is intense, short-lived, and

follows a power-law relationship. Below that critical value, it is weak but more persistent.

This was interpreted as the tropical atmosphere naturally fluctuating about the criti-

cal point of a continuous phase transition. As the atmosphere naturally tunes itself to

this state, it can be viewed as a system naturally evolving to criticality and thus an in-

stance of SOC. Furthermore, they argued that the balance between large scale forcing and

convection postulated in the QE hypothesis could be directly identified with this critical

point. It was established that although details, such as the critical value of the vertically

integrated water vapour changed, the relationships that linked them to the same form of

continuous phase transition did not. An additional expectation from the theory of critical

phenomena that they were able to confirm was a peak in the variance of precipitation

at this critical water vapour, consolidating the view that a continuous phase transition is

present.

This study was the first time that the critical point of an SOC system has been iden-

tified from empirical data using the theory of critical phenomena. It can thus be regarded

as making both a strong case for SOC in the TCS and for the general development of SOC

as a field of research.

3.3 The consequences of Chapter 3 for the project

The empirical studies outlined on this chapter demonstrate a marked progression towards

answering the central question; ‘Does SOC occur in the TCS?’. The stages of development

can be viewed as:

1. Identifying scale-free behaviour in atmospheric data and making a generalised argu-

ment that the atmosphere has the attributes of an SOC system.

2. Isolating the tropical convective system as a likely candidate for SOC and observing

1/f behaviour in variables linked to convective events.

3. Directly identifying tropical rainfall data with the predictions of critical phenomena.
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By comparison, the seismic system has not been directly related to the critical point of

a continuous phase transition. The direct identification of the self-tuning of the tropical

atmosphere to a critical point can therefore potentially be regarded as a stronger empirical

argument for SOC in the tropical convectice system than the seismic system.

However, unlike the seismic system there is yet to be a simple model devised for the

TCS that is able to anticipate the criticality that arises. This was highlighted by Pe-

ters and Neelin [8] upon identifying tropical convection with critical phenomena; ‘These

findings beg for a simple model of the atmospheric dynamics responsible for the critical

behaviour...the physics must conform with recent cloud-resolving model analysis...[and] to

the key role of exitory short range interactions’.

This study seeks to investigate what a cellular automation model of the TCS could look

like. It is hoped that the model will be able to reproduce some of the observational evidence

outlined in this chapter. The study is highly exploratory and many of the ideas proposed

in Chapters 4 and 5 are possible ways of viewing the problem, rather than producing a

definitive formulation.



Chapter 4

Model physics

This chapter is concerned with isolating the essential physics from which a cellular au-

tomation model of the TCS can be developed. We are primarily interested in identifying

and quantifying:

• The nature of the forcing experienced by the TCS.

• The presence of a threshold in the TCS.

• The DOF of the TCS and the interaction that occurs between them.

• The dynamic variable from which the model is to be constructed.

A three-level atmospheric model, (the ‘threshold model’), based upon fundamental sta-

bility constraints is developed. This is used to draw conclusions about thresholds and

timescales. The nature of a convective cell and the cold pool development process is then

is used to define the DOF and interaction mechanism. The degree of time-scale separation

between convective forcing and relaxation is also investigated and influences the choice of

dynamic variable and model formulation.

4.1 Atmospheric physics background

In this section we outline the underlying physics from which the three-level model is

constructed.

24
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4.1.1 Atmospheric composition and equation of state

In meteorological applications the Earth’s atmosphere is treated as an ideal gas and has

the equation of state

p = ρRT, (4.1)

where p is the pressure, ρ is the density, R is the molar gas constant and T is the temper-

ature. The gases in the Earth’s atmosphere comprise of a mixture of dry air and water

vapour and (4.1) can be decomposed into partial equations of state:

(p− e) = ρdRdT

e = ρvRvT,

where (p − e) is the partial pressure of dry air and e is the partial pressure of water

vapour. The density and gas constant subscripts d and v refer to dry air and water vapour

respectively. The water vapor content is quantified by the mixing ratio q

q =
ρv

ρd

=
Rd

Rv

e

(p− e)
,

which represents the fraction by mass of water vapour present in the atmosphere. The

composition of dry air is approximately fixed, dominated by Nitrogen and Oxygen (75.51%

and 23.14% fraction by mass respectively). The amount of water vapour present varies

with time and location.

4.1.2 Saturation

The saturation water vapour pressure e∗ represents the maximum possible partial water

vapour pressure at a given temperature. The Clausius-Clapeyron equation describes this

phase equilibrium and is given by

de∗

dT
=

Lve
∗

RvT 2
, (4.2)
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where Lv is the latent heat of evaporation. Integrating (4.2) for constant Lv gives the

following expression for e∗

e∗ = e∗0 exp

(
Lv

Rv

(
1

TI

− 1

T

))
, (4.3)

where TI is a reference temperature. It is clear that e∗ is a function of temperature

alone. Using (4.3) saturated analogues of other quantities can be defined. For example

the saturated mixing ratio q∗ is given by

q∗ =
Rd

Rv

e∗

(p− e∗)
. (4.4)

Correspondingly q∗ is a well defined function of temperature and pressure. The relative

humidity H is defined by

H =
e

e∗
,

and represents the fraction of water vapour in the atmosphere relative to the saturation

level.

4.1.3 Atmospheric stability

Atmospheric stability is assessed by considering the vertical displacement of a parcel of

air away from its initial position. The parcel is assumed to not disturb or mix with its

environment. Newton’s Second Law of Motion for a parcel of density ρ′ in an atmosphere

of density ρ is

fb ≡ g

(
ρ− ρ′

ρ′

)
= z̈, (4.5)

where fb is the buoyancy force, g is the gravitational acceleration and z is the vertical

coordinate. Using (4.1) we can rewrite (4.5) as

fb ≡ g

(
T ′ − T

T ′

)
= z̈. (4.6)

Equations (4.5) and (4.6) are both forms of the the Archimedean principle, simply stating

that parcels of air that are warmer and less dense than their environment experience an

upwards buoyancy force. Performing a power series expansion of T and T ′ about the initial
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position z = 0, where T ′
0 = T0 gives:

T (z) = T0 +
dT

dz

∣∣∣∣
z=0

z + ... (4.7)

T ′(z) = T ′
0 +

dT ′

dz

∣∣∣∣
z=0

z + ..., (4.8)

if quadratic and higher order terms are neglected. Substituting (4.8) and (4.7) into (4.6),

we obtain

z̈ + N2z = 0, (4.9)

where

N2 =
g

T0

(
dT

dz
− dT ′

dz

)
, (4.10)

is the static stability parameter. The derivative terms dT
dz

and dT ′

dz
represent the vertical

rate of change of environmental temperature and parcel temperature, (referred to as the

environmental and parcel ‘lapse rates’), in the neighbourhood of the initial point. The

ordinary differential equation (4.9) is the equation of a simple harmonic oscillator and has

solutions of the form

z(t) = A exp(iNt) + B exp(−iNt),

where A and B ∈ C. The following behaviour can occur dependent upon the sign of N2:

N2 < 0 ⇒ Unstable atmosphere and unbounded solution

N2 = 0 ⇒ Neutral atmosphere

N2 > 0 ⇒ Stable atmosphere and oscillatory solution.

The physical interpretation is that when the environmental lapse rate is less than the parcel

lapse rate, a finite vertical displacement will leave a parcel warmer than its environment

and positively buoyant. The converse is true when the environmental lapse rate is greater

than the parcel lapse rate.
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4.1.4 Static energy and its relation to atmospheric lapse rates

The static energy s, the moist static energy h, and the saturation moist static energy h∗

of a parcel of air are defined as:

s = cpT + gz

h = cpT + gz + Lvq

h∗ = cpT + gz + Lvq
∗,

where cp is the specific heat capacity of air at constant pressure. These are fundamental

thermodynamic quantities: s represents the sum of internal and potential energy, h rep-

resents the sum of internal, potential and latent energy, and h∗ is the saturated analogue

of h. All three have dimensions of energy per unit mass. From the definitions above it

follows that s is conserved under hydrostatic, adiabatic, unsaturated displacements and

h∗ is conserved under hydrostatic, adiabatic, saturated displacements. Expressions for

the unsaturated-adiabatic and saturated-adiabatic lapses rates, ΓA and ΓSA can thus be

obtained by setting ds
dz

= 0 and dh∗

dz
= 0. This gives:

ΓA ≡ − dT

dz

∣∣∣∣
A

=
g

cp

(4.11)

ΓSA ≡ − dT

dz

∣∣∣∣
SA

=
g

cp

+
L

cp

dq∗

dz
. (4.12)

Due to latent heat release ΓSA < ΓA. Making the substitution of (4.11) and (4.12) for dT
dz

in (4.9) leads the following stability regimes:

− dT

dz
> ΓA ⇒ ‘Absolute instability’ (4.13)

ΓSA < −dT

dz
< ΓA ⇒ ‘Conditional instability’ (4.14)

−dT

dz
< ΓSA ⇒ ‘Absolute stability’. (4.15)

Absolute instability refers to an atmosphere that is unstable to moist-saturated and dry

parcel displacements. Conditional instability refers to an atmosphere that is unstable

to moist-saturated but stable to dry parcel displacements. Absolute stability refers to

an environment that is stable to both moist-saturated and dry displacements. A non-

saturated but moist parcel is equivalent to a dry parcel when assessing stability criteria
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4.1.5 Mean tropospheric profiles

An observational study was carried out by Yanai, Esbensen and Chu [30] that investigated

the mean tropospheric profiles for s, h and h∗ over the Pacific Ocean. The results are shown

in Figure 4.1. It was observed that s increases with height, whilst h and h∗ have a minimum

in the mid troposphere at p ≈ 65kPa and p ≈ 60kPa respectively. We can interpret this

in terms of the stability regimes (4.13)-(4.15). A dry parcel is stable throughout the

troposphere whilst a moist-saturated parcel is conditionaly unstable throughout the lower

and mid troposphere and conditionally stable in the mid troposphere. It is also noted that

h and h∗ are significantly greater than s in the lower troposphere due to the presence of

water vapour and relatively high temperature.

Figure 4.1: Mean tropical tropospheric profiles for s, h and h∗ [30]
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4.2 Threshold model

In 1968 Arakawa devised an idealised three-level atmospheric model in which he utilised

fundamental stability constraints to parameterise a cumulus cloud ensemble in a statisti-

cally steady state. The model has proved to be very successful and has been used as a

conceptual foundation for the cumulus parameterisation in many global circulation models

[31]. SOC systems require the evolution toward a threshold. This is not a feature of the

steady-state Arakawa model and it is the aim of this section to revise the Arakawa model

to include explicit time dependence and hence to show the corresponding time evolution

toward a threshold.

4.2.1 Stability properties of the three level model

The Arakawa model makes the assumption that the thermo-dynamical properties of all

clouds are alike and deals with ensemble averaged quantities. This reduces the problem

to the vertical dimension with the three levels corresponding to:

1. The atmospheric boundary layer : The well mixed sub-cloud, boundary layer at p ≈
95kPa.

2. The mid troposphere: The lower layer of shallow cumulus cloud at p ≈ 75kPa.

3. The upper troposphere: The upper layer of deep cumlulus cloud at p ≈ 35kPa.

The necessary conditions for deep and shallow convection are given as [31]:

h1 > (h∗2, h
∗
3) > h2 (4.16)

h1 > h∗2, (4.17)

respectively. We are primarily concerned with deep convection that extends from level 1

through to level 3. It follows from (4.16) that:

− T2 − T1

z2 − z1

>
g

cp

+
L

cp

q∗2 − q1

z2 − z1

(4.18)

−T3 − T1

z3 − z1

>
g

cp

+
L

cp

q∗3 − q1

z3 − z1

(4.19)

−T3 − T2

z3 − z2

<
g

cp

+
L

cp

q∗3 − q2

z3 − z2

(4.20)
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q∗2 > q2. (4.21)

The constraints (4.18),(4.19) and (4.20) can be interpreted as the atmosphere satisfying

an intermediate stability condition, ΓA/SA that lies in the interval ΓA > ΓA/SA > ΓSA. The

physical interpretation is that a parcel ascending from level 1 to levels 2 and 3 becomes

saturated at an intermediate point upon ascent. This analysis is in direct correspondence

with Emanuel’s interpretation of the conditions for instability: ‘The degree of instability is

approximately measured by the difference between the moist static energy of the sub-cloud

layer air and the saturation moist static energy of the air above’ [24]. For deep convection

to occur, level 1 is ‘ΓA/SA unstable’ with respect to levels 2 and 3, whilst level 2 is ‘ΓA/SA

stable’ with respect to level 3. The final constraint (4.21) signifies that the atmosphere is

unsaturated in the mid troposphere.

4.2.2 Forcing

It is a feature of SOC systems that they are gradually driven until reaching a dynamical

threshold point. We propose that in the TCS this could correspond to long-wave radia-

tive cooling and boundary layer forcing through surface fluxes. These are ubiquitous and

broadly homogenous forcing terms, and can be considered as leading order effects that are

essential to consider in our model. Advective moisture convergence is neglected as it is a

local effect, rather than representing a drive for the full TCS.

In the tropics, the longwave radiative cooling rate of the Earth’s atmosphere -Fr is of

order −2 × 10−2Js−1, which corresponds to roughly -2Kday−1. This extends throughout

the depth of the troposphere and varies dependent upon the emissivity properties of dif-

ferent atmospheric layers. Boundary layer forcing of s and q, Fs and Fq, is parameterised

by the bulk aerodynamic formulae:

Fs =
gρGCD|v|

∆pB

(sG − s1) (4.22)

Fq =
gρGCD|v|

∆pB

(q∗G − q1), (4.23)

where the subscript G refers to the ground level, CD is the dimensionless drag co-efficient,

∆pB = pG−p1 is the difference between the pressure at the ground and at level 1 (B notates

‘boundary’) and |v| is the wind speed. Expressions (4.22) and (4.23) assume mean values
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of the corresponfing variables and that turbulent fluxes are proportional to the vertical

gradient. Typical parameter values are CD ≈ 0.001 and |v| ≈ 5ms−1 when ∆pB ≈ 5kPa

[24]. The resultant effect of long-wave radiative cooling and boundary layer forcing is

that a build up of energy occurs in the atmospheric boundary layer. Once the instability

threshold is met, this can be redistributed by convective motion and latent heat release in

the rest of the troposphere.

4.2.3 Level budget equations and solutions

The Arakawa model is based around budget equations for s and q. The 3 levels are

coupled through the action of convection and a steady state solution is obtained that con-

siders forcing in equilibrium with convection. We will revise this by decoupling the layers,

thereby considering the build-up towards convection rather than the steady-state action

of the convection.

In the absence of advection and level coupling the budget equations for s and q are:

∂s1

∂t
= −Fr1 +

gρGCD|v|
∆pB

(sG − s1)

∂s2

∂t
= −Fr2

∂s3

∂t
= −Fr3,

(4.24)

∂q1

∂t
=

gρGCD|v|
∆pB

(q∗G − q1)

∂q2

∂t
= 0

∂q3

∂t
= 0,

(4.25)

which are a set of first order, evolutionary partial differential equations. Assuming con-

stant -Fr at each level, analytical solutions for levels 2 and 3 are trivial. In general, an

analytical solution of the level 1 equations does not exist. However for fixed sG and q∗G an

analytical solution can be obtained by using the integrating factor method. Physically this

approximation corresponds to the surface being held at a fixed temperature and pressure

(as the functional dependence is: sG(T ) and q∗G(T, p)). This is a good approximation to
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make over a tropical ocean where the water temperature remains approximately fixed over

the diurnal cycle and pressure fluctuations are small. The solutions for the equation sets

(4.24) and (4.25) are then:

s1 =

(
sG −

Fr1∆pB

gρGCD|v|

)
+

[
s1I −

(
sG −

Fr1∆pB

gρGCD|v|

)]
exp

[(
−gρGCD|v|

∆pB

)
t

]
s2 = −Fr2t + s2I

s3 = −Fr3t + s3I

(4.26)

q1 = q∗G + (q1I − q∗G) exp

[(
−gρGCD|v|

∆pB

)
t

]
q2 = q2I

q3 = q3I ,

(4.27)

where the subscript I notates the initial data. It is noted that these constants of inte-

gration have functional dependence upon a vertical coordinate (either p or z), which is

representative of our initial arbitrary choice of level heights. Using the level solutions for

s(t) and q(t), (4.26) and (4.27), it is straightforward to obtain the evolution of h(t). The

evolution of h∗(t) follows from (4.24) and (4.4).

4.2.4 Evolution toward a threshold

We are interested in estimating the time period, τC , that it takes for a ‘relaxed’ region

of the atmosphere to reach the deep convective instability threshold (4.16). Data from

an observational study by Betts [32] is used to prescribe initital conditions. The data

originates from a set of vertical sounding profiles of s and q taken in the aftermath of a

convective storm at 8◦N in the mid-Atlantic Ocean. The initial conditions are shown in

Table 4.1 . As radiative forcing data was unavailable from this study approximate values

for a tropical atmosphere from [30] were used for the final column.

Figure 4.2 shows the evolution of h and h∗ over 24 hours. We observe that h1 increases

due to the forcing terms Fs and Fq. All other terms decay in accordance with longwave

radiative cooling. Utilising the stability criteria, (4.16) and (4.17) we observe that h1 > h∗2

at t ≈ 6hrs and h1 > h∗3 at t ≈ 12.5hrs. The criteria h∗3 > h2 and q∗2 > q2 are met for

all times. This corresponds to a shallow convective event occuring at 6 hours and a deep
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convective event occuring at 12.5 hours. This is thought to represent a lower bound as

the shallow convection would alter the equation set, introducing a coupling between layers

1 and 2. Observations from [7] consolidate this view where typically, one major deep

convective event is observed in an 18 hour time period. We further discuss the implication

of this convective timescale, τC , in Section 4.4.

Quantity p z T s Lq h -Fr

Units kPa km K 105 Jkg−1 104Jkg−1 105 Jkg−1 10−2 Js−1

G 100 0 296 2.96 - - -
1 95 0.710 295 3.02 3.50 3.37 -2.4
2 75 2.550 285 3.10 2.20 3.31 -1.2
3 35 8.780 250 3.36 0.40 3.40 -1.8

Table 4.1: Initial conditions (adapted from diagrams in [32] and [30])

Figure 4.2: Evolution of h and h∗ over the interval t ∈ [0, 24hrs].
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(a) (b)

Figure 4.3: (a) Vertical profiles of h and h∗ at t = 0 and t = 16 hrs, (b) Evolution of H over the
interval t ∈ [0, 24hrs]

Figure 4.3(a) shows vertical profiles for h and h∗, based upon the threshold model. The

crossing of h1 and h∗3 by 16 hours indicates that the atmosphere is unstable to deep convec-

tion through (4.16). This enables us to think about the TCS in slightly different way than

the statistically steady state of the QE hypothesis. By comparing 4.3(a) with [30], various

convectively stable states can be considered as a fluctuation about a mean tropospheric

profile for h and h∗. A build up of moist static energy in the atmospheric boundary layer

until (4.16) and (4.17) are met is then followed by a convective event that ‘resets’ the

atmospheric variables. The presence of the convective threshold ensures that the TCS

resembles an equilibrium system.

Figure (4.3(b)) shows the evolution of H (defined in Section 4.1.2) over a 24 hour interval.

Level 1 becomes saturated at approximately the same time that the atmosphere becomes

unstable to deep convection. In reality, this is likely to occur at a later time due to the

moisture transport that is associated with shallow convection. We can therefore conclude

that the threshold model behaves sensibly with respect to saturation considerations.
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4.3 Relaxation and interaction mechanisms

Convective cells can be considered as the basic elements of a convective system. These

are used to represent the DOF in the cellular automation model that is formulated in

Chapter 5. Firstly, this section outlines the lifecycle of a convective cell and the associated

cold pool that develops. This is then used to explore what the relaxation and interaction

mechanisms in the cellular automation model could correspond to.

4.3.1 The life cycle of a convective cell and its relation to cold

pool formation

A schematic diagram of the physical process that are related to cold pool formation is

shown in Figure 4.4. This cold pool exists in the atomospheric boundary layer, perturbing

T1 and q1 in regions neighbouring a convection cell. We are interested in identifying how

these processes govern the h1 budget of the boundary layer, as this can be related to the

threshold model stability constraints. Three distinct stages of development are identified:

• A: Deep convection initiates and associated precipitation occurs. Subsequently

boundary layer air is cooled and moistened by the evaporation of precipitation.

• B: The evaporation of precipitation into sub-saturated air results in the formation

of negatively buoyant regions of air in the sub-cloud layer. A downdraft forms,

resulting in the introduction of cold, dry air into the lower boundary layer and the

advection of the initoal moist air towards the edges of the newly formed cold pool

(the ‘gust-front’). The net result is a positive perturbation to q1 at the edge of the

pool and a negative perturbation to q1 in the centre. The perturbation to T1 is

negative throughout the region, peaking in the centre.

• C: The convective cell dissipates and the temperature recovers in the central region.

A further negative perturbation to q1 occurs throughout the region due to dry air

being entrained from above into the boundary layer. The gust-front region mixes

with the cold pool, dissipating the positive perturbation to q1 at the boundary.
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Figure 4.4: Schematic diagram of cold pool development and the associated T1 and q1 perturba-
tions in the boundary layer [9]

The thermodynamical role of cold pools as an organisational mechanism for tropical con-

vection was investigated by Tompkins [9] using a high resolution cloud resolving model.

Leading order thermodynamic mechanisms were isolated by investigating simulations of an

idealised case with constant sea surface temperature and no wind shear. It was established

that the gust-front was responsible for triggering convection in neighbouring regions to the

original convective cell. The contrasts with previous theories where it was assumed that

dynamical mechanisms (such as wind shear), play a dominant role in the organisation of

tropical convection. We therefore aim to incorporate this leading order thermodynamic

interaction into our SOC model. (Note that the cold pool mechanism is considered a

‘thermodynamic interaction’ from an atmospheric physics perspective, but as a ‘dynamic

interaction’ from a complexity/SOC viewpoint).

4.3.2 Consequences of the cold pool for the model

The data given in [9] for T1 and q1 is assessed with respect to a mean background state.

It is argued in [9] that the moisture perturbation at the gust-front is the dominant mech-

anism for the onset of convection. It is hoped that by using the moisture perturbation

values given in [9], an approximate picture of the h1 budget can be obtained. This can

then be used to give a reasonable estimate of the effects of the cold pool on the potential

for convective initiation in the region surrounding the convection cell.
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Moisture perturbations from the mean state for the gust-front and pool centre are q′1gust =

0.25 gkg−1 and q′1centre = −1.30 gkg−1 respectively. This corresponds to h1 perturbations

of h′1gust = 625 Jkg−1 and h′1centre = −3250 Jkg−1. The overall picture is therefore a

major relaxation occurring at the convection site and a minor perturbation occurring in

a neighbouring region. An approximate comparison can be made to the initial conditions

used in the threshold model in Section 4.2.4. The ‘relaxation’ amount h′1centre is roughly

analogous to the difference in h1 between a relaxed and convectively unstable atmosphere

in the threshold model, and at −3250 Jkg−1 and −2700 Jkg−1 are in close agreement.

The value of h′1gust is approximately a quarter of the amount required to drive a relaxed

atmosphere to the threshold. It is this perturbation that can cause the onset of convection

in regions surrounding a convective cell.

The mean lifetime of the cold pool development process, was established to be 2.5 hours.

The gust-front moisture perturbation exists from approximately 30 minutes after the orig-

inal convective cell forms, and is located at the outer extremity of the cold pool which has

a mean radius of 8.6km. The majority of the relaxation at the point of convection occurs

during the initial 30 minutes, representing the lifecycle of the cloud itself. Due to the intri-

cacy of the cool-pool mechanism it is hard to describe by a single timescale as was possible

for convective instability. Nevertheless, in order to make comparisons and assess the time-

scale separation between convection and relaxation, the cold-pool ‘relaxation/interaction’

timescale τR is introduced where approximately τR ∈ [30mins, 2.5hrs].

4.4 Summary and development of model physics

4.4.1 Dynamical features of the TCS

This chapter has demonstrated that the convective system has many of the features that

are considered as necessary for SOC to occur. The challenge is now to integrate these

ideas into a consistent and simple framework from which a cellular automation algorithm

can be developed. To further clarify the dynamical features that we have isolated as begin

relevant to SOC, a comparison with the granular and seismic systems is made in Table

4.2.
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System Granular pile Seismic Convective
Degrees of freedom Granular column Spring-block Convection cell
Energy storage Gravitational poten-

tial energy
Tension Boundary layer moist

static energy
Threshold Slope angle Friction Deep convective in-

stability constraint
Release of energy Avalanche Earthquake Convective event
Interaction mecha-
nism

Transfer of grains Momentum transfer
between spring-
blocks

Cold pool gust-front
perturbation

Table 4.2: A comparison between the dynamical features of the granular, seismic and convective
systems

4.4.2 Time-scales in the TCS

In Section 4.2.4 the threshold model estimated τC to be in the interval τC ∈ [12.5hrs, 18hrs]

An approximate check of this can be made by comparing with observational data. Figure

4.5 is an image showing the global annual mean deep convective cloud cover percentage

[33]. Tropical ocean regions typicaly have 4-9% of deep convective cloud cover. By a

simple scaling arguement and assuming a convective cloud life span of an hour, this would

correspond to approximately τC ∈ [11hrs, 25hrs], in general agreement with the findings

of Section 4.2.4. τC arose from considering radiative and boundary layer forcing alone -

it is representative of the time period that it takes convection to occur in absence of any

interaction mechanism. As much of this deep convective cloud is likely to have arise from

a mechanism other than a threshold being reached in isolation, (such as the cold pool

mechanism), it is thought reasonable to extend the upper bound on τC to 48 hours.

Section 4.3.2 estimated the relaxation/interaction timescale τR to be in the approximate

interval τR ∈ [30mins, 2.5hrs]. From τC and τR we can estimate the degree of time-scale

separation between the drive/energy storage phase and the sudden burst/release of energy

in the TCS. This time-scale separation corresponds to the ratio τR/τC , which from the

bounds upon τC and τR can be estimated as being in the interval τR/τC ∈ [ 1
96

, 1
5
]. The

analogous time-scale separation in the granular and seismic systems is more pronounced,

with the time period of the ‘relaxation’ of avalanches and earthquakes being incrementally

small compared with the time period associated with adding grains and driving plates.

Relaxation and interaction are subsequently implemented as being instantaneous effects
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in the granular and seismic cellular automation models. This would be non-physical for

the TCS, and our model will endeavour to take this into account.

Figure 4.5: Image of mean annual deep convective cloud cover percentage [33]

4.4.3 Steps toward a cellular automation model of the TCS

In the OFC eathquake model (outlined in Section 2.3), the cellular automation algorithm

follows directly from equations of motion for the spring-blocks and is defined in terms of

a single dynamic variable for each lattice point, Fij. There is no simple analogue of this

process for the TCS and choosing the dynamic variable for the cellular automation is an

open question. Here, we outline how a cellular automation algorithm for the TCS can be

formulated in terms of a local time variable for each DOF:

• As a simplification, it is assumed that (in absence of cold pool interaction) each DOF

follows the same temporal evolution during the driving stage as the threshold model.

• In general, each DOF is at a different stage of temporal evolution and a local variable

the ‘age of site’, Aij is subscribed to each point. As T , q and h are functions of t in

the threshold model level equations, they can now be viewed as functions of Aij.



CHAPTER 4. MODEL PHYSICS 41

• A convective event occurs at a point when the condition for deep penetrating con-

vection is met at a point. (Shallow convection is neglected). Once convection occurs

a perturbation to h1 is applied to neighbouring convection points. Equivalently this

can be viewed as enabling neighbouring sites that have reached a sufficiently large

age to convect. Interaction between DOF therefore also be formulated in terms of

Aij.

The model physics that we have explored has not explicitly considered how to formulate the

intensity of an event (and the subsequent relaxation), that occurs at a site. Nevertheless,

we have argued that the threshold model and cold pool data have relaxation values that

are consistent. We therefore hope to explore a set of possible relaxation mechanisms, that

are approximate parameterisations rather than physically direct representations.



Chapter 5

A cellular automation model of the

tropical convective system

In this chapter we develop a cellular automation model of the TCS. This is based upon

an existing model algorithm developed by Sinha-Ray and Jensen [34]. We use the model

physics discussed in Chapter 4 to adapt, extend and re-interpret this model in terms of

the physics of convection. Specifically, our contribution is to:

• Investigate the region of parameter space, not previously explored, that is relevant

to the TCS.

• In this region, obtain diagnostics that indicate if the system is behaving as critical.

• Conduct an investigation that explores various paramaterisations of convective re-

laxation that have significance for the TCS.

• Investigate how the size of the lattice influences the simulation results.

5.1 The development of the model

This section proceeds through outlining the model terminology, followed by the cellular

automation algorithm and then finally discussing the relevance of the algorithm to the

model physics.

42
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5.1.1 Model overview and terminology

The model is defined by 2-dimensional cellular automation process on an L × L lattice

indexed by (i,j ). A dynamic variable, the age Aij is assigned to each site and is stored

in a matrix A. Sites are classified into three types: suppressed, quiescent and active. A

second matrix, B is used to record the status of a site. Quiescent sites can become active

through two mechanisms:

• Inter-convection: Through a nearest neighbour being active.

• Auto-convection: Through the site crossing a threshold age AC independent of near-

est neighbour interactions.

Suppressed sites correspond to Aij < AP where AP is the lower-bound for inter-convection

to occur and quiescent sites correspond to AP ≤ Aij < AC . Equivalently, (in terms of

status); Bij ≡ suppressed and Bij ≡ quiescent. Active sites are defined by Bij ≡ active

alone. The reason for this is because active sites are reset instantaneously in the cellular

automation algorithm and have a non-unique age range. The reset parameter is given by

AR.

5.1.2 The cellular automation algorithm

The steps of the cellular automation process are as follows:

0. Initialisation: Random, uniformly distributed initial ages Aij ∈ [(AP − AR), AC) are

assigned to each site.

1. Auto-convection: Sites are tested for auto-convection threshold. If this is met, sites are

relaxed and classified as being active.

If Aij > AC ⇒ Aij −→ Aij − AR

⇒ Bij ≡ active
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2. Drive: All sites are incremented by an age interval δA.

Aij −→ Aij + δA, ∀ij

3. Inter-convection: Nearest neighbours are tested for inter-convection threshold. If this is

met, nearest neighbours are relaxed and classified as being active. Previously active sites

are suppressed.

If Bij ≡ active and Ai±1j > AP , ⇒ Ai±1j −→ Ai±1j − AR

⇒ Bij ≡ suppressed

⇒ Bi±1j ≡ active

If Bij ≡ active and Aij±1 > AP , ⇒ Aij±1 −→ Aij±1 − AR

⇒ Bij ≡ suppressed

⇒ Bij±1 ≡ active

The re-assigmnent of Bij, Bi±1j Bij±1 comes after all sites have been tested for the inter-

convection condition and reset. This ensures that ‘double-counting’ does not occur.

4. Return to step 1

Periodic boundary conditions are assumed: Ai1 = AiL ∀i and A1j = ALj ∀j. The model is

deterministic except for the initialisation of random ages. An overview of the simulation

code is given in Appendix A.1.

The cellular automation algorithm over 9 iteration steps is shown in Figure 5.1. This is

at an arbitrary stage of evolution, rather beginning with the initial conditions. Opposite

domain boundaries are duplicates in accordance with the periodic boundary conditions.

An initial distribution of suppressed (dark blue), quiescent (dark red) and active (light

green) sites is shown in the first slide. Activity spreads through inter-convection between

neighbouring quiescent sites. An active site becomes a suppressed site in the next iteration

step. The fifth slide shows a quiescent site becoming active through auto-convection.

In turn, this triggers a separate sequence of inter-convection. The eight slide shows a

suppressed site becoming quiescent.
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Figure 5.1: The tropical convection cellular automation iteration process with periodic boundary
conditions over 9 iteration steps

5.1.3 Relation to model physics

AC represents the time interval that that it takes a site to reach the threshold age in the

absence of nearest neighbour interaction, and is normalised to 1. Sites can have an age in

the interval Aij ∈ [(AP−AR), AC). This lower bound arises through considering relaxation

at a site with the smallest age that can inter-convect.

The drive increment of the model δA separates the auto-convection and inter-convection

steps. δA can therefore be viewed as representing the time interval between a convective

event and the moisture perturbation arising at a neighbouring point and has a similarity

to τR. AP is related to the strength of the moisture perturbation, with greater values

of AP corresponding to a smaller moisture perturbation being applied at a neighbouring

region. The time-scale ratio τR/τC approximately corresponds to δA/AC . This is not a

direct relationship as it depends upon the choice of AR, and the fact that auto-convecting

and inter-convecting cells are reset to different ages. Time-scale separation occurs for

δA/AC << 1, corresponding to τR/τC << 1.
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Relaxation at a site occurs instantaneously in the model. Although not physically correct,

this is justifiable, as in the cold-pool development process the relaxation in a convecting

location is almost complete before a moisture perturbation is established at a neighbouring

region. This consolidates the view that τR is best representative of the interaction time-

scale, rather than relaxation at a site. The initial relaxation mechanism; Aij −→ Aij−AR,

means that auto-convecting sites are reset to a greater age than inter-convecting sites. This

parameterisation can be viewed as the ‘convective reset value being highly sensitive to the

conditions at initiation’, rather than anything directly physical. Other relaxation mecha-

nisms will be considered in Section 5.4.

The periodic boundary conditions correspond to a homogenous, infinite domain. Every

lattice point is considered equal. In reality tropical convection is primarily confined over

tropical oceans. Physical boundaries exist over continents and toward higher latitudes.

Nevertheless as we are concerned with isolating a spatial regime where SOC dynamics

may be present, periodic boundary conditions are as physically justifiable as any other

simple choice. The distance between lattice points is representative of the mean cold pool

radius, established to be 8.6 km in Section 4.4.2.

5.2 Model testing

5.2.1 Relationship to the forest-fire models

In this section we compare our simulation results to the work of Sinha-Ray and Jensen

[34] and Drossel and Schwabel [35]. This is done: to check that the model code has been

implemented correctly; to explore the model diagnostics of scale-invariant phenomena;

and to make an attempt at defining what the critical state of the model refers to. The

original form of the model is referred to as the ‘Deterministic Forest Fire model’, (from

herein the DFF model) [34]. In the DFF model ‘fire sites’ are active sites, ‘tree sites’ are

quiescent sites and ‘empty sites’ are suppressed sites. Trees ignite through either a nearest

neighbour being on fire, or by reaching a threshold age. This is directly analogous to inter-

convection and auto-convection. The ordering of the DFF algorithm is not made explicit

and therefore may be different from our implementation. For clarity we will continue to

discuss the models in terms of the convection model terminology presented in Section 5.1.1.
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The DFF model was originally proposed as a bridge between deterministic SOC mod-

els such as the OFC earthquake model outlined in Chapter 2, and the original ‘Stochastic

Forest Fire model’ (from herein the SFF model) [35] - there was no direct physical appli-

cation in mind. A mean-field theory exists for the SFF, and gives the necessary conditions

for the model to evolve toward a critical state [36]. Because the DFF model yields similar

results to the SFF model it was suggested that the mean-field theory developed for the

SFF model could potentially have significance for the DFF model [34]. We will investigate

this idea further in Section 5.2.2

5.2.2 Is the model critical?

In the SFF model the deterministic site evolution through intervals of δA, is replaced by

two ‘stochastic evolution mechanisms’:

• a: The probability that a quiescent site becomes active through auto-convection.

• b: The probability that a suppressed site becomes quiescent.

Each quiescent site is tested for becoming active and each suppressed site is tested for

becoming quiescent with each iteration step. Inter-convection is defined the same way as

before, with activity able to progress between connected quiescent sites [35].

The mean-field theory is defined in the continuum limit of the discrete iteration pro-

cess and makes the further approximation that inter-convection occurs through only one

nearest neighbour at a time [36]. The system is found to be critical in the double limit:

b −→ 0 (5.1)

a/b −→ 0. (5.2)

A direct relationship between the DFF model and the parameters a and b does not ex-

ist. This means that questions arise such as the necessary relationship between AC , AP ,

AR and δA for the model to be critical, and the number of iterations that are required

for the model to approach a critical state. We propose that a working definition of the

critical limit for the DFF model, can be obtained by numerically evaluating (5.1) and (5.2).
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Figures 5.2(a) and 5.2(b) show the evolution of a/b from two sets of parameter values

that are similar to those used by [34], (with the exception of a smaller lattice size in-

dex of L = 50). The different colours correspond to different sets of initial conditions.

It clear is that, independent of initial conditions, both parameter sets evolve toward an

approximately steady value of a/b. These correspond to a/b ≈ 0.08 for δA/AC = 10−3

and a/b ≈ 7× 10−3 for δA/AC = 10−4. This is what is anticipated by the mean-field the-

ory: the evolution toward a steady state for a and b in accordance with (5.1) and (5.2) [36].

The evolution of b was also investigated. It was established to follow a similar evolu-

tion to a/b, with b ≈ 10−3 and b ≈ 10−4 for δA/AC = 10−3 and δA/AC = 10−4 at the

steady state respectively. Graphical output is similar in form to Figure 5.2. It is, perhaps,

surprising how quickly the steady state is reached for a/b and b; in approximately AC/δA

iterations. Future simulations will take this into account before outputting data. It is

hoped that b and a/b will serve as a working indicator of a critical steady state in other

simulations.

(a) (b)

Figure 5.2: Evolution of a/b for: AC = 1.0, AR = 1.0, AP = 0.0: (a) δA = 10−3, (b) δA = 10−4
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5.2.3 Scale-invariant diagnostics

To be considered as self-organised critical, a model must produce evidence of spatial and

temporal power laws. The SFF and DFF models propose that the power spectra of the

time series of the number of quiescent sites on the lattice nQ(t), can be used as a temporal

power-law diagnostic. This is obtained by taking the Fourier transform, (2.3), of nQ, thus

obtaining the power spectrum SQ. The probability of a cluster of quiescent sites PQ being

of size rQ is proposed as a diagnostic of a spatial fractal. Scaling regimes where SQ ∝ f−α
Q

and PQ ∝ r−β
Q will therefore correspond to power-law relationships.

There is a clear meteorological interpretation for rQ. This is because upon one site becom-

ing active all connected quiescent sites are part of the same sequence of inter-convection.

They can therefore be considered as part of the same ‘storm’, and the relationship be-

tween rQ and PQ can be viewed as being related to convective event size distributions. It

is anticipated that this diagnostic will become less useful when two originally unconnected

clusters of quiescent sites become connected. This is more apparent for larger values of

δA/AC , and arises due to the finite nature of τR.

There is no such obvious meteorological interpretation for the relationship between fQ

and SQ. However, it does provide a good indication of the behaviour of relative distribu-

tion of sites on the lattice.

5.2.4 Comparison between simulation results

A grid size of L = 50 corresponding to 2500 sites, and a parameter set similar to that used

by Sinha-Ray and Jensen [34] is for comparison purposes. The graphical output format

corresponds to:

• (a) Timeseries of nQ (for the steady state)

• (b) Double logarthimic plot of SQ against fQ

• (c) Double logarthimic plot of PQ against rQ

• (d) Example of lattice structure,

and will be used throughout this chapter. Data sampling methods are outlined in more

detail in Appendix A.2. The structure plots are for an arbitrary iteration step and show
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the distribution of suppressed, quiescent and active sites. They are included to provide a

qualitative insight toward the organisational structures that arise.

The results are shown in Figure 5.3. A power-law relationship is observed between SQ

and fQ with exponent α ≈ 2.4 over approximately two orders of magnitude. This is in

agreement with the result of Sinha-ray and Jensen [34], shown in Figure 5.4(a). This

does not correspond to 1/f behaviour, and is closer to a correlated Brownian signal as is

suggested by the time-series for nQ. A power-law relationship is also observed between PQ

and rQ with exponent β ≈ 1.9, again over approximately 2.5-3 orders of magnitude. This

is again in close agreement with the result of Sinha-ray and Jensen [34] shown in Figure

5.4(b). We can therefore conclude that our model and sampling methods are implemented

correctly.

(a) (b)

(c) (d)

Figure 5.3: Results for ‘critical regime’: δA = 10−4, AC = 1.0, AR = 1.0, AP = 0: a/b ≈ 0.08,
b ≈ 10−4

The simulation is numerically close to the critical limits (5.1) and (5.2), with a/b ≈ 0.08

and b ≈ 10−4. The structure plot corresponds to a period of non-activity. Clusters of qui-

escent site are evident across a range of sizes. The solid lines in Figures 5.3(a) and 5.3(c),

are not fitted to the data, but rather show how the exponents are estimated. There are,
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in general (see Section 2.1.1 and [10]), many issues when fitting power-law data. However,

as our investigation is intended as an exploratory study, estimates of the exponents are

sufficient to use.

(a) (b)

Figure 5.4: (a) log(SQ) against log(fQ), (b) log(PQ) against log(rQ) [34]

5.3 Simulation results in a meteorological region of

parameter space

In this section we explore the cellular automation model in a region of parameter space

that is thought to correspond to the physical region of the TCS discussed in Chapter 4.

We relate to the model physics through the time scale separation δA/AC and the relative

values of AP , AR and AC . Figure 5.5 is thought to represent a parameter set that is

closest to the physical constraints and has model time-scale ratio δA/A = 1
32

. This could,

(for example), approximately correspond to τR ≈ 45min and τC ≈ 20hrs. The choice of

AP = 0.5, means that sites with Aij ∈ (0.5, 1) can inter-convect. This corresponds to a

moisture perturbation in a neighbouring site, triggering the top third of sites that have

evolved in accordance with the threshold model.

The power-law relationship that was observed between SQ and fQ in Figure 5.3 is no

longer evident. A strong peak in the power spectrum is present at log(fQ) ≈ −1.5. This
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arises due to the oscillatory component in the time signal of nQ. The power-law relation-

ship between PQ and rQ still weakly exists, with exponent β ≈ 2.0; but is now only over

one order of magnitude. The values of a/b and b are not as close to the critical limits as

in Figure 5.3 at a/b ≈ 0.1 and b ≈ 0.03 respectively.

(a) (b)

(c) (d)

Figure 5.5: Results for typical meteorological parameter set: δA = 1
32 , AC = 1.0, AR = 1.0,

AP = 0.5: a/b ≈ 0.1, b ≈ 0.03

Figure 5.6 is thought to represent the lower bound of δA/A that can be justified from

the physical constraints. The results correspond to a regime of behaviour between the

parameter sets used in Figures 5.3 and 5.5. A power-law relationship is observed between

SQ and fQ, with a similar exponent to Figure 5.3 of α ≈ 2.7. However, it is less well

defined and only over a regime of 1-1.5 orders of magnitude.

An oscillatory peak in the spectrum is again present as in Figure 5.5 when log(fQ) ≈ −2.

Since log( 1
32

) = −1.51 and log( 1
96

) = −1.98, it is thought that the oscillatory compo-

nents can be directly related by AC/δA ≈ fosc where fosc is a harmonic driving frequency.

fosc is physically representative of the auto-convection time-scale, (in absence of inter-
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convection). The power-law relationship between PQ and rQ exists over an intermediate

magnitude range, with exponent β ≈ 2.0. The values of a/b and b are intermediate between

Figure 5.3 and Figure 5.5.

(a) (b)

(c) (d)

Figure 5.6: Results for lower bound upon time-scale separation: δA = 1
96 , AC = 1.0, AR = 1.0,

AP = 0.5: a/b ≈ 0.1, b ≈ 0.01

5.4 Relaxation parameterisations

This section investigates different relaxation parameterisations for the model. Relaxations

to a fixed value, stochastic value and hybridisations with the original parameterisation are

investigated. The cases studied are:

• Aij → κ where κ is a consant.

• Aij → c1κ + c2(Aij − AR) where c1, c2 > 0 and c1 + c2 = 1.

• Aij → X where X ∈ [−1/2, 0] is a stochastic variable.

• Aij → c3X + c4(Aij − AR) where c3, c4 > 0 and c3 + c4 = 1.



CHAPTER 5. A CELLULAR AUTOMATION MODEL OF THE TCS 54

5.4.1 Relaxation to fixed value and hybrid

Output for relaxing to a fixed value; Aij → κ, where κ = −1
4

is shown in Figure 5.7. The

lattice is observed to synchronise. No inter-convection occurs and all sites auto-convect at

the same time. The time-series nQ is correspondingly a periodic step function, alternating

between 0 and 2500 sites on the lattice being quiescent.

The hybrid relaxation; Aij → c3κ + c4(Aij − AR) where c1 = c2 = 1
2
, κ = −1

4
is also

observed to synchronise, having an output identical to Figure 5.7. This result indicates

that a transition between the behaviour for the relaxation to a fixed value and the original

parameteristaion must exist for c1 ∈ (0, 0.5) and c2 ∈ (0.5, 1).

(a) (b)

Figure 5.7: Results for relaxation to a fixed value: δA = 1
96 , AC = 1.0, AR = 1.0, AC = 0.5

5.4.2 Relaxation to a stochastic value and hybrid

Figure 5.8 shows the result for the stochastic relaxation mechanism; Aij → X. The results

are broadly similar to Figure 5.5 with similar values for α and β, where power-laws can

be argued to exist, (values given in Table 5.1, Section 5.6). It is however suggested in

Figure 5.8 that the relationship between Pq and rQ is possibly not best described by a

power-law. The power spectrum and quiescent cluster size plots are both smoother for

the stochastic value relaxation than for the original mechanism. The harmonic peak in

the power spectrum is wider in the stochastic value relaxation, as would be expected by

introducing a random effect.
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(a) (b)

(c) (d)

Figure 5.8: Results for relaxation to stochastic value: δA = 1
96 , AC = 1.0, AR = 1.0, AP = 0.5:

a/b ≈ 0.08, b ≈ 0.01
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(a) (b)

(c) (d)

Figure 5.9: Results for relaxation to stochastic-hybrid value: δA = 1
96 , AC = 1.0, AR = 1.0,

AP = 0.5: a/b ≈ 0.07, b ≈ 0.01

Figure 5.9 shows the result for the hybrid stochastic relaxation mechanism; Aij →
c3X + c4(Aij − AR), for c3 = c4 = 1

2
. It is observed that the power spectrum and cluster

size plots are of intermediate character between Figure 5.5 and Figure 5.8, in agreement

with what we would expect.

5.5 System size investigation

Using the stochastic-hybrid relaxation mechanism, the effect of increasing the system size

upon the scale-invariant diagnostics is investigated. Figure 5.10 shows the relationship

between log(rQ) and log(PQ) for lattice sizes of L = 250, L = 50 and L = 10. The

power-law regime is observed to be approximately the same over all system sizes, with a

robust exponent of β ≈ 1.8. It was also observed that the power-spectrum relationship;

SQ ∝ f−α
Q , does not change with system size.
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Figure 5.10: System size plots for log(rQ) against log(PQ): L = 250, L = 50, L = 10

It is interesting that the extent of the power-law regime does not differ greatly between

system sizes, being approximately 1.5 orders of magnitude in each case. This suggests that

a natural power-law regime for cluster-size appears to exist for the model parameter set

that is independent of system size. In turn, this suggests that the results we have obtained

for L = 50 are likely to be representative of simulations on greater size lattices. The larger

system L = 250 does, however, support larger clusters - it is just that the regime where

larger clusters exist does not follow a power-law relationship.

5.6 Summary of results

Primarily, this chapter has investigated the application of the DFF model to the TCS. This

was done by identifying the parameters of the DFF model with the dynamical features

of the TCS and then using parameter values which could be linked to the model physics

outlined in Chapter 4. A feature of our investigation, was to adapt the original model

to explore larger values of δA/AC and AP . A range of relaxation parameterisations were

then investigated. A summary of the model simulations in this chapter is given in Table

5.1. The exponents α and β correspond to estimates.

It was established that the typical meteorological parameter values (Figure 5.5) did not

produce strongly distinct power law relationships in comparison to what is deemed the
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critical limit of the system (Figure 5.3). The meteorological parameters with the greatest

degree of time-scale separation that can be justified for the TCS (Figure 5.6), show promise

of power-law relationships, albeit over a limited regime of about 1.5 orders of magnitude.

It is therefore thought that the slower the ‘drive’ of the system, (i.e. how close δA/AC is

to 0), the more distinct and large the regimes of power-law relationships will be.

Fig. δA AC AP Relaxation α β a/b b Scaling regime
5.3 10−4 1.0 0.0 AR = 1.0 2.4 1.9 0.007 10−4 2.5-3 MR for SQ ∝ f−α

Q ,

PQ ∝ r−β
Q

5.5 1
32

1.0 0.5 AR = 1.0 - 2.0 0.08 0.03 1MR for PQ ∝ r−β
Q (in-

distinct)
5.6 1

96
1.0 0.5 AR = 1.0 2.7 2.0 0.1 0.01 1.5 MR for SQ ∝ f−α

Q

5.7 1
96

1.0 0.5 κ - - - - None (synchronised)

5.8 1
96

1.0 0.5 X 2.4 1.7 0.08 0.01 1.5 MR reg. for SQ ∝
f−α

Q

5.9 1
96

1.0 0.5 AR = 1.0, X 2.6 1.8 0.07 0.01 1.5 MR for SQ ∝ f−α
Q ,

PQ ∝ r−β
Q

Table 5.1: Summary of simulation results from cellular automation model of TCS, (MR corre-
sponds to ‘Magnitude Regime’ of power-law relationship)

The apparent robustness of the exponents α and β between the original relaxation, the

stochastic relaxation and the stochastic-hybrid relaxation is encouraging. It provides scope

for variations in the relaxation parameterisation that do not alter the scale-invariant di-

agnostic relationships to a large degree. The hybrid stochastic relaxation is thought to be

the best physical representation of convective relaxation. This is because the reset value

contains both an element of sensitivity to the state upon convection, and a stochastic

element. The stochastic element can be viewed as representing physical processes that are

not included in the simple cellular automation model, which are crucial if the model is to

have any relevance to physical reality.

The numerical simulations carried out in this chapter have significance beyond the ap-

plication of the DFF to the TCS. Notably, the numerical evaluation of the mean-field

critical limits in Section 5.2.2 suggests that the parameters used by Sinha-Ray and Jensen
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are numerically close to what would be expected for the system to be critical. This con-

solidates their conclusions which were based upon a comparison to the results of the SFF

model.

The investigation of the relaxation mechanism to a fixed value is also thought to have

wider consequences for the field of SOC. This mechanism is similar to in the OFC earth-

quake model (Section 2.3), with; Aij −→ κ and Fij −→ 0 respectively. As stated in

Section 2.3.3, the OFC model is observed to synchronise when periodic (rather than open)

boundary conditions are introduced. Synchronisation was also observed for relaxation to

fixed value in our model simulations of the TCS (Figure 5.7). It is therefore thought

that the combination of periodic boundary conditions and a relaxation to a fixed value

could potentially be a sufficient condition for a cellular automation algorithm to achieve

synchronisation.



Chapter 6

Summary, future work and

conclusions

6.1 Summary and discussion

This study has been concerned with answering the question: ‘Does SOC occur in the

TCS?’. Chapters 3, 4 and 5 can be viewed as breaking this central question into 3 sub-

questions:

• Chapter 3: Is there sufficient empirical evidence to link SOC to the TCS?

• Chapter 4: Can the necessary self-organised critical dynamical features of the TCS

be identified?

• Chapter 5: Can the TCS be represented as a phenomenological cellular automation

model?

We now summarise to what extent these questions have been answered.

Is there sufficient empirical evidence to link SOC to the TCS?

Chapter 3 gave an overview of how the empirical evidence for SOC in the TCS has de-

veloped over the past 10-15 years. We suggested that this could be viewed as showing

a progression from: observing general scale-free behaviour in the atmosphere, to observ-

ing 1/f behaviour in variables linked to convective events; to directly identifying tropical

60
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rainfall data with predictions from the theory of critical phenomena. It was argued that

the direct identification with the theoretical predictions of critical phenomena makes the

strongest case for SOC in the TCS, potentially providing stronger empirical evidence than

what is available for the seismic system.

Can the necessary self-organised critical dynamical features of the

TCS be identified?

The dynamical features of the TCS suspected of being responsible SOC were made explicit

by comparing them to features of the granular and seismic system. It was suggested that

a convective cell corresponds to a DOF, the condition for deep convective instability is

a threshold and that a build up of boundary layer moist static energy represents energy

storage. The cold pool development process was highlighted as a way of representing both

the relaxation at a site of convection and the interaction (through the gust-front region)

between DOF.

The threshold model, (although neglecting many physical features), is thought to be a

solid representation of the forcing and energy storage phase of the TCS. It allows for a

precise quantification of what the threshold in the TCS corresponds to and the estimation

of a forcing/driving convective time-scale.

The cold pool exists over a finite time period. The separation in timescale between drive

and relaxation/interaction for TCS is subsequently less pronounced than the granular and

seismic systems. Moreover, unlike the granular and seismic systems, the relaxation of a

DOF and the interaction between DOF can occur at different times when viewed as part

of the cold pool development process. It is therefore thought that the cold pool relax-

ation/interaction is the weakest part of the model physics proposed to be self-organised

critical. It is expected that future models may try to isolate other mechanisms when

considering the organisation of the system.
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Can the TCS be represented as a phenomenological cellular au-

tomation model?

The cellular automation model of the TCS developed in Chapter 5 was based upon an

adaptation and an extension of an existing model - the DFF. As such, the model was not

designed with clear meteorological diagnostics in mind. We suggested that the relation-

ship between quiescent site cluster size and probability, could have a significance for the

relationship between size and probability of convective storms.

A strength of our adaptation of the DFF model was that we were able to propose links

between some of the model parameters and the suspected self-organised critical dynamical

features outlined in Chapter 4. This included the degree of time-scale separation between

the driving stage and the interaction stage and the strength of the cold pool perturbation.

It was established that what is deemed the critical limit of the DFF model, lies away

from the region of parameter space that is associated with the TCS. However, smaller

power-law regimes for both temporal and spatial diagnostics do exist for what is thought

to be around the lower bound upon convective time-scale separation. These regimes are

typically 1.5 orders of magnitude. It was found that introducing a stochastic element to

the model did not appear to alter the power-law regimes that are observed. This is highly

encouraging as many physical processes of the TCS are missing from the DFF model, and

the stochastic element is partially representative of this.

6.2 Future work

As it stands, the cellular automation model developed for the TCS does not directly ex-

plain any of the empirical evidence outlined in chapter 3. It is expected that for this to

be fully realised, a cellular automation model must be devised with specific meteorological

diagnostics in mind. Given the limited number of cellular automation algorithms that

have so far been shown to descibe SOC this is likely to be a difficult task.

We propose that, using the threshold model, a tentative link can be made to the boundary

layer time-series and power spectra of convective variables produced by Yano et. al [7],

(Section 3.2.2, Figures 3.3(a) and 3.3(b)). This is done to show how meteorological diag-
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nostics of SOC might be obtained in the future. Aij at a fixed lattice point is outputted

throughout the simulation and substited for the time variable t, in the threshold model

level 1 equations (4.26) and (4.27). As Aij is in the interval Aij ∈ [−0.5, 1), it is scaled

to correspond to time in the interval t ∈ [0, τC) hours, where τC = 12.5hrs, in accordance

with the original value obtained in the threshold model. From this, an approximate ‘time

series’ of boundary layer variables can be generated. This is shown for q1 in 6.1(a) using

the stochastic hybrid relaxation mechanism. δA/A = 1
32

is chosen, and given the choice

τC corresponds to τR ≈ 30mins. A power spectrum for q1, Sq1 can subsequently be deter-

mined using the same method as in Chapter 5.

The time-series of q1 indicates that approximately 1-2 convective events occur in a 24

hour period. This consolidates our interpretation of the cellular automation model pa-

rameters in terms of τC and τR. The power spectrum is very noisy, although there are

hints that a power-law relationship, with an approximate exponent α ≈ 1.7 exits over 2

orders of magnitude. This is slightly outside the range for q1 given in [7], which corre-

sponded to; α ∈ [0.8, 1.4].

It is believed that this is not the best diagnostic of a self-organised critical system as

it is a property of a DOF, rather than the system as a whole. Nevertheless, it is still a

useful result as it can potentially provide a way of thinking about the data in [7], which

has no good previous explanation. It is envisaged that future work upon models of the

TCS as self-organised critical system should aim to produce power-law relationships that

are emergent properties of the system.

6.3 Conclusions

We conclude that the empirical evidence for elements of SOC in the TCS is very strong. It

is thus thought that the emphasis should be placed upon developing a phenomenological

model of the TCS that is able to anticipate the scale-free behaviour that arises in the

system.

We believe that the main unresolved issues in the model physics that we have explored

relate to; the finite time-scale separation between the driving and the relaxation stages of
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(a) (b)

Figure 6.1: Results for q1: δA = 1
32 , AC = 1.0, AR = 1.0, AP = 0.5: (a) Simulation time-series

for q1, (b) log(Sq1) against log(fq1
)

the dynamics of the TCS; and the nature of the interaction mechanism between DOF. The

cold-pool development process is central to both these issues, and we expect that future

work that is done upon the subject will focus upon a re-formulation of this, or explore

other possible interaction mechanisms. Despite these issues, we believe that we have been

largely successful in our identification of the dynamical features of the TCS with what is

expected of a self-organised critical system.

The cellular automation model that was developed is thought to be an encouraging at-

tempt at modelling the TCS as a self-organised critical system. For the first time, scale-free

behaviour has been linked to a phenomenological model of the dynamics of the system. We

have also shown that, through the relaxation parameterisation investigation, our model

is robust to simple modifications. This has important consequences for its application

to physical reality. The study is however, unable to directly reproduce the details of the

empirical evidence for SOC in the TCS. We conclude that for this to be fully realised, a

model must be devised with specific meteorological diagnoistics in mind.



Appendix A

Model Simulation

A.1 Overview

The cellular automation model is constructed using the C++ programming language.

Matlab is used for graphical output and post-processing. The age and status matrices, A

and B correspond to 2 dimensional arrays of size (L+2)× (L+2). The periodic boundary

conditions are implemented by copying the first interior rows and columns to each corre-

sponding opposite lattice boundary after each iteration. This defines neighbouring points

correctly and consistently. The central L× L region therefore corresponds to the ‘active’

region of the automation algorithm. The program code follows the algorithm outlined in

Section 5.1.2. The inbuilt pseudo-random number generator srand is used to generate the

initial conditions and stochastic reset relaxation mechanism.

A.2 Data sampling

Before sampling data, the simulation is iterated for 10(AC/δA) iterations. This number

ensures that the critical state, (if it exists), is likely to have been obtained, (see section

5.2.2). A total sampling interval of 107 iterations is used for each data set. This is chosen

to ensure that plot (c) has enough data. The data for plots (a), (b) and (d) are outpuyted

at the middle of the total sampling interval.

65



APPENDIX A. MODEL SIMULATION 66

A summary of the procedure used for each plot is as follows:

• (a) Time-series for nQ: These are displayed over a output interval of 1000 iterations,

taken 5 × 106 iterations into the sampling interval. The size of 1000 iterations was

chosen because the definition of features is clear for the parameter sets used in the

study.

• (b) SQ against fQ: The Fourier transform of nQ is implemented using the inbuilt fast

Fourier transform function in Matlab. An output interval of 10,000 iterations is used,

corresponding to a frequency domain of fQ ∈ [ 1
10,000

, 1
2
] . The Fourier transform of

nQ is then averaged over 5 output intervals. This is found to produce the smoothest

spectra for SQ.

• (c) rQ against PQ: After every 10,000 iterations the frequency of cluster structures

for each size that exists are counted and stored. This corresponds to 1000 ‘counts’ of

the lattice in the total sampling interval. At the end of the total sampling interval

the frequency data is used to assess the probability for a given cluster size. The

program code for counting the cluster sizes in the lattice was based upon Fortran

code written by Dr. Robert Plant. (The original code was intended for counting

cloud structures).

• (d) Example of lattice structure plot: This is produced by outputing the matrix B

where supressed, quiscent and active sites are stored as 0, 1, and 2 respectively. The

Matlab graphic pcolor is used to produce the ‘checkerboard effect’.
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