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Abstract

Due to the wide usage of numerical models in Meteorology it is essential reduce

model errors to get better predictions. The model errors are due to space and time-

differencing. The model errors are considered separately with the main focus of

the paper on time-differencing schemes. The Asselin-filtered leapfrog scheme, the

proposed modified filters and the Adams-Bashforth family of schemes are employed

into an existing nonlinear model QUAGMIRE v1.3. An analysis of each scheme was

taken to determine the wave amplitude and associated amplitude error. It was found

that all the schemes have problematic amplitude errors, some to a lesser extent than

others. The third-order Adams-Bashforth method, albeit more accurate requires

more storage requirements. The third-order Adams-Bashforth and Asselin-filtered

leapfrog when α = 0.5 have proved to be the preferred methods of choice from

the sample of schemes taken. Further study into higher order schemes would be

beneficial along with the consideration of multiple layers in the nonlinear model.
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Chapter 1

Introduction

1.1 What are Numerical Models?

Numerical models are widely used in Meteorology. These numerical models are

effectively a computer program that takes current weather data and then solves

equations to produce a prediction of the future conditions. In 1950 a team of re-

searchers led by the American meteorologist Jule Charney managed to produce the

first computer-generated weather forecast [2]. The forecast was a major step forward

and eventually developed into an area called numerical weather prediction (NWP).

This development transformed meteorology from a collection of rules of thumb into

a rigorous quantitative science. NWP models are trying to solve a number of math-

ematical equations that are nonlinear. Being nonlinear they are impossible to solve

exactly but the model can use a numerical method to give an approximate solution.

Models are started using initial data that we have taken from satellites, radiosonde

ascents or weather stations. The initial data is put into the model and run to give

some output data representing the future state of the atmosphere.

1.2 Sources of Error

The output data from the model is only an approximation and therefore contains

some form of error compared to what the atmosphere will actually do. For example,

the initial data used to initialise the model will contain measurement errors, which

propagate through the model and become output errors. There are also some areas
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of the globe where observations cannot easily be made. Therefore it depends on the

area of the atmosphere you are modelling in order to get accurate initial data. How-

ever, data assimilation techniques combine previous forecasts with the incomplete

observations to provide a more complete and more accurate set of initial data. It is

still difficult to predict the exact state of the atmosphere at any given time and as

a result the uncertainty in the initial data is not negligible.

There is also uncertainty in the lateral boundary conditions in non-global models.

The size and shape of the domain that is being modelled has to be considered,

because the state of the atmosphere has to be specified along the boundaries in

order to allow the model to run. Often these boundary conditions will be obtained

from a lower-resolution model with a wider domain, but they will inevitably contain

errors.

Finally, spatial and time stepping errors are present in the model. The partial

differential equations within all numerical models are approximated by a variety

of numerical schemes. In reality time and space differencing are often considered

separately as both provide different problems. When a model performs a numeri-

cal integration, the solution is known at each grid point on the spatial mesh. As

a result, it is relatively simple in principle to have high-order approximations to

spatial derivatives, involving more than just the nearest neighbours. However, with

time derivatives, storage limitations are a problem and usually the only time levels

available are from the previous iteration [2]. The idea is to have a spatial mesh

where ∆x and ∆y (and ∆z or ∆p) are as small as possible in order to get the most

accurate solution. Similarly, the time step ∆t needs to be as small as possible.

It has previously been shown that reducing the simulation errors of prognostic

variables such as zonal wind and temperature, allows better simulations for diag-

nostic variables such as precipitation [9]. Figure 1.1 shows the zonal-mean zonal

wind error and temperature error for the leapfrog scheme and second-order Adams-

Bashforth respectively. The errors being considerably smaller for the second-order

Adams-Bashforth method. Hence this outlines the importance of reducing time

step errors in NWP models. The results of different time-stepping schemes in gen-

eral circulation models give evidence that climate simulations are sensitive not only

to physical parametrisations of subgrid-scale processes but also to the numerical

method employed [5].
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Figure 1.1: Comparison between the (a) zonal-mean zonal wind error (m/s) using the

leapfrog scheme, (b) zonal-mean zonal wind error (m/s) using the second-order

Adams-Bashforth scheme, (c) temperature error using the leapfrog scheme and (d)

temperature error using the second-order Adams-Bashforth method. Taken from [9].
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1.3 Aims

In this dissertation we will only consider time-differencing schemes and will not con-

sider different space-differencing schemes. This is done to isolate the time-stepping

errors. The aims are:

• To implement a number of time-differencing schemes in a simple nonlinear

grid-point numerical model and compare the time step errors in the schemes.

• To compare the results with the predictions of simple linear analyses and

numerical ocean models.

• To decide whether the schemes could and should be implemented into existing

NWP models.

1.4 Outline

We begin the dissertation by considering time-differencing schemes [3] while review-

ing previous work on the Robert-Asselin filter and a recently proposed modifica-

tion to it [6]. The different time step methods include the leapfrog scheme with

a Robert-Asselin filter and modified family of filters. Also the Adams-Bashforth

family of schemes will be considered [5]. In Chapter 3 we will discuss the nonlinear

numerical model that will be used to test each of the schemes explained in Chapter

2. Chapter 4 will show the numerical results from the model and provide an analysis

of the schemes. Chapter 5 will test the sensitivity of the nonlinear model. Finally,

Chapter 6 will conclude the dissertation by summarising the previous chapters and

suggesting further work.
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Chapter 2

Time-Differencing Schemes

In this Chapter we discuss various time-differencing schemes. We first consider the

Robert-Asselin filter and apply it to the leapfrog scheme. We then consider the first,

second and third order Adams-Bashforth schemes.

2.1 Leapfrog Scheme

The leapfrog scheme can be expressed using the formula

xn+1 = xn−1 + 2∆tF (xn) (2.1)

where xn+1 is the approximate solution to be determined given the other variables.

The leapfrog scheme uses information at three different time levels tn−1, tn and

tn+1 with a total difference of 2∆t. The numerical approximation to the derivative

is known as a centered difference scheme. One problem with this scheme is the tn−1

time level as we only know our initial variable at time tn and not also tn−1. This

is overcome by using a simple forward step first. Then it is possible to carry out

the integration using the leapfrog scheme. The leapfrog scheme yields second-order

accuracy.

However, problems tend to arise with the leapfrog scheme as it generates a

computational mode. The most serious problem is the time splitting instability

that develops when used to model nonlinear fluid dynamics [3]. The computational

mode is created by the numerical scheme and is different from the actual solution
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that we are after. The actual solution is known as the physical mode. Depending on

the problem being solved the computational mode can cause the numerical solution

to grow exponentially. The rate at which this occurs depends on the time step ∆t.

Towards the end of the numerical integration the numerical solution deviates further

away from the actual solution. The reason for this is the integration goes from the

tn−1 time point to the tn+1 time point and misses out at even and odd time steps the

tn time point. By missing out the tn time point this causes the numerical solution

to drift apart as you step forward through the integration and as result generates

the so-called computational mode. The simple leapfrog scheme is unstable but can

be stabilised using the Robert-Asselin filter.

2.1.1 Leapfrog Scheme with Robert-Asselin Filter

The Robert-Asselin filter was designed specifically for the leapfrog scheme in 1966

by Robert and in 1972 Asselin showed that it dampens the computational mode but

leaves the physical mode relatively undamped [1][6][7]. Since then it has become

known as the Robert-Asselin filter. After each leapfrog step, the filter mixes solu-

tions from three consecutive time points at tn−1, tn and tn+1 which can seen from

Figure 2.1. The solution at the inner point at time tn is displaced by

d =
ν

2
[xn−1 − 2xn + xn+1] (2.2)

where ν is the filter parameter and the values xn−1, xn and xn+1 correspond to the

time points tn−1, tn and tn+1 respectively. Typically the filter parameter is taken to

be 0.01. In Chapter 4 we will see the importance of the filter parameter ν.

The leapfrog scheme with the Robert-Asselin filter suffers from numerical prob-

lems. The filter weakly suppresses the physical mode. Physical quantities are not

necessarily conserved by the discretised equations in the model when the filter is

switched on. The Robert-Asselin filter degrades the numerical accuracy of the

leapfrog scheme from second order to first order. The degrading of the scheme

limits the range of time steps that can be implemented without the loss of accuracy.

This is why higher order schemes are often preferred but usually cost more to im-

plement.
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Figure 2.1: Comparison between the (a) the standard Robert-Asselin filter and (b)

proposed modified filters. Taken from [7].

2.1.2 Leapfrog with Modified Filter

Due to the wide usage of the Robert-Asselin filter we will look at a recent modifica-

tion that was proposed to the Robert-Asselin filter [6]. Figure 2.1 shows that with

the modified filter the inner point and right outer point are displaced by αd and

(α − 1)d respectively where α is between 0 and 1. If the coefficient α was taken to

be 1 then we would have the standard filter explained previously. If α = 0 then the

modification would only displace the right outer point. However, if α = 0.5 then

the inner and right outer points would be displaced equally and oppositely, con-

serving the three-time-level mean state and preserving the second-order accuracy of

the leapfrog scheme. We will consider these cases of α = 1, α = 0.5 and α = 0 in

Chapter 4.

2.2 Adams-Bashforth Schemes

Furthermore we will consider the Adams-Bashforth family of schemes. These are

relatively simple linear multistep methods that can be used as a replacement to the

leapfrog scheme. We will discuss the first, second and third order schemes.
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2.2.1 First-Order

The first-order Adams-Bashforth method is simply a forward difference scheme and

can be expressed using the formula

xn+1 = xn + ∆tF (xn) (2.3)

We use this forward scheme for the first iteration when using the leapfrog scheme.

We would rather consider Adams-Bashforth second or third-order with increased

numerical accuracy than just the first order method as they would not cost much

more to implement.

2.2.2 Second-Order

The second-order Adams-Bashforth scheme can be expressed using the formula

xn+1 = xn +
∆t

2
[3F (xn) − F (xn−1)] (2.4)

Here we are considering points at two previous time levels which is similar to the

leapfrog scheme but is not subject to time splitting. The two previous time levels

being xn and xn−1. Therefore the Robert-Asselin filter is not required. The disad-

vantage of the second order Adams-Bashforth method is when it is used to model

oscillatory behaviour the physical mode is subject to instability as the waves tend

to amplify. This can be controlled somewhat if the time steps are small over a small

integration [3], but the scheme is not used in practice for this reason.

2.2.3 Third-Order

The third-order Adams-Bashforth scheme can be expressed using the formula

xn+1 = xn +
∆t

12
[23F (xn) − 16F (xn−1) + 5F (xn−2)] (2.5)

Although the scheme is more accurate, we need to consider points at three previous

time levels to determine xn+1. The three previous time levels being xn, xn−1 and

8



xn−2. The third-order Adams-Bashforth method is an explicit scheme that requires

one function evaluation per time step. The only potential problem is the storage

requirements that prove to be a problem with all higher order schemes. Using the

third-order Adams-Bashforth method eliminates the computational mode without

introducing any other parameters [3].
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Chapter 3

Model Description

In this Chapter we will discuss the QUAGMIRE v1.3 model that will be used to test

the behaviour of the time-differencing schemes outlined in Chapter 2. We will look

at the model equations along with the assumptions that have been made. Also, we

will look at initialising the model to gather suitable initial conditions.

3.1 QUAGMIRE v1.3

QUAGMIRE v1.3 is a quasi-geostrophic model that performs high-resolution sim-

ulations for investigating rotating fluid flows [8]. This is the fourth version of the

model with many adaptations being made to the source code and diagnostic software

to make QUAGMIRE v1.3 more efficient. The model was originally designed for

simulating two-layer laboratory experiments in a rotating annulus. The fluid flow in

this system is dynamically similar to, for example, the mid-latitude jet streams in

the atmosphere and the Antarctic Circumpolar Current (ACC) in the ocean. The jet

streams being the fast flowing cylindrical flows of air in the upper atmosphere and

the ACC being an important oceanic moving current. Dynamical similarity makes

it possible to scale results from laboratory experiments to predict corresponding

results for the full scale system. This statement is true despite the fact that typical

length and time scales may differ by several orders of magnitude.

Figure 3.1 shows the two layers in the model with a constant jet stream speed

in the upper layer (layer 1) and a constant weaker jet stream speed in the lower

layer (layer 2). It is this interface between the two layers upon which perturbations
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may grow due to baroclinic instability. Baroclinic instability being an important

mechanism that influences mid-latitude synoptic scale patterns that cause initial

disturbances. These disturbances or perturbations are wave-like features that grow

and decay with time.

Figure 3.1: Two layer diagram showing the interface between the two layers where

waves will amplify and decay in the QUAGMIRE v1.3 model.

3.2 Equations

The model equations are solved in each of the two layers shown in Figure 3.1. Equa-

tion 3.1 corresponds to the upper layer and equation 3.3 is solved in the lower layer.

Equation 3.1 is the potential vorticity change with time which is equal to an ad-

vection term plus viscous Ekman damping and wind stress forcing at the upper

boundary. Equation 3.3 is similar but has no wind stress forcing. It is these equa-

tions that are solved numerically in the model. Each parameter is defined in Table

3.1.

∂q1

∂t
=

1

r

∂ψ1

∂θ

∂q1

∂r
− 1

r

∂ψ1

∂r

∂q1

∂θ
−

√
Ων1

H

[

∇2ψ1 + χ2∇2(ψ1 − ψ2)
]

+
2∆Ω

√
Ων1

H
(3.1)

where

q1 = ∇2ψ1 +
f 2

g′H
(ψ2 − ψ1) +

f

H

r2Ω2

2g
(3.2)
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∂q2

∂t
=

1

r

∂ψ2

∂θ

∂q2

∂r
− 1

r

∂ψ2

∂r

∂q2

∂θ
−

√
Ων2

H

[

∇2ψ2 + χ1∇2(ψ2 − ψ1)
]

(3.3)

where

q2 = ∇2ψ2 −
f 2

g′H
(ψ2 − ψ1) −

f

H

r2Ω2

2g
(3.4)

From equation 3.1-3.4 the terms have been separated out to show the physical re-

sponse to each where i = 1 for the upper layer or i = 2 for the lower layer. We can

now see which terms are responsible for the advection, forcing and dissipation.

1

r

∂ψi

∂θ

∂qi

∂r
− 1

r

∂ψi

∂i

∂qi

∂θ
= Advection (3.5)

√
Ων1

H

[

∇2ψi + χi∇2(ψi − ψi)
]

= Viscous Ekman damping (3.6)

2∆Ω
√

Ων1

H
= Wind stress forcing (3.7)

The potential vorticity q is the sum of the relative vorticity, vortex stretching/compression

and the β-effect.

∇2ψ2 = Relative vorticity (3.8)

f 2

g′H
(ψ2 − ψ1) = Vortex stretching/compression (3.9)

f

H

r2Ω2

2g
= β − effect (3.10)
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Parameter Meaning

ψ1 Stream function in the upper layer (layer 1)

ψ2 Stream function in the lower layer (layer 2)

q1 Potential vorticity in the upper layer (layer 1)

q2 Potential vorticity in the lower layer (layer 2)

Ω Angular velocity

f Coriolis parameter (usually 10−4) for mid-latitudes)

H Scale height

g Acceleration due to gravity

g
′

Reduced gravity

ν1 Kinematic viscosity in the upper layer (layer 1)

ν2 Kinematic viscosity in the lower layer (layer 2)

r Polar coordinate

θ Polar coordinate

z Polar coordinate

χ1 Perturbation potential vorticity in the upper layer (layer 1)

χ2 Perturbation potential vorticity in the lower layer (layer 2)

∇ Laplacian operator

Table 3.1: Physical parameters used in the nonlinear model
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The horizontal grid points are shown in Figure 3.2. For the mid-latitudes, normally

30o − 60oN if the Northern hemisphere atmospheric jet stream is being represented

or 30o − 60oS if the oceanic Antarctic Circumpolar Current is being represented.

Figure 3.2: Shows the grid points across mid-latitudes, where the model fluid flows are

solved. There are 16 grid points in the latitudinal direction and 96 in the longitudinal

direction equating to grid points every 4o of latitude and 2o of longitude.

3.3 Assumptions

In order to derive the above equations, assumptions about the model have to be

made and may affect the results. The main assumptions [8] were:

• Incompressible fluids.

• Inviscid fluid interiors meaning a Reynolds number >> 1.

• Vertical fluid interior columns.

• Linear Ekman pumping and suction.
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• Atmosphere in hydrostatic balance.

• Ekman layer depths << scale height H.

• Rossby number << 1.

• Reduced gravity g
′

<< g

The first initial assumption is to assume incompressible fluids. This means when you

move a fluid parcel the density is conserved. It is often represented by the equation

∇.u = 0 (3.11)

where u is the fluid velocity.

The Reynolds number (Re) and Rossby number (Ro) are non-dimensional num-

bers that are used to distinguish the behaviour of fluid flows. Both these assumptions

are good approximations for the large-scale flow in the atmosphere and ocean. The

Reynolds number is a ratio between the inertial and viscous forces. The Reynolds

number is expressed using the formula

Re =
UL

ν
(3.12)

where U is the fluid velocity, L is a length scale and ν is the viscosity. Here we are

assuming a Reynolds number >> 1 which means the inertial forces are much larger

than the viscous forces acting on the fluid parcel [4]. The Rossby number is the

ratio of inertial to Coriolis forces acting on the fluid flow. The Rossby number is

given by

Ro =
U

fL
(3.13)

where U is the fluid velocity, L is a length scale and f is the Coriolis parameter. We

are assuming that the Coriolis force acting is much larger than inertial forces [4].
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3.4 Initialisation

The model uses a leapfrog time-stepping scheme with a Robert-Asselin filter. We

may refer to this as the default time-stepping scheme. The Robert-Asselin filter ν is

taken to be 0.01 and a time step ∆t = 0.0008 is used (in suitable units which are not

of interest here). The model was run initially until the amplitude of the baroclinic

waves began to stabilise. Figure 3.3 initially shows a large increase in amplitude

due to the baroclinic instability, but gradually decays through time. At the end of

the run visually the amplitude looks fairly constant but there are oscillations of a

smaller amplitude which cannot be seen here.

This spin-up run provided an initial state and time to begin the different time

stepping schemes. This way it would be possible to compare the schemes more care-

fully. The state at time 800 will be used as the initial condition for the experiments

in the next Chapter. Note that, since we are interested only in amplitude changes

when new time-stepping schemes are used, the units of the absolute amplitudes will

be considered to be arbitrary.

Figure 3.4 shows the initial state of streamfunction perturbations at time 800.

The red areas represent positive perturbations and the blue areas negative pertur-

bations. The red regions being cyclonic motion and blue regions being anticyclonic

motion. The behaviour of the streamfunction field is similar to the movement of

pressure patterns at the surface. If this was allowed to run further through time

these features would develop further causing wave troughs and crests around the

globe due to baroclinic instability.
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Figure 3.3: Shows the amplitude of the perturbation between the two layers in the model

for ∆t = 0.0008 using a leapfrog scheme with Robert-Asselin filter of 0.01.

Figure 3.4: Shows the perturbations in streamfunction for the upper layer at time 800.
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Chapter 4

Numerical Results

In this Chapter we will compare the results from the time-differencing schemes that

we have implemented in the QUAGMIRE v1.3 model. We will look at the associated

amplitude errors with the schemes.

4.1 Leapfrog with Robert-Asselin Filter

We will first begin with the default time-stepping scheme in the model by varying

the filter paramater ν. By only changing ν it helps to determine the affect the filter

parameter has on the results. We will consider the standard filter and modified

filters in turn.

4.1.1 Standard Filter α = 1

Firstly, the standard Robert-Asselin filter was used with α = 1. The default filter

parameter ν is 0.01 and this is a typical value that is used in numerical models.

Figure 4.1 shows the amplitude of the potential vorticity between the two layers

in the model for filter parameters ranging from 0.005 to 1.0. A filter parameter of

1.0 would not be used in reality but is shown for the purpose of the experiment.

As ν increases a large amount of ringing becomes apparent at the the start of the

time integration. Ringing is a general phenomenon associated with the time domain

oscillation. The magnitude of the oscillations are of order 10−3 which shows the dif-

ferences in amplitude are fairly small. Further through the integration the ringing
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becomes less apparent and the amplitude becomes smoother. As ν increases the

final amplitude becomes larger. Figure 4.2 shows the amplitude relative to the base

amplitude. This shows the differences in amplitude becoming larger as ν increases.

Figure 4.3 shows the final amplitude versus ν. As ν increases the final amplitude

increases at a faster rate. The magnitude of the amplitude error [2][3] associated

with the scheme is given by

|A| = 1 − ν

2(1 − ν)
ω2∆t2 (4.1)

where ν is the filter parameter, ∆t is the time step and ω is the angular frequency.

According to the amplitude error as ν gets larger the final amplitude should

become smaller if ω∆t is held fixed. Therefore the linear theory is not valid as the

wave amplitude is growing which can be seen on Figure 4.3.
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Figure 4.1: Leapfrog scheme with standard Robert-Asselin filter for a range of different

filter parameters. Shows the amplitude of the perturbation between the two layers in the

model for α = 1.
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Figure 4.2: Leapfrog scheme with standard Robert-Asselin filter for a range of different

filter parameters. Shows the amplitude of the perturbation between the two layers relative

to the base amplitude for α = 1. The base amplitude being for the filter parameter

ν = 0.01.
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Figure 4.3: Leapfrog scheme with standard Robert-Asselin filter for a range of different

filter parameters with α = 1. Shows the final amplitude versus the filter parameter ν.
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4.1.2 Modified Filter α = 0.5

We shall now consider the modified filter with α = 0.5. There is clearly a significant

difference between the modified filter and standard filter as shown in Figure 4.4. The

order of accuracy has increased from first-order to third-order [7]. The amplitude

is less influenced by ν. The ringing has become suppressed at the beginning of the

integration. However, there is ringing which can be seen on Figure 4.5. As we are

using the default time step which was the same for initialising the model then the

ringing is less obvious. It is more clear when we change the time step. Figure 4.5

also shows the noise created by the irregular wave pattern between each time step

which cannot be seen with the standard filter. This is because we a displacing the

inner and outer points rather than just the inner point. Figure 4.6 and 4.3 are

similar as the final amplitude increases with ν. However, the linear theory suggests

that the amplitude should decrease as with the standard filter.

800 850 900 950 1000 1050 1100 1150 1200
2.587

2.588

2.589

2.59

2.591

2.592

2.593

2.594

2.595

2.596
x 10

−3

Time

A
m

pl
itu

de

ν=0.005
ν=0.01
ν=0.05
ν=0.1
ν=0.2
ν=0.3
ν=0.4
ν=0.5
ν=0.6
ν=0.7
ν=0.8
ν=0.9
ν=1.0

Figure 4.4: Leapfrog scheme with modified Robert-Asselin filter for a range of different

filter parameters. Shows the amplitude of the perturbation between the two layers in the

model for α = 0.5.
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Figure 4.5: Leapfrog scheme with standard Robert-Asselin filter for a range of different

filter parameters. Shows the amplitude of the perturbation between the two layers relative

to the base amplitude for α = 0.5. The base amplitude being for the filter parameter

ν = 0.01.
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Figure 4.6: Leapfrog scheme with standard Robert-Asselin filter for a range of different

filter parameters with α = 0.5. Shows the final amplitude versus the filter parameter ν.
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4.1.3 Modified Filter α = 0

Finally, the modified filter with α = 0 only displaces the outer point. This scheme is

unconditionally unstable. Once ν > 0.7 the model becomes unstable and terminates.

This scheme is equal and opposite to the standard filter when α = 1. The amplitude

at the end of the integration decreases as ν increases. This can be seen from Figure

4.7 and 4.8. The ringing is apparent at the start of the time integration for the

larger ν. Figure 4.9 shows the final amplitude decreasing as ν increases which does

agree with the linear theory because equation 4.1 gives an amplitude error less than

1.
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Figure 4.7: Leapfrog scheme with modified Robert-Asselin filter for a range of different

filter parameters. Shows the amplitude of the perturbation between the two layers in the

model for α = 0.
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Figure 4.8: Leapfrog scheme with standard Robert-Asselin filter for a range of different

filter parameters. Shows the amplitude of the perturbation between the two layers relative

to the base amplitude for α = 0. The base amplitude being for the filter parameter

ν = 0.01.
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Figure 4.9: Leapfrog scheme with standard Robert-Asselin filter for a range of different

filter parameters with α = 0. Shows the final amplitude versus the filter parameter ν.
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4.2 Adams-Bashforth Schemes

We shall now consider the Adams-Bashforth schemes which we will run from the

initial conditions set by the default scheme.

4.2.1 First-Order

The first-order Adams-Bashforth scheme becomes unstable before the end of the

time integration as you can see from Figure 4.10. The exponential growth in wave

amplitude causes the model to stop the numerical integration. The amplitude error

[3] is given by

|A| = 1 +
ω2∆t2

2
(4.2)

where ∆t is the time step and ω is the angular frequency. As |A| > 1 the scheme is

amplifying. The initial amplitude are small but grow in amplitude extremely fast.
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Figure 4.10: First-order Adams-Bashforth scheme. Shows the amplitude of the

perturbation between the two layers in the model.
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4.2.2 Second-Order

We know the first-order Adams-Bashforth method is unstable so we shall now use

the second-order method. Using the default time step ∆t = 0.0008 the scheme is

stable over the whole integration. Figure 4.11 shows as the time step increases the

final amplitude also increases. The amplitude increases more rapidly for larger ∆t.

This is correct with the linear theory as the associated amplitude error suggests an

increase in amplitude [3]. This is given by

|A| = 1 +
ω4∆t4

4
(4.3)

where ∆t is the time step and ω is the angular frequency. We will derive the

amplitude error in Section 4.3.
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Figure 4.11: Second-order Adams-Bashforth scheme. Shows the amplitude of the

perturbation between the two layers in the model for increasing ∆t.
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4.2.3 Third-Order

The third-order Adams-Bashforth is more accurate again. As ∆t increases the dif-

ference in amplitude is smaller than the second-order Adams-Bashforth method.

However, this is what we expect. According to the linear theory the final amplitude

should decrease for larger ∆t but the amplitude has increased as Figure 4.12 shows.

This could be due to the length of the integration. If we extended the this further

the amplitude may decrease. It could be also be due to the derivation of the ampli-

tude error as these are derived from Taylor series expansions. The amplitude error

[3] is given by

|A| = 1 − 3ω4∆t4

4
(4.4)

where ∆t is the time step and ω is the angular frequency. Due to the third-order

accuracy, the oscillations caused by ringing are not as large as the second-order

method.
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Figure 4.12: Third-order Adams-Bashforth scheme. Shows the amplitude of the

perturbation between the two layers in the model for increasing ∆t.
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4.3 Deriving Amplitude Errors

The amplitude errors tell you about the behaviour of the scheme. Here we will

derive the amplitude error for the second-order Adams-Bashforth method. Let us

consider the oscillation differential equation for the complex variable F (t) such that

dF

dt
= iωF (4.5)

where i =
√
−1 and ω is the angular frequency.

Equation 2.4 can be written in terms of F to give

F n+1 = F n +
∆t

2

[

3iωF n − iωF n−1
]

(4.6)

We shall now define an amplification factor A where

A =
F n+1

F n
=

F n

F n−1
(4.7)

Now using equation 4.7 we can rewrite equation 4.6 in terms of F n to give

AF n = F n +
∆t

2

[

3iωF n − iωF n

A

]

(4.8)

Then we can multiply by A to give a quadratic equation in terms of A, therefore

A2 − A

[

3

2
iω∆t+ 1

]

+
iω∆t

2
= 0 (4.9)

If we let x = iω∆t then equation 4.9 becomes

A2 − A

[

3

2
x+ 1

]

+
x

2
= 0 (4.10)

which makes it easier to solve.

28



Using the quadratic formula we get

A± =

3

2
+ 1 ±

√

(3

2
x+ 1)2 − 4(1)(x

2
)

2(1)
(4.11)

and the square root can be expanded using a Taylor series expansion to give

A± =
3

2
x+ 1 ± 1 − x

2
+ x2 − x

3

2
− x

4

4
+ . . .

2
(4.12)

The amplitude error A+ is for the physical mode and A− is the amplitude error for

the computational mode. The physical mode being the approximate to the original

differential equation.

If we now substitute x = iω∆t back into equation 4.12 we get

A+ = 1 + iω∆t− ω2∆t2

2
+
iω2∆t3

4
− ω4∆t4

8
+ . . . (4.13)

A− =
iω∆t

2
+ ω2∆t2 − iω3∆t3

2
+
ω4∆t4

4
+ . . . (4.14)

We can determine the magnitudes |A+| and |A−| by multiplying by the complex

conjugate and using a Taylor series to give

|A+| = 1 +
ω4∆t4

4
(4.15)

|A−| =
iω∆t

2
− iω3∆t3

2
(4.16)

The amplitude error is dependent on the time step and the angular frequency. When

|A| = 1 then the scheme is neutral. If |A| > 1 it is amplifying and if |A| < 1 it is

damping. The amplitude errors are defined as the difference in modulus between
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the amplification factor |A| and the correct value [2].

The exact solution to equation 4.5 is

F (t) = F (0) exp(iω∆t) (4.17)

with an amplification factor of

|Aexact| = exp(iω∆t) (4.18)

As we increase the numerical resolution by making ∆t→ 0 then |A+| → 1, |A−| → 0

and |Aexact| → 1. Therefore the second-order Adams-Bashforth method dampens

the computational mode.

However, it is not just amplitude errors that arise from the oscillation equation

but phase speed errors also. The combining of the amplitude error and phase speed

error make up the total error for the scheme. This is an area that can reviewed in

the future.
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4.4 Combined Leapfrog and Forward Step

We have so far implemented a leapfrog with a Robert-Asselin filter and a first-order

Adams-Bashforth method separately.

We will now combine the leapfrog scheme and a simple forward scheme to see

the affects from the nonlinear model. Figure 4.13 shows the ratio of N − 1 leapfrogs

to 1 forward step. When N = 2 this means 1 leapfrog followed by 1 forward step.

For every even number of leapfrog steps (when N is odd) the amplitude is further

apart but as we increase the number of leapfrog steps whether even or odd, the

amplitude is converging. Figure 4.14 shows the final amplitude against N which

clearly shows the converging for large N. For an odd number of leapfrog steps when

N = 2, 4, 6, 8, 10 . . . the final amplitude remains fairly constant but for an even

number of leapfrog steps when N = 3, 5, 7, 9 . . . the final amplitude is increasing at

a decaying rate until N becomes sufficiently large. By the time N is of order 102

the amplitude has converged to its eventual value.

By combining the leapfrog scheme with a forward step, this helps to control

the time-splitting instability associated with the leapfrog scheme. The forward-

difference step is used to restart leapfrog integrations. This is an easy method to

employ but degrades the numerical accuracy of the leapfrog scheme. As we have

discovered the first-order Adams-Bashforth method becomes unstable very quickly.

Therefore a second or third-order method may be of better use.
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Figure 4.13: Combined leapfrog and forward step. N − 1 leapfrogs to 1 forward step.

Shows the amplitude of the perturbation between the two layers in the model.
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Figure 4.14: Combined leapfrog and forward step. Shows the final amplitude vs N.
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Chapter 5

Sensitivity Tests

In this Chapter we will look at the sensitivity of the schemes we have used in the

nonlinear model by varying the time step. We shall also look at the importance of

advection, forcing and dissipation in the model.

5.1 Changes in ∆t

As mentioned previously the default time step ∆t = 0.0008. We have increased

∆t and carried out model runs for the three cases of the Asselin-filtered leapfrog

scheme. The time step was increased up to a maximum of 45∆t = 0.036. Any

larger than this then the model would terminate due to the stability of the scheme.

As we increase ∆t the jump between each time point becomes larger and hence the

final amplitude increases up to 20∆t but thereafter decreases in amplitude between

20∆t and 30∆t for each of the three cases. This decrease in amplitude agrees with

the linear theory because equation 4.1 dampens the amplitude. Also a time step

of 30∆t is giving the same amplitude as for 14∆t. However, if this is valid then it

would be computationally less expensive to run a model with a time step 16 times

larger to get the same amplitude.

With the amplitude errors being derived from Taylor series expansions they are

only accurate to a certain degree as they are only taken up to the first 3 or 4 terms.

Although the magnitude of the remaining terms are smaller they are neglected.

After 30∆t the amplitude increases further before decreasing after 40∆t. It is clear

that the nonlinear model is sensitive to time step changes.
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Figure 5.1: Leapfrog scheme with Robert-Asselin filter for the three cases α = 1,

α = 0.5 and α = 0. Shows the final amplitude of the perturbation between the two layers

in the model for increasing ∆t.

5.2 Advection, Forcing and Dissipation

In Chapter 3 we briefly mentioned the forcing, dissipation and advection terms in

the model equations.

Here we have included the forcing and dissipation and neglected the advection

term for each of the three cases α = 1, α = 0.5 and α = 0. The default time step

and filter parameter was applied. Advection is responsible for the movement of fluid

parcels from one position to another. Figure 5.2 shows by taking the advection out

of the model there is no oscillatory behaviour present. There is strong linear growth

with time for each case indicating how important advection is in the model and

therefore cannot be neglected. By the end of the integration the amplitude reaches

a magnitude of near 1030.
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Figure 5.2: Leapfrog scheme with Robert-Asselin filter for the three cases α = 1,

α = 0.5 and α = 0 with a filter parameter ν = 0.01. Shows the amplitude of the

perturbation between the two layers in the model with no advection. Only forcing and

dissipation being applied.
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Figure 5.3: Leapfrog scheme with Robert-Asselin filter for the three cases α = 1,

α = 0.5 and α = 0 with a filter parameter ν = 0.01. Shows the amplitude of the

perturbation between the two layers in the model with no forcing and dissipation. Only

advection being applied.
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When taking the forcing and dissipation from the model and applying only advection

the oscillations become more irregular and the wave amplitudes do not grow as large.

Figure 5.3 shows that the amplitudes of the three case of α perfectly map each other

until the final stages of the integration. At this point the phase and amplitudes of

the waves begin to deviate.

36



Chapter 6

Conclusion

In this final Chapter we shall conclude the dissertation by summarising the results

from the QUAGMIRE v1.3 model from all the different time-differencing schemes

used throughout. The benefits and costs of the schemes for NWP models and the

future work that needs to be undertaken to take this area of Meteorology to the

next level.

6.1 Summary

The aim of this dissertation was to implement a number of time-differencing schemes

in a simple nonlinear numerical model and compare the time step errors in the

schemes with the predictions of simple linear analysis. Then finally deciding whether

the schemes could be implemented into existing NWP models.

We have implemented a number of time-differencing schemes into the nonlinear

QUAGMIRE v1.3 model. The development of baroclinic waves in the model indicate

a good resemblance between the model and laboratory. This indicates that the

numerical schemes we have used a reliable.

The first was the leapfrog with Robert-Asselin filter as this is widely used in

numerical models and was the default scheme in the nonlinear model. The amplitude

error for this scheme (equation 4.1) suggest that the amplitude should decrease as

the filter parameter ν increases. However, the nonlinear model shows the amplitude

increasing and disagreeing with the linear theory for this scheme. From this, it is

important to choose a suitable filter parameter. The proposed modified filter [7]
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was then tested for the three cases of α = 1, α = 0.5 and α = 0. When α = 1,

this yields the standard filter. When α = 0.5 because you are displacing two points

rather than one the scheme is significantly more accurate. When α = 0 the scheme

becomes unstable as ν > 0.7 and the amplitude decreases. The case when α = 0.5

yields third order accuracy and conserves the three-time-level mean state.

Having considered this, we decided to investigate the Adams-Bashforth family of

schemes. The first-order Adams-Bashforth method becomes unstable very quickly as

the nonlinear model allows baroclinic waves to develop which amplify exponentially

due to the amplitude error |A| >> 1. The second-order Adams-Bashforth method

was found to agree with the linear theory. For increasing ∆t the final amplitude

increases as |A| > 1 which mean the wave is amplifying. However, the third-order

Adams-Bashforth method was found to disagree with he linear theory because for

increasing ∆t the final amplitude increases also. The amplification factor |A| < 1

which means it should be decaying.
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Figure 6.1: Shows the comparison of the results from the Adams-Bashforth

second-order, Adams-Bashforth third-order and the leapfrog scheme with Robert-Asselin

filter for the three cases of α. Shows the amplitude of the perturbation between the two

layers in the model for ∆t = 0.0008.
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Figure 6.2: Shows the comparison of the results from the Adams-Bashforth second

order, Adams-Bashforth third order and the leapfrog scheme with Robert-Asselin filter for

the three cases of α. Shows the amplitude of the perturbation between the two layers in

the model for 5∆t.

Figure 6.1 summarises the results for the three cases of α = 1, α = 0.5, α = 0

and the second and third-order Adams-Bashforth methods. Using the default time

step and default filter parameter the schemes in the model produce similar wave

amplitudes. Figure 6.2 shows for larger ∆t the second and third-order schemes are

more time step dependent. All the schemes suffer from ringing during the initial

integrations for larger ∆t.

From the selection of time-differencing schemes employed in the model, not

surprisingly, the third-order Adams-Bashforth method is more accurate than the

Asselin-filtered leapfrog scheme for the α = 1 case and amplitude errors are con-

siderably smaller. However, the Asselin-filtered leapfrog scheme is subject to time-

splitting instability, therefore by using a third-order Adams-Bashforth method you

can avoid this. The Asselin-filtered leapfrog scheme for α = 0.5 yields third-order

accuracy the same as the third-order Adams-Bashforth method. Therefore the pro-

posed modification [7] needs to be given serious thought. The positives to take hear

are undone by the large phase error with the leapfrog scheme.
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6.2 Future Work

In the future it would be beneficial to implement and employ more time-differencing

schemes into the QUAGMIRE v1.3 model to understand a wider concept of possible

schemes that could be used in NWP models. Above all, not every scheme will be

perfect, but by analysing the benefits and costs of the schemes it may be possible to

determine if the scheme should and could be employed into existing models. If the

benefits outweigh the costs then it may be worth implementing. A focus on higher

order schemes such as the fourth-order Runge-Kutta could be looked at. The length

of the time integration could be extended with more computer power and faster

simulations given the time constraints. Further improvements to QUAGMIRE v1.3

in the source code as well as diagnostics by considering a multilayer model instead

of the current two-layer model of equal resting depth.
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