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Abstract

Many non-linear partial differential equations cannot be solved analytically,

and for that reason numerical approximations are required. Thus, an adap-

tive moving mesh method is used in this dissertation in order to examine the

accuracy of the method based on monitor functions.

The purpose of this dissertation is to investigate a moving mesh method,

based on a conservation of mass principle applied to the dimensional porous

medium equation (PME). Using the evolution of a self-similar solution of

the PME, the moving mesh method is investigated in order to determine

whether a good representation of these solutions is obtained. It also provides

an assessment for the accuracy of the moving mesh method when the choice

of monitor function varies. Analytical results for both mass and arc-length

monitor functions are considered and a brief evaluation of their accuracy is

produced.
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Chapter 1

Introduction

Many differential equations are too complicated to derive analytical solutions.

For that reason over the last decades many studies have been done in order to

find numerical approaches to those situations. In particular adaptive mesh

methods have been developed aiming to give a good representation of the

solution of partial differential equations; (PDEs). Often the solution of these

PDEs involves large solution variations such as, at shock waves and steep

fronts, thus adaptive methods have been applied to a variety of problems

that cannot be solved exactly, particularly non-linear differential equations.

Adaptive mesh methods become preferable to a fixed mesh scheme when

these areas of interest represent only a fraction of the domain being inves-

tigated. Consequently, using these adaptive techniques is computationally

efficient since the resolution is concentrated on selected regions and we avoid

the refinement of the entire domain. As a result this will efficiently keep the

computational costs down and save time, especially when we are interested

in higher dimensions.

There are three main types of adaptive mesh methods, namely h-refinement,

p-refinement and r-refinement.

The h-refinement approach is the most usual method where extra nodes

are added or removed from the existing mesh. Using an error indicator for

example, it is possible to identify where the solution has insufficient regu-

larity in that area and improve the accuracy of the solution by introducing
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more computational nodes on the mesh. This might lead to local refine-

ment or coarsening of the mesh. The p-refinement technique increases the

order of the polynomials used in finite element approximations, seeking a

better and more accurate approximation solution in each element. Finally,

r-refinement is the least common method which describes the change in the

position of the existing computational nodes assuming that the total number

of nodes remains fixed in time. The scope of this technique is to enhance

the overall productivity of the existing numerical approximation. All these

adaptive techniques have been applied on existing numerical methods by sev-

eral authors in their attempt to achieve a more accurate and more robust

representation of the numerical solution.

In this project we will concentrate on an application of the r-refinement

method where r stands for relocation. This technique is also well-known as

the moving mesh method. It aims to move the mesh to the regions where

needed. This method is normally used for the numerical approximation of

time-dependent problems. The reason for that is due to the mobility of the

mesh, consequently time integrators are easier to be taken into consideration.

The r-refinement method has some advantages over the other two methods

since it is a flexible and easy method to implement. No mesh points are

added or removed and by the time that the program has been set up, the

structure of the method remains consistent. On the other hand, the main

limitation of this method is the difficulty of timestepping, since the mesh

nodes are changing positions all the time and may tangle.

This dissertation will explore this r-refinement method by generating

numerical results for a specific computational example, namely the porous

medium equation (PME). The investigation focuses on a particular velocity-

based moving mesh method, considering different choices of monitor func-

tions applied within the method. This will eventually lead to a wider evalu-

ation for the accuracy and the reliability of this technique.

Although the porous medium equation is in the category of those PDEs

that have complex behaviour and difficulties in predicting their analytical

solutions, it has a particular exact self-similar solution in a special (self-

similar) case. Using this equation as a computational example gives us the

2



opportunity to check the potential of this adaptive method to represent self-

similar solutions of the given problem.

In Chapter Two we begin by studying equidistribution, which is a stan-

dard way of distributing mesh points and moving them. The equidistribution

principle is applied within the computational cells according to the choice

of the monitor function that has been taken. We provide the three most

commonly used monitor functions and we show graphically how the equidis-

tribution of a uniform mesh is presented when different monitor functions

are applied. Further investigations on the choice of the monitor function are

considered in Chapter Three and some examples of the applications of the

monitor functions are provided.

In Chapter Four we introduce the advantages of some of the properties

of the PME, and how these properties are applied in our investigations. The

property of scale invariance according to non-linear diffusion equations is

discussed and also how the similar solutions are derived. A special case

of similar solutions has been applied for the purposes of this dissertation

known as ‘self-similar’ solutions. Self-similar solution has been used as an

initial condition and implemented in the moving mesh algorithm aiming to

present the effectiveness of this scheme.

In Chapter Five we introduce the velocity-based method, and how it is

applied. A full algorithm to determine the mesh velocity is given as well.

Chapter Six makes an introduction of the ‘location-based methods’, and gives

a brief description of the applications of MMPDEs.

Then, in Chapter Seven an example of a moving mesh algorithm using

mass monitor function has been constructed and extensively investigated

with direct reference to PME with n = 2, and numerical results are provided.

In Chapter Eight we describe the velocity-based method when an arc-length

monitor function is chosen.

Finally in the last chapter, Chapter Nine, a summary is presented and

some conclusions for this work are stated. The limitations of the adaptive

moving mesh method are provided and suggestions for possible improvements

as a possible future avenue of study are explored.
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Chapter 2

The Equidistribution principle

Mesh generation and adaptive methods play a crucial role in the solution of

both ordinary and partial differential equations.

Adaptive mesh methods typically construct an irregular mesh which is

generated by a transformation from a computational domain to the physical

domain where the given problem is being solved.

2.1 Introduction

The equidistribution principle plays a fundamental role in the moving mesh

method. The idea was first introduced by de Boor [5] to solve boundary

value problems for ordinary differential equations (ODEs). Referring back

to de Boor’s theory, the equidistribution principle is critical if we wish to

generate a discrete approximation of a function on a non-uniform mesh. The

main concept underlying this method is to equally distribute the volume

under the integral of some quantity, in each computational cell of the mesh.

This quantity is defined by the user and is called a ‘monitor function’. One

possible use of the monitor function is to therefore equdistribute the solution

error of the taken mesh points, over each subinterval.

In [1], Dorfi and Drury adapted the ‘equidistribution principle’ to gener-

ate a moving finite difference method for solving 1D initial value problems

(IVPs).
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The equidistribution principle is mainly used for grid relocation in one

spatial dimension, for which a monitor function M(x) is introduced. To be

more precise, usually the monitor function is a positive function of a function

u(x) and its derivatives.

For the purposes of this dissertation we only consider the equidistribution

principle in one spatial dimension.

Without loss of generality we consider a computational domain and a

physical domain, denoted by Ωc and Ω respectively. The domains both have

a unit interval [0,1] in space, thus we can write x, ξ ∈ [0,1]. We seek a mapping

x(ξ, t) from ξ to x at time t. We assume boundary conditions x(0, t) = 0 and

x(1, t) = 1.

According to White [2], the continuous form of the equidistribution prin-

ciple is given as ∫ x(ξ,t)

0

M(x(ξ, t)dx = ξ

∫ 1

0

M(x(ξ, t), t)dx (2.1)

This integral form has been used later by various mathematicians using

different techniques to try to give a good approximate solution of a given par-

tial differential equation on an equidistributed mesh. This will be explained

in the next chapter in more detail. However, a brief discussion will be given

now, in order to give a clearer idea of how we derive the ‘equidistribution

principle’.

Huang, Ren and Russell [3] used the equidistribution principle (2.1) and

differentiated it with respect to ξ. This leads to

M(x(ξ, t), t)
∂

∂ξ
x(ξ, t) = θ(t) (2.2)

where θ(t) =
∫ 1

0
M(x(ξ, t), t)dx

White solved numerically the time-independent version (2.2) in an effort

to generate an adaptive mesh which would represent the approximate solution

of two boundary-value problems.

In the case where we differentiate the equidistribution principle (2.1) twice
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with respect to ξ, leads to

∂

∂ξ

(
M(x(ξ, t), t)

∂

∂ξ
x(ξ, t)

)
= 0 (2.3)

which are considered in the area of Quasi-static equidistribution principles.

Continuing from (2.3), Baines [4] solved again numerically the time-

independent version of this equation by applying an iterative algorithm tech-

nique. In order to solve this equation, a discretisation has been used which

leads to a tridiagonal system.

Based on this method, we subsequently equidistribute the mesh according

to several monitor functions and represent the function on an equally spaced

mesh in Ωc. We will also study the efficiency of each monitor function, and

evaluate the most appropriate mesh for the representation of our solution.

As the result of the mapping, the grid points xi are irregularly spaced

in the physical space α ≤ xi ≤ b and are related to the regularly spaced

gridpoints ξi in the computational space 0 ≤ ξi ≤ 1 by discrete values of the

continuous variable

ξ =

∫ x
α
M(x̃)dx̃∫ b

α
M(x̃)dx̃

. (2.4)

The variable ξ can be defined as a ratio which actually describes the reverse

mapping that we attempt to achieve from the computational to the physical

domain.

Differentiating twice equation (2.4) with respect to ξ , gives the differen-

tial equation

6



(M(x)xξ)ξ = 0

as in (2.3).

The M however will generally depend on x (through the function), leading

as a result, the equation above to be nonlinear. However, the differential

equation can be solved using the following iterative algorithm (functional

iteration)

(M(xp)xp+1
ξ )ξ = 0 (p = 0, 1, ...) (2.5)

where x0 is an initial guess that can be applied for the starting point on a

uniform grid, provided that it converges. Applying the boundary conditions

x(0) = 0, x(1) = 1, to the solution of the equation, it then provides a distri-

bution x(ξ) for a given monitor function M . The number of iterations used

in order to solve the problem depends on a given tolerance.

Computationally this method will produce a mesh for the function and

then using it we can update the mesh by transferring the function from the

old mesh to the new one.

In practice the iteration (2.5) can be approximated using the discretiza-

tion method.

M(xj+ 1
2
)(xj+1 − xj) = M(xj− 1

2
)(xj − xj−1)

for 0 < i < imax, so that

M(xp
j+ 1

2

)(xp+1
j+1 − x

p+1
j )−M(xp

j− 1
2

)(xp+1
j − xp+1

j−1) = 0

This leads to the matrix system

T (xp)xp+1 = b

7



where T is a tridiagonal matrix and b comes from overwriting the boundary

conditions x0 = 0 and x1 = 1.

In order now to solve this matrix algorithm we apply the direct method

of the ‘Thomas Algorithm’.

Additionally for evolving the iteration method we determine a preset stop-

ping tolerance. Computationally we use a ‘do loop’ which stops when the

error is smaller than the tolerance. Consequently, we accumulate a sequence

of approximations that converges sufficiently to the solution. More precisely,

we set a figure for the tolerance and then check the total error over all the

output points. If the error is smaller than the set tolerance, the program au-

tomatically saves that gridpoint value, otherwise the program keeps running

the ‘do loop’ to the next output point.

The aim therefore, of applying this system is to reach a sufficient level of

convergence.

The monitor function is usually chosen according to the given data func-

tion. This implies that we may have different types of monitor functions.

The choice therefore, of the monitor function depends on the given function.

At this point we will explain three possible applications of ’equidistribution

principle’ and the corresponding monitor functions.

2.2 Choices of Monitor functions

2.2.1 Gradient Monitor function

In the first case, the data is a continuous function f(x) and a possible monitor

function is:

M(x) =
df

dx

which is called the gradient monitor function since∫ xi

xi−1

df

dx
dx = fi − fi−1.

8



Equal intervals on the f axis are taken, and the corresponding values on

x-axis are obtained.

Figure 2.1: Equidistribution of function f

The graph illustrates that more points are concentrated below the steep

front. However, as a result this might lead to some inefficiencies since the

points give more information below the steep gradient and not enough reso-

lution in the rest of the region.

2.2.2 Arc-Length Monitor function

Alternatively, we can use the arc-length monitor function

M(x) =
ds

dx

where

s(x) =

∫ (
1 +

(
df

dx

)2) 1
2

dx

which equidistributes the arc-length s.

Graphically we equally divide the total arc length and mark the corre-

sponding x values on the x-axis.
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Figure 2.2: Equidistribution with arc-length monitor function

The points now, as we can observe from the above graph, still concentrate

in the steep region but are more evenly spaced, compared with Figure (2.1).

2.2.3 Mass Monitor function

The mass monitor function has the form of

M(x) = f(x)

and by applying this monitor function we equidistribute the area under the

function in equal parts. Using this monitor function we eventually aim to

produce a scheme which conserves partial masses of a time dependent solution

for all time.
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Figure 2.3: Equidistributed mesh using a mass monitor function

The unique feature of the mass monitor function is that using this mon-

itor it keeps the area of each section constant while the time changes. The

importance of the monitor function in the adaptive moving mesh method

will be discussed thoroughly in the chapter that follows.

2.3 Numerical Results

In this section, we will start our investigation by constructing a program

with an initial test function, in order to check and make more obvious the

applications of the ‘equidistribution principle’ based on different choices of

monitor functions.

2.3.1 Numerical Results for Equidistributed meshes

For the purposes of this dissertation we consider the function

u(x) =

(
1− x2

4

) 1
2

(2.6)

defined on the interval x ∈ [0, 2]. This function is chosen since it will be the

initial data for our later investigations and has an infinite slope at x = 2.
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Starting our investigation, we will represent this function discretely on a

uniform mesh with a finite number of mesh points given as

0 ≡ x0 < x1 < . . . < xN−1 < xN ≡ 2

Considering the equidistribution principle (2.1) we seek an equidistributed

mesh that represents the function. The mesh consists of gridpoints xi for

i = 1, . . . N . The grid points will be generated in such a way that the

equidistribution principle will be satisfied on a chosen monitor function.

Using now the Baines algorithm which can be found in [4], we constructed

a FORTRAN program in order to check the equidistribution principle that

has been applied on the given function.

The numerical results presented here are the numerical solutions which

have been obtained after starting the equidistribution principle algorithm

(iteration) on a uniform mesh using the three monitor functions mentioned

above. From this outcome we can compare the efficiency of the chosen moni-

tor function applied. An evaluation of the significance of the chosen monitor

function of the previous section, will be given further on.

We used a total number of computational nodes of N = 20 and an initial

space size of dx = 0.1. In order to solve the tridiagonal system we applied

the Thomas Algorithm to the iterative method to calculate the position of

the equidistributed grid points. Initially we start the algorithm by equally

spacing the existing mesh nodes and then to obtain the new updated solu-

tions, we update the solutions’ values. To achieve that, we first to update

the position of the nodes. The boundary conditions that we imposed for the

mapping are x = 0 at ξ = 0 and x = 2 at ξ = 1.

The Figure (2.4) shows the output after applying the ‘mass monitor func-

tion’ on the test function. As we can observe from Figure (2.4), the mesh

points are concentrated more densely on the top whereas at the bottom of

the line no points are formed, which might cause inefficiencies.
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Figure 2.4: Equidistributed mesh using a ‘mass monitor function’

Applying now the ‘arc-length monitor function’ the points are equidis-

tributed over the arc length as it is shown in Figure (2.5). In comparison

with the previous approach, it is obvious that leads to a smoother represen-

tation of the solution when the arc-length monitor function is applied.

Figure 2.5: Equidistributed mesh using an ‘arc-length monitor function’

The arc length monitor function is one of the most commonly used func-

tions applied. The reason for that is because the arc length monitor function

13



causes the mesh points to cluster near where steep fronts occur but also keeps

the points in ‘flat’ regions. Therefore, since more mesh points are gathered in

the areas of large variations, we have better representation of the behaviour

of the solution.

Figure (2.6) describes the behaviour of the ‘equidistribution principle’ af-

ter applying the gradient monitor function. The points are clustered more at

the bottom now, using this monitor function. However, we do not use this

monitor function further in this dissertation. Our calculations will be ac-

cording to the moving mesh method using a mass and an arc-length monitor

functions.

Figure 2.6: Equidistributed mesh using a ‘gradient monitor function’
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Chapter 3

Monitor Functions for Moving

Mesh Solutions of PDEs

3.1 Introduction

We shall apply monitor functions to moving mesh solutions of PDEs. The

choice of monitor function plays a fundamental role in the adaptive moving

mesh methods. Consequently, we have to be precise with the choice of mon-

itor function when it is applied to numerical approximation schemes. An

inappropriate choice of monitor function might lead to severe inefficiencies

and affect the optimisation of the initial data.

3.1.1 Applications of Monitor Functions to PDEs

Most moving mesh methods for PDEs use monitor functions. However, in

order to give a clear idea of the use of the monitor function we have to refer

back to the equidistribution principle and see how these two are connected.

Equidistibution is the description of node placement so that a quantity is

equally distributed. When the method is applied to a non-linear diffusion

equation the quantity mentioned might be area. If we need to examine the

steep fronts then we might choose to equidistribute the arc length.

In particular, we shall be applying the idea of monitor functions to the

porous medium equation which can model a gas ”bubble” spreading in a
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porous medium.

The main role of the monitor function is to accentuate the importance of

the various parts of the domain by assigning a ‘weight-value’ to each location.

To make the adaptive moving mesh method more reliable, further studies

have been done by Huang and Cao et al, in [7], describing analytically the

strategy of choosing the most suitable monitor function. According to Budd,

Huang and Russell [6] the monitor function is defined to be always a non-

negative function.

Types of monitor functions that are commonly used are:

• Arc length;

• Combination of gradient and curvature;

• Truncation error or solution residual.

In the previous section we have already used the monitor functions for

equidistribution. For further investigations in this dissertation we want to use

the same monitor functions in order to move the mesh, using a moving mesh

method. However, we first describe the Porous Medium Equation which we

shall use for numerical experiments. We then discuss two approaches to con-

structing moving meshes, velocity-based method and location-based method.
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Chapter 4

The Porous Medium Equation

(PME)

4.1 Introduction

Based on Darcy’s extensive investigations [16], much work has been done

in modelling the flow and heat transfer through porous media. From this

work it is possible to study a broad range of different fields and applications

such as ground-water hydrology, chemical reactors, petroleum reservoir and

geothermal operations.

The PME is a second order non linear diffusion equation which has many

applications. For example, in biological modelling PME describes common

phenomena for tissues of the human body. Bone cartilage and muscle are

defined as porous media and their functioning depends on the flow of fluids

through them. The PME helps to understand the pathological conditions

related to these materials.

The study of flow and heat transfer is usually based on the transport

equations resulting from differential balance laws. To predict global effects

such as flow resistance or heat flux in a given situation requires detailed infor-

mation of the surrounding velocity and temperature fields. This information

is extracted from the solution of the associated transport equations, subject

to the pertinent boundary conditions. When flow through a complex struc-
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ture such as a porous medium is involved, these equations are still valid inside

of the pores, but the geometric complexity prevents general solutions of the

detailed velocity and temperature fields. Instead, some form of ‘macroscopic’

balance equations based on the average over a small volumetric element must

be employed. A common practice is to replace the ‘microscopic’ momentum

and energy equations by the corresponding ‘macroscopic’ equations with the

help of some well-established empirical relations [17].

Porous flows, illustrated by the diffusion of gas through a porous medium

and taking into consideration the conjecture of Darcy’s law relating the ve-

locity to the pressure gradient, give rise to the porous medium equation.

The variables of density (u), pressure (p), and velocity (v) are the param-

eters that distinguish the flow of the gas.

The assumption that the frictional drag is directly proportional to velocity

for low speed flow, determines the pressure drop in the flow in the porous

medium. This leads to Darcy’s law which relates the pressure drop and

velocity in an unbounded porous medium. Consequently, Darcy’s law is an

empirical law for dynamics of the flow through a porous medium.

4.2 Derivation of PME from Darcy’s law

It is assumed that the gas obeys the conservation of mass equation

ρut +∇ · (uv) = 0 (4.1)

where ρ is the constant porosity of the medium and v is given by Darcy’s

law, which is stated as

µv = −κ∇p (4.2)

where µ ≥ 0 is the viscosity of the gas and κ is the permeability of the

medium. Both quantities are assumed to be constant parameters.

Furthermore, since the gas is assumed to be ideal, the pressure and density

are related by
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p = p0u
γ (4.3)

where p is the pressure, p0 is the reference pressure and γ ≥ 1 is the ratio of

specific heats for the gas.

Substituting both equations (4.2) and (4.3) into the conservation of mass

equation (4.1) leads to the equation

ut = c∇ · (uγ∇u)

where c is constant and is given as

c =
κp0γ

µρ
.

The constant c can be scaled out of the problem and if this is done and also

if we equate γ with n then we obtain the original Porous Medium Equation

in the form

ut = ∇ · (un∇u) (4.4)

where it is assumed that n is always positive, n > 0. Usually the boundary

condition applied on the porous medium equation is u = 0 on all boundaries.

There has been an extensive analysis and detailed explanation on the

properties of the PME. The most comprehensive analysis and theory can be

found in [14, 15, 16].
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4.3 Properties of the one dimensional PME

The PME has several properties that we will use in our study, which we need

before obtaining the numerical solution. Studies based on the properties of

the PME, can be found in [18]. Explanations are given in detail, and it also

includes all proofs of the properties as well.

The most well-established properties of the PME are the conservation

of mass and stationary centre of mass. However, for the purposes of this

dissertation we are interested only in conservation of mass.

4.3.1 Proof that PME conserves mass

In this section we will provide a proof that the one dimensional PME con-

serves mass in time. For this purpose we show that the derivative of the total

mass in time is zero.

In one dimension the PME is

∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
(4.5)

with boundary conditions u = 0 at the boundaries, x0(t) and xn(t), say.

Proof. Define mass in (xi(t), xn(t)) as∫ xn(t)

x0(t)

u(x, t)− ∗/41dx (4.6)
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Differentiating (4.6) and substituting ∂u
∂t

from (4.5) leads to

d

dt

∫ xn(t)

x0(t)

udx =

∫ xn(t)

x0(t)

∂u

∂t
dx+

dxn(t)

dt

d

dxn(t)

∫ xn(t)

x0(t)

u(xn(t))dx

+
dx0(t)

dt

d

dx0(t)

∫ xn

x0

udx

=

∫ xn(t)

x0(t)

∂u

∂t
dx+ ẋn(t)u(xn(t))− ẋ0(t)u(x0(t))

=

∫ xn(t)

x0(t)

∂

∂x

(
un
∂u

∂x

)
dx+ [ẋu]

xn(t)
x0(t)

=

[
un
∂u

∂x
+ ẋu

]xn(t)

x0(t)

= 0 (4.7)

using the boundary condition u = 0. Hence,

d

dt

∫ xn(t)∗9

x0(t)

u(t) = 0 (4.8)

giving finally ∫ xn(t)

x0(t)

u(t) = 0, (4.9)

as required.

Using this proof we can state that the PME satisfies conservation of mass

over the whole domain.

4.3.2 Scale Invariance and Self-Similar solutions

It is widely accepted that the primary aim of applying an adaptive method

to a porous medium equation is to give an accurate representation of the so-

lution. For that reason when any numerical approximation is applied to solve
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the non-linear diffusion problem, it is expected that the numerical solution

will approximate an exact solution.

For the PME an exact solution is a similarity solution which will be used

to validate our numerical work. Using the similarity solutions we will confirm

the validity of the numerical results that we obtain, comparing them with

the exact solution of the problem.

Self-similar solutions, used for time-dependent problems involving spatial

distributions of its variables at different times, can be obtained by a similarity

transform which is a transformation that maintains certain features of a

function or curve. A specific example of a similarity transformation is a

scale-invariant transformation. However, a necessary condition needs to be

satisfied. In particular, in order to derive a self-similar solution, it is essential

that the PDE must be scale-invariant.

Therefore, in order to get a clear idea of what similarity solutions repre-

sent and how they can be derived, firstly we need to ascertain what the scale

invariance is, and how this is involved in our investigation.

4.3.3 Scale Invariance

In order to derive the similarity solution, firstly we need to obtain the scale-

invariant transformations of the PME. When applying a scaling transforma-

tion all the variables are scaled by powers of a common factor λ.

Given a set of values of (u, x, t) which satisfy the PDE

ut = f(x, u, ux, uxx, . . .)

under consideration, an invariant transformation of (x, u, t) to a new sys-

tem (x̄, ū, t̄) leaves the PDE unchanged. Subsequently the equation that is

satisfied by (x, u, t) is satisfied by (x̄, ū, t̄).

A prerequisite to obtain the similarity solutions for the PDE is a subclass

of invariances known as scaling transformation given as

x = λβx̄, u = λγū, t = λt̄ (4.10)
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where β and γ are constants to be found, and λ is an arbitrary positive

scaling quantity [19]. If the PDE remains unchanged after the mapping then

it is said to be scale invariant.

Given the PME

∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
(4.11)

then by applying the transformation (4.10), the left hand side of the (4.11)

can be written as

∂u

∂t
=
∂(λγū)

∂(λt̄)
= λγ−1∂ū

∂t̄
. (4.12)

Furthermore using the same transformation applied to the right hand side of

(4.11) gives

∂

∂x

(
un
∂u

∂x

)
=

∂

∂(λβx̄)

(
λnγūn

∂(λγū)

∂(λβx̄)

)
= λ(γ(n+1)−2β) ∂

∂x̄

(
ūn
∂ū

∂x̄

)
. (4.13)

To derive the transformed general PDE we need to equate (4.12) with (4.13)

λγ−1∂ū

∂x̄
= λ(γ(n+1)−2β) ∂

∂x̄

(
ūn
∂ū

∂x̄

)
.

Finally, in order for the given PDE (4.11) to be scale invariant under the

transformation (4.10) we require

γ − 1 = γ(n+ 1)− 2β (4.14)

2β − nγ = 1 (4.15)

giving a class of symmetries. For evaluating the constants β and γ uniquely,

another relation is required.

As already shown, the PME with zero boundary conditions satisfies
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∫ xn(t)

xo(t)

u(t)dx = const. in time.

Then under the scaling transformation (4.10) becomes

∫ xn(t)

xo(t)

u(t)dx =

∫ xn(t)

xo(t)

λγūd(λβx̄) = constant in time.

Equating the λ terms on each side we obtain

λγ+β = λ0 (4.16)

thus γ + β = 0. (4.17)

Together with (4.14), equation (4.17) leads to the conclusion that (4.11)

with mass conserved (or zero boundary conditions) is scale-invariant. Solving

(4.15) and (4.17) simultaneously,

β =
1

n+ 2
γ =

−1

n+ 2
. (4.18)

In particular, when n = 2 then β = 1
4

and γ = −1
4
.

To obtain the self similar solution of the PDE set the scale-invariant

similarity variables u
tγ

and x
tβ

to be related by

u

tγ
= f

(
x

tβ

)
(4.19)

where f is a function to be determined. For the PME (4.11) with n = 2, the

function is

f =

(
1− 1

4

(
x

tβ

)2) 1
2

(4.20)
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with β = 1
4

so that

u =
1

t
1
4

(
1− 1

4

(
x

t
1
4

)2) 1
2

(4.21)

is the self-similar solution.

To summarise, using the scaling transformations that we explained in

the previous section, a similarity solution for the PME is obtained. This

solution is a solution of the PME which is invariant. Rescaling the particular

parameters (x, u, t), using (4.10), leads to the similarity solution which still

satisfies the PDE.

Below we present a graph of a set of self-similarity solutions, as found in

[20], at three different times. This figure shows the similarity solutions in

one spatial dimension, describing the behaviour of the self-similar solution of

the PME.

Figure 4.1: Similar solutions of the porous medium equation when n = 2

Assuming that in one dimension PME the solution u(x, t) is symmetrical

about its centre of mass, then using the condition of symmetry enables us

to make our investigations using only the half region x(t) ∈ [0, b(t)]. Then

since we are working on the half region, the boundary conditions are given

as
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∂u

∂x
= 0 at x = 0

u = 0 at x = b.

In this project we will construct numerical solutions of the PME using

moving mesh meshes. We have seen that there exists a self-similar solution of

the porous medium equation, meaning that we can check our implementation

of the numerical approximation to calculate the numerical solution against

an exact solution.

Applying the moving mesh method to the porous medium equation, gives

us the opportunity to investigate whether this method can give a useful rep-

resentation of the solution. This enables us to compare our computations

against this known solution and carry out a critical evaluation for the effi-

ciency of using an adaptive moving mesh method.

The general form of the porous medium equation in one-dimension is

∂u

∂t
=

∂

∂x

(
un
∂p

∂x

)
where n is an integer greater than zero.The porous medium equation that

we used for the purposes of this dissertation in the case where n = 2 is

∂u

∂t
=

∂

∂x

(
u2∂u

∂x

)
, (4.22)

with an initial condition (2.6) taken from the self-similar solution and zero

boundary conditions on the moving boundaries.

This problem has the similarity solution

u(x, t) =
1

t
1
4

[
1− 1

4

(
x2

t
1
4

)] 1
2

. (4.23)

and the initial function corresponds to time t = 1.0.

26



Chapter 5

A Velocity-Based method

5.1 Velocity-Based method

Velocity based methods belong to the family of ‘Arbitrary Lagrangian-Eulerian

methods’(ALE). This method applies a Lagrangian moving co-ordinate sys-

tem, providing a mesh velocity v. Each node is assigned a velocity by which

it moves. Applying time integration to the mesh velocity enables us to find

the mesh point locations.

A conservation-based method is a very natural technique, since it is a

standard approach in fluids and similarity solutions are convected with the

velocity [21]. For the conservation-based method it is necessary to have

conservation of mass over the whole region [0, xN ].

5.1.1 Calculating the mesh velocity

In the conservation-based method in order to generate the velocity we take

the area of any section to be constant in time,∫
udx = constant time (5.1)

for any interval. This corresponds to the monitor u, which is called the mass

monitor.
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Differentiate both sides with respect to t, giving

d

dt

∫
udx = 0. (5.2)

Then, using the Leibnitz Rule we obtain

d

dt

∫ x

0

udx =

∫ x

0

utdx+ [uv]x0

which can be simplified to ∫ x

0

utdx+ uv = 0 (5.3)

since v = 0 at x = 0.

Inserting the porous medium equation (4.22) into equation (5.3) we get∫ x

0

(u2ux)xdx+ uv = 0 (5.4)

and carrying out the integral leads to

u2ux + uv = 0

since ux is zero at x = 0 by symmetry (see Figure (4.1)). Finally we use this

equation, rearranged, so that we get the velocity as

v = −uux = −1

2
(u2)x (5.5)

provided that u 6= 0.

The method approximates (5.5) by

vi = −1

2

(ui+1)
2 − (ui)

2

xi+1 − xi
(5.6)

and uses v to compute the xi values and ui values in time. Updating the

mesh points, firstly we calculate the new x values from the velocity, using
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the Explicit Euler method,

xn+1
i = xni + ∆t · vni (5.7)

where vi = dxi
dt

is the velocity at the point xi and is calculated from (5.5),

∆t is the time step and xn+1
i is the position of xi at the next time step. The

velocity that we obtain is such that partial masses have being conserved.

5.1.2 How to evaluate the u values

Since we know that the area values of the integral for un+1 are constant in

time by (5.1) we may write∫ xit(n+1)

xi−1t(n+1)

udx =

∫ xi−1(1)

xi+1(1)

udx = ci, say (5.8)

where t = 1 is the initial time.

Using now the mid-point rule we get the approximation

(xi+1 − xi−1)ui = ci (5.9)

and finally

un+1
i =

ci
xi+1(tn+1)− xi−1(tn+1)

(5.10)

which can be used in the numerical approximation to find the new values of

ui at the next time step.

To make the procedure more obvious and easier to understand, we give

the algorithm on how to update the solution of PME.
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Algorithm:

Given a mesh with meshpoints xni and values uni ; i = 0, . . . , N, at t = 1

1. Compute the mesh velocity from (5.10)

vni = −1

2
·

(uni+1)
2 − (uni )2

xni+1 − xni

in each interval and use linear interpolation to give its value at xi

2. Using the Forward Explicit Euler scheme, compute the updated mesh

xn+1
i

3. Compute the updated solution of un+1
i from (5.7) by evaluating

un+1
i =

ci

xn+1
i+1 − xn+1

i−1

· uni

where ci = (xi+1 − xi−1)ui at t = 1

4. Repeat for each time step.
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Chapter 6

A Location Based method

6.1 Introduction

Location-based methods are based on a one-to-one co-ordinate transforma-

tion between the computational space and the physical space, denoted by Ωc

and Ω respectively. To be more specific, location-based methods, are directly

connected with time-dependent mapping.

One of the main methods in this category is the MMPDE approach.

Taking the equidistribution principle a second PDE is constructed which

describes the relation between the equidistributed co-ordinate x and a fixed

co-ordinate ξ. The MMPDE is an additional PDE that is needed to locate

the mesh.

Another location-based method is the optimal transport method which

is analysed in [13]. The optimal transport method describes the natural

generalisation of one-dimensional equidistribution. Given that the condition

of equidistribution principle is satisfied, then the aim of the optimal transport

method is to obtain an ideal mesh which can be derived by maintaining this

mesh, to be as close as possible to a uniform mesh in a suitable norm. This

method has been studied by Budd and his collaborators in [20]. In their work

for illustrating the transformation from the computational to the physical

domain the Monge - Ampere equation is used.
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6.2 Moving Mesh Partial Differential

Equations(MMPDEs)

MMPDEs are formulated using the ‘equidistribution principle’ with an ap-

propriate choice of monitor function. For simplicity MMPDEs are usually

given in continuous form, allowing the comparison and the analysis studies

based on the moving mesh method to be easily developed.

In the mathematical literature there are seven different types of MM-

PDEs. The most common MMPDEs in use are: MMPDE1, MMPDE4,

MMPDE5 and the MMPDE6.

MMPDEs cover a vast area of the location-based methods where actually

they can be very beneficial for the numerical analysis of one-dimensional

problems.

6.3 The Equidistribution principle

and formulation of the MMPDEs in 1D

Huang, Ren and Russell in [3] carried out an extensive study on the effective-

ness of the equidistribution principle, and how this approach can generate

good numerical approximations.

Since the MMPDEs are directly associated with the equidistribution prin-

ciple, for the purposes of the analysis we will go a step backwards and examine

again how we derived the equidistribution principle and how corresponding

to this assumption the MMPDEs have been developed.

Taking therefore again the continuous equidistribution principle from

White in [2], given as∫ x(ξ,t)

0

M(x(ξ, t), t)dx = ξ

∫ 1

0

M(x(ξ, t), t)dx

and differentiating it with respect to ξ,
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M(x(ξ, t), t)
∂

∂ξ
x(ξ, t) = θ(t) (6.1)

where θ(t) =
∫ 1

0
M(x(ξ, t), t)dx. However, if we differentiate twice the eqidis-

tribution principle with respect to ξ then this gives

∂

∂ξ

(
M(x, t), t)

∂

∂ξ
x(ξ, t)

)
= 0. (6.2)

Ren and Russell discussed in [8] the conservative form of a moving mesh

equation. Differentiating (6.1), with respect to time using the chain rule

leads to

∂

∂ξ
(Mẋ) +

∂M

∂t

∣∣∣∣
ξfixed

∂x

∂ξ
= θ̇. (6.3)

Furthermore, (6.3) can be transformed into a form with physical co-ordinates

given as

∂

∂x
(Mẋ) +

∂M

∂t

∣∣∣∣
ξfixed

=
Mθ̇

θ
. (6.4)

As a result, by comparison with the fluid dynamics literature, Ren and Rus-

sell show in [8] a physical interpretation of these moving mesh equations. On

the other hand, in further studies by Huang, Ren and Russell [3], state with-

out any supporting argument that the quantity θ(t) that holds in (6.4) is said

to be inappropriate for generating numerical approximations. Consequently,

they continue their studies by eliminating that term and create a series of

Moving Mesh Partial Differential Equations (MMPDEs). They began their

investigations by differentiating (6.2) with respect to time, giving

d

dt

(
∂

∂ξ

(
M(x(ξ, t), t)

∂

∂ξ
x(ξ, t)

))
= 0.
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This equation after some rearrangements gives

∂

∂ξ

(
M
∂ẋ

∂ξ

)
+

∂

∂ξ

(
∂M

∂ξ
ẋ

)
= − ∂

∂ξ

(
∂M

∂t

∂x

∂ξ

)
(6.5)

which eventually leads to the development of the first MMPDE. According

to [3], the MMPDE1 has a zero speed solution when ∂M
∂t

= 0 and additionally

the monitor function seems to be time-independent, implying that the mesh

remains constant without moving. Moving along the same line, ∂M
∂t

= 0 can

be said to be a source of the mesh movement for this MMPDE. According

to Huang et al this source quantity, is actually hard to calculate when used

in actual cases.

In later studies of Huang et al, developed further MMPDEs. It is impor-

tant to take into account that the equidistribution principle was the main

criteria that the MMPDEs had to satisfy.

The moving mesh methods have been a significant tool for many authors

in creating adaptive meshes for various applications. The most common

in use MMPDEs in mathematical literature is the MMPDE1, MMPDE4,

MMPDE5 and MMPDE6.
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Chapter 7

Numerical Results

7.1 Numerical Results for the Velocity based

method on a equidistributed mesh

In this chapter we present the numerical results that have been obtained, af-

ter applying the velocity-based moving mesh method to the one-dimensional

PME (4.22). Including the self-similar initial conditions in the program al-

lows us to investigate whether the numerical solution converges to the exact

solution at a given time as the number of nodes increases. Unfortunately due

to time limitations we were unable to program the location-based method.

To obtain adequate numerical results and sufficient representation of

the solution, some further investigations are required before generating the

pseudo code. Another issue that needs to be taken into consideration in ad-

vance is the size of timestep to be used, in order to avoid any tangling issues

that might occur. Taking an initial equidistributed mesh we applied the ve-

locity as given in (5.5) and compared the computed numerical solutions at

different times.
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7.2 Numerical Results for the Mass Monitor

function

In this section we illustrate the approximated solutions using the mass mon-

itor function

M(u) = u.

Firstly, by applying the Baines algorithm to the initial data (4.20) as

given in [4], the mass is equidistributed in each computational cell. Then we

aim to produce a good approximation to the self-similar solution

u(x, t) =
1

t
1
4

(
1− 1

4

(
x

t
1
4

)2) 1
2

of the PME with n = 2.

We started the investigation using 20 computational nodes and applied

a spatial size of 0.1, additionally setting the time-step to 0.1. However, the

figures that we obtained led to the conclusion that the nodes were overtaking.

The figures given below describe the results obtained after a 0.1 time-step has

been applied to the problem. The numerical solution suffers from instability

issues that result from the time scale which has been used.

Figure (7.1) depicts the numerical solution at t = 1.1.

Figure 7.1: The numerical solution at t=1.0 and the corresponding at t=1.1
using the moving mesh method at ∆t = 0.1

36



However, after a very small time-step further; at t = 1.2 it is clear from

Figure (7.2) that the numerical solution begins to display some oscillations.

Figure 7.2: The numerical solution at t=1 comparing with the numerical
solution at t=1.2

which leads eventually to an unstable solution. To make more obvious that

the numerical solution blows up, the computational results of xi with the

corresponding us; that we obtained at a time t = 2.0, are given below
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Figure 7.3: Unstable results given at t=3.0

As you can observe from this table, the time-step of 0.1 led to large values

of us implying that the numerical scheme is unstable. Therefore, before

moving on to investigate further experiments for the efficiency of the moving

mesh method, an advance investigation for the stability conditions and the

timestepping to be used is required. This is a prerequisite before running the

program again in approximating the accuracy of the moving mesh method.

In the next section, we will include a brief analysis about the stability

that the moving mesh scheme requires in order to provide stable numerical

solutions when applied to non-linear diffusion equation.

7.3 Timestepping

In order to find the new position of the nodes we need to apply a timestepping

algorithm. For convenience we use an explicit method, which is easier to
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implement. In fact for the purposes of this study we always applied the

explicit forward Euler discretisation method

ẋn =
xn+1
i − xni

∆t
(7.1)

1 ≤ i ≤ N where ∆t is the time-step that has been taken.On the other hand,

this might lead to some other inefficiency in the numerical approximations

solutions. Using the explicit method we have to take in consideration the

stability issues as well. We need to be very careful with the choice of a

selected time-step that we select to use for the numerical scheme.

Apart from the fact that the explicit forward Euler scheme is first or-

der accurate, it is also only conditionally stable. This implies that a small

time step is required to prevent instability and also to avoid any ‘tangling

problems’. Tangling issues occur when two nodes overtake each other. Since

the area of each section interval is constant, this leads to a negative u which

invalidates the method.

Most of the theory for the stability of the non-linear ODE system requires

the study of Lipshitz constants. However in this case the analysis seems to be

quite complicated. More directly, we consider a simpler technique to avoid

tangling which still gives some justification for the chosen value.

Given that vi+1 − vi represents the relative velocity and then xi+1 − xi

the relative position respectively, then in order to avoid any tangling, the

sufficient condition for non-tangling

∆t <

∣∣∣∣xi+1 − xi
vi+1 − vi

∣∣∣∣ , ∀i

must be satisfied (which changes at each time step).

Therefore, regarding the first case above when we applied a time step

of 10−1 was apparently not sufficient to satisfy this inequality, leading as a

result to an unstable scheme. Therefore we ran the program again using a

smaller time stepsize based on trial and error.
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7.3.1 Numerical Results for a smaller time-step

In this section we run the program that we used above but this time we use

a time step of ∆t = 10−3 in order to obtain a more reliable set of results

for the numerical solution. We applied the same timestepping algorithm as

before, using 20 computational nodes and as before a final time step of 3.0. In

contrast with the previous experiment, in this case we needed 2000 time steps.

Any bigger value for the timestep will produce an unstable representation of

the numerical approximation.

The figures below show the solutions obtained for the PME (4.22) when

n = 2. Figure (7.4) represents the behaviour of the grid points and how they

move with time over the whole domain.

Figure 7.4: The mesh trajectories

The Figure (7.5) is exactly the same as before since it is given by the initial

condition when t=1.0. Figures (7.6) and (7.7) show that the approximation

solutions become smoother and the mesh movement has been succesfully

carried out.
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Figure 7.5: The initial solution at t=1.0

Figure 7.6: Left: Numerical solution at t=1.5, Right: Numerical solution at
t=2.0

Figure 7.7: Left: Numerical solution at t=2.5, Right: Numerical solution at
t=3.0

Figure (7.8) gives an overview of how the mesh moves after applying the

moving mesh method. It is obvious that the nodes remain evenly spread
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outwards and the numerical solutions become more flat with time. It is also

important to notice that no node overtaking occurs.

Figure 7.8: The numerical approximation solutions at final time t=2.0, using
the moving mesh method

According to these figures we can clearly observe that the instabilities

and the undesirable features in the numerical solutions have been removed

when a smaller size of time-step has been taken.

Figures (7.9) and (7.10) depict the numerical solutions against the ex-

act solutions, constructed at 50 computational nodes using a time-step of

∆t = 10−3. The numerical solutions almost overlap the exact solutions while

moving with time, indicating that using the moving mesh method provides

quite accurate numerical approximations.

Figure 7.9: Left: Numerical solution against analytical solution at t=1.5,
Right: Left: Numerical solution against analytical solution at t=2.0
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Figure 7.10: Left: Numerical solution against analytical solution at t=2.5,
Right: Numerical solution against analytical solution at t=3.0

Figure 7.11: The exact solutions throughout the life of the graph, using the
moving mesh method

The technique of self-similar solutions both enhanced our investigations

but also enabled us to calculate the accuracy of the moving mesh method.

In the next section two techniques are introduced in order to compute the

error occurred between the numerical solution and the exact solution.

7.4 Error Calculations

In order to study whether the scheme that we applied gives an efficient and

useful representation of our solution, we need to examine the convergence of

the numerical moving mesh method.
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Numerical approximations do not give exact solutions, but they can be

used in order to obtain a solution that is close to the exact solution while

maintaining a reasonable range of errors. We need to check the accuracy of

the velocity-based moving mesh methods. In order to calculate the accuracy

between the numerical approximation solution and the exact solution we

need to apply an ‘error’ formula that calculates the difference within those

solutions.

In mathematical theory there are several error calculation techniques

available to check the accuracy of the scheme used. For the purposes of

this dissertation we used the ‘absolute l2norm’ and the ‘relative error’ in

order to examine the accuracy.

Applying the ‘absolute error’ measure

l2 =

√∑
i

(ui − uexact)2

to the program that calculates the numerical approximation, we investigate

the error that occurs at every timestep. The ui are the values obtained from

the numerical adaptive method while uexact is defined by the corresponding

values of the exact solution. Increasing the number of points while decreasing

the size of the timesteps will generate a more accurate solution.

The Figure (7.12) shows the absolute error between the numerical ap-

proximation solution and the exact solution.

Figure 7.12: The behaviour of the absolute error calculation
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The absolute error starts by increasing but then as time progresses it

decreases since the numerical solution become more flat in time.

The calculation for the ‘relative error’ is generally expressed as a per-

centage and it works out the percentage ratio between the absolute error and

the true value solution, the uexact. The relative error is determined using the

following formula

relative error =

√∑
i(ui − uexact)2∑

i (uexact)
2

Figure (7.13) shows the relative error between the numerical approximation

solution and the exact solution. This error increases slowly with time.

Figure 7.13: The behaviour of the relative error calculation

The relative error in our case appears to be a more reliable ‘error measure’

to take, since the numerical solutions become more flat with time. In order

to verify the accuracy of the relative error we performed a small test. We

run the programme using a timestep of ∆t = 10−5 using different number of

computational nodes. We set a final time of t=1.02.
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Figure 7.14: Left: Relative error calculation using Nx = 10, Right: Relative
error calculation using Nx = 20

Figure 7.15: Relative error calculation using Nx = 40

The results obtained at the final time are given in the Figure (7.16) below

Figure 7.16: The behaviour of the relative error calculation at different num-
ber of computational nodes

From Figure (7.16) we can see that when the number of computational

nodes increases, then the relative error converges with a rate of convergence
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greater than one.

The approximate solution seems to be accurate and stable implying that

the velocity-based adaptive method that we used gives good results to self-

similar solutions to the problem under consideration. In general, the PME

possesses solutions for which an interface can remain fixed for a finite time

and then start moving. The time for which the interface remains stationary

is called the waiting time and solutions which exhibit such behaviour are

called waiting time solutions. However, when we use a self-similar solution

waiting times do not occur
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Chapter 8

A Velocity-based method using

an arc-length monitor function

In this section we study the efficiency and accuracy when the arc-length

monitor function is used to generate numerical solutions of the PME. The

computational solutions have been calculated using the same algorithm and

theory as applied in the previous section. However, for this approach the

velocity needs to be recalculated using the different monitor function, which

introduces as a result an unknown variable θ(t) for the total arc-length within

the calculations. We first go over the theory and consider the changes that

are required.

8.1 Evaluation of the mesh velocity

The arc-length monitor function is defined as

M =
√

1 + u2
x (8.1)

and will be applied to the PME (4.22) in the interval (0, 2) with the initial

condition

u =

(
1− x2

4

) 1
2

(8.2)

48



and boundary conditions u = 0 at x = 2 and ux = 0 at the origin, as before.

The total arc-length is defined as

θ(t) =

∫ 2

0

√
(1 + u2

x)dx (8.3)

which is not constant in time, so it is inconsistent to make the partial arc-

lengths constant in time. However we can make the arc-length fractions

1

θ(t)

∫ x

0

√
(1 + u2

x)dx = constant in time, sayci (8.4)

at the expense of the additional variable θ(t).

Note that

ci =

∫ xi
0

√
(1 + u2

x)dx∫ b(t)
0

√
(1 + u2

x)dx
=

partial arc length

total arc length
(8.5)

indicating that the constants; ci, represent a fraction of the arc length used.

Using (8.4) we can compute the constants, ci, at time t=1.0 at every cell

of the mesh.

In general the derivation of the the mesh velocity is consistent with the

structure that we explained when a mass monitor function was applied, apart

from the fact that in this case we have the extra parameter θ(t).

Firstly we rearrange equation (8.4) to

ciθ(t) =

∫ x

0

√
(1 + u2

x)dx. (8.6)

Then, differentiating (8.6) with respect to t will give us

ciθ̇(t) =
d

dt

∫ x

0

√
(1 + u2

x)dx. (8.7)
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We then apply ‘Leibnitz Integral Rule’ to give

cθ̇ =
d

dt

∫ x

0

√
(1 + u2

x)dx

=

∫ x

0

∂

∂t

√
(1 + u2

x)dx+

(√
(1 + u2

x) · v
)∣∣∣∣x

0

=

∫
∂

∂t

√
(1 + u2

x)dx+
√

(1 + u2
x)v

(8.8)

and then using the ‘chain rule’ we finally derive

cθ̇ =

∫ x

0

ux√
(1 + u2

x)
uxtdx+

√
(1 + u2

x) · v (8.9)

since v = 0 at x = 0.

In addition we need to adapt (8.9) to the problem that we are dealing

with, which in our case is the PME with zero boundary conditions. Taking

that the PME is given as

ut = (u2ux)x (8.10)

then differentiating (8.10) with respect to x leads to

uxt = (u2ux)xx. (8.11)

If we thus substitute (8.11) back to the equation (8.9) then

cθ̇ =

∫ x

0

ux√
(1 + u2

x)
(u2ux)xxdx+ (

√
(1 + u2

x))v (8.12)

Finally by rearranging the (8.12) we get
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v(x) =
1√

(1 + u2
x)

[
cθ̇ −

∫ x

0

1√
(1 + u2

x)
ux(u

2ux)xxdx

]
(8.13)

so that we have a general form of the mesh velocity. Equation (8.13)

illustrates the general velocity that has been applied on the interior

computational nodes in order to provide the relocation of the grid points

over time. However, we are not able to calculate the mesh velocity yet,

since the parameter θ̇ is still unknown at this stage, but we are nearly there.

The parameter θ̇ equals the rate of change of the arc length over each

time-step. To calculate the θ̇ we need to refer back to one of the properties

of the PME.

Taking into consideration that the PME is mass conservative then this

enables us to state that the velocity at the last boundary point x = 2 can

be defined as before, as

vb = −uux = −1

2
(u2)x (8.14)

Matching the left hand side of (8.14) to the general velocity (8.13) at the

boundary, leads to

−uux =
1√

(1 + u2
x)

[
θ̇ −

∫ b

0

1√
(1 + u2

x)
ux(u

2ux)xxdx

]
(8.15)

By rearranging (8.15) it will eventually give us the computational value of

θ̇, which now can be substituted back in (8.13) and finally allow us to

calculate the mesh velocity.

In the numerical method the velocity vi at a node is computed from (8.13)

at x = xi. The new meshpoints are then found from the explicit Euler

method. The initial grid is obtained by equidistribution of the arc-length.
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8.1.1 How to calculate the solution

To calculate ui we applied the constant arc-length formula which is coupled

with Pythagora’s theorem given as

∆x2 + ∆u2 = (θci)
2. (8.16)

Since we seek the computational u′s, we rearrange (8.16) and make the ∆u

the subject. This leads to,

∆u =
√

(θci)2 −∆x2 (8.17)

and (8.17) can be used in the algorithm in order to find the computational

positions of the grid points.

Referring back to the boundary conditions, we already know that u = 0

at xN = 2. This implies that for calculating the computational u′s we must

begin at the last node, at xN , and then go backwards by calculating the ∆u

and hence the unknown u′s at the previous nodes.

The Figure (8.1) shows how using the Pythagoras’theorem we can calcu-

late the u′s position.

Figure 8.1: The calculation of the position of the u′s

The full algorithm to obtain the PME numerical solution using an arc-

length is given below.
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Algorithm:

Given a mesh with meshpoints xi and values uni ; i = 0, . . . , N, at t = 1

1. Using (8.3) calculate the total arc-length, θ(t) by evaluting

θ(t) =
N−1∑
i=0

(
1 +

(
ui+1 − ui
xni+1 − xni

)2) 1
2

·∆x

where ∆x is the initial spatial step and compute the constants, ci, from

(8.5).

2. Compute the mesh velocity at the last boundary xN using (5.10). This

will determine the unknown value of θ̇. When θ̇ is obtained, then we

use (8.13) in order to calculate the mesh velocity at interior nodes.

3. Using the Forward Explicit Euler scheme, compute the updated mesh

xn+1
i .

4. Compute the updated solution of un+1
i from (8.17) by applying

un+1
i = un+1

i+1 + ((θ · ci)2 − (∆t)2)
1
2

and un+1
N = 0.

5. Repeat for each time step.

8.1.2 Numerical Results for arc-length monitor

function

In this section we run a FORTRAN program using the algorithm given above.

We used a really small time step of ∆t = 0.0005. The programme was

constructed using 40 computational nodes and a final time of t = 0.5.
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Figure 8.2: Left: Numerical solution using an arc-length monitor function at
t = 0, Right: Left: Numerical solution using an arc-length monitor function
at t = 0.001

Figure 8.3: Numerical solution using an arc-length monitor function at t =
0.0345

These figures show that initially the solution seems to be moving fine but

only for a while. As time progresses the solution seems to overturn, implying

that the boundary velocity lags the other nodal velocity. A possible explana-

tion for this problem is the fact that the function that we used is infinately

steep at the boundary. Also, we noticed that the arc-length calculated at

the last cell is longer than the previous cells, implying that equidistribution

principle for the initial grid might not be the most appropriate technique to

use in this case. We applied a central finite difference method to compute

the numerical solutions. However, this caused some problems in calculating

the last node position at the boundary. Due to limitations on the domain

we were forced to use an one-side finite difference method although, this was

likely to cause some inefficiencies to the numerical solutions that we obtained.
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Chapter 9

Summary and Further Work

9.1 Conclusions

Grid adaption and moving meshes have experienced considerable develop-

ment in recent years and are becoming a useful technique in the numerical

solution of a wide variety of applications. Adaptive methods have a crit-

ical role in the area of numerical analysis for distributions involving steep

or sharp solution variations. These techniques effectively contribute in the

improvement of the numerical solutions of PDEs.

This final chapter summarises the work carried out and presents some of

the output obtained. Additionally, discussion regarding the efficiency of the

results and findings is made. Finally some possible suggestions for future

avenues of research will be suggested.

Initially we started our study by giving an introduction of the equidistri-

bution principle which is the main source of the moving mesh method. We

showed how the equidistribution principle gives different meshes for a given

function using different choices of monitor function. In this dissertation we

concentrated mainly on the velocity based method using a mass monitor

function and an arc-length monitor function.

A special case of similar solutions has been applied for the purposes of

this study, known as ‘self-similar’ solutions. This is another advantage of

the properties of the PME. A self-similar solution has been used as an initial
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condition and implemented in both equidistribution and the moving mesh

algorithm, aiming to present the effectiveness of this scheme.

In Chapter Seven, using a mass monitor function we applied the moving

mesh method comparing with a self-similar solution of the PME. The moving

mesh method needs a very small time step to be taken, due to stability

reasons and then seems to be quite accurate. The numerical solutions evolved

nicely and become flat with time. Using an error measure, a relative error

calculation, indicates that the moving mesh method is an accurate numerical

approximation since the error converges with a rate of convergence greater

than one.

In Chapter Eight we continued our investigations on the moving mesh,

using an arc-length monitor function. In this experiment we found some lim-

itations in calculating the velocity on the last boundary point. Even though

at the beginning the numerical solutions seemed to be moving normally for a

while, as time progresses the numerical solutions begin to overturn. Another

constraint that we had using this technique was the equidistribution of the

arc-length of the function under consideration. The function we applied was

very steep at the boundary and for that reason the arc-length of the last cell

was larger.

9.2 Further Work

In this section we consider some further aspects that have not been fully anal-

ysed in this dissertation and could be taken into account in further research

for more accurate results.

9.2.1 Timestepping

For the purposes of this dissertation we used the Forward-Euler method in

order to apply the time-step in the scheme. The time-step is required due to

stability condition.

A possible suggestion for further investigations could be to examine the

implementation of a semi-implicit time-stepping scheme which allows a larger
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size of time step to be taken without causing any tangling problems. However,

the accuracy of using a semi-implicit approach needs to be tested. Addition-

ally, other time-stepping schemes might be taken into account that are more

accurate than the Forward-Euler method, such as the Runga-Kutta method.

9.2.2 Initial grid distribution

To test the moving mesh method we used an equdistributed initial grid.

Some further work that could be considered is to start our investigations

using another initial mesh in order to check if the solution obtained will be

affected, for example when applying the moving mesh method with an arc-

length monitor function. The moving mesh method does not actually depend

on the initial mesh being equidistributed.

9.2.3 Initial function

Using another initial function apart from the self-similar solution, will cause

waiting times which can be investigated.

9.2.4 MMPDEs

Unfortunately, due to limitation of time we did not manage to present some

numerical solutions using the location-based method. Therefore, a future

study could be to investigate the applications of the MMPDEs. This will en-

able us to make a more critical comparison with the velocity-based methods.

9.2.5 Two-dimension

In this dissertation we applied the moving mesh method on one-dimensional

problems. Further investigation that could be taken into consideration is to

apply the moving mesh method to problems in 2D. Consequently, it will allow

us to obtain a broader idea of the efficiency of the moving mesh method.
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