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Abstract

In this dissertation we look at various classical numerical schemes which enable

us to solve non-linear hyperbolic equations numerically. The first order upwind,

Lax-Friedrichs, Lax-Wendroff and Warming-Beam schemes are used to solve the

Burgers and the Buckley-Leverett equations to improve our understanding of the

numerical diffusion and oscillations that can be present when using such schemes.

For these equations we shall use characteristics to evaluate the exact solutions.

By using different initial conditions we will look at situations where pure shocks

are present, and also the case where both shocks and expansion fans are present,

for both of the equations mentioned. The Buckley-Leverett case is slightly more

complex and interesting because it has a non-convex flux function. We also briefly

look at the Runge-Kutta Discontinuous Galerkin method, to consider a second order

non-classical method, which does not produce oscillations.
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Chapter 1

Introduction

Consider the hyperbolic conservation law

ut + f(u)x = 0 (1.1)

where u is the conserved quantity and f(u) is the flux. Applications of such equation

can appear in the study of oil recovery, flow of gas, water, traffic flow, etc. We

consider Burgers equation, where flux function f(u) = 1
2
u2 and the Buckley-Leverett

equation where f(u) =

(
u2

u2+ 1
4
(1−u)2

)
. Burgers equation in conservative form can

be written as

ut +

(
1

2
u2

)

x

= 0 (1.2)

(ignoring any physical diffusion) and the Buckley-Leverett equation can be written

as

ut +

(
u2

u2 + 1
4
(1− u)2

)

x

= 0 (1.3)
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Figure 1.1: Sketch to show the basic technique

The Buckley-Leverett equation is used for oil recovery in industry. The discovery

and recovery of oil is highly complex process, in which mathematical modelling and

numerical simulation play a crucial role. Usually when an oil well is produced, the

pressure at early stage is naturally high, and is such that there will be minimum

difficulty in recovering the oil. The rate at which oil flows out of the well will nat-

urally diminish with time; common ways of keeping up the oil flowing is to inject

water to drive the oil towards the producing well.

Generally an oil reservoir consists of layers of porous rock, which are sandwiched

between layers of impervious rock. These layers are often bent up in a cup shape

which is known as an anticline. The oil reservoir is formed when oil is produced over

geological time scales at great depths, migrating into a reservoir which is filled with

water. This movement causes displacement to the water; gas may also be present

depending on the pressure conditions. If gas is present then this forms a gas cap

on top of the oil in the recovery of the solution. The proportion of oil, gas and
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water which are present are known as saturations. In equation (1.3) there are two

saturations present, water and oil: one of these saturations is u.

Using conservation laws we should note that convergence properties of numerical

schemes can be severely damaged if discontinuties are present, which will affect the

solution. Also numerical schemes can generate oscillations, whilst the analytic so-

lutions do not have any. Classical numerical schemes such as first order upwind,

Lax Friedrichs, Lax Wendroff and Warming-Beam are known as Finite Difference

Methods, because the derivatives are approximated by differences of discrete val-

ues. It is a well known fact that the Lax Wendroff and Warming-Beam schemes

cause oscillations at shocks, where steep gradients are present, whilst the other two

schemes suffer from numerical diffusion. Here we confirm what they do at shocks,

and also investigate what they do for a shock and fan combination, for the Buckley

- Leverett equation.

Chapter 2 contains analytic solutions to the two equations obtained by using char-

acteristics. We apply different initial/boundary conditions to the Burgers and

Buckley-Leverett equations, to obtain shocks and rarefractions. In chapter 3 we

introduce the classical numerical schemes that are used to solve the two equations

numerically. We also look at the CFL condition which is necessary for such schemes

to be stable and the role of the Modified Equation. In chapter 4 we briefly look at

the Runge-Kutta Discontinuous Galerkin method applied to the Buckley-Leverett

equation, demonstrating the basic derivation. Chapter 5 visualizes the results that

are obtained by applying the numerical schemes. Finally chapter 6 will outline the

conclusions which are drawn from the results of these numerical schemes.
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Chapter 2

Exact Solution by Characteristics

Consider the hyperbolic conservation law

ut + f(u)x = 0 (2.1)

where f(u) is the flux function. This can also be written as

ut + a(u)ux = 0

where

a(u) = f ′(u).

A basic solution procedure for hyperbolic equations is the method of characteristics,

which will allow us to investigate the features of the solution of this equation. The

characteristics are given by

dx

dt
= a(u), on which

du

dt
= 0 (2.2)
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We can see that on the characteristics u is a constant, u = u0 say. To obtain an

equation for the characteristics we evaluate x as a function of t from

dx

dt
= a(u0) (2.3)

giving

x = a(u0)(t− t0) + x0 (2.4)

The characteristics are given by equation 2.4.

2.1 Burgers’ Equation

0
u

f(u) = 1/2u^2

Figure 2.1: To show the shape of Burgers’ equation

Introducing the flux of the Burgers equation [1] into equation 2.1 given above, we

obtain

ut +

(
1

2
u2

)

x

= 0 (2.5)

10
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Here

f(u) =
1

2
u2 and a(u) = u

where f(u) has a convex shape (see Fig. 2.2). Then

du

dt
= 0 and

dx

dt
= u ⇒





u = u0

x = u0(t− t0) + x0

(2.6)

2.1.1 Entropy Condition

A simple form of the entropy condition [13] states that for the condition to be valid,

the characteristics can only enter the shock, whilst the characteristics cannot emerge

away from the shock. This condition can be expressed algebraically, the entropy

condition being written as

a(uL) = f ′(uL) ≥ f(uR)− f(uL)

(uR)− (uL)
≥ f ′(uR) = a(uR) (2.65)

Note that the middle term in equation (2.65) is the slope of the chord joining uL to

uR. This slope has to be greater than slope at uR and less than slope at uL.
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2.1.2 Initial Data 1

We first use the initial data (in the right half of the plane)

u(x, 0) =





1
2

x = 0

0 x > 0 ∀t

�
�

� � ����� �	� 
 � � ��� �

� 
 �

	�����	�

Figure 2.2: Shape of f(u) for Burgers’ equation with initial data 1 points

The characteristics are given by

du

dt
= 0,

dx

dt
= u ⇒





u = u0

x = u0t + x0 (leaving the x− axis)

x = u0(t− t0) (leaving the t− axis)

(2.7)

Here

dx

dt
=





1
2

(
u = 1

2

)
for t > 0 x > 0

0
(
u = 0

)
for x > 0, t > 0

(2.8)

12
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until they cross. Integrating equation (2.8), we obtain

x =





1
2

(
t− t0

)
when t > 0, x > 0

x0 when x > 0, t > 0
(2.9)

which agrees with equation (2.4). We can clearly see that the characteristics initially

cross at x = 0 when t = 0. Therefore at the time t = 0 a discontinuity forms. To

calculate the shock speed we use the Rankine-Hugoniot jump condition, obtaining

S =
[f ]

[u]
=

1
2

(
1
2

)2 − 1
2

(
0
)2

1
2
− 0

=
1

4
(2.10)

We therefore obtain the shock speed, which is 1
4
. Hence the solution is given by

0 u = 0

x

t

x = 1/2 ( t - t(0) )

u = 1/2

slope = infinity

slope = 4
slope = 2

dx/dt = 1/2

x(0)x(0)

t(0)

Figure 2.3: Characteristics for Burgers’ equation with initial data 1

u =





1
2

in t > 0, x < 1
4
t

0 in t > 0, x > 1
4
t

(2.11)

(see Fig. 2.3).
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Figure 2.4: Graph to show solution at intervals of t =4, for example 1

2.1.3 Initial Data 2

Secondly we use the initial data (on the whole x-axis)

u(x, 0) =





0 x < −1

1
2

−1 < x < 0

0 x > 0

To evaluate the characteristics in the x,t plane for all t > 0, we proceed as follows.

The characteristics are given by

du

dt
= 0,

dx

dt
= u0 =





0 x0 < −1

1
2

−1 < x0 < 0

0 x0 > 0

(2.12)
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Figure 2.5: Flux function for Burgers’ equation with initial data 2 points

i.e

dx

dt
=





0
(
u = 0

)
for x < −1, t > 0.

1
2

(
u = 1

2

)
for t > 0 − 1 ≤ x ≤ 0

0
(
u = 0

)
for x > 0, t > 0.

(2.13)

until they cross. Integrating equation (2.13), we obtain

x =





x0 when x < −1, t > 0

1
2

(
t− t0

)
when − 1 ≤ x ≤ 0, t > 0

x0 when x > 0, t > 0

(2.14)

The shock is initially at x = 0. We proceed as follows to calculate the shock speed.

As before

S =
[f ]

[u]
=

fR − fL

uR − uL

=
1
2

(
0)

)2 − 1
2

(
1
2

)2

0− 1
2

=
1

4
(2.15)

Connecting (0, 0) to (0, 1
2
) is a straight line which represents the shock. By looking
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at Figure (2.5) we can visualise that by connecting 1
2

to 0 on the curve represents

the fan. The initial shock for this problem is at x = 0 with a speed which is 1
4
.

Using this we obtain the shock line xs(t) which is

xs = 0 +
1

4
t =

1

4
t (2.16)

To satisfy the entropy condition we now have to fill the ’void’ with a characteristic

fan, which is given by [13]

dx

dt
= A =

(x + 1)

t
,

hence

x + 1 = At , 0 ≤ A ≤ 1

2

The part of the expansion when A = 1
2

reaches the shock when

−1 +
1

2
t =

1

4
t (2.17)

The left hand side of the equation (2.17) was obtained from the fan, which is due to

the top of expansion wave having u = 1
2

at x = −1 prior to the shock meeting. The

right hand side was obtained from the shock. Solving equation (2.17) gives rise to

t
(1

4
− 1

2

)
= −1 ⇒ t = 4

Therefore when t ≤ 4, we have u = 0 for both cases when x < −1 and for x > 0 to

the right of the shock, u = 1
2

to the left of the shock while in the region −1 < x < t

we have

u(x, t) =
x + 1

t

16
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Hence for t ≤ 4 we have

u(x, t) =





0 x < −1

x+1
t

−1 < x < t
2
− 1

1
2

t
2
− 1 < x < 1

4
t

0 1
4
t < x

(2.18)

(see Figure 2.6). We now look at the form of the shock when the expansion meets

�
��� �

� ��� �	� 
 � � ��� �	� 
 �
� ��� �	� 
 � � �

�	
�	� � 
 �

���	�

���	�	����� � �	���	��
�

�

Figure 2.6: Burgers’ equation for example 2

the shock t ≥ 4. To do this we equate the shock speed to the average of the values

to the left and to the right:

dxs

dt
=

1

2

(
uR + uL

)
=

1

2

(
(xs + 1)

t
+ 0

)

i.e.

S =
dxs

dt
=

(xs + 1)

2t
(2.19)
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From equation (2.16) we can see that the ODE is separable, giving rise to

∫
dxs

xs + 1
=

∫
dt

2t

ln (xs + 1) =
1

2
ln t + log B

xs + 1 = Bt
1
2 (2.20)

We know that the shock passes through the point t = 4 at x = 1. Using this

information we find that B = 1. Therefore we have now evaluated the shock path

for t ≥ 4, which is

xs = −1 +
√

t (2.21)

2.2 Buckley-Leverett Equation

Now consider again the general form of the one-dimensional hyperbolic conservation

law as given by equation (2.1), and implement the flux of the Buckley-Leverett

equation [1]. We obtain

ut +

(
u2

u2 + 1
4
(1− u)2

)

x

= 0, ∀x ∈ R (2.22)

The flux function is now non-convex (the graph has an S shape) as sketched in

figure 2.6. To evaluate a(u), we use the quotient rule, giving

a(u) = f ′(u) =

(
5u2 − 2u + 1

)
8u− 4u2

(
10u− 2

)

(
5u2 − 2u + 1

)2 =

(
8u− 8u2

)

(
5u2 − 2u + 1

)2

18
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f(u)

u 0

Figure 2.7: To show the shape of a non-convex function

2.2.1 Initial Data 1 for the B-L equation

In this problem we will again use the initial data

u(x, 0) =





1
2

x = 0

0 x > 0

To evaluate the characteristics in the x,t plane for all t > 0, we proceed as follows.

The characteristics are given by

dx

dt
= a(u),

du

dt
= 0 (2.23)

We can see that u is a constant which shall be denoted by u0. From equation (2.23),

u = u0 and x is given by

x = a(u0)t + x0 (2.24)
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Figure 2.8: Graph of B-L flux and shock construction for first initial conditions

where

a(u0) =

(
5u2

0 − 2u0 + 1

)
8u0 − 4u2

0

(
10u0 − 2

)

(
5u2

0 − 2u0 + 1

)2

Hence

dx

dt
= a(u0) =

(
8u0 − 8u2

0

)

(
5u2

0 − 2u0 + 1

)2

The characteristics are now

x =

(
8u0 − 8u2

0(
5u2

0 − 2u0 + 1
)2

)
t + x0 (2.25)

We can substitute the initial conditions into equation (2.25), giving

x =





32
25

t x0 = 0 (leaving the t− axis)

x0 x0 > 0 (leaving the x− axis)

At x = t = 0 the characteristic cross, the partial differential equation breaks down

20
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and we have the shock speed

dxs

dt
=

fR − fL

uR − uL

=

0−
(

1
4

1
4
+ 1

4

(
1− 1

2

)2

)

0− 1
2

=
8

5

For this initial condition we always get a shock, see figure (2.8). By looking at this

figure we can see that the line connecting the points is a straight line, which satisfies

the entropy condition, see equation (2.65).

� ��� �
�

�

����� � 	


�� ���� ��� ��� � ��� � �


�� ���� ����� �

� � � � � ����	�� 	�� � � � � � � �

� � � � � ��� � 	

Figure 2.9: Characteristic diagram for the Buckley-Leverett equation for example 1

2.2.2 Initial Data 2 for the B-L equation

The second example has the initial conditions

u(x, 0) =





3
4

x = 0

0 x > 0

21
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Evaluating the characteristics in the x,t plane for all t > 0, we obtain (as before)

x =

(
8u0 − 8u2

0(
5u2

0 − 2u0 + 1
)2

)
t + x0 (2.26)

This time we get not only a shock but also a fan (see Figure 2.10) because we

� � ���

� ��� � �
�

��� �	��
 � ��� ����
��� � �

� � �

���������

� ���

Figure 2.10: Buckley-Leverett equation for example 2

cannot connect the points (0, 0) and (3
4
, f(3

4
)) by a straight line, and satisfy the

entropy condition see equation (2.65). Instead let uT the value of u corresponding

to the tangent from (0, 0) to the curve. To evaluate uT , we proceed as follows:

The slope of curve at uT must equal slope of tangent at uT , therefore

f
′
(uT ) =

f(uT )− 0

uT − 0
(2.27)

which leads to

8uT − 8u2
T(

5u2
T − 2uT + 1

)2 =
u2

T + 1
4

(
1− uT

)2

uT

(2.28)

22



MSc Numerical solution of differential equations Rakib Ahmed

Therefore uT is given by equation (2.28). This is a non-linear equation for uT . In

order to use Newton’s method to solve equation (2.28) we re-arrange it to obtain in

the form F (uT ) = 0 to, where F (uT ) is

F (ut) =
8uT − 8u2

T(
5u2

T − 2uT + 1
)2 −

u2
T + 1

4

(
1− uT

)2

uT

(2.29)

The method is described in terms of a sequence, using the Newton formula

xn+1 = xn − F (xn)

F ′(xn)
(2.30)

By starting with an initial guess of 1
2
, we obtain the value of uT after 5 iterations

where uT = 0.617403. The actual form of fan is beyond the scope of this work, so

it is just sketched.

0 u = 0

x

t

slope = infinity

dx/dt = 0

shock

edge of fan

immediate point
where shock begins

FAN
dx/dt = 3/4

Figure 2.11: Sketch of characteristic diagram for the Buckley-Leverett equation
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Chapter 3

Classical numerical schemes

Consider the general form of the hyperbolic conservation law given by equation

(2.1). In our case the two non-linear equations used are the Burgers and the

Buckley-Leverett equations. The flux of the equations are given by f(u) = 1
2
u2,

and f(u) =

(
u2

u2+ 1
4
(1−u)2

)
, respectively. We now turn our attention to the numer-

ical approximation of the solutions of the equations mentioned above. We should

note that there are a vast amount of numerical techniques which can be used to

approximate conservation laws but we shall concentrate on the Finite Difference

Methods. When using finite difference methods the derivatives are approximated

by differences. The four numerical schemes we shall consider are the Lax-Friedrichs,

first order upwind, Lax-Wendroff and Warming-Beam.

We can write conservative finite difference schemes for solving the conservation law

in the explicit form

un+1
j = un

j −
∆t

∆x

(
hn

j+ 1
2
− hn

j− 1
2

)
(3.1)

24
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where

hn
j+ 1

2
= h

(
un

j−1, ..., u
n
j+r

)
(3.2)

Here h is a consistent numerical flux function and un
j = u

(
j∆x, n∆t

)
. We should

note that many different numerical schemes have been developed to overcome some

of the difficulties that are faced when dealing with the numerical simulation of

conservation laws.

3.1 The CFL condition

In order to have stability when using explicit numerical schemes, we are required to

apply the necessary condition known as the Courant-Friedrichs-Lewy condition. It

is often referred to as the CFL or Courant condition, [9] and [12], and is

µ =

∣∣∣∣∣a
∆t

∆x

∣∣∣∣∣ ≤ 1 (3.3)

where a = a(u) = ∂f
∂u

, which represents a wave speed. Here ∆t and ∆x are the time

and space steps, respectively. If a small space step is used then a small time step

is needed to keep the numerical simulation stable. This condition is not sufficient

for stability, as it is only a necessary condition for a scheme to be stable. Once the

scheme has satisfied the CFL condition, it can then be considered in more depth by

using a stability test which is sufficient.
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3.2 Lax-Friedrichs

The Lax Friedrichs scheme is first order accurate in both space and time, and the

stability region is defined by
∣∣a ∆t

∆x

∣∣ ≤ 1. The picture on the right of figure (3.1)

����� � �����

�

�

�

�

�

� ���

�
	����� � 	��
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Figure 3.1: Stencils for the lax friedrichs scheme

shows the domain of dependence. If a ∆t
∆x

is slope of AB then the CFL condition is

satisfied because AB lies in the stencil of the scheme, whilst the line AC is a violation

of the CFL condition, lying outside the domain of dependence. The numerical flux

function is given by

hn
j+ 1

2
=

1

2

(
fj + fj+1

)
− ∆x

2∆t

(
un

j+1 − un
j

)
, (3.4)

where f is the the flux of the equation we are going to use. If we substitute the flux

of Burgers’ equation into equation (3.4), we obtain.

hn
j+ 1

2
=

1

2

(
1

2
u2

j +
1

2
u2

j+1

)
− ∆x

2∆t

(
un

j+1 − un
j

)
(3.5)
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and

hn
j− 1

2
=

1

2

(
1

2
u2

j−1 +
1

2
u2

j

)
− ∆x

2∆t

(
un

j − un
j−1

)
(3.6)

We can now write down the Lax-Friedrichs conservative finite difference scheme for

solving the conservation law for the Burgers equation in its conservative form by

substituting equation (3.5) and (3.6) into equation (3.1). Doing this we obtain.

un+1
j = un

j −
∆t

∆x

((
1

2

(
1

2
u2

j +
1

2
u2

j+1

)
− ∆x

2∆t

(
un

j+1 − un
j

))

−
(

1

2

(
1

2
u2

j−1 +
1

2
u2

j

)
− ∆x

2∆t

(
un

j − un
j−1

)))
(3.7)

and simplifying equation (3.7) gives

un+1
j = un

j −
∆t

4∆x

(
u2

j+1 + u2
j−1

)
+

1

2

(
un

j+1 + un
j−1

)
(3.8)

By substituting the flux of the Buckley-Leverett equation into equation (3.4), we

get

hn
j+ 1

2
=

1

2

(
u2

j

u2
j + 1

4

(
1− uj

)2 +
u2

j+1

u2
j+1 + 1

4

(
1− uj+1

)2

)
− ∆x

2∆t

(
un

j+1 − un
j

)
(3.9)

and

hn
j− 1

2
=

1

2

(
u2

j−1

u2
j−1 + 1

4

(
1− uj−1

)2 +
u2

j

u2
j + 1

4

(
1− uj

)2

)
− ∆x

2∆t

(
un

j − un
j−1

)
(3.10)

We can now write down the Lax-Friedrichs conservative finite difference scheme for

solving the conservation law for the Buckley-Leverett equation in its conservative
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form by substituting equation (3.9) and (3.10) into equation (3.1), leads to

un+1
j = un

j−
∆t

∆x

((
1

2

(
u2

j

u2
j + 1

4

(
1− uj

)2 +
u2

j+1

u2
j+1 + 1

4

(
1− uj+1

)2

)
− ∆x

2∆t

(
un

j+1−un
j

))

−
(

1

2

(
u2

j−1

u2
j−1 + 1

4

(
1− uj−1

)2 +
u2

j

u2
j + 1

4

(
1− uj

)2

)
− ∆x

2∆t

(
un

j − un
j−1

)))
(3.11)

and simplifying equation (3.11) gives

un+1
j = un

j −
∆t

2∆x

(
u2

j+1

u2
j+1 + 1

4

(
1− uj+1

)2 −
u2

j−1

u2
j−1 + 1

4

(
1− uj−1

)2

)

+
1

2

(
un

j+1 + un
j−1

)
(3.12)

The Lax-Friedrichs scheme has now been written in its conservative form for the

Burgers and the Buckley-Leverett equations.

3.3 First order upwind

The first order upwind scheme is also first order accurate in both space and time, but

the scheme is only stable for the interval 0 ≤ a ∆t
∆x
≤ 1 for (a > 0), or −1 ≤ a ∆t

∆x
≤ 0

for (a < 0).

The picture on the right of figure (3.2) also shows the domain of dependence. If

a ∆t
∆x

is slope of AB then the CFL condition is satisfied because AB lies in the stencil

of the scheme, whilst the line AC is a violation of the CFL condition, lying outside

the domain of dependence. The numerical flux function is
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Figure 3.2: Stencils for the first order Upwind scheme

hj+ 1
2

=





fj vj+ 1
2

> 0

fj+1 vj+ 1
2

< 0
(3.13)

where

vj+ 1
2

=





∆t
∆x

fj+1−fj

uj+1−uj
uj 6= uj+1

∆t
∆x

f ′(uj) uj = uj+1

(3.14)

Applying the Burgers flux to the first order Upwind scheme, hj+ 1
2

gives rise to

hj+ 1
2

=





1
2
u2

j vj+ 1
2

> 0

1
2
u2

j+1 vj+ 1
2

< 0
(3.15)

where

vj+ 1
2

=





∆t
∆x

1
2
(uj+1 + uj) uj 6= uj+1

∆t
∆x

uj uj = uj+1
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For hj− 1
2
, we obtain

hj− 1
2

=





1
2
u2

j−1 vj− 1
2

> 0

1
2
u2

j vj− 1
2

< 0
(3.16)

where

vj− 1
2

=





∆t
∆x

1
2
(uj + uj−1) uj−1 6= uj

∆t
∆x

uj−1 uj−1 = uj

We can now write the first order upwind scheme for solving the conservation law,

for the Burgers equation in its conservative form by substituting equation (3.15)

and (3.16) into equation (3.1), which gives rise to

un+1
j = un

j −
∆t

∆x

(
equation(3.15)− equation(3.16)

)
(3.17)

Introducing the Buckley-Leverett flux into the first order upwind scheme, for hj+ 1
2

we have

hj+ 1
2

=





u2
j

u2
j+ 1

4
(1−uj)2

vj+ 1
2

> 0

u2
j+1

u2
j+1+

1
4
(1−uj+1)2

vj+ 1
2

< 0
(3.18)

where

vj+ 1
2

=





∆t
∆x

u2
j+1

u2
j+1

+1
4 (1−uj+1)2

− u2
j

u2
j
+1

4 (1−uj)2

uj+1−uj
uj 6= uj+1

∆t
∆x

8uj−8u2
j

(5u2
j−2uj+1)2

uj = uj+1

For hj− 1
2

we obtain

hj− 1
2

=





u2
j−1

u2
j−1+ 1

4
(1−uj−1)2

vj− 1
2

> 0

u2
j

u2
j+ 1

4
(1−uj)2

vj− 1
2

< 0
(3.19)
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where

vj− 1
2

=





∆t
∆x

u2
j

u2
j
+1

4 (1−uj)2
− u2

j−1

u2
j−1

+1
4 (1−uj−1)2

uj−uj−1
uj−1 6= uj

∆t
∆x

8uj−1−8u2
j−1

(5u2
j−1−2uj−1+1)2

uj−1 = uj

The scheme can now be written in conservarive form by substituting equation (3.18)

and (3.19) into equation (3.1), giving rise to

un+1
j = un

j −
∆t

∆x

(
equation(3.18)− equation(3.19)

)
(3.20)

3.4 Lax-Wendroff

The Lax-Wendroff is a second order accurate scheme. This scheme is known to be

stable for the region
∣∣a ∆t

∆x

∣∣ ≤ 1. The picture on the right of figure (3.3) shows the
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Figure 3.3: Stencils for the Lax-Wendroff scheme

domain of dependence for this numerical scheme. If a ∆t
∆x

is the slope of AB then the

CFL condition is satisfied because AB lies in the stencil of the scheme, whilst the
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line AC violates the CFL condition, by lying outside the domain of dependence.

The numerical flux function can be written as

hj+ 1
2

=
1

2

(
(fj+1 + fj)− vj+ 1

2
(fj+1 − fj)

)
(3.21)

Substituting the Burgers flux gives rise to

hj+ 1
2

=
1

2

(
(
1

2
u2

j+1 +
1

2
u2

j)− vj+ 1
2
(
1

2
u2

j+1 −
1

2
u2

j)

)
(3.22)

hj− 1
2

leads to

hj− 1
2

=
1

2

(
(
1

2
u2

j +
1

2
u2

j−1)− vj− 1
2
(
1

2
u2

j −
1

2
u2

j−1)

)
(3.23)

Introducing the Buckley-Leverett equation into the Lax-Wendroff scheme gives

hj+ 1
2

=
1

2

(
((

u2
j+1

u2
j+1 + 1

4
(1− uj+1)2

) + (
u2

j

u2
j + 1

4
(1− uj)2

))−

vj+ 1
2
((

u2
j+1

u2
j+1 + 1

4
(1− uj+1)2

)− (
u2

j

u2
j + 1

4
(1− uj)2

))

)
(3.24)

and

hj− 1
2

=
1

2

(
((

u2
j

u2
j + 1

4
(1− uj)2

) + (
u2

j−1

u2
j−1 + 1

4
(1− uj−1)2

))−

vj− 1
2
((

u2
j

u2
j + 1

4
(1− uj)2

)− (
u2

j−1

u2
j−1 + 1

4
(1− uj−1)2

))

)
(3.25)
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where vj− 1
2

and vj+ 1
2

for this scheme are as in the first order upwind scheme. We

can now write the Lax-Wendroff scheme for solving the conservation law, for the

Burgers and the Buckley-Leverett equations may be written as

un+1
j = un

j −
∆t

∆x

(
equation(3.22)− equation(3.23)

)
(3.26)

and

un+1
j = un

j −
∆t

∆x

(
equation(3.24)− equation(3.25)

)
(3.27)

3.5 Warming-Beam

The Warming-Beam is also a second order accurate numerical scheme, but the

scheme is only stable for the interval 0 ≤ a ∆t
∆x
≤ 2.
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Figure 3.4: Stencils for the Warming-Beam scheme

The picture on the right of figure (3.4) shows the domain of dependence for this

numerical scheme. If a ∆t
∆x

is the slope of AB then the CFL condition is satisfied
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because AB lies in the stencil of the scheme, whilst the line AC violates the CFL

condition, by lying outside the domain of dependence. The numerical flux function

can be written as

hj+ 1
2

=





1
2

(
3fj − fj−1

)− 1
2
vj− 1

2

(
fj − fj−1

)
vj+ 1

2
> 0

1
2

(
3fj+1 − fj+2

)− 1
2
vj+ 3

2

(
fj+2 − fj+1

)
vj+ 1

2
< 0

(3.28)

and

hj− 1
2

=





1
2

(
3fj−1 − fj−2

)− 1
2
vj− 3

2

(
fj−1 − fj−2

)
vj− 1

2
> 0

1
2

(
3fj − fj+1

)− 1
2
vj+ 1

2

(
fj+1 − fj

)
vj− 1

2
< 0

(3.29)

where vj− 1
2

and vj+ 1
2

are as given in the first order upwind scheme. To write

the Warming-Beam scheme in order to solve the conservation law for Burgers and

Buckley-Leverett equations, we follow a procedure similar to the first order upwind

scheme, which is described in section 3.3.

3.6 TVD and Limiters

Consider the Lax-Wendroff and Warming-Beam schemes, where oscillations are

present to the left and right of the discontinuity, respectively. One reason for os-

cillations occurring is due to the numerical schemes not satisfying the maximum

principle, see [1] and [12]. The local maximum principle (3 point Lax-Wendroff

scheme) is given by

min
(
un

j−1, u
n
j , u

n
j+1

) ≤ un+1
j ≤ max

(
un

j−1, u
n
j , u

n
j+1

)

In the Lax-Wendroff and Warming-Beam schemes there are no implementation of
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the TVD (total variation diminishing) property, which the original problem satisfies.

The total variation TV =
∑ |un

j+1 − un
j | and the D means it is decreasing in time

(within). The introduction of flux limiters can be added to the Lax Wendroff and

Warming-Beam schemes in order to make it TVD and therefore non-oscillatory. I

have not pursued limiters for the finite difference methods here for the lack of time

span, but I have included (in the next chapter) a description of the RKDG method

which I studied last year and does have a TVD property built in.

3.7 Modified Equation

In order to analyse finite difference methods, we note that to every finite difference

approximation is of order ©(∆tR, ∆xS) for a given differential equation. There is

another differential equation which is known as the Modified Equation to which

the difference scheme provides a better approximation. For details on how to fully

obtain the modified equation for finite difference schemes we refer to [1] and [12].

The modified equation for the Lax-Friedrichs and first order upwind numerical

schemes can be written in the form

ut + a(u)ux = Duxx (3.30)

where

D =
1

2
∆x

(
1− a

∆t

∆x

)(
1 +

∆x

a∆t

)
(3.31)

and

D =
1

2
∆x

(
1− a

∆t

∆x

)
, (3.32)
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respectively. Examination of these two equations by using Fourier Transforms [12],

shows the schemes to be of a non-dispersive nature, due to the waves travelling at

the same speed as of those in equation (1.1). The CFL number a ∆t
∆x

is positive and

at most 1, so when D > 0 the amplitudes of the waves are damped with the higher

wave numbers being affected more severely. Therefore we can conclude that the

Lax- Friedrichs and first order upwind schemes are dissipative. By looking at equa-

tions (3.31) and (3.32) we can clearly see that the coefficient for the Lax- Friedrichs

scheme has a much larger factor than of the first order upwind scheme, so we expect

the Lax-Friedrichs scheme to be much more diffusive than the first order upwind

scheme.

The modified equation for the Lax-Wendroff and Warming-Beam numerical schemes

can be written in the form

ut + a(u)ux = Ruxxx (3.33)

where

R =
1

6
∆x2

(
a2 ∆t2

∆x2
− 1

)
(3.34)

and

R =
1

6
∆x2

(
2− a

∆t

∆x

)(
1− a2 ∆t2

∆x2

)
(3.35)

respectively. Investigation of equation (3.33) by Fourier Transforms shows that dif-

ferent wave numbers are travelling at different speeds, which means that the equa-

tion is said to be dispersive. By looking at the stability region for the Lax-Wendroff

scheme, we can see that R is negative, which leads to high wave numbers travelling
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with slower speed than they should. As a result of this we obtain oscillations oc-

curring to the left of a shock. Due to the comparison of clasical numerical schemes,

we shall concentrate on the lower half of the stability region
(
0 ≤ a ∆t

∆x
≤ 1

)
for

the Warming-Beam scheme. If we consider the lower half of the stability region, by

looking at equation (3.35) we can see that R will always stay positive. This result-

ing in high wave numbers travelling with faster velocity than they should, therefore

the oscillations are observed in the front of the discontinuity for the Warming-Beam

scheme.

Numerical results for the application of the schemes for Burgers and the Buckley-

Leverett equations will be shown in chapter 5.
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Chapter 4

Discontinuous Galerkin Method

In this Chapter we describe the derivation of the Discontinuous Galerkin Method,

a non-classical method, and its application to the Buckley-Leverett equation.

4.1 Basic derivation of D-G Method

Given

ut + f(u)x = 0, in (a, b)× (0, T ) (4.1)

with an initial condition

u(x, 0) = u0(x),∀x ∈ (a, b) (4.2)

To numerically solve equations (4.1) and (4.2), we can use the Discontinuous Galerkin

method to discretise in space with a Runge-Kutta method to step forward in time

[4] and [5]. We shall first discretize (4.1) and (4.2) in the spatial variable x. To

discretize in space we proceed as follows. For each part of the interval (a, b), we set
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Ij = (xj− 1
2
, xj+ 1

2
) where ∆j = xj+ 1

2
−xj− 1

2
for j = 1, . . . , N and denote the quantity

max1≤j≤N∆j by ∆x. We use the Galerkin method for which the finite dimensional

space Vh to which the approximate solution uh(t) belongs to is taken as

Vh = V k
h =

{
v ∈ L1(0, 1) : v | ij ∈ P k(IJ), j = 1, . . . , N

}

where P k(Ij) denotes the space of polynomials of degree at most k in the cell (Ij).

In V k
h , the functions are allowed to have jumps at the interfaces xj+ 1

2
which is why

this method is called the Discontinuous Galerkin method. Multiply equation (4.1)

by v and integrate over Ij,

∫

Ij

vutdx +

∫

Ij

vf(u)xdx = 0. (4.3)

Integrating the second term by parts, gives

∫

Ij

vutdx +
[
vf(u)

]∣∣∣
Ij

−
∫

Ij

vxf(u)dx = 0 (4.4)

Equation (4.4) is the weak form used for linear approximation. For each j put

u = u0 + (x− xj− 1
2
)u1 and choose v0 = 1 and v1 = (x− xj− 1

2
). Substituting v0 = 1

into equation (4.4), yields

∫

Ij

utdx +

[
f(u)

]∣∣∣∣∣
Ij

= 0. (4.5)

Substituting v1 = (x− xj− 1
2
) into equation (4.4) we get

∫

Ij

(x− xj− 1
2
)utdx +

[
(x− xj− 1

2
)f(u)

]∣∣∣∣∣
Ij

−
∫

Ij

f(u)dx = 0 (4.6)
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Equations (4.5) and (4.6) for all the j′s can be written in a concise ODE form

d

dt
uh = Lh(u

h) (4.7)

where uh is now the vector of (u0, u1)’s for all j. From figure 4.1 we can see that

xxL xR

uL

j

uR

uL

u

uR
uR

uL

Figure 4.1: Graph to visualise the situation

u = uL

(
xR − x

xR − xL

)
+ uR

(
x− xL

xR − xL

)

= uL(t)φL(x) + uR(t)φR(x)

where

φL =

(
xj+ 1

2
− x

xj+ 1
2
− xj− 1

2

)
, φR =

(
x− xj− 1

2

xj+ 1
2
− xj− 1

2

)

which leads to

ut =
duL

dt
φL(x) +

duR

dt
φR(x)
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4.2 Buckley-Leverett flux

Introducing the Buckley - Leverett flux into equation (4.5) gives

∫

Ij

utdx +

[
u2

u2 + 1
4
(1− u)2

]∣∣∣∣∣
Ij

= 0 (4.8)

Introducing the flux into equation (4.6) gives

∫

Ij

(x−xj− 1
2
)utdx+

[
(x−xj− 1

2
)

(
u2

u2 + 1
4
(1− u)2

)]∣∣∣∣∣
Ij

−
∫

Ij

(
u2

u2 + 1
4
(1− u)2

)
dx = 0

(4.9)

To evaluate the first term of equation (4.8), we proceed as follows

∫ xR

xL

utdx =

∫

Ij

(
duL

dt
φL(x) +

duR

dt
φR(x)

)
dx

=
duL

dt

∫ xR

xL

(
xR − x

xR − xL

)
dx +

duR

dt

∫ xR

xL

(
x− xL

xR − xL

)
dx

By integrating we obtain

∫ xR

xL

utdx =
duR

dt

1

xR − xL

[
1

2

(
x− xL)

)2

]xR

xL

+
duL

dt

1

xR − xL

[
1

2

(
xR − x)

)2

]xR

xL

Substituting in the limits we obtain

∫ xR

xL

utdx =
duR

dt

1

2

(
xR − xL

)
+

duL

dt

1

2

(
xL − xR

)
. (4.10)

To evaluate the second term of equation (4.8), we have to treat this term in a special

way, to do this we proceed as follows
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[
f
(
u
)
]∣∣∣∣∣

Ij

=

(
f
(
uj+ 1

2

)− f
(
uj− 1

2

)
)

Replacing the non-linear flux f

(
u
(
xj+ 1

2
, t

)
)

by a numerical flux which depends on

two values of uh at the point
(
xj+ 1

2
, t

)
, this is given by

h(u)j+ 1
2
(t) = h

(
u(x−

j+ 1
2

, t)(u(x+
j+ 1

2

, t)
)

By using a monotone numerical flux, we should achieve high-order accuracy while

keeping their stability and convergence properties. A monotone flux is one which

satisfies the following properties listed below.

• If it is locally Lipschitz and consistent with the flux f(u), for example h(u, u) =

f(u).

• If it is a nondecreasing function of its first argument, and a nonincreasing

function of its second argument

An example of a numerical flux which satisfies the above properties is the Local

Lax-Friedrichs flux, which is given by

hLLF
(
a, b

)
=

1

2

[
f(a) + f(b)− C(b− a)

]
(4.11)

where a = u(x−
j+ 1

2

, t) and b = u(x+
j+ 1

2

, t) and C = Maxmin(a,b)≤u≤max(a,b)

∣∣∣f ′(u)
∣∣∣.

Applying the formula to the Buckley-Leverett flux we obtain

hLLF =
1

2

(
u−2

j+ 1
2

u−2
j+ 1

2

+ 1
4

(
1− u−

j+ 1
2

)2

)
−1

2

(
u−2

j− 1
2

u−2
j− 1

2

+ 1
4

(
1− u−

j− 1
2

)2

)
+

1

2

(
u+2

j+ 1
2

u+2
j+ 1

2

+ 1
4

(
1− u+

j+ 1
2

)2

)
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−1

2

(
u+2

j− 1
2

u+2
j− 1

2

+ 1
4

(
1− u+

j− 1
2

)2

)
− 1

2
C

(
u+

j+ 1
2

− u−
j+ 1

2

)
+

1

2
C

(
u+

j− 1
2

− u−
j− 1

2

)

To evaluate the first term of equation (4.9), we proceed as follows

∫ xR

xL

(x− xL)utdx =

∫ xR

xL

(x− xL)

(
duL

dt
φL(x) +

duR

dt
φR(x)

)
dx

=
duL

dt

∫ xR

xL

(x− xL)

(
xR − x

xR − xL

)
dx +

duR

dt

∫ xR

xL

(x− xL)

(
x− xL

xR − xL

)
dx

By integrating we obtain

∫ xR

xL

(x−xL)utdx =
duR

dt

1

xR − xL

[
1

3

(
x−xL

)3

]xR

xL

+
duL

dt

1

xR − xL

[
xRx2

2
−xLxRx−x3

3
+

xLx2

2

]xR

xL

hence

∫ xR

xL

(x−xL)utdx =
duR

dt

[
1

3

(
xR−xL

)2

]
+

duL

dt

1

xR − xL

[
1

6
x3

R−
1

2
xLx2

R−
1

6
x3

L+
1

2
xRx2

L

]

To evaluate the second term of equation (4.9), we treat this term in the same way

as we did previously for the second term in equation (4.8). By doing this we obtain

[
(x− xj− 1

2
)f

(
u
)
]j+ 1

2

j− 1
2

=
(
xj+ 1

2
− xj− 1

2

)(
f
(
uj+ 1

2

))

Applying the Local-Lax Friedrichs flux to this term yields

hLLF =
1

2

(
xj+ 1

2
−xj− 1

2

)
(

u−2
j+ 1

2

u−2
j+ 1

2

+ 1
4

(
1− u−

j+ 1
2

)2

)
+

1

2

(
xj+ 1

2
−xj+ 1

2

)
(

u+2
j+ 1

2

u+2
j+ 1

2

+ 1
4

(
1− u+

j+ 1
2

)2

)
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−1

2

(
xj+ 1

2
− xj− 1

2

)(1

3

(
xj+ 1

2
− xj− 1

2

)2)(
u+

j+ 1
2

− u−
j+ 1

2

)

We are now left with the final term in equation (4.9). To integrate this we use

Gaussian Quadrature. To evaluate Lu we have to solve the 2 simultaneous equations

A
duR

dt
+ B

duL

dt
= RHS1 (4.12)

and

C
duR

dt
+ D

duL

dt
= RHS2, (4.13)

where

RHS1 =
1

2

(
u−2

j+ 1
2

u−2
j+ 1

2

+ 1
4

(
1− u−

j+ 1
2

)2

)
−1

2

(
u−2

j− 1
2

u−2
j− 1

2

+ 1
4

(
1− u−

j− 1
2

)2

)
+

1

2

(
u+2

j+ 1
2

u+2
j+ 1

2

+ 1
4

(
1− u+

j+ 1
2

)2

)

−1

2

(
u+2

j− 1
2

u+2
j− 1

2

+ 1
4

(
1− u+

j− 1
2

)2

)
− 1

2
C

(
u+

j+ 1
2

− u−
j+ 1

2

)
+

1

2
C

(
u+

j− 1
2

− u−
j− 1

2

)

RHS2 =
1

2

(
xj+ 1

2
−xj− 1

2

)
(

u−2
j+ 1

2

u−2
j+ 1

2

+ 1
4

(
1− u−

j+ 1
2

)2

)
+

1

2

(
xj+ 1

2
−xj+ 1

2

)
(

u+2
j+ 1

2

u+2
j+ 1

2

+ 1
4

(
1− u+

j+ 1
2

)2

)

−1

2

(
xj+ 1

2
− xj− 1

2

)
C

(
u+

j+ 1
2

− u−
j+ 1

2

)
+ Gaussian Quadrature part

and

A =
1

2

(
xj+ 1

2
− xj− 1

2

)
, B =

1

2

(
xj− 1

2
− xj+ 1

2

)
, C =

1

3

(
xj+ 1

2
− xj− 1

2

)2

D =

[
1

6
x3

(j+ 1
2
)
− 1

2
x(j− 1

2
)x

2
(j+ 1

2
)
− 1

6
x3

(j− 1
2
)
+

1

2
x(j+ 1

2
)x

2
(j− 1

2
)

]
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Solving equations (4.12) and (4.13) simultaneously yields

duL

dt
=

C ∗RHS1− A ∗RHS2

B ∗ C − A ∗D
(4.14)

and

duR

dt
=

RHS1

A
−B

(RHS1− A ∗RHS2)

A(B ∗ C − A ∗D)
(4.15)

We can now apply the TVD-Runge-Kutta to discretise our ODE system in time [2].

If
(
tn

)N

n=0
is a partition of [0, T ] and ∆tn = tn+1 − tn, n = 0, · · · , N − 1, then our

time marching algorithm reads as follows:

• Set u0
h = un

h;

• For n = 0, · · · , N − 1 compute un+1
h from un

h as follows:

1 Set u0
h = un

h;

2 for i = 1, · · · , k + 1 compute the intermediate functions:

ui
h =

(
i−1∑

l=0

αilu
l
h + βil∆tnLh

(
ul

h

)
)

; (4.16)

3 set un+1
h = u

(k+1)
h .

where Lh

(
ul

h

)
is given by equations (4.14) and (4.15). In equation (4.16) we take k

to equal one, where αil and βil are the Runge-Kutta time discretisation parameters.
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Chapter 5

Numerical Results

Numerical experiments were performed using five different numerical schemes. The

schemes used are the first order upwind, Lax-Friedrichs, Lax- Wendroff, Warming-

Beam and the Runge-Kutta Discontinuous Galerkin method. Unfortunately we

could not get the RKDG program to work, so used one kindly made available by

Paul Jelfs. The Burgers and Buckley-Leverett equations were used,

ut +

(
1

2
u2

)

x

= 0 (5.1)

and

ut +

(
u2

u2 + 1
4
(1− u)2

)

x

= 0 (5.2)

respectively. Equations (5.1) and (5.2) were tested with different initial boundary

conditions to check the behaviour and accuracy of the numerical schemes.
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5.1 Burgers initial data 1
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Figure 5.1: Graphs of schemes for Burgers’ initial data 1 points

The solution for this data describes a shock which is propagating in the positive

x-direction, with a speed of 0.25. We can compare the behaviour of the numerical

schemes, since the analytic solution is known. Figures (5.1) and (5.2) were plotted

using a step size ∆x = 0.01 and a time step ∆t = 0.009, with a number of 100

timesteps used for figure (5.1). At this particular time point the shock has moved

to x = 0.225 from its initial position. By analysing fig (5.1) we can clearly see that

the Lax-Friedrichs and the first order upwind schemes have introduced numerical
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Figure 5.2: Graph of RKDG method for Burgers equation with initial data 1

diffusion (smearing). The smearing for the Lax-Friedrichs scheme is much more

severe than of the first order upwind scheme, this being a direct feature of the

truncation error terms of these schemes (see Chapter 3), whilst the Lax-Wendroff

and Warming-Beam schemes are much more accurate at capturing the shock. The

Lax-Wendroff scheme produces spurious oscillations to the left of the shock and the

Warming-Beam scheme creates oscillations to the right of the shock, as can be seen

by looking at figure (5.1). Finally by looking at figure (5.2) we can see that the

RKDG method does not create oscillations, due to the use of the TVD Runge-Kutta

to march forward in time. However, there is a subtle smearing if we look at the

time intervals provided on the graph.
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5.2 Burgers initial data 2
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Figure 5.3: Graphs for Burgers’ initial data 2 points

The solution for this data describes an expansion fan which has a fixed initial

boundary condition at x = −1, and the final boundary condition is infinite. The

fan which is present eventually meets up with the shock at the location time t = 4

at the interval x = 1. Figure (5.3) was plotted using a step size ∆x = 0.0125

and a time step of ∆t = 0.009, with 200 timesteps, giving a location time of 1.8

where the expansion fan and shock yet to meet. By looking at figure (5.3), we can

see that the Lax-Friedrichs scheme has introduced some severe numerical diffusion,
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Figure 5.4: Graphs for Burgers’ initial data 2 points

which has influenced the accuracy of the scheme compared to the analytical solution.

The first order upwind scheme has behaved somewhat better, with better accuracy

than of the Lax-Friedrichs scheme. The Lax-Wendroff and Warming-Beam schemes

are the most accurate of the four classical schemes, but the overall phase shape

is quite poor, due to introduction of oscillations which are present behind and

front of the discontinuities, respectively. The behaviour to the left of the fan for

the Lax-Wendroff scheme is due to entropy violation. Figure (5.4) was plotted

using a step size ∆x = 0.02 and a time step of ∆t = 0.03, with 200 timesteps,
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Figure 5.5: Graph for Lax Wendroff scheme with initial data (5.3)

giving a location time of 6. At this time the expansion fan and the shock are

combined together. By looking at figure (5.4), we can clearly see that by moving

forward in time, the initial square wave has been damped, this being a feature of

the shock and fan combining together. Once again the Lax-Friedrich scheme is

the most dissipative in comparison to the first order upwind scheme, both of the

schemes giving poor resolution to discontinuities. Although the Lax-Wendroff and

Warming-Beam schemes are creating oscillations, the position of the final location

of the shock are most accurate.

If we change initial data 2 and use the initial conditions

u(x, 0) =





0.5 x < −1

1 −1 < x < 0

0.5 x > 0

(5.3)
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we do not obtain the entropy violation as occurred in figures (5.3) and (5.4) for the

Lax-Wendroff scheme. Figure (5.5) was plotted using a step size ∆x = 0.0125 and

a time step of ∆t = 0.009, with 200 timesteps. By looking at this figure we can

clearly see that the problem we faced earlier has been resolved. The graph shows

that at the discontinuities, the oscillations are behind the shock and the expansion

fan.

5.3 Buckley - Leverett initial data 1
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Figure 5.6: Graphs for Buckley-Leverett using initial data 1
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Figure 5.7: Graph for Buckley-Leverett using RKDG method for initial data 1

The solution for this data for the Buckley-Leverett equation should show a shock

travelling in the positive x-direction, with a speed of 1.6. Figures (5.6) and (5.7)

was plotted using a step size ∆x = 0.033 and a time step ∆t = 0.009, where the

number of timesteps used is 18 for figure (5.6). At this particular time point the

shock should have moved to x = 0.26 from its initial position.

By analysing the results given by figure (5.6), we can deduce that the Lax-Friedrichs

scheme is more diffusive than the first order upwind as initially expected. The Lax-

Wendroff and Warming-Beam schemes are again the most accurate, but produce

oscillations to the left and right of the discontinuity, respectively. This is a feature
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of these type of second order numerical schemes. By looking at figure (5.7), we

can see that the waves for the RKDG method seem to be travelling way too slow.

However by extracting the behaviour from these results, we can visualise that there

are no oscillations present due to the built in TVD property.

5.4 Buckley - Leverett initial data 2
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Figure 5.8: Graphs for Buckley-Leverett using initial data 2

This initial data generates a fan and a shock conbination. Figures (5.8) and (5.9)

was plotted using a step size ∆x = 0.06 and a time step ∆t = 0.009, where the
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Figure 5.9: RKDG for Buckley-Leverett initial data 2

number of timesteps is 100 for figure (5.8). From the results obtained in figure (5.8)

we can clearly see that the Lax-Friedrichs scheme is yet again the most diffusive, in

comparison to the first order upwind scheme.

The Lax-Wendroff scheme for this initial data seems not to have produced any visible

oscillations to the left of the shock. This is most probably due to the combination

of the fan and the shock combining together at left of the shock, where the fan is

damping the oscillations that are produced by the shock, therefore resulting with

no visible oscillations to the left of the shock. By looking at the Warming-Beam

scheme we can clearly see that oscillations are still present to the right of the shock
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as initially expected. By looking at figure (5.9) we can see that the second order

RKDG method has not produced any oscillations, although there is slight evidence

of smearing, even though the speed of the waves are yet again moving way too slow.
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Chapter 6

Conclusion

In this dissertation we have studied the effects of four classical schemes on the

Burgers and Buckley-Leverett equations. The schemes are first order upwind, Lax-

Friedrichs, Lax-Wendroff and Warming-Beam, found that the the Lax-Friedrichs

and the first order upwind schemes are very diffusive, this being a common feature

for first order accurate schemes. The reason for this type of dissipative behaviour

is an artefact of the terms in the truncation error for these schemes.

The Lax-Wendroff, Warming-Beam and the RKDG method are second order ac-

curate schemes, and it is a well known fact that second order accurate numerical

schemes produce oscillations at discontinuities. The Lax-Wendroff scheme is shown

to produce oscillations to the left of the discontinuities, except for initial data 2 for

the Buckley-Leverett equation, where we had the fan and shock combination. The

Warming-Beam scheme has produced oscillations to the right of the shock for all

the cases considered. However the oscillations for the Lax-Wendroff and Warming-

Beam schemes can be suppressed by using limiters, although that has not been done
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here. The RKDG method does not introduce such oscillations, because the method

implements the TVD property, which is sufficient to stop oscillations from occurring.

6.1 Further work

For further work we can modify the classical Lax-Wendroff and Warming-Beam

schemes by introducing the flux limiter methods. By applying limiters, we can

eliminate oscillations that are produced by these second order accurate schemes.

This will enable us to develop high order resolution schemes, without the presence

of spurious oscillations near discontinuities.

To construct the method [1] we let hG be the numerical flux of the second order

accurate classical scheme, and we let hL be the numerical flux of a low order TVD

scheme. If hG(un
j+k−1, ...u

n
j+k) and hL(un

j+k−1, ...u
n
j+k) are abbreviated by hG(un

j )

and hL(un
j ) respectively, the new method can now be written as

h(un
j ) = hL(un

j ) + φ(un
j )

(
hG(un

j )− hL(un
j )

)

where φ is called the limiter. The limiter has to act as a sensor for sudden strong

increase or decrease of the unknown exact solution expected to occur at positions,

where the numerical solution strongly increases or decreases with respect to space.
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