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Abstract

We consider the problem of electromagnetic scattering by simple ice crystal shapes. This has

important meteorological applications, where understanding the behaviour of scattered radiation

through clouds can enable the remote measurement of quantities such as ice crystal sizes and cloud

optical depths. We solve Maxwell’s equations to set up a boundary-value transmission problem. The

Helmholtz equation is satisfied inside and outside the ice crystal with complex and real wavenumbers

respectively. We apply Green’s Representation Theorem to reformulate the problem as a set of

boundary integral equations, for which the unknowns are the total field and its normal derivative.

We solve via a Galerkin boundary element method, originally developed for acoustic scattering, and

investigate its effectiveness. Some encouraging results are obtained, though we note the limitations

of applying such a method to our problem. Further work is suggested that may alleviate these

constraints.
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1 Introduction

Electromagnetic scattering is an important application in many areas of science and industry, from the

modelling of an optical security device to x-ray diffraction. Acoustic scattering is an analogous field

on which there is considerable literature. Therefore any novel techniques that arise in one field may

have a useful purpose in the other.

The aim of this dissertation is to investigate the extent to which the numerical solution of elec-

tromagnetic scattering problems can be enhanced using methods developed for acoustic scattering. In

particular we employ a Galerkin boundary element method which incorporates the product of plane

waves with piecewise polynomials into the approximation space (see [6]).

In chapter 2 we outline the transmission problem and reformulate it as a set of integral equations

on the boundary, then we investigate the leading order behaviour and modify the integral equations

accordingly.

In chapter 3 we parameterise the problem on the boundary and define the approximation space.

In chapter 4 we set up the linear system, and proceed to give an in depth description of how we

evaluate the matrix entries.

In chapter 5 we conduct a variety of numerical experiments to test our method. We have no error

analysis or test data against which to check (with the exception of the original acoustic scattering

problem), so we rely on a qualitative check for convergence

We conclude by giving an overview of the project and suggesting ways in which the work can be

carried forward.



2 THE BOUNDARY-VALUE TRANSMISSION PROBLEM 9

2 The Boundary-Value Transmission Problem

2.1 From Maxwell’s equations to the Helmholtz equation

We start with Maxwell’s equations, which describe the propagation of electromagnetic waves in a

medium.

∇ · E =
ρ

ε

∇ ·H = 0

∇× E + µ
∂H

∂t
= 0

∇×H − ε
∂E

∂t
− σE = 0

where σ is the electric conductivity, µ is the magnetic permeability, ε is the electric permittivity

and ρ is the charge density, all properties of the medium. We consider the medium to be homogeneous

and isotropic, where the above parameters are constant, and describe the time harmonic electric and

magnetic fields by

E(x, t) = Re
[
E(x)e−iωt

]
H(x, t) = Re

[
H(x)e−iωt

]
The time-dependent equations become

∇× E − iωµH = 0

∇×H + iωεE − σE = 0

Using the vector identity ∆E = ∇(∇.E)−∇×∇×E, and noting that ∇(∇.E) = 1
ε∇ρ = 0, we see
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that E(x) andH(x) satisfy the vector Helmholtz equation with wavenumber k, where k2 = ω2µε+iµσω.

∆E(x) + k2E(x) = 0

∆H(x) + k2H(x) = 0

Since the electric and magnetic fields satisfy the Helmholtz equation with the same wavenumber,

we will only consider the electric field, and denote it by u(x) = E(x). We consider an incident electric

field ui(x) upon a constant cross-section ice crystal with boundary Γ. The ice crystal is oriented at 90

degrees to the incident wave, hence the problem is confined to a plane and is 2-D in nature.

Γ
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Figure 2.1: The boundary-value transmission problem
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We denote the domain of the scatterer in the plane of incidence by D, with the exterior domain

R2 \ D̄. The total field outside is given by ut(x) = ui(x) + us(x), where us(x) is the scattered field.

Inside the total field is equal to the transmitted field, u0(x). Outside we take the parameter values as

those for a vacuum, which is a good approximation for air. Therefore we have σ = 0, ε = ε0 (electric

permittivity of free space) and µ = µ0 (magnetic permeability of free space). Inside, we take µ = µ0,

since ice is non-magnetic, with σ and ε taking the appropriate values for ice (we will continue to denote

by σ and µ for clarity). Thus we have the scattered and transmitted fields satisfying the Helmholtz

equation in both domains.

∆us(x) + k2us(x) = 0, k2 = ω2µ0ε0 (2.1)

∆u0(x) + k2
0u0(x) = 0, k2

0 = ω2µ0ε+ iµ0σω (2.2)

The significance of the complex wavenumber is that the transmitted field decays inside D, due to

the non-zero conductivity. In the limit σ →∞ (a perfect conductor), the electric and magnetic fields

tend to zero as the solutions to Maxwell’s equations, and the boundary-value transmission problem

becomes an exterior scattering problem with Dirichlet boundary conditions (ut = 0 on Γ) that is

generically identical to the acoustic scattering problem in [6].

Electromagnetic radiation is generally refracted to some extent when passing between two media.

The exception is when total internal reflection occurs (see 2.7). The amount of refraction is determined

by the the refractive index of each medium, ni, which is equal to the ratio of the speed of light, c, to

the phase velocity in the medium, ci, so ni = c/ci. Since c is constant, we have that nici is constant.

We also have that the phase velocity is related to the wavenumber, ki, by ci = ω/ki (where ω is the

angular frequency and is the same in both media). For two media, denoted by subscripts 1 and 2

n1c1 = n2c2 ⇒
n2

n1
=
c1
c2

=
ω/k1

ω/k2
=
k2

k1

Thus, the ratio of the refractive indices is equal to the ratio of the wavenumbers. For our ice crystal
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problem we have nice ≈ 1.31 + 0.01i [3] and nair ≈ 1. Therefore in our notation, k0/k = nice/nair =

1.31 + 0.01i, so k0 = 1.31k + 0.01ki for the incident wavenumber we choose.

2.2 Boundary conditions

We consider the TE polarisation mode, where the electric field is parallel to the boundary of Γ. Con-

tinuity of Maxwell’s equations requires that the electric field and its normal derivative are continuous

across Γ

ut = u0 on Γ

∂ut

∂n
=

∂u0

∂n
on Γ

where n is the unit normal on Γ.

2.3 Sommerfeld Radiation Condition

The exterior domain is unbounded and we require to know how the scattered field, that part of the

field that travels away from the scatterer, behaves as it travels outwards towards ∞. The condition we

impose is called the Sommerfeld Radiation Condition (SRC), which ensures that the solution to our

integral equation is unique. The SRC is

limr→∞

(
∂us

∂r
(x)− ikus(x)

)
= 0

where r = |x| and the limit holds uniformly in all directions x/|x|.

2.4 Green’s Representation Theorem

We have from [5, theorem 3.40] that the solution to the transmission problem is unique. We use the

representation theorems [5, theorems 3.1, 3.3] for the solutions us and u0, in D and R2 \D̄ respectively.
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−u0(x) =
∫

Γ

[
u0(y)

∂Φ(k0,x,y)
∂n(y)

− ∂u0(y)
∂n

Φ(k0,x,y)
]
ds(y)

=
∫

Γ

[
ut(y)

∂Φ0(x,y)
∂n(y)

− ∂ut(y)
∂n

Φ(k0,x,y)
]
ds(y), x ∈ D (2.3)

us(x) =
∫

Γ

[
us(y)

∂Φ(k,x,y)
∂n(y)

− ∂us(y)
∂n

Φ(k,x,y)
]
ds(y), x ∈ R2 \ D̄ (2.4)

In (2.3) we have used the boundary condition that ut = u0 on Γ. Φ(k,x,y) and Φ(k0,x,y) are the

fundamental solutions to the 2-D Helmholtz equations (2.1) and (2.2)

Φ(k,x,y) :=
i

4
H

(1)
0 (k|x− y|)

Φ(k0,x,y) :=
i

4
H

(1)
0 (k0|x− y|)

H
(1)
0 (z) is the Hankel function of the first kind of order zero. An important feature to note that is

that as z → 0,H(1)
0 (z) → −∞∗i and is undefined at the origin. This is relevant to some of the integrals

we encounter later. We choose to solve for the total field outside, ut, rather than the scattered field us.

The reason for this is that if we solve for the scattered field we are left with a singular integral, whereas

if we consider the total field, we obtain two such terms whose singularities are equal and opposite and

cancel each other out (see (4.7)). We therefore add the following term to both sides of (2.4),

ui(x) =
∫

Γ

[
ui(y)

∂Φ(k,x,y)
∂n(y)

− ∂ui

∂n
(y)Φ(k,x,y)

]
ds(y) + ui(x), x ∈ R2 \ D̄

We then have

ut(x) =
∫

Γ

[
ut(y)

∂Φ(k,x,y)
∂n(y)

− ∂ut(y)
∂n

Φ(k,x,y)
]
ds(y) + ui(x), x ∈ R2 \ D̄ (2.5)

Now let x → Γ and use [5, theorem 2.13] to continuously extend the double-layer potential from

D → D̄ and from R2 \ D̄ → R2 \D. The limiting values give
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−u0(x) =
∫

Γ

[
u0(y)

∂Φ(k0,x,y)
∂n(y)

− ∂u0(y)
∂n

Φ(k0,x,y)
]
ds(y)− 1

2
u0(x), x ∈ Γ

ut(x) =
∫

Γ

[
ut(y)

∂Φ(k,x,y)
∂n(y)

− ∂ut(y)
∂n

Φ(k,x,y)
]
ds(y) +

1
2
ut(x) + ui(x), x ∈ Γ

Now consider the normal derivative of (2.3) and (2.5) in the limit x → Γ. We use [5, theorems 2.19,

2.21] to compute separately the normal derivative of the single and double-layer potentials moving

from D → D̄ and from R2 \ D̄ → R2 \D.

−∂u0(x)
∂n

=
∂

∂n(x)

∫
Γ
u0(y)

∂Φ(k0,x,y)
∂n(y)

ds(y)−
[∫

Γ

∂u0(y)
∂n

∂Φ(k0,x,y)
∂n(x)

ds(y) +
1
2
∂u0(x)
∂n

]
, x ∈ Γ

∂ut(x)
∂n

=
∂

∂n(x)

∫
Γ
ut(y)

∂Φ(k,x,y)
∂n(y)

ds(y) +
[∫

Γ

∂ut(y)
∂n

∂Φ(k,x,y)
∂n(x)

ds(y)− 1
2
∂ut(x)
∂n

]
+
∂ui(x)
∂n

, x ∈ Γ

The above integral equations can be expressed in a shorter form,

−u+Ku− S
∂u

∂n
= −2ui (2.6)

−∂u
∂n

+ Tu−K ′ ∂u

∂n
= −2

∂ui

∂n
(2.7)

u0 +K0u0 − S0
∂u0

∂n
= 0 (2.8)

∂u0

∂n
+ T0u0 −K ′

0

∂u0

∂n
= 0 (2.9)

where S, S0,K,K0,K
′,K ′

0, T and T0 are integral operators, and for ψ ∈ L2(Γ)
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Sψ(x) :=
∫

Γ
ψ(y)Φ(k,x,y)ds(y)

S0ψ(x) :=
∫

Γ
ψ(y)Φ(k0,x,y)ds(y)

Kψ(x) :=
∫

Γ
ψ(y)

∂Φ(k,x,y)
∂n(y)

ds(y)

K0ψ(x) :=
∫

Γ
ψ(y)

∂Φ(k0,x,y)
∂n(y)

ds(y)

K ′ψ(x) :=
∫

Γ
ψ(y)

∂Φ(k,x,y)
∂n(x)

ds(y)

K ′
0ψ(x) :=

∫
Γ
ψ(y)

∂Φ(k0,x,y)
∂n(x)

ds(y)

Tψ(x) :=
∂

∂n(x)

∫
Γ
ψ(y)

∂Φ(k,x,y)
∂n(y)

ds(y)

T0ψ(x) :=
∂

∂n(x)

∫
Γ
ψ(y)

∂Φ(k0,x,y)
∂n(y)

ds(y)

We take (2.8)-(2.6) and (2.9)-(2.7) to give us the following integral equations

(2 +K0 −K)ut + (S − S0)
∂ut

∂n
= 2ui (2.10)

(2 +K ′ −K ′
0)
∂ut

∂n
+ (T0 − T )ut = 2

∂ui

∂n
(2.11)

which we can solve to give numerical approximations for ut and ∂u/∂n on Γ. Then we can use

(2.3) and (2.5) to compute the entire field via a numerical integration over the boundary. Note that

we could equally have chosen to solve the boundary integral equations (2.10) and (2.11) for u0, since

ut = u0 on Γ. We see here the benefit of the boundary element method. We have reduced a 2-D

problem to a set of 1-D integrals over the boundary. The equivalent integral equation for the acoustic

scattering problem in [6] is

(I + iηS +K ′)
∂us

∂n
= 2iηui + 2

∂ui

∂n
(2.12)
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the main difference being that we seek here to approximate two unknowns. We also note the

integral equations we would obtain if we solved for the scattered field, us.

(2 +K0 −K)ut + (S − S0)
∂ut

∂n
= −ui −K0u

i + S0
∂ui

∂n

(2 +K ′ −K ′
0)
∂ut

∂n
+ (T0 − T )ut = −∂u

i

∂n
− T0u

i +K ′
0

∂ui

∂n
(2.13)

The singular term term we referred to earlier is T0u
i.

2.5 Leading Order Behaviour

One of the major aims in wave scattering is to minimise the computational cost of modelling the

scattered wave. For large wavenumber, an efficient method is to examine the leading order behaviour

of the field. In the high frequency regime, specifically as k →∞ (equivalent locally to an incident wave

upon an infinite plane), the known leading order behaviour in this transmission problem is as follows.

2.5.1 Illuminated sides

If a side is illuminated, we expect that the incident wave will produce reflected and transmitted waves

as illustrated in figure 2.2. ur is the reflected wave, utr is the transmitted wave, θi is the angle of

incidence and θt the angle of transmission. z1 and z2 are Cartesian co-ordinates local to the side, and

ni and nt are the refractive indices in R2 \ D̄ and D respectively. ui, ur and utr are described by
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Figure 2.2: Leading order behaviour of the field on an illuminated side

ui = eik(z1 sin θi−z2 cos θi)

ur = Reik(z1 sin θi+z2 cos θi)

utr = Teik(z1 sin θt−z2 cos θt)

∂ui

∂n
=
∂ui

∂z2
= − cos θie

ik(z1 sin θi−z2 cos θi)

∂ur

∂n
=
∂ur

∂z2
= R cos θie

ik(z1 sin θi−z2 cos θi)

∂utr

∂n
=
∂utr

∂z2
= −T cos θte

ik(z1 sin θt−z2 cos θt)

Fresnel’s law for TE polarised light passing between two media gives the reflection and transmission

co-efficients, R and T . θt is obtained from θi via Snell’s law, ni sin θi = nt sin θt.
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R =
n cos(θi)− nt cos(θt)
n cos(θi) + nt cos(θt)

=
cos(θi)− nt

ni
cos(θt)

cos(θi) + nt
ni

cos(θt)
=

cos(θi)− k0
k cos(θt)

cos(θi) + k0
k cos(θt)

(2.14)

T =
2ni cos θi

ni cos θi + nt cos θt
=

2 cos θi

cos θi + nt
ni

cos θt
=

2 cos θi

cos θi + k0
k cos θt

(2.15)

Thus on an illuminated side our leading order behaviour is

ut ≈ ui + ur = (1 +R)ui

∂ut

∂n
≈ ∂ui

∂n
+
∂ur

∂n
= (1−R)

∂ui

∂n

u0 ≈ utr

∂u0

∂n
≈ ∂utr

∂n
(2.16)

where we can gain an explicit representation for utr in terms of ui and T if we need to. It takes

roughly ten nodes per wavelength (as is the standard in the literature) to give an acceptable approxi-

mation to a wave, and as k increases, the number of nodes required per unit length scales as k, and is

therefore computationally expensive for high frequency scattering. By removing the oscillation of the

incident and reflected wave, we have removed the need to model the explicitly known component of

the field.

2.5.2 Shadow sides

The physical optics approximation on a shadow side is considerably more complicated than for an

illuminated side. We first note the principle of total internal reflection. This is the observation that

for light passing from one medium to another which is optically less dense (real part of nt < real part

of ni) 100% of the incident light is reflected when the angle of incidence exceeds an angle known as

the critical angle.

Hence on a shadow side there will be two contributions to the field; waves that are transmitted
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Figure 2.3: Multiple ray contributions at a shadow side

from one side to another that follow a straight line path through D (marked B in figure 2.3) and waves

that undergo total internal reflection one or more times before arriving at the given side (marked A in

figure 2.3).

We do not attempt here the difficult task of obtaining an analytical expression for the leading order

behaviour on a shadow side. Instead, we use the same approximation as [6], that ut ≈ 0 and ∂ut

∂n ≈ 0.

We remind ourselves that we are only solving for ut on Γ, hence we need no approximation for u0.

2.6 Modified integral equations

Having identified the leading order behaviour, we separate it off and formulate the integral equations.

We let

ut = ϕu + Ψu

∂ut

∂n
= ϕ∂u/∂n + Ψ∂u/∂n

where
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Ψu =

 (1 +R)ui illuminated sides

0 shadow sides

Ψ∂u/∂n =

 (1−R)∂ui

∂n illuminated sides

0 shadow sides

Then (2.10) and (2.11) become

(2I +K0 −K)ϕu + (S − S0)ϕ∂u/∂n = (2ui −Ψu)− (K0 −K)Φu − (S − S0)Φ∂u/∂n (2.17)

(T0 − T )ϕu + (2I +K ′ −K ′
0)ϕ∂u/∂n = (2

∂u

∂n
−Ψ∂u/∂n)− (T0 − T )Φu − (K ′ −K ′

0)Φ∂u/∂n(2.18)

Thus our new unknowns are ϕu and ϕ∂u/∂n. What do these represent? We can make a comparison

with the acoustic scattering problem in [6] to gain a better understanding. As we do here, the leading

order behaviour (incident plus reflected field) is subtracted, and (2.12) becomes

(I + iηS +K ′)ϕ = 2iηui + 2
∂ui

∂n
− (I + iηS +K ′)Ψ

where 1/k∂us/∂n = ϕ + Ψ. Ψ = 2∂ui/∂n on illuminated sides, and zero on shadow sides. ϕ

represents the field that is diffracted round the corners of the polygon. We note that Ψ = Ψ∂u/∂n

when R = −1. This corresponds to the case when k0 >> k, or when σ → ∞, and as we have said,

the electric field in D tends to zero in this case. Then we have the same exterior scattering problem

since ut must be zero on Γ if it is zero inside, due to the boundary condition that the electric field is

continuous across the boundary. So for large values of σ, ϕu and ϕ∂u/∂n represent the diffracted field on

the boundary. If σ is small or zero, then we expect that the incident wave will be primarily transmitted

through D. Then ut and ∂ut/∂n are not negligible on shadow sides (see figure 2.5.2). Then ϕu and

ϕ∂u/∂n will continue to represent the diffracted field on illuminated sides, while on shadow sides they

will represent the diffracted and transmitted fields.
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3 Parameterisation and the Approximation Space

3.1 Parameterisation

To solve the boundary integral equations, we need to discretise the boundary, and parameterise the

variables x and y on the boundary. Schematically we have

@
@

@
@

@
@

@R

ui

P2

P3P4

P1

Ω2

Ω3Ω4

Ω1

?

6

-�

Γ1

n1

Γ3

n3

Γ2 n2Γ4n4

6- x1

x2

θ

Figure 3.1: Parameterisation

We let Pj = (pj , qj), j = 1, · · · , nv represent the nv vertices of the polygon, with Pnv+1 = P1. Γj is

then the line joining Pj to Pj+1, Lj = |Pj+1 − Pj |, the length of Γj , and Ωj ∈ (π, 2π) is the external

angle at the jth vertex. We describe the incident wave by ui(x) = eikx.d = eik(x1 sin θ−x2 cos θ), where
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θ is measured anti-clockwise from the downwards vertical, and d = (sin θ,− cos θ) is the direction of

propagation. The unit normal on Γl is given by n = (n1, n2) = (bl,−al), with

∂ui

∂n(x)
= ∇xu

i · n(x) =
∂ui

∂x1
n1 +

∂ui

∂x2
n2 = (bl sin θ + al cos θ)ui

We let s and t be parametric representations for x and y respectively, with s ∈ Γl and t ∈ Γj .

Then s and t are the distance traversed anti-clockwise around the boundary, with s = t = 0 at P1. On

Γl we have

x(s) = Pl + s(
Pl+1 − Pl

Ll
), s ∈ (0, Ll)

= Pl + (s−
l−1∑
k=1

Lk)(
Pl+1 − Pl

Ll
), s ∈ Γl

Thus

x1(s) = pl + (s−
l−1∑
k=1

Lk)(
pl+1 − pl

Ll
), s ∈ Γl

x2(s) = ql + (s−
l−1∑
k=1

Lk)(
ql+1 − ql

Ll
), s ∈ Γl

Now we define
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al :=
pl+1 − pl

Ll

bl :=
ql+1 − ql

Ll

cl := pj − al

l−1∑
k=1

Lk

dl := qj − bl

l−1∑
k=1

Lk

which gives us the parameterised variables x(s) and y(t)

x1(s) = als+ cl, s ∈ Γl

x2(s) = bls+ dl

y1(t) = ajt+ cj , t ∈ Γj

y2(t) = bjt+ dj

3.2 The approximation space

We use an identical approximation space to that in [6] and [7]. We recall that the problem there is an

exterior acoustic scattering problem, with Dirichlet boundary conditions, u = 0 on Γ. As we have noted

(2.12), the initial integral equation formulation has as its unknown, ∂us/∂n on Γ. After subtraction

of the leading order behaviour (incident plus reflected wave), the unknown in the integral equation

becomes ϕ, which is representative of the diffracted field on Γ. ϕ has the explicit representation

ϕ(s) =
i

2

[
eiksv+

j (s) + e−iksv−j (s)
]
, s ∈ Γj , j = 1, · · · , nv,

ϕ consists of diffracted waves travelling in both directions on the boundary (due to the plane wave

e±iks terms), with the amplitude determined by v±j . Bounds are given that quantify the behaviour of
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v±j on the sides of the polygon. Essentially, the v±j are peaked near the corners (increasingly peaked

for more acute corners) and approximately constant away from the corners. This is illustrated in figure

3.2. The peak at A is due to v+
j e

iks, while the peak at B is due to v−j+1e
−iks, so that the diffracted wave

causes peaked behaviour on the side it is diffracted onto. We do not expect a significant contribution

to the peak at B from v+
j e

iks, nor do we expect v−j+1e
−iks to affect the peak at A.

6

�
v+
j e

iks

v−j+1e
−iks

Γj

Γj+1

A

B

PjPj+1

Figure 3.2: Diffracted behaviour at a corner

Thus on Γj , v
+
j will be peaked near Pj , and approximately constant away from Pj and towards

Pj+1. v−j will exhibit the opposite, being peaked near Pj+1, and approximately constant as we move

towards Pj . The novelty of the Galerkin scheme in [6] is that the v±j are approximated by piecewise

polynomials instead of approximating ϕ directly. The piecewise constants are then multiplied by plane

waves travelling in both directions on the boundary to form plane wave basis functions. We follow a

similar procedure here, though we do not have analogous results that describe the behaviour of ϕu and

ϕ∂u/∂n on Γ. For the ice crystal problem, we expect that ϕu and ϕ∂u/∂n will represent the transmitted

plus diffracted fields on shadow sides, and the diffracted field on illuminated sides.
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3.2.1 The mesh and basis functions

We define the mesh identically to that in [6]. On each side we have two meshes to fit the behaviour of

v±j . We term gridx and gridy be the meshes around the boundary consisting of the individual v+
j and

v−j respectively, so that gridx = [v+
1 , · · · , v+

nv
] and gridy = [v−1 , · · · , v−nv

]. We let ngx and ngy be the

number of elements in gridx and gridy. We denote these by Γ+
j and Γ−j . On Γ+

j the grading is high

(ie the nodes are very close together) at Pj (where v+
j is peaked) and decreases towards Pj+1. On Γ−j

we have the lowest grading at Pj , increasing towards Pj+1 (where v−j is peaked).

Definition 3.1 For A ≥ λ,N = 2, 3, · · · , the mesh ΛN,A,λ,q =
{
y0, · · · , yN+N̂A,λ,q

}
consists of the

points yi = λ
(

i
N

)q
, i = 0, · · · , N , and the points yN+j = λ

(
A
λ

) j

N̂A,λ,q , j = 1, · · · , N̂A,λ,q where N̂A,λ,qj
=

dN∗e is the smallest integer greater than or equal to N∗, with N∗ = − log(A
λ )

q log(1− 1
N ) For j = 1, · · · , n we

define αj := 1− π
ωj

and qj := (2ν+3)
(1−2αj)

.

Then the meshes Γ+
j and Γ−j are

Γ+
j := Pj + ΛN,Lj ,λ,qj

Γ−j := Pj+1 − ΛN,Lj ,λ,qj+1

For s ∈ [0, L] we define

VΓ+
j ,ν :=

{
σeiks : σ ∈ C

}
VΓ−j ,ν :=

{
σe−iks : σ ∈ C

}

and the approximation space, VΓ,ν , is the linear span of

⋃
j=1,··· ,n

{
VΓ+

j ,ν ∪ VΓ−j ,ν

}
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The basis functions, ρj(t) are defined by

ρj(t) :=
eikσjt ξ[yj ,yj+1]√

(yj+1 − yj)

where ξ[yj ,yj+1] is the characteristic function for the interval [yj , yj+1]. ξ[yj ,yj+1] = 1 if s ∈ [yj , yj+1] ,

zero otherwise.

There are a few points to note here. ν is the degree of polynomial we use in our basis function.

Here we use piecewise constants so ν = 0. On Γ±j we have a composite mesh. The high grading occurs

on the interval [0, λ] with N mesh points separated by a polynomial grading. On the interval [λ,A]

there is a geometric grading for N̂A,λ,q mesh points. The choice of N∗ ensures that the polynomial

and geometric meshes exhibit a smooth transition. We take A = Lj so that the mesh covers every

side in both directions. We also note that the mesh grading is determined by αj , which in turn is

determined by the corner angle ωj . The dependence is such that the approximation error in ϕ in [6] is

equidistributed across the intervals of the mesh.

Lastly we note that for the basis function ρj , σj = +1 if ρj is on gridx and −1 if it is on gridy.

4 The Galerkin Method

We recall the integral equations (2.17) and (2.18)

(2I +K0 −K)ϕu + (S − S0)ϕ∂u/∂n = (2ui −Ψu)− (K0 −K)Φu − (S − S0)Φ∂u/∂n

(T0 − T )ϕu + (2I +K ′ −K ′
0)ϕ∂u/∂n = 2

∂u

∂n
−Ψ∂u/∂n)− (T0 − T )Φu − (K ′ −K ′

0)Φ∂u/∂n

We approximate ϕu and ϕ∂u/∂n as a linear combination of the basis functions, ρj
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ϕu =
ng∑
j=1

ujρj(s), 0 ≤ s ≤ L (4.1)

ϕ∂u/∂n =
ng∑
j=1

vjρj(s), 0 ≤ s ≤ L (4.2)

where ng = ngx +ngy, the total number of elements in our approximation space, and uj and vj are

the unknowns that we seek to determine. We then have

(2I +K0 −K)
ng∑
j=1

ujρj(s) + (S − S0)
ng∑
j=1

vjρj(s) = (2ui −Ψu)− (K0 −K)Φu − (S − S0)Φ∂u/∂n = F

(T0−T )
ng∑
j=1

ujρj(s)+ (2+K ′−K ′
0)

ng∑
j=1

vjρj(s) = 2
∂u

∂n
−Ψ∂u/∂n)− (T0−T )Φu− (K ′−K ′

0)Φ∂u/∂n = G

where we use F andG for clarity. Defining the inner product on L2(0, L) by (τ1, τ2) =
∫ L
0 τ1(t)τ̄2(t)dt,

we multiply by a second basis function, ρm(s), and apply the inner product to obtain the following

linear system

ng∑
j=1

[uj [(2ρj , ρm) + ((K0 −K)ρj , ρm)] + vj [((S − S0)ρj , ρm)]] =
ng∑
j=1

[ujAjm + vjBjm] = (F, ρm)

ng∑
j=1

[
uj [((T0 − T )ρj , ρm)] + vj

[
(2ρj , ρm) + ((K ′ −K ′

0)ρj , ρm)
]]

=
ng∑
j=1

[ujCjm + vjDjm] = (G, ρm)

This is re-written as a matrix equation



4 THE GALERKIN METHOD 28



A11 A12 · · · B11 B12 · · ·

A21
. . . . . . B21

. . . . . .
...

. . . . . .
...

. . . . . .

C11 C12 · · · D11 D12 · · ·

C21
. . . . . . D21

. . . . . .
...

. . . . . .
...

. . . . . .





u1

u2

...

v1

v2
...


=



(F, ρ1)

(F, ρ2)
...

(G, ρ1)

(G, ρ2)
...


In the following sections we describe the evaluation of the integrals in the matrix and right hand

vector. Once we have these, we solve the matrix equation (using the inbuilt solve function in Matlab)

to find the co-efficients ui and vi, which completes our approximation to ϕu and ϕ∂u/∂n via (4.1) and

(4.2). Then we compute the field everywhere using (2.3) and (2.5), but substituting ut = ϕu + Ψu and

∂ut/∂n = ϕ∂u/∂n + Ψ∂u/∂n. Then

−u0(x) =
∫

Γ

[
(ϕu + Ψu)

∂Φ0(x,y)
∂n(y)

− (ϕ∂u/∂n + Ψ∂u/∂n)Φ(k0,x,y)
]
ds(y), x ∈ D

ut(x) =
∫

Γ

[
(ϕu + Ψu)

∂Φ(k,x,y)
∂n(y)

− (ϕ∂u/∂n + Ψ∂u/∂n)Φ(k,x,y)
]
ds(y) + ui(x), x ∈ R2 \ D̄

4.1 Left Hand Side

We have five integrals to determine for the left hand side of the matrix equation.

L1 = (2ρj , ρm)

L2 = ((K0 −K)ρj , ρm)

L3 = ((K ′ −K0)ρj , ρm)

L4 = ((S − S0)ρj , ρm)

L5 = ((T0 − T )ρj , ρm)



4 THE GALERKIN METHOD 29

4.1.1 L1

(2ρj , ρm) = 2
∫ L

0
ρj(s)ρ̄m(s)ds

= 2
∫

supp(ρj)∩supp(ρm)

eiks(σj−σm)√
(ym+1 − ym)

√
(yj+1 − yj)

(4.3)

The basis functions are defined only on their intervals, so L1 is non-zero where the basis functions

overlap. Denoting rh and lh to be the ends of the overlap,

L1 =


2
(
eik(σj−σm)rh−eik(σj−σm)lh

)
ik(σj−σm)

√
(yj+1−yj)(ym+1−ym)

σj 6= σm

2(rh−lh)√
(yj+1−yj)(ym+1−ym)

σj = σm

4.1.2 L2 and L3

We recall that

Kψ(x) = 2
∫

Γ

∂Φ(k,x,y)
∂n(y)

ψ(y)ds(y)

where

∂Φ(k,x,y)
∂n(y)

= ∇yΦ(k,x,y) · n(y) =
∂Φ(k,x,y)

∂y1
n1 +

∂Φ(k,x,y)
∂y2

n2

Φ(k,x,y) =
i

4
H

(1)
0 (kR), R = |x− y| =

[
(x1 − y1)2 + (x2 − y2)2

] 1
2

We have that d
dzH

(1)
n (z) = nH

(1)
n (z)
z −H

(1)
n+1(z). Hence

Kψ(x) = 2
∫

Γ

ik

4
H

(1)
1 (kR)
R

[(x1 − y1)n1(y) + (x2 − y2)n2(y)]ψ(y)ds(y)

For the adjoint of K,K ′, we replace ∂Φ(k,x,y)
∂n(y) with ∂Φ(k,x,y)

∂n(x) , giving
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K ′ψ(x) = 2
∫

Γ

−ik
4

H
(1)
1 (kR)
R

[(x1 − y1)n1(x) + (x2 − y2)n2(x)]ψ(y)ds(y)

Now we parameterise using s and t, s ∈ Γl and t ∈ Γj (see section 3.1), to obtain the integrals in

parameterised form

Kψ(s) = 2
∫

Γ
k(s, t)ψ(t)dt

K ′ψ(s) = 2
∫

Γ
k′(s, t)ψ(t)dt

where

k(s, t) =
ik

4
H

(1)
1 (kR)
R

[(albj − blaj)s+ (cl − cj)bj − (dl − dj)aj ]

k′(s, t) =
−ik
4

H
(1)
1 (kR)
R

[(albj − blaj)t+ (cl − cj)bl − (dl − dj)al]

Then

(k0 − k)(s, t) =
i

4
(k0H

(1)
1 (k0R)− kH

(1)
1 (kR))

R
[(albj − blaj)s+ (cl − cj)bj − (dl − dj)aj ]

(k′ − k′0)(s, t) =
−i
4

(kH(1)
1 (kR)− k0H

(1)
1 (k0R))

R
[(albj − blaj)t+ (cl − cj)bl − (dl − dj)al]

Thus,

L2 = ((K0 −K)ρj , ρm) =
∫

supp(pm)

[∫
supp(pj)

[k0(s, t)− k(s, t)] ρj(t)dt

]
ρm(s)ds

L2 = 2
∫ ym+1

ym

∫ yj+1

yj

(k0 − k)(s, t)eik(σjt−σms)√
(ym+1 − ym)(yj+1 − yj)

dtds
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and

L3 = 2
∫ ym+1

ym

∫ yj+1

yj

(k′ − k′0)(s, t)e
ik(σjt−σms)√

(ym+1 − ym)(yj+1 − yj)
dtds

We evaluate these, and all the integrals that follow that are not analytic, numerically using Gaussian

quadrature. Further details are given in section 4. We observe that for l = j, when s and t lie on the

same side of the polygon (k0 − k)(s, t) = (k′ − k′0)(s, t) = 0, and therefore L2 and L3 are zero.

4.1.3 L4

Sψ(x) = 2
∫
Γ Φ(k,x,y)ψ(y)ds(y), and analogous to the evaluation of L3 and L4, we have the param-

eterised kernel (s− s0)(s, t) = i
4(H(1)

0 (kR)−H
(1)
0 (k0R)). For l 6= j,

L4 = 2
∫ ym+1

ym

∫ yj+1

yj

(s− s0)(s, t)eik(σjt−σms)√
(ym+1 − ym)(yj+1 − yj)

dtds

For l = j, we can evaluate some of the integral analytically. We note that R = |s− t|, and use the

following integral representation for the Hankel function [9, 12.31]

H
(1)
0 (s) =

−2i
π

∫ ∞

0

e(i−r)s

r
1
2 (r − 2i)

1
2

dr, s > 0

L4 = 2
∫ ym+1

ym

∫ yj+1

yj

i

4

[
−2i
π

∫ ∞

0

e(i−r)k|s−t| − e(i−r)k0|s−t|

r
1
2 (r − 2i)

1
2

]
eik(σjt−σms)√

(ym+1 − ym)(yj+1 − yj)
dtds

We re-arrange the order of integration to obtain

L4 =
1

π
√

(ym+1 − ym)(yj+1 − yj)

∫ ∞

0

I(r)

r
1
2 (r − 2i)

1
2

dr (4.4)

where
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I(r) =
∫ ym+1

ym

∫ yj+1

yj

e(i−r)k|s−t|+ik(σjt−σms) − e(i−r)k0|s−t|+ik(σjt−σms)dtds

We evaluate I(r) analytically as follows. If yj+1 < ym, s > t, |s− t| = (s− t),

I(r) =

[
e((i−r)k−ikσm)a − e((i−r)k−ikσm)b

(i− r)k − ikσm

][
e((r−i)k+ikσj)d − e((r−i)k+ikσj)c

(r − i)k + ikσj

]

−

[
e((i−r)k0−ikσm)b − e((i−r)k0−ikσm)a

(i− r)k0 − ikσm

][
e((r−i)k0+ikσj)d − e((r−i)k0+ikσj)c

(r − i)k0 + ikσj

]
(4.5)

If ym+1 < yj , t > s, |s− t| = (t− s),

I(r) =

[
e((r−i)k−ikσm)b − e((r−i)k−ikσm)a

(r − i)k − ikσm

][
e((i−r)k+ikσj)d − e((i−r)k+ikσj)c

(i− r)k + ikσj

]

−

[
e((r−i)k0−ikσm)b − e((r−i)k0−ikσm)a

(r − i)k0 − ikσm

][
e((i−r)k0+ikσj)d − e((i−r)k0+ikσj)c

(i− r)k0 + ikσj

]
(4.6)

where a = ym, b = ym+1, c = yj , d = yj+1. If the intervals overlap, then we split I(r) into three

separate double integrals. For example, consider the overlapping basis functions illustrated below

ym ym+1

yj yj+1

Figure 4.1: Overlapping basis functions

We can consider I(r) to be the sum of (4.6) with a = ym, b = yj , c = yj , d = yj+1, plus (4.6) with

a = yj , b = ym+1, c = ym+1, d = yj+1, plus the double integral (where a = yj , b = ym+1)
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∫ b

a

∫ b

a
e(i−r)k|s−t|+ik(σjt−σms) − e(i−r)k0|s−t|+ik(σjt−σms)dtds

=
∫ b

a

∫ s

a
e(i−r)k(s−t)+ik(σjt−σms) − e(i−r)k0(s−t)+ik(σjt−σms)dtds

+
∫ b

a

∫ b

s
e(i−r)k(t−s)+ik(σjt−σms) − e(i−r)k0(t−s)+ik(σjt−σms)dtds

+
1

(r − i)k + ikσj

[
e(ik(σj−σm))b − e(ik(σj−σm))a

ik(σj − σm)
− e(r−i)k(a−b)+ik(σjb−σma) − eik(σj−σm)a

(i− r)k − ikσm

]

− 1
(r − i)k0 + ikσj

[
e(ik(σj−σm))b − e(ik(σj−σm))a

ik(σj − σm)
− e(r−i)k0(a−b)+ik(σjb−σma) − eik(σj−σm)a

(i− r)k0 − ikσm

]

− 1
(i− r)k + ikσj

[
e(ik(σj−σm))b − e(ik(σj−σm))a

ik(σj − σm)
− eik(σj−σm)b − e(r−i)k(a−b)+ik(σja−σmb)

(r − i)k − ikσm

]

+
1

(i− r)k0 + ikσj

[
e(ik(σj−σm))b − e(ik(σj−σm))a

ik(σj − σm)
− eik(σj−σm)b − e(r−i)k0(a−b)+ik(σja−σmb)

(r − i)k0 − ikσm

]

Returning to (4.4), we now know I(r), but the integral is singular at r = 0. We remedy this by

making the substitution r = s2

1−s2 , which removes the singularity.

4.1.4 L5

Tψ(x) = 2
∂

∂n(x)

∫
Γ

∂Φ(k,x,y)
∂n(y)

ψ(y)ds(y)

=
∂

∂n(x)
[Kψ(x)]

= 2
∫

Γ

[
∂

∂x1

(
∂Φ(k,x,y)
∂n(y)

)
n1(x) +

∂

∂x2

(
∂Φ(k,x,y)
∂n(y)

)
n2(x)

]
ψ(y)ds(y)

Recalling ∂Φ(k,x,y)
∂n(y) and the derivative of H(1)

n ,
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∂

∂x1

∂Φ(k,x,y)
∂n(y)

=
∂

∂x1

[
ik

4
H

(1)
1 (kR).R−1. [(x1 − y1)n1(y) + (x2 − y2)n2(y)]

]

=
i

4


(

H
(1)
1 (kR)
kR −H

(2)
1 (kR)

)
k2(x1−y1)

R
1
R [(x1 − y1)n1(y) + (x2 − y2)n2(y)]

+kH(1)
1 (kR) −(x1−y1)

R3 [(x1 − y1)n1(y) + (x2 − y2)n2(y)]

+kH(1)
1 (kR) −(x1−y1)

R3 n1(y)


∂

∂x2

∂Φ(k,x,y)
∂n(y) follows as above, replacing (x1 − y1) by (x2 − y2), and n1(y) by n2(y). After parame-

terising x and y, we have for l 6= j

L5 = 2
∫ ym+1

ym

∫ yj+1

yj

(t0 − t)(s, t)eik(σjt−σms)√
(ym+1 − ym)(yj+1 − yj)

dtds

where

(t0 − t)(s, t) = [(albj − blaj)s+ (cl − cj)bj − (dl − dj)aj ] [(albj − blaj)t+ (cl − cj)bl − (dl − dj)al]

×

[
k2

0

R

(
H

(1)
1 (k0R)
k0R

−H
(1)
2 (k0R)

)
− k2

R

(
H

(1)
1 (kR)
kR

−H
(1)
2 (kR)

)
+
kH

(1)
1 (kR)
R3

− k0H
(1)
1 (k0R)
R3

]

+
(bjbl + ajal)

R

(
k0H

(1)
1 (k0R)− kH

(1)
1 (kR)

]

For l = j, the kernel reduces to

(t0 − t)(s, t) = (b2j + a2
j )

(k0H
(1)
1 (k0R)− kH

(1)
1 (kR))

R

When R = 0 (the intervals coincide or share a common end), the Hankel function, and therefore

the kernel is undefined. We use the asymptotic behaviour as z → 0 of the bessel functions Jν(z) and

Yν(z) [1, chapter 9]
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H
(1)
1 (z) = J1(z) + iY1(z)

≈ z

2Γ(2)
− 2iΓ(1)

πz
, as z → 0

=
z

2
− 2i
πz

Therefore the kernel becomes

(t0 − t)(s, t) = (b2j + a2
j )

(k0(k0R
2 − 2i

πk0R)− k(kR
2 − 2i

πkR))
R

= (b2j + a2
j )
[
1
2
(k2

0 − k2)− 2i
πR2

+
2i
πR2

]
= (b2j + a2

j )
1
2
(k2

0 − k2) (4.7)

We recall (2.13), and see that the T0u
i term will be singular, since we have no cancellation of the

singular term, and our choice to solve for the total, not scattered, field is justified.

4.2 Right Hand Side

We have six integrals to determine for the right hand side.

R1 = (2ui − 2Ψu, ρm)

R2 = (2
∂ui

∂n
− 2Ψ∂u/∂n, ρm)

R3 = ((K0 −K)Ψu, ρm)

R4 = ((K ′ −K ′
0)Ψ∂u/∂n, ρm)

R5 = ((S − S0)Ψ∂u/∂n, ρm)

R6 = ((T0 − T )Ψu, ρm)
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4.2.1 R1 and R2

(2ui − 2Ψu, ρm) =
∫ ym+1

ym

(2ui − 2Ψu)e−ikσms√
(ym+1 − ym)

ds

On shadow sides, Ψu = 0, so we have

R1 =
∫ ym+1

ym

2eik[(als+cl)sinθ−(bls+dl)cosθ]−ikσms√
(ym+1 − ym)

ds (4.8)

On illuminated sides, Ψu = (1+R)ui, (2ui−2Ψu) = −2Rui, so we have (4.8) mulitplied by a factor

of −R. We also have Ψ∂u/∂n = 0 on shadow sides, so

R2 =
∫ ym+1

ym

2 [bl sin θ + al cos θ] eik[(als+cl)sinθ−(bls+dl)cosθ]−ikσms√
(ym+1 − ym)

ds (4.9)

On illuminated sides, Ψu = (1 − R)∂ui/∂n, (2∂ui/∂n − 2Ψ∂u/∂n) = 2R∂ui/∂n, and we have (4.9)

multiplied by R. Thus

R1 =


2eik(clsinθ−dlcosθ)

ik(alsinθ−blcosθ−σm)
√

(ym+1−ym)

(
eik(alsinθ−blcosθ−σm)ym+1 − eik(alsinθ−blcosθ−σm)ym

)
shadow side

−2Rle
ik(clsinθ−dlcosθ)

ik(alsinθ−blcosθ−σm)
√

(ym+1−ym)

(
eik(alsinθ−blcosθ−σm)ym+1 − eik(alsinθ−blcosθ−σm)ym

)
illuminated side

Likewise

R2 =


2(blsinθ+alcosθ)eik(clsinθ−dlcosθ)

ik(alsinθ−blcosθ−σm)
√

(ym+1−ym)

(
eik(alsinθ−blcosθ−σm)ym+1 − eik(alsinθ−blcosθ−σm)ym

)
shadow side

2Rl(blsinθ+alcosθ)eik(clsinθ−dlcosθ)

ik(alsinθ−blcosθ−σm)
√

(ym+1−ym)

(
eik(alsinθ−blcosθ−σm)ym+1 − eik(alsinθ−blcosθ−σm)ym

)
illuminated side

4.2.2 R3, R4, R5, R6

R3 = ((K0 −K)Ψu, ρm)

= 2
∫ ym+1

ym

∫ L

∑ns
j=1 Lj

(k0 − k)(s, t)Ψ(t)dte−ikσms√
(ym+1 − ym)

ds
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We change the order of integration and split the integral over the illuminated sides to a sum of the

integrals over each illuminated side, denoting the reflection co-efficient on Γk by Rk

R3 = 2
n∑

j=ns+1

∫ ∑j
p=1 Lp∑j−1

p=1 Lp

[∫ ym+1

ym

(k0 − k)(s, t)Ψ(t)dse−ikσms√
(ym+1 − ym)

]
Ψ(t)dt

= 2
n∑

j=ns+1

(1 +Rk)eik(cjsinθ−djcosθ)

∫ ∑j
p=1 Lp∑j−1

p=1 Lp

∫ ym+1

ym

(k0 − k)(s, t)eik[(ajsinθ−bjcosθ)t−σms]√
(ym+1 − ym)

dsdt

Similarly

R4 = 2
n∑

j=ns+1

(1−Rk) [bj cos θ + aj sin θ] eik(cjsinθ−djcosθ)

∫ ∑j
p=1 Lp∑j−1

p=1 Lp

∫ ym+1

ym

(k′ − k′0)(s, t)e
ik[(ajsinθ−bjcosθ)t−σms]√

(ym+1 − ym)
dsdt

R5 = 2
n∑

j=ns+1

(1−Rk) [bj cos θ + aj sin θ] eik(cjsinθ−djcosθ)

∫ ∑j
p=1 Lp∑j−1

p=1 Lp

∫ ym+1

ym

(s− s0)(s, t)eik[(ajsinθ−bjcosθ)t−σms]√
(ym+1 − ym)

dsdt

R6 = 2
n∑

j=ns+1

(1 +Rk)eik(cjsinθ−djcosθ)

∫ ∑j
p=1 Lp∑j−1

p=1 Lp

∫ ym+1

ym

(t0 − t)(s, t)eik[(ajsinθ−bjcosθ)t−σms]√
(ym+1 − ym)

dsdt

Thus we need to evaluate the following double integrals, where we let yj =
∑j−1

p=1 Lp, yj+1 =∑j
p=1 Lp and σj = aj sin θ − bj cos θ.

I3
m,j =

∫ yj+1

yj

∫ ym+1

ym

(k0 − k)(s, t)eik(σjt−σms)√
(ym+1 − ym)

dsdt

I4
m,j =

∫ yj+1

yj

∫ ym+1

ym

(k′ − k′0)(s, t)e
ik(σjt−σms)√

(ym+1 − ym)
dsdt

I5
m,j =

∫ yj+1

yj

∫ ym+1

ym

(s− s0)(s, t)eik(σjt−σms)√
(ym+1 − ym)

dsdt

I6
m,j =

∫ yj+1

yj

∫ ym+1

ym

(t0 − t)(s, t)eik(σjt−σms)√
(ym+1 − ym)

dsdt

These integrals are similar to those we evaluated for the left hand side, except that yj and yj+1
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are the two end-points of the side Γj , rather than the support of the basis function ρj , and σj =

aj sin θ− bj cos θ, not ±1. There is also a factor of
√

(yj+1 − yj) missing from the denominator in each

integrand, and the order of integration is reversed. Evaluation is by Gaussian quadrature as before.

For l = j, I3
m,j and I4

m,j equal zero, since (k0 − k)(s, t) = (k′ − k′0)(s, t), while I6
m,j has a reduced

kernel as for L5. I5
m,j is evaluated analytically in the same fashion as L4.

I5
m,j =

∫ yj+1

yj

∫ ym+1

ym

[
i

4
−2i
π

∫ ∞

0

e(i−r)k|s−t| − e(i−r)k0|s−t|

r
1
2 (r − 2i)

1
2

dr

]
eik(σjt−σms)√
(ym+1 − ym)

dsdt

=
1

2π
√

(ym+1 − ym)

∫ ∞

0

J(r)

r
1
2 (r − 2i)

1
2

dr (4.10)

We again make the substitution r = s2

1−s2 to remove the singularity at r = 0, and evaluate J(r) as

follows

J(r) =
∫ yj+1

yj

∫ ym+1

ym

e(i−r)k|s−t|+ik(σjt−σms) − e(i−r)k0|s−t|+ik(σjt−σms)dsdt

Using the same approach as for L5, we obtain
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J(r) =

[
e((i−r)k−ikσm)xm+1 − e((i−r)k−ikσm)xm

(i− r)k − ikσm

][
e((r−i)k+ikσj)xm − e((r−i)k+ikσj)yj

(r − i)k + ikσj

]

−

[
e((i−r)k0−ikσm)xm+1 − e((i−r)k0−ikσm)xm

(i− r)k0 − ikσm

][
e((r−i)k0+ikσj)xm − e((r−i)k0+ikσj)yj

(r − i)k0 + ikσj

]

+

[
e((r−i)k−ikσm)xm+1 − e((r−i)k−ikσm)xm

(r − i)k − ikσm

][
e((i−r)k+ikσj)yj+1 − e((i−r)k+ikσj)xm+1

(i− r)k + ikσj

]

−

[
e((r−i)k0−ikσm)xm+1 − e((r−i)k0−ikσm)xm

(r − i)k0 − ikσm

][
e((i−r)k0+ikσj)yj+1 − e((i−r)k0+ikσj)xm+1

(i− r)k0 + ikσj

]

+
1

(r − i)k − ikσm

[
e(ik(σj−σm))xm+1 − e(ik(σj−σm))xm

ik(σj − σm)
− e(r−i)k(xm−xm+1)+ik(σjxm+1−σmxm) − eik(σj−σm)xm

(i− r)k + ikσj

]

− 1
(r − i)k0 − ikσm

[
e(ik(σj−σm))xm+1 − e(ik(σj−σm))xm

ik(σj − σm)
− e(r−i)k0(xm−xm+1)+ik(σjxm+1−σmxm) − eik(σj−σm)xm

(i− r)k0 + ikσj

]

− 1
(i− r)k − ikσm

[
e(ik(σj−σm))xm+1 − e(ik(σj−σm))xm

ik(σj − σm)
− eik(σj−σm)xm+1 − e(r−i)k(xm−xm+1)+ik(σjxm−σmxm+1)

(r − i)k + ikσj

]

+
1

(i− r)k0 − ikσm

[
e(ik(σj−σm))xm+1 − e(ik(σj−σm))xm

ik(σj − σm)
− eik(σj−σm)xm+1 − e(r−i)k0(xm−xm+1)+ik(σjxm−σmxm+1)

(r − i)k0 + ikσj

]

4.3 Gaussian quadrature

We have encountered many integrals that we cannot evaluate analytically, so we use Gaussian quadra-

ture. Gaussian quadrature is a method of numerically approximating a definite integral by taking the

weighted sum of the function value at a set of given nodes. ie

∫ 1

−1
g(y)dx ≈

nq∑
i=1

wig(yi)

where we have nq nodes at the points yi with corresponding weights wi. For nq quadrature points,

the method yields an exact result for polynomials of degree 2n− 1. The integrals we encounter cover

some interval [a, b], so we transform the weights and nodes to an integral over [−1, 1], which is the

standard interval for Gaussian quadrature
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wi → wi ×
b− a

2

yi → a+ (b− a)
(yi + 1)

2

We have encountered two types of integral that we must approximate numerically, and we will

briefly discuss how we apply the method of Gaussian quadrature in each case.

4.3.1 1-D non-oscillatory integrals

These are integrals of the form (4.4) and (4.10). After substitution, we evaluate with 100 quadrature

points. This should produce a close approximation due to the non-oscillatory nature of the integral.

4.3.2 2-D oscillatory integrals

Every integral that does not fall into the previous category, we classify as a 2-D oscillatory integral.

To begin, there is the obvious complication that we have only looked at approximating 1-D integrals.

We carry out a 2-D quadrature as follows. We have the double integral

I =
∫ b

a

∫ d

c
g(s, t)dtds

We first compute an approximation to the inner integral, h(s) =
∫ d
c g(s, t)dt for si, i = 1, · · · , nt

happrox =
nt∑
i=1

wt
ig(si, ti)

and then approximate the outer integral using happrox

Iapprox =
ns∑
i=1

ws
ihapprox(si)

where ns and nt are the number of quadrature points we use in the s and t directions. There are

two points to note here. Firstly, we require nodes in both directions, so we expect the quadrature to be
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computationally expensive. Specifically, if we want to double the number of nodes in each direction,

we end up with four times as many in total.

Secondly, we have said that these integrals are oscillatory (we expect that the wavelength is much

smaller than the support of the basis functions), and we would expect the oscillation to be of the order

of the incident wavelength. As k increases the integral becomes increasingly oscillatory. We cannot

approximate these integrals accurately using a quadrature method, so we sub-divide the intervals such

that the smaller intervals are of order one wavelength in each direction. This removes the oscillatory

nature of the integrand on the sub-interval, and we can use Gaussian quadrature to obtain an accurate

value for the integral there. On each interval then, we place Ns equally spaced nodes in the s direction,

and Nt in the t direction, and evaluate using Nq quadrature points.

We have the additional problem that the integrals tend to be highly peaked or singular when the

basis functions are very close and R is very small. This is easily seen in the integrands, since we have

terms like H(1)
0 (z),H(1)

1 (z) and H
(1)
2 (z), which are undefined at zero. R is zero or very small in two

instances; when the basis functions are on different sides but close to the same corner; and when the

basis functions overlap or coincide on the same side (figure 4.1).
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Q
Q
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Q

ym+1

ymyj+1

yj

Figure 4.2: Basis functions near the same corner

We overcome this problem by further sub-dividing the interval where we have the singularity or

peak. We use a graded mesh on the interval [a, a+hs]×[c, c+ht], where (a, c) is the location of the peak

or singularity. We place nq nodes at a+ 0.15ihs and c+ 0.15iht, for i = 1, · · · , nq. nq is determined by

the proximity of the basis functions. If R = 0, nq = Nq, so that we use the same number of quadrature

points on the graded mesh as we do on each standard interval. If R 6= 0, then nq is chosen such that
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0.15nq is the minimum of a or c. The graded 2-D mesh is illustrated below. Note that it is not to

scale (the actual mesh is very highly graded towards (a, c)) in order to clarify the sub-division of the

interval.

c

c+ ht

a

a+ hs

A1

A2

Figure 4.3: Graded mesh near a singularity or peak

The original integral is changed to individual integrals over A1, A2, · · · , Anq+1. As nq increases, the

nodes become highly concentrated near(a,c), which is exactly what we require to obtain an accurate

approximation to the integral on [a, a+ hs]× [c, c+ ht]

5 Numerical Results

5.1 Reproducing an acoustic scattering problem

Our first task is to reproduce the acoustic scattering results in [6]. In the limit σ →∞, the transmission

problem becomes an exterior scattering problem with ut = 0 on Γ. We give k0 an arbitrarily high

imaginary component (1021i), to mimic this. We set k = 4, θ = π/4 for N = 128. The scatterer is a

square of side π. Figure 5.1 gives total and diffracted field plots for our approximation and the original

result, while figure 5.2 shows plots of |ϕ| and |ϕ∂u/∂n| on the boundary, where we would expect |ϕ∂u/∂n|
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to approximate |ϕ| well.

At first glance the approximation is not too bad. The field inside is zero and it models the reflected

wave and shadow zone well. The diffracted fields are also qualitatively similar. However, figure 5.2

shows that |ϕ∂u/∂n| is several orders of magnitude higher than |ϕ|, when we would expect the two to

be similar.

Figure 5.1: Total (left) and diffracted (right) fields for an acoustic scattering problem, k = 4, θ =
π/4, N = 128. Original result (top), our approximation (bottom)
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Figure 5.2: |ϕ| (left) and |ϕ∂u/∂n| (right) on the boundary

5.2 Acoustic scattering problem without subtraction of the leading order be-

haviour

We consider the acoustic scattering problem (2.12)(square of side 2π), for wavenumber k = 10, and

solve it without subtracting the leading order behaviour, so that we approximate ∂us/∂n directly.

We take the exact solution to be that obtained when we do subtract the leading order behaviour, for

N = 64. Table 5.1 gives the relative L2 errors, and figure 5.3 shows the total field for each value of N .

We compare these to figure 5.4, the field obtained from subtracting the leading order behaviour, for

N = 64. In this case then, we have not subtracted the leading order behaviour and still obtained the

correct result.

N Relative L2 error
8 3.2440×100

16 6.7612×100

32 5.669×10−1

64 2.010×10−1

Table 5.1: Relative L2 errors for acoustic case where there is no subtraction
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Figure 5.3: Acoustic scattering without subtraction of leading order behaviour, N=8,16,32,64

5.3 Transmission through a hexagonal ice crystal

We now consider transmission through a unit hexagonal ice crystal, side length 1. We use nice =

1.31+0.01i, with an incident wavenumber of 20 and angle of incidence θ = 49π/100. We plot the total

and transmitted fields for values of N = 2, 4, 8, 16, 32 and 64 (figures 5.5 and 5.6). The transmitted

field is the total field minus the incident and reflected components, and is the part of the field that we

approximate by ϕu and ϕ∂u/∂n. We also plot |ϕu| and |ϕ∂u/∂n| on the boundary for N = 32, 64 and

128 (figure 5.7).

We obtain promising results, although we cannot say with any certainty whether we are approxi-
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Figure 5.4: Acoustic scattering with subtraction of leading order behaviour, k=10, N=64

mating the true solution or not. We expect that the the incident wave will be well transmitted through

the ice crystal, since it is not very attenuating. We observe that the transmitted field and its normal

derivative oscillate on the boundary and have approximately the same amplitude across the bound-

ary (figure 5.7), with peaked behaviour at the corners. For the two largest values of N, 32 and 64,

there appears to be convergence towards the same solution, visible in both the plots on the boundary

(particularly |ϕ∂u/∂n|) and the total and transmitted field plots.

It is a well known phenomena that cylindrical ice crystals with a hexagonal cross-section give rise

to a 22 degree halo. This is often observed when light from the moon or sun is refracted by ice crystals

associated with thin, high-level clouds. It is difficult to say whether we observe this effect.

5.4 Transmission through a triangular ice crystal

We now look at transmission through an equilateral triangular ice crystal, side length π, with wavenum-

ber k = 4 and θ = π/3. This time we neglect absorption, so the wavenumber inside is real, and

k0 = 1.31 ∗ k = 5.24. Figure 5.8 shows plots of the total and transmitted fields for N = 16, 32, 64 and

128. Figure 5.9 plots |ϕu| and |ϕ∂u/∂n| on the boundary for N = 32, 64 and 128. As N increases there

is a definite convergence of |ϕu| and |ϕ∂u/∂n| on the boundary, particularly so for the latter.

Taking the N = 128 values ϕu128 and ϕ∂u/∂n128
as the true solution, we compute the relative L2
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errors for N = 2, 4, 8, 16, 32 and 64 in table 5.2.

5.5 Transmission through a thin strip

Figure 5.10 shows plots of the total and transmitted field for an incident field (k = 20, θ = 49π/100)

on a rectangular strip with dimensions 1 by 10. Inside k0 = 34 + 5i. We see very clear features; a

partially reflected wave interacting with the incident wave; diffraction at either end of the strip giving

rise to noticeable interference patterns in the shadow zone behind the obstacle; and a travelling wave

inside the strip that is attenuated relatively strongly.

6 Conclusions and Further Work

We have adapted a Galerkin boundary element method for acoustic scattering and applied it to an

electromagnetic transmission problem.

We have obtained encouraging results, but it is clear that this particular Galerkin boundary element

method does not suit this particular problem. We have seen (for example figure 5.7) that in the

transmission case, ut and its normal derivative have an amplitude which is approximately constant

across the boundary. This is exactly what we might expect for a medium which attenuates transmitted

waves by only a small amount. We do expect that the field on the boundary will be peaked at the

corners, but not to the same extent that it occurs in [6], so a more standard mesh (ie less grading)

might be more appropriate for the problem.

A key avenue of investigation would be to identify the leading behaviour on shadow sides, for the

transmission problem. Only when we know how the field behaves on the boundary, can we be confident

that a given method will work. Plus, we might then design a mesh specifically for this problem. We

might also use a collocation or an hp boundary element scheme, rather than a Galerkin one. In [2], it is

shown that the collocation method converges to the same solution as the Galerkin scheme with a lower

computational cost. We also recall that we have utilised piecewise constants in our basis functions.

Using piecewise polynomials of degree ≥ 1 should produce a better rate of convergence.

We stated in the introduction that our aim was “to investigate the extent to which the numerical
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solution of electromagnetic scattering problems can be enhanced using methods developed for acoustic

scattering”, with reference to the Galerkin scheme we have implemented. Despite a lack of tangible

results, this method has showed decent promise and further work in this area should prove to be

worthwhile.
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Figure 5.5: Total (left) and transmitted (right) fields for transmission through a hexagon, k = 20, θ =
49π/100, N = 2, 4, 8
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Figure 5.6: Total (left) and transmitted (right) fields for transmission through a hexagon, k = 20, θ =
49π/100, N = 16, 32, 64
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Figure 5.7: Plots of |ϕu| (left) and |ϕ∂u/∂n| (right) on the boundary of the hexagon

N Relative L2 error ϕu Relative L2 error ϕ∂u/∂n

2 4.0397×10 0 3.5475×10 0

4 6.2566×10 0 5.5322×10 0

8 1.0164×10 0 1.3859×10 0

16 9.108×10−1 1.6887×10 0

32 1.0020×10 0 8.262×10−1

64 8.691×10−1 3.284×10−1

Table 5.2: Relative L2 errors for trianlge case
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Figure 5.8: Total field plotted for transmission through a triangle, k = 4, θ = π/3, N = 16 (top left),
N = 32 (top right), N = 64 (bottom left) and N = 128 (bottom right)
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Figure 5.9: Plots of |ϕu| and |ϕ∂u/∂n| on the boundary of the triangle

Figure 5.10: Total and transmitted fields for transmission through a thin strip


