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Abstract

Trapped modes occur in many areas in physics, we will be investigating their exis-

tence in an acoustic waveguide using Dirichlet and Neumann boundary conditions. We

choose to find these trapped modes through a perturbation method and numerically

solve the problem. Further investigations will deal with the geometric structure of the

waveguide and discuss the existence of these modes in various situations.
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1 Introduction

Trapped modes are related to the eigenvalues of a homogeneous differential equation. It is

physically represented by free oscillations of finite energy within a localised slowly varying

region. These oscillations occur at very precise frequencies and as a result of their geometrical

structure have a cut-off frequency which exponentially decays along the straight waveguide.

[2, 5]

Applications in this area are numerous and varies in a range of fields. For example, re-

searching trapped modes in water waveguides, to electromagnetic, quantum and acoustic

waveguides. In particular, evidence from a paper by Parker and Stoneman (1989) [6] sug-

gest that the vortex shedding, which is an unsteady flow generated by low pressure zones

caused by waves at a critical velocity flowing past a blunt object. When the vortex shedding

frequency is near an acoustic resonance frequency the two frequenceis match, resulting in a

resonant frequency and so by the acoustic resonance in this case may control the shedding

process. By considering high amplitude oscillations we can control the vortex shedding or

change the geometry of the resonator.

Another aplication this work may be useful to are intrument builders particularly flute mak-

ers, as they must take into consideration the length, thickness and specific curvature of the

flute tube to construct the standard pitching for the concert flute and the ranges in the flute

family.

Investigating trapped modes in general suggest a build up of energy, resulting in resonance,

an important phenomenon in physics. By identifying these modes in the fields already men-

tioned, experts are able to apply or dampen the effect to their advantage. In this paper we

will be dealing with finding trapped modes numerically in an acoustic waveguide.

The existence of trapped modes depend on a range of factors. In particular the structural

curvature of the waveguide relative to the surface boundary condition. [3]. In other words,

certain boundary conditions for specifically shaped waveguides, produce trappings. The sym-

metry of the waveguide also has an effect. In this paper, we will be considering a symmetric

waveguide, to simplify the problem. As it has been proven that existence of antisymmetric

modes occur about the centreline of the guide, yet disappear for wavenumbers below the

cut-off frequency. [2, 3]. However experimental studies have been made in antisymmetric

waveguides, but again, existence in trappings also depend on the geometric structure of the

guide. The group velocity of the wave is the velocity of the waves amplitude,and this also

has an effect, for example, some modes propagate with a thin region but cut-off by a thicker

region in the guide with a negative group velocity.[2].

This paper will deal with a slowly varying waveguide with the geometry of symmetrically
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tapered duct. We will investigate the existence of the modes, with two different boundary

conditions. This paper will investigate and compare trappings with Dirichlet and Neumann

boundary conditions.

Having considered the duct walls to be slowly varying, such that it varies on a length scale

inversely proportional to some parameter 0 < ε � 1, which produces a smoother function

for the boundary. The problem itself, is solved by the Helmholtz equation. We can analyti-

cally solve the problem by a perturbation method, similar to the WKBJ (Wentzel, Kramers,

Brioullin, Jeffreys) Method. This approximation method transforms a wavefunction into an

exponential function, and approximates the solution of the differential equation, with a small

parameter ε, say, in the highest derivative term.

[7] This paper will also look at the numerical calculations of the modes and a general solution

to the problem, applying a similar approach used by Postnova and Craser. We will compare

the results of the different boundary conditions and discuss further advances to be made to

this paper.

2 Boundary Wave Problem

2.1 The Dirichlet Problem

Consider a two-dimensional acoustic waveguide, with the motion of the waves entering duct

with an infinite range in the x-direction, tapered at on each end. The function φ will be

in terms of the Cartesian coordinates, given in 2-dimensional space. The wavefield φ(x, y)

satisfies the Helmholtz equation

φ̄x̄x̄ + φ̄ȳȳ + k̄2φ̄ = 0 (−∞ < x̄ <∞, −h̄−(x̄) < ȳ < h̄+(x̄)), (1)

Here k is the wavenumber and y = ±h̄±(x̄) are the upper and lower boundaries of the

waveguide respectively.

We may now consider the boundary conditions of our problem. These are

φ̄ = 0 (−∞ < x̄ <∞, ȳ = ±h̄±(x̄)), (2)

φ̄→ 0 as x̄→ ±∞. (3)

Equation (2) is the Dirichlet boundary condition of our problem. We now solve the problem

using an asymptotic approach.
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Figure 1: The waves propagating in the waveguide.

Our first step is to non-dimensionalise the variables using the scaled equations below

x = εx̄/h0, (4)

y = ȳ/h0, (5)

k = k̄h0, (6)

φ(x, y) = φ̄(x̄, ȳ), (7)

and

h±(x) =
h̄±(x̄)

h0

, (8)

for some positive h0, and h±(x) are the non-dimensionalised functions calculating the

structure of the waveguide, the function is determined by,

h±(x) = 1 + (h1 − 1)sech(x). (9)

Figure (1) illustrates the slowly varying waveguide, where h1 is the length from the top

of the bulge to the x-axis, a positive constant we let = 1. The ε term in equation (4) is a

small variable, relating to the slowly varying guide.

If we now substitute the non-dimensional equations into equation (1), we see that the terms
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non dimensionalise in the following way:

φ̄x̄ = φxxx̄ =
ε

h0

φx thus φ̄x̄x̄ = (
ε

h0

)2φxx (10)

Similarly the second term non-dimensionalises as

φ̄ȳȳ =
φyy
h2

0

(11)

This leads to the assembled equation

(
ε

h0

)2φxx +
φyy
h2

0

+ (
k

h0

)2φ = 0 (12)

This then simplifies to

ε2φxx + φyy + k2φ = 0, (13)

together with the non-dimensionalised boundary conditions

φ = 0 (−∞ < x <∞, y = ±h±(x)), (14)

φ→ 0 as x→ ±∞. (15)

2.2 Perturbation method

We are now able to construct an asymptotic expansion in powers of the small parameter

ε using a perturbation method closely related to the WKBJ theory. The method is an

approximation to the characteristics of the waves in a slowly varying waveguide. The wave

function φ(x, y) can be written as an exponential of another function φ, such that

φ = A(x, y)e(P (x,y)), (16)

where

A = A0(x, y) + εA1(x, y) + ε2A2(x, y) + ... (17)

and

P = ε−1P−1(x, y) + εP1(x, y) + ε2P2(x, y) + ... (18)

From above, A0 represents the adiabatic approximation, meaning the system remains in its

instantaneous eigenstate whilst a perturbation is implemented, the higher orders correspond

to the amplitude terms along the transverse wavefield. P is the phase of the wave expanded in

terms of ε, it must be complex valued, as to ensure the WKBJ asnsatz (16) includes all cases
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of wave activity, ie propagating and decay. Note we can ignore an O(ε0) term from equation

(18) since it can be accounted for by the first term in equation (17).We now substitute the

ansatz into (13) in the following way:

Using equation(17), we see that

φx(x, y) = APxe
P + Axe

P , (19)

and φxx(x, y) = AP 2
xe

P + (APxx + PxAx)e
P + AxPxe

P + Axxe
P , (20)

and similarly

φyy(x, y) = AP 2
y e

P + (APyy + PyAy)e
P + AyPye

P + Ayye
P . (21)

We now substitute (20), (21) and (16) into the Helmholtz equation and expand to obtain

ε2[AP 2
xe

P + (APxx + PxAx)e
P + AxPxe

P + Axxe
P ]+

[AP 2
y e

P + (APyy + PyA+ y)eP + AyPye
P + Ayye

P ] + [k2AeP ] = 0

Cancelling a factor of eP then gives

ε2[AP 2
x + (APxx + PxAx) + AxPx + Axx] + [AP 2

y + (APyy + PyA+ y) + AyPy + Ayy] + k2A = 0.

(22)

5



Now substituting(17) and (18) into(22) and expand for small ε, we find that.

ε2[(A0 + εA1 + ε2A2 + ...)(ε−2P 2
−1x

+ 2P−1xP1x + εP2x + ε2P 2
1 x + ε3P1xP2x + ...)]

+(A0 + εA1 + ε2A2 + ...)(ε−1P−1xx
+ ε1P1xx + ε2P2xx + ...)

+2[(A0x + εA1x + ε2A2x + ...)(ε−1P−1x
+ ε1P1x + ε2P2x + ...) + (A0xx + εA1xx + ε2A2xx + ...)]

+[(A0 + εA1 + ε2A2 + ...)(ε−2P 2
−1y

+ 2P−1yP1y + εP2y + ε2P 2
1 y + ε3P1yP2y...)]

+(A0 + εA1 + ε2A2 + ...)(ε−1P−1yy
+ ε1P1yy + ε2P2yy + ...)

+2[(A0y + εA1y + ε2A2y + ...)(ε−1P−1y
+ ε1P1y + ε2P2y + ...) + (A0yy + εA1yy + ε2A2yy + ...)]

+k2(A0 + εA1 + ε2A2 + ...) = 0

Now we compare coefficients of ε. The O(ε−2) term are

A0P
2
−1y

= 0 and therefore P−1y = 0 which implies that P−1 = f(x)

where f(x) is an unknown function, to be determined later. At order ε−1 we find that

A0P
2
−1yy

+ A0yP−1y = 0, (23)

is trivially satisfied, since from (23), P−1y
= P−1yy

= 0. The O(ε0) terms are

A0P
2
−1x

+ A0yy + A0k
2 + P−1y

P1y = 0,

which simplify to

A0yy + A0P
2
−1x

+ A0k
2 = 0,

ie, A0yy + A0(P 2
−1x

+ k2) = 0. (24)

If we now substitute f(x) for P−1
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A0yy + A0(f ′
2

+ k2) = 0

which is a second order differential equation with solution

A0 = C1 cos (yα(x)) + C2 sin (yα(x)), (25)

where α2(x) = f ′
2

+ k2 and C1 = C1(x), C2 = C2(x). Using the Dirichlet conditions, the

solution is

A0 = C3 sin ((y + h−)α(x)), (26)

for C3 = C3(x). Then either C3 = 0 leading to a trivial solution or α(x)(h+ + h−) = nπ.

We have A0 = a0(x)S(x, y) where S(x, y) = C3 sin(α(x)(h+ + h−)), and αn(x) = nπ
w(x)

for

repeated solutions of the sin function, n = 1, 2... , w(x) = [h+(x) + h−(x)] and a0(x), is a

function of x we later calculate. Firstly, we normalise the function of S(x, y) in order to find

the value for C3. ∫ h+

−h−
C2

3 sin2(α(x)y + h−) dy = 1 (27)

Using a trigonometric identity, we separate the terms,∫ h+

−h−

C2
3

2
− C2

3

4nπ
sin

(2nπ(y + h−))

w(x)
dy = 1 (28)

integrating and evaluating at the limits, the equation is thus

C2
3(h+(x) + h−(x)) = 2 (29)

rearranging appropriately we see

C3 = (
2

(h+(x) + h−(x))
)

1
2 . (30)

Therefore

S(x, y) = (
2

(h+(x) + h−(x))
)

1
2 sin(α(x)(y + h−)) (31)

We continue equating orders of ε. The O(ε1) terms are

A1P
2
−1x

+A0P−1xx + 2A0xP−1x + 2P1yP1yA1 +A0P2y +A0P1yy + 2A0yP1y +A1yy + k2A1 = 0

Recalling that P−1 = f(x) and the derivatives of this function, we implement this in the
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equation above

A1yy + A1P
2
−1x + k2 + A0(f ′′n + P1yy) + 2A0xf

′
n + 2A0yP1y,= 0

ie.A1yy + A1(P 2
−1x

+ k2) = −A0(f ′′n + P1yy)− 2A0xf
′
n − 2A0yP1y. (32)

Now multiply (32) by A0 and integrate from y = −h− to y = h+ which leads to∫ h+

−h−
[A1yy + α2

nA1]A0 dy = 0. (33)

Integrating by parts, we see the integration evaluates to zero.

A0A1y

∣∣∣h+

−h− + (−
∫ h+

−h−
A1yA0y dy + α2

n

∫ h+

−h−
A0A1) dy = 0. (34)

A0A1y

∣∣∣h+

−h− (−A1A0y)
∣∣∣h+

−h− +

∫ h+

−h−
A0yyA1 dy + α2

nA0A1

∣∣h+
(
−)A0A1

∣∣−h− = 0. (35)

Since we know the function of A0 we can evaluate at the limits, and see this is zero. Hence

using this solvability condition on the right hand side equation,∫ h+

−h−
A0[A0(f ′′n + P1yy) + 2A0xf

′
n + 2A0yP1y dy] = 0. (36)

Taking the differentiation under the integral sign,ie. d
dx
F (x) = f(x, b(x))b′(x)−f(x, a(x))a′(x)+∫ b(x)

a(x)
∂
∂x
f(x, t) dt where F (x) =

∫ b(x)

a(x)
f(x, t) dt. Applying it to equation (36), we see that due

to the limits,
∫ h+

−h−(A
2
0P1yy + 2A0A0yP1y) dy evaluates to zero, leaving

∫ h+

−h−

∂

∂x
(A2

0f
′′
n + 2f ′nA0xA0) dy = 0 (37)

This reduces to, ∫ h+

−h−

∂

∂x
(f ′nA

2
0) dy = 0. (38)

Then by rules of differentiation under the integral sign, we are able to interchange the two

functions, such that
d

dx
(

∫ h+

−h−
(f ′nA

2
0) dy) = 0 (39)

f ′ is a function of x so taking it out of the integrand, we let a2
0 =

∫ h+

−h−A
2
0 dy, since

∫ h+

−h−A
2
0 dy =

8



Figure 2: Diagram illustrating a tapered duct

∫ h+

−h−a
2
0S

2
n(x, y) dy such that equation (39) reduces to

d

dx
(f ′na

2
0) = 0. (40)

Integrating both sides we find, a0(x) = C4|f ′n|−
1
2 , for some constant C4.

To solve for f we must firstly consider two cases for α2(x)− k2 ≥ 0 and α2(x)− k2 ≤ 0:

f(x) ≡ fn =

{
±i
∫ x

(k2 − α2
n(x0))

1
2 dx0, k ≥ αn(x)

±i
∫ x

(α2
n(x0)− k2)

1
2 dx0, k ≤ αn(x)

(41)

This defines the two cases of the problem. When the wavenumber k is larger than the cut-off

frequency αn(x), then the trapped mode is propagating.

If however the wavenumber k is smaller than the cut-off frequency, then the trapped mode

is evanescent.

This leads to the final solution

φ(x, y) = Cn|f ′n|
1
2Sn(x, y) exp{ε−1fn}+O(ε) (42)

2.3 The Reflective Wave in a Tapered Duct

Consider a tapered duct

Figure (2) illustrates two regions labelled on the tapered duct, the first region, allows a

9



travelling wave to oscillate, passing through to the tapered region we have labelled region

two. In this region the wave is evanescent and hence will exponentially decay. We find the in

coming wave mostly reflecting back into region one while only a fraction of the wave trans-

mits into the tapered region.

By using the turning point analysis, we can calculate the transmission and reflection coeffi-

cients of the n-th mode accordingly. We find that we have a two case solution for the n-th

mode. The first, when the mode propagates in x ≤ xn [region one], where xn denotes the

value of x at the n-th mode.

φn = φ(−)
n (x)Sn(x, y), (43)

where

φ(−)
n =

I exp{−iε−1
∫ xn

x
(k2 − α2

n(x0))
1
2 dx0}+Rn exp{iε−1

∫ xn

x
(k2 − α2

n(x0))
1
2 dx0}

(k2 − α2
n(x))

1
4

(44)

I is the amplitude of the incident wave and Rn is the reflection coefficient.

The second case, is when the mode is evanescent in x ≥ xn [region two]

φn = φ(+)
n (x)Sn(x, y), (45)

φ(+)
n =

Tn exp−ε−1
∫ x
xn

(α2
n(x0)− k2)

1
2 dx0

(k2 − α2
n(x))

1
4

(46)

Tn is the transmission coefficient. Note also, due to the conservation of energy, because the

wave decays when transmitted, all the energy is reflected back, therefore |Rn| = |I|.
However this condition is not valid in a small neighbourhood of x = x0. Therefore in order

to examine this small region we must consider k2−α2
n(x0) = −∆n(x0− xn) +O((x0− xn)2),

where ∆n = −2k3w′(xn)
(nπ)

.

We then see that

exp(iε−1

∫ xn

x

(k2 − α2
n(x0))

1
2 dx0) ∼ exp(ε−1

∫ xn

x

(xn − x0)
1
2 dx0), (47)

= exp(i
2

3
ε−1∆

1
2
n (xn − x0)

3
2 ), (48)
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so that, in the limit x0 → x
(−)
n there is a non-uniformity when (xn − x0)

3
2 = O(ε). Similarly

for the evanescent case in the limit x0 → x
(+)
n , we have

exp(−ε−1

∫ x

xn

(α2
n(x0)− k2)

1
2 dx0) = exp(−2

3
ε−1∆

1
2

(x0−xn)
3
2

n ), (49)

so again there is a non-uniformity when(x0−xn)
3
2 = O(ε). We can now utilise this knowledge

in our governing equation,by setting φn(x, y) = χn(η)Sn(x, y), where η = ε−
2
3 (x0−xn) is O(1)

in the region of interest. Now

φx = χ′nηxSn + χn
∂Sn
∂x

= ε−
2
3χ′nSn + χn

∂Sn
∂x

. (50)

Differentiating again we have

φxx = ε−
4
3χ′′nSn + 2ε−

2
3χ′n

∂Sn
∂x

+ χn
∂2Sn
∂x2

so that (51)

ε2φxx = ε
2
3χ′′nSn + 2ε

4
3χ′n

∂nSn
∂x

+O(ε2) (52)

lastly φyy = χnSnα
2
n(x) (53)

since as previously stated Sn(x, y) = (2/w)
1
2 sin[αn(y − h−)]. Finally the last term of the

Helmholtz equation

k2φ = k2χnSn. (54)

Simplifying and combining the three terms of the Helmholtz equation, we see that

ε
2
3χ′′nSn + 2ε

4
3χ′n

∂nSn
∂x

+O(ε2) + χnSn(k2 − α2
n(x)) = 0 (55)

But k2 − α2
n(x) = −∆n(x− xn) +O(x− xn)2, so equation(55) becomes

ε
2
3χ′′nSn + 2ε

4
3χ′n

∂Sn
∂x

+O(ε2)− χnSn∆n(x− xn) = 0. (56)

Now in equation (56) Sn = Sn(x, y) and similarly for Snx by using the Taylor series

expansion, f(x) = f(xn) + (x − xn)fx(xn) + 1
2
(x − xn)2fxx(xn) + O((x − xn)3) , expand in

the following way:

ε
2
3χ′′nSn(x, y) + 2ε

4
3χ′Snx(x, y)− χnSn(x, y)∆nε

2
3η +O(ε2) = 0 (57)

11



But x = xn + ε
2
3η, so f(x) = f(xn) + ε

2
3ηf ′(xn) + 1

2
ε

4
3η2f ′′(xn) +O(ε2)

Hence equation (57)

ε
2
3χ′′nSn(xn, y)+ε

2
3ηSnx(x, y)+O(ε

4
3 )+2ε

4
3χ′n{Snx(xn, y)+O(ε

2
3})−χn∆nε

2
3η{Sn(xn, y)+O(ε

2
3 )}+O(ε2) = 0

(58)

We can rearrange, such that

ε
2
3 (χ′′n −∆nηχn)Sn = ε

4
3 (χ′′n + 2χ′n −∆nη

2χn)
∂Sn
∂x

(xn) +O(ε2).

Taking the leading order χn ≈ χ
(0)
n where

χ(0)′′
n −∆nηχn = 0

This differential equation is of the form of an Airy equation, and hence the solution may be

written in term of the Airy functions,

χ(0)
n = FnAi(∆

1
3
nη) + F2nBi(∆

1
3
n η),

where Ai and Bi are the Airy’s function of the first and second kind respectively and Fn and

F2n are constants. Since the solution is bounded and decreases exponentially in the positive

limit equation (49), then the Airy’s function of the second kind is not part of the solution.

Hence

χ(0)
n = FnAi(∆

1
3
nη),

where Fn is some constant. So the solution in the neighbouurhood x = x0 is

φ ∼ FnAi(ε−
2
3 ∆

1
3
n (x− xn))Sn(x, y) (59)

We can determine the constants Rn, Tn and Fn by comparing the expansions of φ across

the boundary layer centered at x = xn with the the standard argument form of the Airy

function in the inner region given below:

φn ∼ Fnπ
− 1

2 ∆
− 1

12
n (−η)−

1
4 sin(

π

4
+

2

3
∆
− 1

12
n (−η)) (60)

as η → −∞ (61)

12



Firstly consider the limit in the negative direction:

φn ∼
Fn[exp{i(2

3
∆

1
2
n (−η)

3
2 + π

4
)} − exp{−i(2

3
∆

1
2
n (−η)

3
2 + π

4
)}]

2iπ
1
2 ∆

1
12
n (−η)

1
4

. (62)

Compare with the expansion of equation (44)

φ−n ∼
I exp{−i2

3
∆

1
2
n (−η)

3
2}+Rn exp{i2

3
∆

1
2
n (−η)

3
2}

∆
1
2
nε

1
2 (−η)

1
4

. (63)

We see that

I exp{−i(2
3
∆

1
2
n (−η)

3
2 )}

∆
1
4
nε

1
2 (−η)

1
4

= −
iFn exp{−i(2

3
∆

1
2
n (−η) + π

4
)}

∆
1
12
n (−η)

1
4 2π

1
2

, (64)

only if
2
√
πI exp i(π

4
)

∆
1
6
nε

1
6

= −iFn. (65)

Similarly we see that

Rn exp(i2
3
∆

1
2
n (−η)

3
2 )

∆
1
4
nε

1
6 (−η)

1
4

=
Fn exp{i2

3
∆

1
2
n (−η) + π

4
}

∆
1
12
n (η)

1
4 2π

1
2

; (66)

provided
2
√
πRn exp iπ

4

∆
1
4
nε

1
6 (−η)

1
4

= iFn. (67)

Again for the limit tending in the positive direction, we compare both expansions:

φ+
n ∼

Tn exp(−2
3
∆

1
2
nη

3
2 )

∆
1
4
nε

1
6η

1
4

(68)

such that

Tn =
1

2
Fnπ

− 1
2 ∆

1
6
nε

1
6 . (69)

The solutions to equations (44) and (46) are given with the conditions of Rn, Fn and Tn being

satisfied for a propagating(x ≤ xn) or evanescent wave (x ≥ xn).

2.4 A Uniform Expansion for a reflecting wave in a tapered duct

The analytical solution, is a composite of the inner boundary layer solution in the neigh-

bourhood x = x0 and of the outer slowly varying solution. It is therefore uniformly valid

13



throughout the duct, hence we are able to construct an expansion of the form,

φ(x, y) = B(x, y)Ai(ε
2

3
g(x)) + C(x, y)Ai′(ε

2
3 g(x)), (70)

where

B = B0 + ε
2
3B1 + ε

4
3B2 + ... (71)

C = ε
2
3C1 + ε

4
3C2 + ... (72)

g = g0 + ε
2
3 g1 + ε

4
3 g2 + ... (73)

(74)

The constant term in the expansion of C is not included, as we know from equation (59)

the bounded solution includes only the Airy function and not the first derivative. Now we

substitute these equations into the Helmholtz equation once again, and expand to obtain

ε2φxx = ε2BxxAi + 2BxAi′(ε
2
3 g)g′ε

4
3 +BAi′′(ε

2
3 g)g′

2

ε
8
3 +BAi′(ε

2
3 g)g′′ε

4
3 (75)

+ε2CxxAi′(ε
2
3 g) + 2CxA

′′(ε
2
3 g)g′ε43 + CAi′′′(ε

2
3 g)g′

2

ε
4
3

φyy = ByyAi(ε
2
3 g(x)) + CyyAi′(ε

2
3
g(x)) (76)

k2φ = BAi + CAi′ (77)

Now collecting terms of Airy functions of the first order

ε2Bxx + (k2 + gg′
2

)B +Byy + ε
2
3 (g′

2

C + gg′′C + 2gg′Cx) = 0 (78)

We expand coefficients of B and C

ε
10
3 B2xx + ε

8
3B1xx + ε2B0x + k2(B0 +B1ε

2
3 +B2ε

4
3 ) (79)

+B0yyε
2
3B1yy + ε

4
3B2yy + g0g

2′

0 B0 + g1g
2′

0 + (2g0g
′
1g
′
0)B0ε

23g0g
′2
0 B1ε

2
3

+[[g2g
2′

0 + 2g1g
′
1g
′
0 + g0(2g′2g

′
0 + g2′

1 )]B0 + (g1g
2′

0 + 2g0g
′
1g
′
0)B1 + g0g

2′

0 B2]

+ε
4
3B0yy + ε

2
3B1yy + ε

4
3B2yy + g2′

0 C1ε
4
3

+g2
0g
′′
0ε

2
3 + (2g1g0g

′′
0 + g2

0g
′′
1)ε

4
3 + 2g2

0g
′
0ε

2
3 + (4g1g0g

′
0 + 2g2

0g1x)ε
4
3 = 0.
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Now we equate coefficients of each power of ε to zero. The O(ε(0)) terms are

g0g
′2
0 B0 + k2B0 +B0yy = 0

B0yy +B0(k2 + g0g
′2
0 ) = 0 (80)

Let α2
n(x) = (k2 + g0g

2′
0 ), such that we have a simplified second order differential equation,

very similar to the expression 25, we can deduce g0 is related to function fn

B0yy +B0(α2) = 0. (81)

The general solution

B0 = b1 cos (αn(x)y) + b2 sin (αn(x)y) (82)

Using the Dirichlet Condition,

B0 = b0(x)(b3 sin (αn(x)(y + h−))), (83)

where b3 can be determined by normalising the function B0 = (b3 sin (αn(x)(y + h−))). We

find that b3 =
√

2
w(x)

, and as before w(x) = (h+ + h−). Now since α2
n = k2 + g0g

′2
0 there

is a clear relation to (41).We can find the solution of g0(x), by setting the function to be a

solution of the form

g0 = (Cfn)γ (84)

where fn is defined by the equation (41),differentiating g0 again, we see that

g′0 = γCγf (γ−1)
n f ′ (85)

Substituting these equations into αn(x)

k2 + (γ2C3γf (3γ−2)
n f ′n)2 (86)

Let the function g0 = 1 in order to determine the values for γand C. If we let f 3γ−2
n = 1,

then we see that γ = 2
3
.If we now let γ2C3γ = 1 it follows that C = (γ−

2
3 ).

Hence

g0(x) = (
3

2
f

2
3
n ) (87)

If we consider a small neighbourhood, x = xn, such that αn(xn) = k and that w′(x) ≤ 0

then if x ≥ xn we have αn(x) ≥ k such that g0(x) = (3
2
f

2
3
n ). If however, x ≤ xn then

αn(x) ≤ k hence g0(x) = (−3i
2
f

2
3
n ) a complex function. We require a real-valued function g,
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such that the solution takes the form,

g0(x) =

{
−(3

2

∫ x
(k2 − α2

n(x0))
1
2 dx0)

2
3 , x ≤ xn

(3
2

∫ x
(α2

n(x0)− k2)
1
2 dx0)

2
3 , x ≥ xn

(88)

Continuing the order of equating coefficients of the airys function

ε
2
3 : k2B1 +B1yy + (g1g

′2
0 + 2g0g1′g0′)B0 + g0g

′2
0 B1 + g2

0g
′′
0 (89)

And as before consider

B1yy + (k2 + g0g
2′

0 )B1. (90)

Let k2 + g0g
2′
0 = α2

n Multiplying equation (90) by B0 and integrating from y = −h− to

y = −h+ the solution =0. Then by this solvability condition,∫ h+

−h−
g′0(g′0g1 + 2g0g

′
1)B0 dy = 0 (91)

∫ h+

−h−
[g2′

0 g1 + 2g0g
′
0g
′
1]B0 dy = 0 (92)

Then differentiating with respect to x,∫ h+

−h−

∂

∂x
(g0g

2
1) dy (93)

We can then reduce the equation further

d

dx
(g0g

2
1) = 0 (94)

Solving this first order differential, leads to the solution g1 = G|g0|−1
2

Therefore B1 =

b1Sn(x, y).

We will now consider the derivative of the Airy’s function, and again, equate their coef-

ficients.

ε2Cxx + (k2 + gg′
2

)C + Cyy + ε
4
3 (g′′B + 2g′Bx) = 0 (95)
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Once again, we expand through B and C term,

ε
8
3C1xx + ε

10
3 C2xx + k2(ε

2
3C1 + ε

4
3C2) + (ε

2
3C1yy + ε

4
3C2yy) +

g0g
2′

0 C1ε
2
3 + ε

4
3 g′0B0 + (g1′′B0 + g′0B1)ε2 + (g2′′B0 + g1′′B1 + g0′′B2)ε

8
3

+(g2′′B1 + g1′′B2)ε
10
3 + 2g0′B0′ε

4
3 + (2g2′B0x + 2g2′B2x + 2g0′B2x)ε

8
3 +

(2g2′B1x + 2g1′B2x)ε
10
3 + [(g1g

2
0′ + 2g0g1′g0′C1 + g0g

2′

0 C2]ε
4
3 = 0.

We will now equate the coefficients of the derivative of the Airy functions. The order ε
2
3 has

the following terms,

C1yy + g0g
′2
0 C1 + k2C1 = 0 (96)

= C1yy + (g0g
′2
0 + k2)C1 = 0 (97)

Let

α2
n = g0g

2′

0 + k2. (98)

So that we now have,

C1yy + α2
nC1 = 0. (99)

This second order differential equation is solved, as in previous cases

C1 = c1(x)Sn(x, y), (100)

such that Sn(x, y) has been previously defined, and c1 is some constant to be determined.

Continuing equating orders of ε:

k2C2 + C2yy + g′′0B0 + 2g′0B0x + (g1g
′2
0 + 2g0g

′
1g
′
0)C1

+g0g
′
0C2C2yy + (k2 + g0g

′2
0 )C2 + g′′0B0 + 2g′0B0x = 0 (101)

(102)

C2yy + α2C2 = −2g′0B0x − g′′0B0 (103)

By integrating the left hand side, we find this is zero, more importantly this shows the

expansion of C as zero and hence we can consider the right hand side of the equation to
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equal zero through the solvability condition, in order to find b0.∫ h+

−h−
B0(2g′0B0x − g′′0B0) dy (104)

This equation can be reduced such that∫ h+

−h−

∂

∂x
g′0B

2
0 dy = 0 (105)

Taking g′0 out of the integrand, and substituting some constant b0 =
∫ h+

−h− g
′
0 dy. This then

becomes a first order differential equation,

d

dx
(b2

0g
′
0) (106)

and takes the solution of the form,

b0 = Gn|g′0|−
1
2 (107)

where constant Gn is to be determined and g′0 is a rearrangement of the equation (98)

g′0 = |k2 − α2
n|

1
2 |g0|−

1
2 .

The particular solution of the expanded form defined in (70) can be assembled, such that

φ(x, y) = B0Ai(ε
2
3 g(x)) (108)

where B0 is defined in (83) and g(x) defined in(116), substituting this in,

φ(x, y) =
Gn|g0(x)| 14 Ai(ε

2
3 g0(x))Sn(x, y)

|k2 − α2
n(x)| 14

(109)

Gn,is determined through the matching of expansions between (44) and the above equation,

ensuring that x→ −∞, where Rn is now unknown. As we are considering the negative limit,

we note that k ≥ αn and g0(x) ≤ 0, so that the Airy function in the negative limit is

Ai(ε−
2
3 g0(x)) ∼

ε
1
6 sin(π

4
+ ε−1

∫ xn

x
k2 − α2

n(x0) dx0)
√
π(g0(x))

1
4

(110)
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and thus

φn
Sn(x, y)

=
−iGnε

1
6 [exp i(π

4
+
∫ xn

x
k2 − α2

n(x0) dx0)]− [exp−i(π
4

+
∫ xn

x
k2 − α2

n(x0) dx0)]

2
√
π(k)2 − α2

n

(111)

We see that

iGn =
2
√
πRn exp−iπ

4

ε
1
6

(112)

and

−iGn =
2
√
πI exp iπ

4

ε
1
6

(113)

2.5 Trapping of waves in a symmetric duct

Now that we have found the uniformly-valid approximation given by equation (111), which

calculates the process of the transmitting wave decaying as x→∞ and of the reflecting wave

as x→ −∞ within a tapered duct.

We must now start to investigate their location. Suppose that h′±(0) = 0 and that h′±(x) ≤ 0

for x ≥ 0 such that we only consider half of an infinite duct. The maximum of the bulge is

located at x = 0 illustrated by fig (2). By taking only half the infinite duct into consideration,

we are able to find the trappings for symmetric and antisymmetric modes. Then by reflecting

the results, since throughout we have considered a symmetric waveguide, we gain a complete

illustration of trapped modes within the entire tapered duct.

Such trapped modes can be determined by specific wavenumbers k, such that φn(0, y) = 0

for the anti-symmetric modes in x, and φnx(0, y) = 0 for the symmetric modes in x. These

wavenumbers are determined in the range −h−(0) ≤ y ≤ −h+(0) where φn is given by (111).

Since h′±(0) = 0, this implies w′(0) = 0, remembering w(x) = [h+(x)+h−(x)] and since, αn =
nπ
w(x)

it follows that α′n(0) = 0. We therefore seek values of k, for which, Ai(ε−
2
3 g0n(x; k)) = 0

where we may take x = 0 we determine the antisymmetric and symmetric modes by finding

k in the following equations,

Ai(ε−
2
3 g0n(x; k)) = 0 antisymmetric modes (114)

Ai′(ε−
2
3 g0n(x; k)) = 0 symmetric modes (115)

where g0n(x; k) is a slight variation from equation (88)

g0n(x; k) =

{
−(3

2

∫ α−1
n (k)

x
(k2 − α2

n(x0))
1
2 dx0)

2
3 , x ≤ α−1

n (k)

(3
2

∫ x
α−1

n (k)
(α2

n(x0)− k2)
1
2 dx0)

2
3 , x ≥ α−1

n (k)
(116)
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as the limits are now between 0 and α−1
n (k), where α−1

n (k) is the unique positive root of

αn(α−1
n (k)) = k in the interval (0,∞). If we now denote the m-th root of Ai(z) = 0 by

z−m for m ∈ N, such that the ordering of the roots are established as z−(m+1) ≤ z−m, then

approximations to wavenumbers k for the antisymmetric modes can be found by solving

ε
2
3 g0n(0; k) = zm for m,n ∈ N (117)

and for the symmetric case, by denoting z′m as the m-th root at Ai(z) = 0 with the roots

ordered z′−(m+1) ≤ z′−m, the wavenumbers producing trapped modes are found via, the equa-

tion

ε
2
3 g0n(0; k) = z′m for m,n ∈ N (118)

Having found the specific wavenumbers to these trapped modes, we can implement the data

into equation (116) in order to determine the structure of the waveguide. A Numerical

solution, provides a clear graphical representation, of the results, as can be found in a later

chapter of this paper.

3 The Neumann Problem

We will now consider the Neumann boundary condition, and compare the results to the

Dirichlet.

φ̄xx + φ̄yy + k2φ̄ = 0 (−∞ < x̄ <∞, ȳ = ±h̄±(x̄)), (119)

φ̄ς = 0, (−∞ < x̄ <∞, ȳ = ±h̄±(x̄)). (120)

where ς is the normal of the waveguide. The Neumann Case, follows a similar method to

finding a solution as to the Dirichlet Problem. By non-dimensionalising the problem as

before, substitute the given ansatz (16), (18) and (17), and expand the equation. Then by

equating orders of ε we eventually get to the complementary function (25), where coefficients

C1 and C2 are determined by the Neumann Boundary Condition (120). By differentiating

(25), we see that the particular solution is Cn(x, y) = C3Cos((y + h−) ∗ α(x)) = 0. We also

require, when y = h+

A′0 = αC1 cos(α(h+ + h−)) = 0 (121)

let w(x) = (h+ + h−) then either αC1 = 0 which is trivial, or, αw = nπ for n ∈ N ∪ {0}.
Thus the final solution is,
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Cn(x, y) = C3 cos(
nπ

w(x)
(y + h−)) = 0, (122)

for n=0,1,2,... Again, we normalise the function to find C3

Cn(x, y) = 1 for n = 0 (123)

Cn(x, y) =

√
2

w(x)
cos[

nπ

w(x)
(y + h−)] for n = 1, 2... (124)

Reflecting the waves in the small neighbourhood, x = xn we substitute φn(x, y) =

χn(η)Cn(x, y) into the Helmholtz Equation, which leads to the same bounded solution as

the Dirichlet case.

χ(0)
n = FnAi(∆

1
3
nη) (125)

This gives the final solution of the φ equation:

φ ∼ FnAi(ε
2
3 ∆

1
3
n (x− xn))Cn(x, y). (126)

Then by comparing the Airy’s standard argument with equations (44) and (46) we find

a relation between Fn, Rn,Tn and I, by comparing the expansions of φ across the boundary

layer centred at x = xn and taking the standard argument form of the Airy function given

below:

φn ∼ Fnπ
− 1

2 ∆
− 1

12
n (−η)−

1
4 cos(

π

4
+

2

3
∆
− 1

12
n (−η)) (127)

as η → −∞

Firstly consider (127) in terms of the exponential components, in order to compare with

equation (44)

φn ∼
Fn exp{i(2

3
∆

1
2
n (−η)

3
2 + π

4
)}+ exp{−i(2

3
∆

1
2
n (−η)

3
2 + π

4
)}

2iπ
1
2 ∆

1
12
n (−η)

1
4

. (128)

As a reminder for the purpose of ease, we compare equation (44) given below

φ−n ∼
I exp{−i2

3
∆

1
2
n (−η)

3
2}+Rn exp{i2

3
∆

1
2
n (−η)

3
2}

∆
1
2
nε

1
2 (−η)

1
4

.
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We see that

I exp{−i(2
3
∆

1
2
n (−η)

3
2 )}

∆
1
4
nε

1
2 (−η)

1
4

=
iFn exp{−i(2

3
∆

1
2
n (−η) + π

4
)}

∆
1
12
n (−η)

1
4 2π

1
2

, (129)

only if

iFn =
2
√
πI exp{i(π

4
)}

∆
1
6
nε

1
6

. (130)

iFn =
2
√
πRn exp{−i(π

4
)}

∆
1
6
nε

1
6

, (131)

and

Fn =
2
√
πTn

∆
1
6
nε

1
6

. (132)

As before we can derive a uniformly valid solution using the expansion

φ(x, y) = B(x, y)Ai(ε
2

3
g(x)) + C(x, y)Ai′(ε

2
3 g(x)), (133)

where B(x, y),C(x, y) and g(x) are defined in equations (71),(72),(73) respectively.

Substituting the ansatz into equation 13 and separating the terms of the Airy’s equations,

and of the first derivative of the Airy’s equation. We then equate orders of ε. These terms,

are replicated from the Dirichlet example, however the solution, varies from the sin function

to the cos solution for the Neumann case. For example, in the equation (82), we use the

Neumann condition instead, such that

B0 = b0(x)(b3 cos (αn(x)(y + h−))), . (134)

Again, by normalising the function, we find b3 =
√

2
w(x)

, so thatB0 =
√

2
w(x)

cos (αn(x)(y + h−)).

w(x) = (h+ + h−).

The equation for g0(x) still holds for the Neumann case, however again, B1 = b1Cn(x, y).

Analysing the derivative of the Airy function the slight variation from the Dirichlet case,

comes from the cos term thus, C1 = c1Cn(x, y), for some constant c1 to be determined. This

now gives rise to the solution of the uniform approximation to the n-th mode,

φ(x, y) =
Gn|g0(x)| 14 Ai(ε

2
3 g0(x))Cn(x, y)

|k2 − α2
n(x)| 14

(135)

The Gn constant is found through matching of expansion, and as previously calculated,

is a relation to Rn.

Having found the particular equation to solving the structure of reflecting and transmitting
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waves within a tapered duct, bounded by a Nuemann condition, we may now consider finding

trapped modes. This again, is the same method for the Dirichlet case, hence it deems

unnecessary to replicate chapter 2.5.

We may now begin to look at the Numerical approximations to this problem and determine

the trappings for each case.

4 The Numerical Approach

4.1 Plotting solutions of k

The specific values of k are found by solving equations (117) and (118). Table 1 in the

appendix shows a list of the first 24 solutions of the Airy function and the first derivative,

denoted by Zn and Z ′n for the antisymmetric and symetric solutions respectively. Let us

consider the trapped modes for the first antisymmetric soltuion, Z1, the program, developed

through MATLAB, predicts the first two solutions of k using equation (118). To gain a better

accuarcy of the solution, the program was developed, such that it included a numerical tech-

nique, similar to the Euler Method. This involved finding subsequent values for wavenumber

k through the given equation and improving this result by averaging the calculated value

with a predicted value formed from the tangent of the two preceeding values. This method

was applied to the remaining Zn solutions and the plotted result can be seen in figure (3).

This approach was also applied to the symmetric solutions as illustrated in figure (4). It

is clear to see from figures (3) and (4), although not labelled, Z1 (and Z ′1) are the lowest

solutions plotted on both graphs, increasing up to Zn or Z ′n.

The graphs illustrate the wavenumbers k, as a function of the bulge half width denoted h1,

such that 2h1 is the maximum of the bulge (at x = 0) and h1 = 2 at the limits x → ±∞.

Fixing ε = 0.1 and the constant Gn = 1, we will compare solutions of k, for n = 1, where n

is the multiple coefficient of π, in the αn(x) equation Figure (3) and (4) show the solutions

of k
π

tending to 0.5 at the maximum of the bulge, which slowly decreases as we tend towards

the cut-off frequency x → ±∞. We would expect this, as this shows a decrease in existing

trapped modes, in the given region.

It is important to mention that despite the improvement to the numerical technique used to

get a more accurate solution at h1 = 1, it was still difficult to get certain solutions of Z to a

more accurate limit. This was because, at this region we were interpolating for asymptotic

solutions.

We will now consider when n = 2, figures (5) and (6) illustrate the solutions of k
π

to

be closer together, the gaps between Zn and Z ′n solutions are less far apart then in figures
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n=1 bulge.jpg

Figure 3: Solutions to wavenumbers of antisymmetric trapped modes for n=1 are plotted for
each Airy solution, with the first solution Z1 plotted as the lowest line increasing up to Zn
for n=24
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n=1 bulge.jpg

Figure 4: Solution to wavenumbers of symmetric trapped modes for n=1 are plotted for each
Airy solution with the first solution Z ′1 plotted as the lowest line increasing up to Zn for
n=24
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n=2 bulge.jpg

Figure 5: Wavenumbers of antisymmetric trapped modes for n=2.

(3) and (4). This shows an the existence of more trapped modes within the same region.

Another difference, which may be obivous, is the values of k
π

tend to 1 as we are closer to

the maximum of the bulge, and decays down to 0.5 as we near the cut-off. As we can see,

by increasing n we increase the number of k solutions which in turn increases the number of

trapped modes available.
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n=2 bulge.jpg

Figure 6: Wavenumbers of symmetric trapped modes for n=2.
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bulge anti-symmetric n=1.jpg

Figure 7: Contour plot of antisymmetric trapped modes.

4.2 Plotting the final solutions with Dirichlet boundary conditions

Once the values of k were found, we substituted them into the (109) and plotted the solutions,

as shown in figures (7) and (8). The graphs illustrate one trapped mode propagating at the

center of the bulge. Analysing figure (8), we can see at x = 0 the solution is reflected such

that the complete solution is symmetric. For the antisymmetric case, figure (7), involved

plotting the negative solutions of φn(x, y) against x and y.

A more visual representation of the trapped modes in the tapered duct can be viewed

in figures (9) and (10). For the symmetric case it is very easy to see the symmetry at x=0,

with large amplitudes near the cut-off frequency and small amplitudes at the centre. This

suggest the resonance is at its largest at the cut-off regions, before it decays exponentially at

x → ±∞. The antisymmetric case is very similar, in that the resonant amplitude is at its

maximum near the cut-off frequency for x in the positive limit, and its minimum amplitude

near the cut-off for x in the negative limit. For an antisymmetric case, this is something we
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bulge symmetric n=1.jpg

Figure 8: Contour plot of the symmetric trapped modes.
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modes antisymmetric n=1.jpg

Figure 9: Surface plot of antisymmetric trapped modes, where we let h1 = 1.224 and
wavenumber k = 1.500052
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modes symmetric n=1.jpg

Figure 10: Surface plot of the symmetric trapped modes, where we let h1 = 1.224 and
wavenumber k = 1.479089
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would expect.

bulge anti-symmetric n=2.jpg

Figure 11: Contour plot of antisymmetric trapped modes for n=2.

Graphs (11) and (12) depict solutions of trapped modes for n=2. Both graphs illustrate

the existence of two trapped modes, which we would expect, since by increasing n we are

increasing the range of k and the number of Airy solutions available. Therefore we can

deduce, increasing n leads to an increase in the number of possible trapped that could exist.
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bulge symmetric n=2.jpg

Figure 12: Contour plot of symmetric trapped modes for n=2.

4.3 Plotting the final solutions with Neumann boundary condi-

tions

We will now compare these trappings with the symmetric and antisymmetric solutions of

the Neumann boundary condition. Figures (13) and (14) illustrate resonance occuring at the

surface boundary of the bulge region of the duct, unlike the Diriclet case, in which resonance

occured in the whole region of the bulging duct. A better look at this difference, is to analyse

the surface plots as illustrated in figures (15) and (16). From these graphs we can see the

Neumann boundary conditions, suggest two resonating waves on each side of the boundary.

We denoted in earlier chapers h± to be the upper and lower boundaries of the duct (see figure

(1)). If we analyse the symmetric graph first, we can see from figure (14) two resonating waves

on each boundary ±h±. As a result figure (16) illustrates the waves decaying at x → ±∞,

similar to the Dirichlet case, but the thick dark areas represent the two waves from the side,

in comparison to the Dirchlet the thin dark region illustrates the one wave decaying.

We will now consider trapped modes existing in the Neumann condition, for n = 2. This
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Neumann bulge anti-symmetric n=1.jpg

Figure 13: Contour plot of antisymmetric trapped modes, with Neumann boundary condition.
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Neumann bulge symmetric n=1.jpg

Figure 14: Contour plot of the symmetric trapped modes, with Neumann boundary condition
for n = 1.
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antisymmetric Neumann.jpg

Figure 15: Surface plot of antisymmetric trapped modes, with Neumann boundary condition
for n = 1, where we let h1 = 1.224 and wavenumber k = 1.500052
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symmetric Neumann.jpg

Figure 16: Surface plot of the symmetric trapped modes, with Neumann boundary condition
for n=1, where we let h1 = 1.224 and wavenumber k = 1.479089
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Neumann bulge anti-symmetric n=2.jpg

Figure 17: Contour plot of antisymmetric trapped modes, with Neumann boundary condition
for n=2.

case again, is very similar to the Dirichlet case, with the main difference solutions now have

three sets of propagating waves. Two occuring on the boundary, and one at the centre. We

can deduce that as n increases, so does the number of trappings in the region, which again

we would expect.
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Neumann bulge symmetric n=2.jpg

Figure 18: Contour plot of the symmetric trapped modes, with Neumann boundary condition
for n=2.
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Figure 19: Contour plot of antisymmetric modes, with Neumann condition for ε = 0.001.

4.4 Varying the small parameter ε

Research up until now, on this paper, has dealt with the small parameter ε = 0.1, by varying

this constant, such that it is even smaller, say 0.001, we find, a rich amount of trappings

existing in the region of the bulge. Solutions of the wavenumbers will not be plotted for

this paper, as solutions for each Zn were plotted with marginal gaps between them. As a

result, this suggested more trapped modes existed for waveguides, slowly varying as possible.

This can be seen from figures (19) and (20) the strong detail in graphs show, many existing

trappings occur within the region, and also the affects of the number of oscillations that

occur. By letting ε → 0 we increase the number of oscillations within the region. This

suggests resonance is greatest for slowly varying waveguides.

Physically this is plausable as it suggest the slower the variation in curvature of the waveguide

is the more oscillations can exist.
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Figure 20: Contour plot of symmetric modes with Dirichlet condition for ε = 0.001.
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Figure 21: Waveguide with a bulging upper profile, and constant lower profile

4.5 Changing the geometrical sructure

Having given detailed results on trappings for both Dirichlet and Neumann condition for a

tapered duct, we can progress this theory, and explore existence of trappings for a different

geometrical structure. One in particular, would be to consider the duct to be bulging in the

upper profile, such that ±h+ = 1 + (h1 − 1)sech(x), but a constant in the lower profile, say

±h− = 1. As illustrated in figure (21).

By taking into account this new geometry, we change the program accordingly, noting

that wavenumber k solutions remain the same. Plotting the symmetric and antisymmetric

modes for the Dirichlet case, where n = 1, ε = 0.1 and Gn remains the same, we find

the solutions are very similar to that produced by a full bulging structure of the Dirichlet

case. Figure (22) shows the antisymmetric case for the half bulging waveguide. The waves

propagate at the centre of the waveguide, and eventually decay exponentially as the waves

near the cut-off frequency. However it is clear to see the waves decay at a slower rate than

in figure (10). Similarly for figure (23), resonating waves is found at the centre of the duct.

A surface plot of the symmetric solution is found in figure (24), as we can see at x → ±∞
the solution is graphically represented as a thicker line then in previous graphs.

We will now consider the solution of this new waveguide, when n = 2. We would expect

the solution to bare a resemblance to the bulge case, with two solutions occuring. Figure

(25) and (26) confirms this for antisymmetric and symmetric modes respectively. One thing

to mention, the two graphs do not portray the same inteval of x, hence why figure (26) does

not look as slowly varying as figure (25), yet they are. The existence of trapped modes hold

in this case.

42



constant n=1 anti-symmetric.jpg

Figure 22: Contour plot of antisymmetric modes, with Dirichlet condition for the new geo-
metrical structure.
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constant n=1 symmetric.jpg

Figure 23: Contour plot of symmetric modes with Dirichlet condition for the new geometrical
structure.
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Figure 24: Surface plot of symmetric modes with Dirichlet condition for the new geometrical
structure, where h = 1.3012 and k = 1.54682
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constant n=2 anti-symmetric.jpg

Figure 25: Contour plot of antisymmetric modes, with Dirichlet condition for the new geo-
metrical structure, when n = 2.
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constant n=2 symmetric.jpg

Figure 26: Contour plot of symmetric modes with Dirichlet condition for the new geometrical
structure, when n = 2.
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Neumann constant anti-symmetric n=1.jpg

Figure 27: Contour plot of antisymmetric modes with Neumann condition for the new geo-
metrical structure, when n = 1.

4.6 The Neumann boundary condition for the waveguide where

h− = 1

Having considered the posiblities of the Dirichlet condition, we may finally investigate trap-

pings of the waveguide with a constant lower boundary for the Neumann condition. Figures

(27) and (28) illustrate the solutions, which are found to be very similar to that found with the

fully bulging waveguide. The trappings are found at the boundary of the waveguide, however

one particular difference, is the exponential decay at the cut-off frequency. The propagating

waves near the cut-off frequency, decay at a marginally slower rate for waveguides with a

constant lower boundary then for waveguides with a bulge.
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Neumann constant symmetric n=1.jpg

Figure 28: Contour plot of symmetric modes with Neumann condition for the new geometrical
structure, when n = 1.
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5 Conclusion

In this paper, we have shown trapped modes exist, for slowly varying waveguides of two

different boundary conditions. Using an asymptotic expansion, we were able to solve the

problem for various cases and identify the impact certain physical characteristics have on the

solution. In particular, taking ε to be close to zero, leads to an increase in the number of

oscillations leading to greater resonance. By considering two different shaped waveguides,

we were able to compare the modes, and found similarities between the two cases. Further

research in this paper can be made to investing trapping of energy for various geometrical

structures. As though much work has already been made in this area [5, 3]. This paper

also dealt with Dirichlet and Neumann boundary conditions, which help understand how

they effect trapped modes. By investigating other boundary conditions, such as the mixed

problem, we can understand the occurence of trappings in more detail, and apply this work

to applications in resonance in acoustic waveguides.

Unfortunately, we were unable to carry out further numerical work. Having now found the

solution to the problem through a perturbation method, we could verify the accuracy through

another more advance numerical technique, the spectral method. We will not go into details

over the aspects involved, however in Craster’s paper [2], the use of Chebyshev-Laguerre

spectral method would verify the calculations made in this paper were correct.

Studying trapped modes in waveguides, is a field, with many applications, much research

has gone into the possibilities for futher work. Some areas in particular, would involve

investigating anti-symmetric waveguides. As mentioned earlier this paper dealt with the

symmtric waveguide throughout, as this helped understand the existence of trapped modes,

however finding modes for antisymmetric waveguides, is an area of great interest, as its

applications would be useful and realistic in not only acoustic waveguides, but other areas,

such as electromagnetic, quantum and water waves.
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6 First Appendix

List of Airy solutions and the first derivative solutions

Z1 −2.338107410459764 Z ′1 −1.018792971647472

Z2 −4.087949444130973 Z ′2 −3.248197582179841

Z3 −5.520559828095556 Z ′3 −4.820099211178738

Z4 −6.786708090071763 Z ′4 −6.163307355639495

Z5 −7.944133587120851 Z ′5 −7.372177255047778

Z6 −9.022650853340979 Z ′6 −8.488486734019723

Z7 −10.040174341558082 Z ′7 −9.535449052433547

Z8 −11.008524303733266 Z ′8 −10.527660396957408

Z9 −11.936015563236262 Z ′9 −11.475056633480246

Z10 −12.828776752865757 Z ′10 −12.384788371845749

Z11 −13.691489035210719 Z ′11 −13.262218961665209

Z12 −14.527829951775335 Z ′12 −14.111501970462996

Z13 −15.340755135977997 Z ′13 −14.935937196720518

Z14 −16.132685156945772 Z ′14 −15.738201373692538

Z15 −16.905633997429945 Z ′15 −16.520503825433796

Z16 −17.661300105697059 Z ′16 −17.284695050216438

Z17 −18.401132599207116 Z ′17 −18.032344622504393

Z18 −19.126380474246954 Z ′18 −18.764798437665952

Z19 −19.838129891721501 Z ′19 −19.483221656567235

Z20 −20.537332907677566 Z ′20 −20.188631509463374

Z21 −21.224829943642099 Z ′21 −20.881922755516740

Z22 −21.901367595585132 Z ′22 −21.563887723198977

Z23 −22.567612917496504 Z ′23 −22.235232285348914

Z24 −23.224165001121680 Z ′24 −22.896588738874620
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