
University of Reading
School of Mathematics, Meteorology and Physics

Evaluation of Fractional Dispersion
Models

by

Rachel Pritchard

August 2008

This dissertation is submitted to the Department of Mathematics and

Meteorology in partial fulfilment of the requirements for the degree of Master of

Science



Abstract

The usual second order advection-diffusion equation is known to under predict

dispersion in turbulent flows. It is thought we can replace the diffusion term with

a fractional diffusion term to better predict the dispersion.

The main concern of this work will be the numerical methods used for solving

the fractional diffusion equation. Before we are able to begin with the derivation

of the numerical schemes, an understanding of some fractional calculus is needed,

we will therefore give a disscusion on this and detail the definitions and derivatives

which are needed for our numerical methods.

We notice in the literature that it is mainly finite difference methods that have

been proposed. We shall see that this is perhaps the most obvious and straight

forward numerical method to develop given the definitions for fractional deriva-

tives. Due to the non-local nature of the fractional derivative the finite difference

approach is computationally expensive as it usually requires a large number of

degrees of freedom to obtain an accurate solution. We will therefore be interested

in developing other numerical schemes in particular schemes based on non-local

methods such as the spectral method.
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Chapter 1

Introduction

1.1 Why Fractional Dispersion

The second order advection-dispersion equation is usually used to model disper-

sion in flows. However in complex flows such as turbulent flows this model is no

longer adequate, in fact it under predicts dispersion.

In non turbulent flows the dispersion of a contaminant is driven by the mean flow

velocity and local interactions between particles i.e. particles push each other.

This results in a series of small amplitude, random displacements of the contam-

inant particles and is known as Brownian motion. However, in complex flows

such as flow through porous medium or turbulent flows it is now possible to have

large variations from the mean velocity in the flow. This results in particles of

the contaminant being dispersed large distances in the flow. Brownian motion is

no longer an adequate description for this type of dispersion, we wish to model a

type of motion that allows the large scale transport of the contaminant particles

in complex flows.

A proposed way of modelling this type of dispersion is to use Lévy motion. The

probability distribution function (PDF) of Lévy motion is known as Lévy distri-

1



CHAPTER 1. INTRODUCTION 2

butions. Unlike the Gaussian distribution, which is the PDF of Brownian motion,

Lévy distributions have heavier tails and an infinite variance which implies they

allow contaminant particles to be dispersed or jump large distances. Where the

second order advection-dispersion equation is describing Brownian motion, Lévy

motion can be described by a fractional order advection-diffusion equation. There-

fore we wish to use the fractional advection-diffusion equation to model dispersion

in these complex flows, with the purpose that this will give us a more realistic

model of the dispersion.

The fractional advection-dispersion equation only uses a fractional derivative on

the diffusion term therefore it is the diffusion term that will be made the focus of

this work. We will discus in more detail why the regular theory for diffusion falls

short for describing diffusion in turbulent flows and then propose the fractional

model and why it is better suited to this situation.

1.2 Areas Fractional Diffusion is Used

’According to M.Meerschaert [8] the theory behind fractional calculus is nearly as

old as that for regular calculus’. ’The Fractional Calculus by Oldham and Spanier

[12] states that Liouville proposed a definition in the form of expanded functions

in a series of exponentials in 1832. Later in 1853 Reimann proposed a definition

involving definite integrals. It was Grunwald in 1867 who unified the Riemann

and Liouville definitions’. The most recent developments using fractional calculus

have been using fractional derivatives in differential equations which can then be

used to model many physical situations some of which we shall now discuss.

There are various areas in which the fractional derivative has been used to predict

diffusion these include particle diffusion in gravel bed flows, water transport in un-

saturated soils and anomalous diffusion where diffusion occurs at a different rate

to the regular Gaussian diffusion. Meltzler and Sornette [11, 14] discuss a variety

of these uses in physics, biology and geology. There are also financial applications
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which take into account extreme market volatility. Here instead of modelling par-

ticle jumps price jumps are modelled see [8].

One example from [14] talks about anomalous diffusion in fluids which are par-

titioned into convective cells e.g a steady state atmosphere. Diffusion here is

characterised by two types of motion, one is the fast convective motion within a

convective cell and the other is the random walk behaviour for the crossing of the

convective cells, this type of motion leads to the diffusion behaviour at large scales.

There are also many papers on diffusion through porous media in aquifers see

[2, 13] the ideas developed in this area will be of particular use to us. A specific

example of this is given by Benson [2] it details the dispersion of a contaminant in

the Cape Cod Aquifer. Here a tracer was introduced into a sand and gravel aquifer

and the fractional advection-dispersion equation was used to try and model the

flow of this tracer.

The fractional derivative can also be used on the time derivative instead of the

space derivative, here the fractional value would be between 0 and 1. ’Lin and

Xu [7] state that taking the time derivative to be fractional acts as a memory

of previous states of the solution as the solution at many previous time steps is

required in getting the next’. Developed in their paper are the numerical methods

for solving this sort of equation.

However, the area of most interest to us is using the fractional diffusion equation

to predict the diffusion of a contaminant in turbulent flows. Examples include the

diffusion of moisture or pollutants in the atmosphere, salinity or contaminants in

the ocean and even the dispersion of sediments or contaminants in rivers and lakes.



Chapter 2

Ordinary Diffusion and Fractional

Diffusion

Before we begin constructing a numerical scheme we want to understand the prin-

ciples behind fractional diffusion. It is perhaps easiest to begin by looking at

ordinary diffusion. This will also help us determine why this theory can be im-

proved upon when predicting diffusion in turbulent flows and why the fractional

approach is a reasonable one to take.

2.1 Diffusion

To describe the process of diffusion consider a quantity of a fluid split into two

volumes which lie next to each other, one volume has a high concentration of a

contaminant and the over a low concentration, see Fig. 2.1. ’According to Crank

[4] molecules move randomly and have no preffered direction of motion to either

volume of higher or lower concentration. However we still get a mixing because we

can say that a fraction of the molecules in the volume of lower concentration will

move to the higher concentration and the same fraction will move from the higher

concentration to the lower concentration. Hence a net movement of molecules from

high concentration to low concentration’.

4



CHAPTER 2. ORDINARY DIFFUSION AND FRACTIONAL DIFFUSION 5

Figure 2.1: Particles diffusing between two volumes

This idea leads us to Fick’s Law,

F = −K
∂c

∂x
, (2.1)

which states that the particle flux is proportional to the concentration gradient

acting towards the area of lower concentration [4]. The diffusion equation can then

be obtained by taking changes of the concentration in the volume with respect to

time, this is equal to the negative of the rate of change of the flux from the volume

giving,
∂c

∂t
= −∂F

∂x
=

∂

∂x

(

K
∂c

∂x

)

. (2.2)

The diffusion equation. K is known as the diffusion coefficient.

It is important to see that Fick’s law is a local process, Fig. 2.1, particles are

only transported to other volumes next to their current volume in the flow, which

is caused by the gradient of the concentration between the two volumes. ’Again

from Crank [4] it is stated that Fick’s law is only consistent for an isotropic medium

which is a flow in which its structure and diffusion properties are the same in the
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neighbourhood of any point’. This presents a problem when considering diffusion

in turbulent flows.

In turbulent flows diffusion is due to the random fluctuations in the velocity, this

can randomly transport particles of the contaminant over larger distances i.e be-

yond the local volumes. This is easy to imagine if we consider the analogy of

rotating eddies in a flow, here the velocities in the flow varies greatly. Therefore

we want a method for modelling diffusion that provides a more global process. [13]

provides a discussion on this for the case where velocity variations are produced

by flow through porous medium rather than eddies. To develop this new method

of modelling diffusion we first need to look at Brownian motion which will lead us

on to Lévy motion and the global process.

2.2 Brownian Motion

To introduce the idea of Brownian motion we first find the solution of the second

order diffusion Eq. (2.2) using Fourier transforms, see [8]. To do this we take

Fourier transforms in Eq. (2.2) where the Fourier transform of c(x, t) is,

ĉ(k, t) =

∫

∞

−∞

e−ikxc(x, t)dx.

This gives us the ordinary differential equation,

dĉ(k, t)

dt
= (ik)2ĉ(k, t) = −k2ĉ(k, t).

The ordinary differential equation can then be solved to give,

ĉ(k, t) = e−k2t,

which inverts to a Gaussian distribution.

’Brownian motion has the probability density function (PDF) of a Gaussian dis-
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tribution, this can be worked out by letting Xn be a particle jump at time n and

letting Sn = X1 + · · · + Xn be the location of a particle at time n, [8]’. We then

apply DeMoive’s central limit theorem (CLT) see [13],

lim
n→∞

Sn − nµ

σn
1

2

= N(µ = 0, σ2 = 1)

where σ gives the standard deviation and µ gives the mean value. The central

limit theorem states that this sum of independently identically distributed (IID)

variables divided by the
√

n will converge to a normal distribution, a Gaussian dis-

tribution with zero mean and variance one. It is important to note here that the

CLT has a finite variance, so particles in Brownian motion move in short random

motions.

Since we get a Gaussian distribution for the Fourier transform solution of the

second order diffusion equation and as the limiting PDF of Brownian motion we

can say that the concentration of a contaminant in a of a cloud of diffusing par-

ticles described by Brownian motion is a solution to the second order diffusion

equation.

Fig. 2.2 gives a picture of Brownian motion and the limiting Gaussian distribution.

The Gaussian distribution figure shows that the probability of larger displacements

in particles tails off to zero at the edges of the distribution. If we want to model a

process that favours larger displacements we need our model to have a PDF that

has thicker tails, i.e. a greater probability of larger displacements.
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Figure 2.2: Brownian motion and Gaussian distribution

2.3 Lévy Motion

It is thought that a better representation for turbulent flows is Lévy motion, we

can see from Fig. 2.3 that its path has a larger spread. Like Brownian motion can

be represented by a Gaussian distribution, Lévy motion can also be represented

by a PDF known as Lévy distributions this can also be seen in Fig. 2.3.

The Lévy distributions are the PDF that we use to improve our diffusion model,

we are basically just replacing the Gaussian distribution by the Lévy distribution.

Lévy distributions have thicker tails than the Gaussian distribution. Schummer

et.al. [13] describes how they can be obtained by using a general limit theorem

(GLT),

lim
n→∞

Sn − nµ

σn
1

α

= Sα(σ = 1, β, µ = 0).

The central limit theorem is a special case of this. The general limit theorem states

that the sum of IID will converge to a ”Lévy-stable” distribution, 0 < α ≤ 2 is the

index of stability, −1 ≤ β ≤ 1 the skewness coefficient, µ = 0 the shift parameter

and σ = 1 the spread parameter. Here σ is no longer the standard deviation since

Lévy motion has an infinite variance, instead it measures the size of the spread
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Figure 2.3: Levy motion and Levy distribution

of the distribution. Having infinite variance allows larger random movements of

particles than those in Brownian motion.

The Lévy stable distributions, are expressed in terms of their Fourier transforms

since they cannot all be expressed in closed form [13],

∫

∞

−∞

eikxf(x)dx = exp
(

−σα|k|α
(

1 − iβ(sign(k)) tan
πα

2

)

+ iµk
)

if α 6= 1, where f(x) is a stable density and

sign(k) =

{

1 if k > 0

−1 if k < 0.

These Lévy distributions are also a solution to the fractional diffusion equation.

Sornette [14] shows this for the advection-diffusion equation we shall adapt it just

the diffusion equation by ignoring the advection term. Sornette first proceeds

by spliting the diffusion term into the plus and minus derivatives this gives our
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equation as,
∂c(x, t)

∂t
= Bq

∂αc(x, t)

∂(−x)α
+ Bp

∂αc(x, t)

∂xα

if we then take fourier transforms we obtain the solution,

ĉ(k, t) = exp [Btq(−ik)α + Btp(ik)α] .

Then using,

(ik)α = (e
iπ
2 k)α = |k|α cos

πα

2

{

1 + isign(k) tan
πα

2

}

,

we get the solution as,

ĉ(k, t) = exp
[

Bt|k|α cos
πα

2

{

1 + iβsign(k) tan
πα

2

}]

,

with skewness β = p−q and the spread parameter σα = −Bt cos πα
2

. This is a Lévy

stable distribution and hence the fractional diffusion is describing Lévy motion.

2.4 Fractional Fick’s Law

We can obtain the fractional diffusion equation from a fractional ficks law.

F = −Kα

∂qc

∂xq
(2.3)

with α = q + 1.

It is thought that Fig. 2.4 corresponds to a fractional ficks law, which illustrates

the movement of particles to volumes further away than the immediate vicinity. In

a similar way to obtaining the second order diffusion equation and taking the diffu-

sion coefficient as constant we can then get the fractional order diffusion equation

as,
∂c

∂t
= Kα

∂αc

∂xα
. (2.4)
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Figure 2.4: Diffusion allowed by a Fractional Fick’s law

This is a non-local process the reasoning for this can clearly be seen from the

definitions of the fractional derivative which involves a sum of values over the

entire domain, the details of this will be introduced later.

2.5 Comparison between Brownian and Lévy Mo-

tions

Comparing the Lévy distribution to the Gaussian distribution we see that the Lévy

distribution has thicker tails. The thickness of the tails depends on the value for

α, as α decreases the thickness of the tail increases. This means that there will be

a higher probability of larger displacements than for the Gaussian distribution. In

a turbulent flow we would expect particles to be more likely to move further than

in a uniform flow.

According to Meerschaert [8], for Brownian motion a cloud of diffusing particles

spreads at a rate of t
1

2 and for Lévy motion a cloud of diffusing particles spreads

at a rate of t
1

α . This is illustrated in Fig. 2.5, in which we can see that the lower
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the value of α the faster the overall diffusion, however to begin with the fractional

diffusion spreads slower.
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Figure 2.5: Rate of spread of a cloud of diffusing particles

In Fig. 2.5 Kα = 1 for every value of α. The value of Kα is difficult to determine

as its units alter depending on the value of α, Kα has units distanceα/time,

[Kα] =
Lα

T
.

Because of these different units the suitability of a direct comparison of results

using different α is something to think about. One idea to take the dimensionless

diffusion equation and then say how the Kα relate to one another. For the purpose

of this work we will only be concerned with taking Kα = 1 and looking at the

results produced.



Chapter 3

Fractional Calculus

Before we begin to develop any sort of numerical scheme we need to become familiar

with fractional derivatives and how they are defined. If we consult [12] we see that

there are many definitions for the fractional derivative and ways of defining the

derivatives of standard functions.

3.1 Main Definition

Perhaps the easiest way to see where one of these definitions comes from is to first

look at the limit definition for ordinary differentiation,

dnf

dxn
≡ lim

∆x→0

1

∆xn

(

n
∑

k=0

(−1)k
( n

k

)

f(x − k∆x)

)

. (3.1)

Here n and k are integers. For the fractional derivative we want to change n from

an integer to a real number, called α. This creates a problem in Eq. (3.1) since

the binomial coefficient,

(−1)k
( α

k

)

13
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is not defined for real values. To deal with this we use the following identity, as

given in [12]:

(−1)k
( α

k

)

=
Γ(k − α)

Γ(−α)Γ(k + 1)
.

Another problem is that we cannot sum up to a fractional value so instead we sum

up to infinity, this is valid as the use of Gamma functions will allow results for

high values of k. This arrangement of Gamma functions will later be referred to

as a weight.

All this gives us our definition for the fractional derivative as

dαf

dxα
≡ lim

∆x→0

1

∆xα

(

∞
∑

k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
f(x − k∆x)

)

. (3.2)

This is know as the Grunwald derivative and is valid over −∞ to x. For a definition

valid over x to ∞ we use the forward difference definition instead of the backwards

difference definition resulting in the following

dαf

d(−x)α
≡ lim

∆x→0

1

∆xα

(

∞
∑

k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
f(x + k∆x)

)

. (3.3)

These definitions will encourage more of a left diffusion for Eq. (3.2) or a right

diffusion for Eq. (3.3). Numerical methods described by Meerschaert, Tadjeran

and Scheffler [10, 9, 15] just use the left sided definition and give details of stability

regions of the various methods and a comparison to an analytical result. However,

what is really needed is a central definition which takes is values over −∞ to ∞,

this definition is given by Schumer et.al. [13], it uses both the above definitions

combining them to give,

Dα
β = [

1

2
(1 − β)]Dα

+ + [
1

2
(1 + β)]Dα

−
. (3.4)
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Here we are using the notation,

Dα
−

=
dαc

d(−x)α

and

Dα
+ =

dαc

dxα
.

1
2
(1−β) and 1

2
(1+β) gives the probability of whether a particle will jump backwards

or forwards respectively, with −1 ≤ β ≤ 1. The use of the β value allows us to

select whether a particle will diffuse more to the left or to the right. If β = 1 we

just get Eq. (3.2) and if β = −1 we just get Eq. (3.3). We can see from these

definitions that the fractional derivative uses a sum of all values over the domain.

The amount of dependence on each grid point is determined by the value of the

Gamma functions, what we call the weight.

3.2 Other Definitions

For completeness it is important to note that there are many other ways of defin-

ing the fractional derivative. This is one of the issues with using the fractional

derivative operator in that it is not clear which definition to take. We however will

only be using the Grunwald definition as previously stated as we can easily obtain

a finite difference numerical method from it.

Perhaps the most commonly used of these other definitions is the Reimann-Liouville

definition

dαf(x)

dxα
≡ Dα

+f(x) =
1

Γ(n − α)

dn

dxn

∫ x

−∞

(x − ξ)n−α−1f(ξ)dξ, (3.5)

which is defined over the domain [−∞, x]. Another definition is known as the Weyl

partial integral

dαf(x)

d(−x)α
≡ Dα

−
f(x) =

(−1)n

Γ(n − α)

dn

dxn

∫

∞

x

(ξ − x)n−α−1f(ξ)dξ, (3.6)
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which is defined over the domain [x,∞]. Eqs. (3.5).(3.6) can then be shortened to

the following

Dα
±
f(x) =

(±1)n

Γ(n − α)

dn

dxn

∫

∞

0

ξn−α−1f(x ∓ ξ)dξ, (3.7)

in these cases n is the smallest integer larger than the real number α see [1] for

these definitions.

We can see some equivalence in these definitions as under certain conditions we can

obtain the Grunwald sum from the Riemann-Louiville definition. These certain

conditions are that we take n = 0 so we have,

Dα
±
f(x) =

1

Γ(−α)

∫

∞

0

ξ−α−1f(x ∓ ξ)dξ. (3.8)

We can then represent the integral as a sum, if we take h to be the step size, then

ξ can be represented as a number of these steps say kh. Eq. (3.8) now becomes,

1

Γ(−α)

N
∑

k=0

(kh)−α−1f(x ∓ kh)h.

It is then proved in [10] that as k → ∞,

Γ(k − α)

Γ(k + 1)
≈ k−α−1.

Using this we then get our derivative as

1

hα

N
∑

k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
f(x ∓ kh),

which is the Grunwald sum defined earlier.

There are also some other definitions for the fractional derivative which are not

quite so general for example Liouville defined a derivative for functions expressed
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as a series expansion if exponentials [12]. If

f =
∑

cje
bjx, (3.9)

the derivative can then be expressed as,

dαf

dxα
≡

∞
∑

j=0

cjb
α
j ebjx. (3.10)

3.3 Standard Derivatives

If we are to develop a spectral method to numerically model the fractional diffusion

equation then we need derivatives for functions such as cos(x), sin(x) and ex.

Firstly we shall look at the fractional derivative for cos(x), [12] gives the derivative

as,
dα

dxα
cos(x) = cos

(

x +
πα

2

)

+
x−2−α

Γ(−α − 1)
− x−4−α

Γ(−α − 3)
+ · · · (3.11)

however Eq. (3.11) is only valid for large x, i.e. x that is approaching the infinity

limit. Fig. 3.1 gives a range derivatives for α ranging from 0.4 up to 2. We can

see that as α increases the value of the derivative gets closer to the second order

derivative which is −cos(x).

The definition for the fractional derivative of sin(x) is given as,

dα

dxα
sin(x) = sin

(

x +
πα

2

)

+
x−1−α

Γ(−α)
− x−3−α

Γ(−α − 2)
+ · · · (3.12)

again this is only valid for large x. Fig. 3.2 gives the same range of fractional

derivatives for sin(x) as Fig. 3.1 does for cos(x), again we can see that as α in-

creases the derivatives get closer to the second order derivative.

It would be beneficial to us to have a definition that is valid for any value of

x. In [8] the fractional derivative for sin(x) is given as just the first term of the

expansion in Eq. (3.12) applying this idea to the cos(x) derivative as well we get
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Figure 3.1: Various fractional derivatives of cos(x)

the following as our definitions for the fractional derivatives of cos(x) and sin(x),

dα

dxα
cos(x) = cos

(

x +
πα

2

)

, (3.13)

dα

dxα
sin(x) = sin

(

x +
πα

2

)

. (3.14)

Using Eqs. (3.13).(3.14) we can produce similar graphs to Fig. 3.1 and Fig.

3.2 when doing this we find that the results look very much the same over the

domain. We can also use these definitions on domains with small x see Fig. 3.3(a)

and Fig. 3.3(b).

Since we require these definitions for use in the spectral method we will assess the

suitability of using the different definitions once we have obtained our numerical

solution or not. We can then decide whether to just use the shortened definitions.

If not then another option to allow us to use any domain is to consider a transform
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Figure 3.2: Various fractional derivatives of sin(x)

of the x domain to one that has larger values e.g. by adding 1000 to each x value.

We have to then wonder if this will give us the same results that would have been

obtained on the original domain.

We can also define a fractional derivative for the exponential function as,

dα

dxα
eλx = λαeλx, (3.15)

see [8].

3.4 Binomial Coefficients and Gamma Functions

As previously discussed the binomial coefficient is equivalent to a series of Gamma

functions, we call this the weight and define it as,

wk =
Γ(k − α)

Γ(k + 1)Γ(−α)
. (3.16)
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Figure 3.3: Various Fractional Derivatives with small x

These weights are worked out for each k in the sum, and their value gradually

decreases as k increases Fig. 3.4 shows the weights when α = 1.5 and α = 2 for k

up to 10. The sum to ∞ is still valid when α = 2, this will become clear in Eq.

(3.17). In this wk will equal zero when k = α + 1 and for all k after.
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(b) α = 2, regular diffusion

Figure 3.4: Examples of weights

Comparing these two sets of values we see the fractional case puts more weight

on values for larger k indicating a much more global solution. If we now go back

to our turbulent flow with rotating eddies, the velocity fluctuations would allow
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transport of particles further than the immediate points. These weights indicate

that using fractional diffusion could be a good model for diffusion in turbulent

flows.

When it comes to developing our finite difference scheme it is beneficial to use

the same definition of the weights for both fractional and regular diffusion. How-

ever, this presents a problem if we use Eq. (3.16) since the Gamma function is not

defined for negative integers, see Fig. 3.5.

Figure 3.5: Plot of Gamma functions, [16]

To allow us to use the same definition for both cases we use Eq. (3.17) for the

weights as given by Meerschaert and Tadjeran [10].

w0 = 1

w1 = −α

wk =
(−α)(−α + 1).....(−α + k − 1)

k!
for all k ≥ 2, (3.17)

This can be derivived from Eq. (3.16) to do this we use the gamma function

recursion relationship,

Γ(x + 1) = xΓ(x), (3.18)
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and its reflection identity,

Γ(−x) =
−πcosec(πx)

Γ(x + 1)
. (3.19)

To show how this works we will look at a select few cases for k = 0, 1. Taking

k = 0 we get the weight as,

w0 =
Γ(−α)

Γ(−α)Γ(1)

for an integer we have,

Γ(n) =
n!

n

and so we get w0 = 1.

Moving on to k = 1 we have the weight as,

w1 =
Γ(1 − α)

Γ(−α)Γ(2)
,

using the reflection identity Eq. (3.19) we get,

w1 =
Γ(1 − α)Γ(α + 1)

−πcosec(πx)
,

then using the recursion relationship Eq. (3.18) and the reflection identity again

we get,

w1 =
−αΓ(α + 1)(−πcosec(πx))

Γ(α + 1)(−πcosec(πx))
,

which cancels down to give w1 = −α.

To get the general formula multiple applications of the recursion relationship are

required to break down the Γ(k − α) term.



Chapter 4

Finite Difference Approximations

The majority of methods to solve the fractional diffusion equation use a finite

difference approach see [10, 9, 15].

4.1 Numerical Approximation

Although the definitions for fractional derviatives suggest a finite difference scheme

should be straight forward to develop, it is important to take make sure the scheme

becomes the usual central difference scheme for a second order derivative

∂2c

∂x2
≈ ci−1 − 2ci + ci+1

∆x2
,

when α = 2.

Using the previously given definitions this is not the case, it is proved by Meer-

schaert and Tadjeran [10] that this method is unstable. This paper goes on to

prove that using what is known as a right shifted Grunwald approximation Eq.

(4.1) produces a stable result. It only looks at using Riemann derivative so takes

values on the left side of the domain into account. We will extend this to use the

central definition previously given.

23
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Our new shifted definitions for the fractional derivative are,

dαf

dxα
≡ lim

∆x→0

1

∆xα

(

∞
∑

k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
f(x − (k − 1)∆x)

)

(4.1)

and
dαf

d(−x)α
≡ lim

∆x→0

1

∆xα

(

∞
∑

k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
f(x + (k − 1)∆x)

)

. (4.2)

We can now develop our numerical approximations for these definitions. Eq. (4.1)

is valid on −∞ to x and so refers to the left side of the domain. We can approxi-

mate this using,
i
∑

k=0

wkfi−(k−1)

∆xα
, (4.3)

where the subscript i refers to the position of x in the domain and ∆x is the size

of the space step. Here, because we just want to use the left side of the domain

the sum goes from 0 to i. The equivalent approximation for the right side of the

domain is,
N−i
∑

k=0

wkfi+(k−1)

∆xα
. (4.4)

This approximation uses values on the right side of the domain so the sum goes

from i to N , where N∆x = R, R is the right hand boundary of the domain.

Initially we will make the probability of a particle jumping forwards or backwards

equal, therefore in Eq. (3.4) β = 0. If we also discretize the time derivative we get

Eq. (4.5) as our approximation for the fractional diffusion equation.

cn+1
i = cn

i +
Kα∆t

∆xα

(1

2

i
∑

k=0

wkc
n
i−(k−1) +

1

2

N−i
∑

k=0

wkc
n
i+(k−1)

)

, (4.5)

where n refers to the time step. This gives us an explicit scheme for the fractional

diffusion equation. Which can be solved for each space step to give the value of
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the concentrate for the next time step. We then be repeate for however many

time steps we require, with the chosen boundary conditions being applied at each

stage. Meerschaert, Tadjeran and Scheffler [10, 15] look at implicit and semi im-

plicit methods and the stability regions for the methods. Developed in [15] is an

equivalent Crank-Nicolson method for the fractional diffusion term. We however

will only consider the explicit case for ease of implementation and to allow us to

move on to other methods.

This method is easily extended to two dimensions. Schemes for doing this are

explored by Meerschaert, Tadjeran and Scheffler [9]. The basic way to extend the

scheme we already have is to just use another summation for the y derivative.

Using this fractional approach does not limit us to using the same value for α for

both x and y derivatives, we can use different values that allow us to have a more

variable model for diffusion. Therefore we now want to approximate the equation,

∂c

∂t
= Kα

∂αc

∂xα
+ Dη

∂ηc

∂xη
(4.6)

where 1 ≤ α ≤ 2 and 1 ≤ η ≤ 2 and Kα, Dη are the diffusivity constants for

either the x or y dimension. This is easily done by using the ideas developed in

the previous section giving us our numerical scheme as,

cn+1
i,j = cn

i,j +
Kα∆t

∆xα

(1

2

i
∑

k=0

wkc
n
i−(k−1),j +

1

2

N−i
∑

k=0

wkc
n
i+(k−1),j

)

(4.7)

+
Dη∆t

∆xη

(1

2

j
∑

k=0

wkc
n
i,j−(k−1) +

1

2

N−j
∑

k=0

wkc
n
i,j+(k−1)

)

.

Here i denotes the x position, j denotes the y position and n denotes the time

step. Again we have a set of equations to be solved to get the value of c at each

space point for a specific time step.

Eq. (4.8) uses four summations and gives equal diffusion in left and right di-

rections for both x and y dimensions. To alter the way in which diffusion occurs,
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we can choose the required set of summations to model that particular diffusion.

Further to this, we could also use a modification of our symmetric scheme in one

dimension where we can pick the value of β to model the probability of a forwards

or backwards jump.

4.2 A 1D Test Case

Our scheme Eq. (4.5) involves two summations, each refer to a different part of

the domain. For the purpose of testing our scheme we will split it into two schemes

one used for the left side of the domain and the other used on the right side.

4.2.1 Left Scheme Test

In order to check that our scheme is working correctly we can compare it to an

example with an analytic result given in [15]. The example provided only uses the

left derivative defined over [−∞, x] and is given as,

∂u(x, t)

∂t
= d(x)

∂1.8u(x, t)

∂x1.8
+ q(x, t)

on the domain 0 < x < 1, with diffusion coefficient

d(x) = Γ(2.2)x2.8/6,

the source function

q(x, t) = −(1 + x)e−tx3,

initial condition

u(x, 0) = x3 for 0 < x < 1

and boundary conditions

u(0, t) = 0, u(1, t) = e−t for t > 0.
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This has the exact solution

u(x, t) = e−tx3.

4.2.2 Right Scheme Test

To check the right sided derivative we can modify this example by replacing the

x with 1 − x. This gives us a suitable function that the right sided derivative will

work for. The example we use now becomes,

∂u(x, t)

∂t
= d(x)

∂1.8u(x, t)

∂x1.8
+ q(x, t)

on the domain 0 < x < 1, with diffusion coefficient

d(x) = Γ(2.2)(1 − x)2.8/6,

the source function

q(x, t) = −(1 + (1 − x))e−t(1 − x)3,

initial condition

u(x, 0) = (1 − x)3 for 0 < x < 1

and boundary conditions

u(0, t) = e−t, u(1, t) = 0 for t > 0.

This has the exact solution

u(x, t) = e−t(1 − x)3.

The graphs in Fig. 4.1 give plots of the numerical solution with the analytical solu-

tion for a final time of 1 second, so the analytical solutions become u(x, 1) = x3/e

and u(x, 1) = (1−x)3/e respectively. These use a space step of 0.1 and a time step
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of 0.0001. We see that numerical scheme is producing a result close to that of the

analytical solution. The accuracy of this can be improved by changing the values

of the time and space steps and will be assessed later. However from using these

values, we can still see that the numerical scheme is producing what we would ex-

pect and is therefore working correctly. This gives us confidence both to proceed

with the central difference case and in the validity of any results we obtain from

it.
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Figure 4.1: Numerical and analytical results

4.2.3 Accuracy of the Schemes

Since we have a numerical and analytical solution for both the left and right

schemes, we can now assess their accuracy. We do this by looking at the error

between the numerical solution and the analytical solution when fixing the time

step and changing the space step. The error is calculated by taking the sum of the

difference between the numerical solution and the analytical solution at each point

squared and then normalizing this by dividing by the sum of the analytical solution
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at each point squared. This is perhaps best given in the following expression,

error =

(
∫

(ea − en)2dx
∫

ea
2dx

)
1

2

. (4.8)

This is known as the L2 error.

We then fix the time step at 0.0001, change the space step and the calculate

the error Eq. (4.8) for each space step. The results for spaces steps between 1/10

and 1/100 are given in Tab. 4.1.

∆x left error right error

1/10 0.0059 0.0059
1/20 0.0032 0.0032
1/30 0.0022 0.0022
1/40 0.0017 0.0017
1/50 0.0014 0.0014
1/60 0.0011 0.0011
1/70 0.001 0.001
1/80 0.0009 0.0009
1/90 0.0008 0.0008
1/100 0.0007 0.0007

Table 4.1: Error for left and right sided schemes

We only have an analytical solution for one sided problems and so the errors

are calculated using either the left or right sided derivative, however we can see

that both schemes give the same error. If we then plot these results on a log log

scale we can get the convergence rate that is almost linear, see Fig. 4.2.

4.2.4 Stability

We now consider the stability of the schemes, notice that for the error analysis we

used a time step of 0.0001. This allows us to obtain a stable solution for all sizes
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Figure 4.2: Convergence rates

of the space step. Any larger time step would have meant an unstable solution

when the ∆x got smaller. This means that these schemes are conditionally stable

with what looks like a small stability region. We can also look at the stability

for our central scheme. Unconditionally stable methods have been constructed by

using an equivalent Crank-Nicolson scheme for the fractional diffusion equation,

see [15]. This paper concentrates on using the method for the left derivative only.

It does mention that it is possible to extend the method for use with the central

derivative but it increases the computation time.

4.3 A 2D Test Case

As for one dimension we can also find a test example for the two dimensional case.

A test case is provided in [9], for this we will need to use the left sided summations

for both the x and y directions. Like the one dimensional case this can be modified

by changing either x or y for (1 − x) or (1 − y) in the example and selecting the

right or left summations required in the numerical scheme. This would provide us

with four schemes to test, since we have tested the right and left schemes in the

one dimensional case and we are using the same summations developed for this we

only present the solutions to the one test case.
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4.3.1 Test of 2D Scheme

The example we use to test our numerical scheme as given in [9] is a follows, the

fractional differential equation we wish to solve is,

∂u(x, y, t)

∂t
= d(x, y)

∂1.8u(x, y, t)

∂x1.8
+ e(x, y)

∂1.6u(x, y, t)

∂y1.6
+ q(x, y, t).

This is defined on a rectangular domain 0 < x < 1, 0 < y < 1 for time 0 ≤ t ≤ 1.

The diffusion coefficients d(x, y) and e(x, y) are given as,

d(x, y) = Γ(2.2)x2.8y/6 = 0.18363375x2.8y,

e(x, y) = 2xy2.6/Γ(4.6) = 0.1494624672xy2.6.

The forcing function q(x, y, t) is,

q(x, y, t) = −(1 + 2xy)e−tx3y3.6,

all subject to the Dirichlet boundary conditions u(0, y, t) = u(x, 0, t) = 0, u(1, y, t) =

e−ty3.6 and u(x, 1, t) = e−tx3. The exact solution to this problem is given by,

u(x, y, t) = e−tx3y3.6.

We will only be looking at the result up to a final time of t = 1 so the solution we

want our numerical scheme to produce is,

u(x, y, t) =
x3y3.6

e
.

To obtain our numerical result the scheme we will be using is,

un+1
i,j = un

i,j +
di,j∆t

∆x1.8

(

i
∑

k=0

wkc
n
i−(k−1),j

)

+
ei,j∆t

∆y1.6

(

j
∑

k=0

wkc
n
i,j−(k−1)

)

+ qn
i,j.
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We set the time step ∆t = 0.001 and the space steps ∆x = ∆y = 0.1 and run

up to a final time of one second. Fig. 4.3 and Fig. 4.4 show the numerical and

analytical solutions to the example.

 

 
Numerical Result
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Figure 4.3: Numerical Result

Analytical Result
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Figure 4.4: Analytical result

From the figures the solutions look very similar and it is not clear what the dif-

ference between them is. To illustrate this, Fig. 4.5 is a plot of the analytical

solution minus the numerical solution, there are some differences in the solution

which is to be expected due to the accuracy of the numerical scheme. However,

the differences are very small indicating that the scheme is a good approximation

to the analytical result.

Diffference Between Analytical and Numerical Results
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Figure 4.5: Difference between analytical and numerical results
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4.3.2 Accuracy

To assess the accuracy of the scheme, we use the same method as for one dimension

but instead of using the single integral in Eq. (4.8) we use a double integral so

that our global error can now be calculated by,

error =

(
∫ ∫

(ea − en)2dxdy
∫ ∫

(ea)2dxdy

)

1

2

. (4.9)

Fixing the time step to ∆t = 0.001 and running the program for each different

space steps keeping ∆x = ∆y we find the errors given to Tab. 4.2. The space step

∆x = ∆y error

1/10 0.0027
1/20 0.0012
1/30 0.0007
1/40 0.0005
1/50 0.0004
1/60 0.0003

Table 4.2: Error for two dimensional scheme

has not been made as small as for one dimension this is because a smaller time step

is then required to get a stable solution which greatly increases the computation

time. The values can still be plotted on a log log scale as in Fig. 4.6 to give us an

idea of the convergence rate which is very close to linear.

4.4 The 1D Central Scheme Results

If we now consider symmetric initial data, we will take a Gaussian distribution with

mean of 20π and standard deviation of four defined on the domain 0 < x < 40π,

see Fig. 4.7. We are using a large domain so the diffusion does not interact with

the boundary.

To begin with we will use the left or right definition separately, this is the equiva-
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Figure 4.7: Initial data in the form of a normal distribtuion

lent of setting β = −1 or 1 in Eq. (3.4). Physically what we are encouraging here

is either a strong leftwards diffusion or a strong rightwards diffusion, the strength

of which can be altered by changing the value of α. We see that a lower value of

α produces a greater amount of diffusion, as well as a stronger skew on the con-

centrate in either direction depending on the scheme. The left and right schemes

produce the mirror image of each other for the same values of α see Fig. 4.8 .

The boundary conditions have been set to ∂
∂x

c(0, t) = 0 and ∂c
∂x

c(40π, t) = 0. The

diffusion coefficient has been set to one for both cases. We will run the process for

a final time of 20 seconds with output every two seconds.

To get a scheme that diffuses symmetrically, we set β = 0 in Eq. (3.4). Physically



CHAPTER 4. FINITE DIFFERENCE APPROXIMATIONS 35

0 20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

C
on

ce
nt

ra
te

(a) Left scheme with α = 1.2

0 20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

C
on

ce
nt

ra
te

(b) Right scheme with α = 1.2
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(c) Left scheme with α = 1.8

0 20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

C
on

ce
nt

ra
te

(d) Right scheme with α = 1.8

Figure 4.8: Fractional diffusion using only left or right schemes

we are saying here that the probability of a particle diffusing in any direction is

equal. We now look at the diffusion for various values of α and compare it to

ordinary diffusion. See Fig. 4.4 for fractional diffusion with various values of α.

From these it is unclear what the rate diffusion at which is occurring for each

values of α. To assess this we calculate the standard deviation of the diffusing

plume as time progresses Fig. 4.10 illustrates this. It does not quite show what

we were expecting, but for all selected values of α the fractional diffusion occurs

at a faster rate than ordinary diffusion. This also gives us some values to compare

to our spectral method to check that it is giving us the same results as the finite

difference method.
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(a) α = 1.2

0 20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

C
on

ce
nt

ra
te

(b) α = 1.5
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(c) α = 1.8
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(d) α = 2, Ordinary Diffusion

Figure 4.9: Results using the central scheme for various values of α

In fact as the domain gets the larger diffusion rates get closer to those we were

expecting. We also see that the closer α gets to one then a larger domain is re-

quired to get the faster diffusion rates. This makes comparison between different

values of α difficult as we need to make sure the domain is large enough to allow

faster diffusion for small values of α and slower for large values of α. In Fig. 4.10

we see that we have made the domain large enough so that the values of α we are

comparing have faster diffusion rates for the lower α. We will also notice when it

comes to the spectral method that the solutions only coincide with the finite differ-

ence scheme up until the diffusion reaches the boundary. This would imply that as
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Figure 4.10: Width of diffusing plume plotted on loglog scale

long as we are diffusing a concentrate in a medium that doesn’t have boundaries,

i.e the atmosphere, then using this fractional diffusion scheme is valid. However

greater investigation needs to go into looking at the effects of using a very large

domain.

4.5 Two Dimensional Results

To generate results for the two dimensional case the initial data will consist of an

amount of concentrate on the left side of the domain, see Fig. 4.11 for details. To

begin with we will calculate our numerical results for the second order diffusion

equation case, using the scheme Eq. (4.8) this gives us a base value to compare

other results too. To do this we use the domain 0 ≤ x ≤ 10, 0 ≤ y ≤ 10, space

steps of ∆x = ∆y = 0.1, a time step of ∆t = 0.001 and a final time of t = 2

seconds, see Fig. 4.12.

The scheme we have developed for the two dimensional case can be altered in

a number of ways to change the rate of the diffusion. The most obvious of these

being that we can alter the fractional value of the diffusion. However, we can also
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Figure 4.11: Initial Data
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Figure 4.12: Second order diffusion

change the scheme so that we don’t use all four summations. Since our initial

data is symmetric in the y direction, we will use both left and right summations

in this direction. To compare results more easily we fix the fractional value on the

y derivative to 1.5. It is then the x derivative we will make the changes to. Fig.

4.13 shows the results using a central scheme in the x direction, Fig. 4.14 uses

the left scheme and Fig. 4.15 uses the right scheme. For all three, the results are

calculated using a fractional value of 1.2 and 1.6 in the x derivative.
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Figure 4.13: Two dimensions using a central scheme in x
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Figure 4.14: Two dimensions using a left scheme in x
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Figure 4.15: Two dimensional using a right scheme in x

We get a very different pattern to the diffusion depending on the scheme and

the value for α we use. Therefore it is possible to pick the values to fit a physical

situation. However, for the central and right scheme there is less diffusion for

lower α we were expecting for. Therefore it is questionable whether these schemes

should be used for this initial data, perhaps if most of the initial concentrate in on

the left side of the domain we should just use the left scheme.
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4.6 A 2D Advection Diffusion Plume

If we want to predict fluid motion for a concentrate introduced at the left side of

a tank which advects rightwards and diffuses in the y direction we can solve the

equation,
∂c

∂t
+ u

∂c

∂x
= Kη

∂ηc

∂yη
. (4.10)

Again using a second order diffusion term does not give the correct rate of dif-

fusion. An example of real situation where a dye is continuously introduced to a

tank of fluid can be seen in Fig. 4.16. Here the diffusion in the y axis is due to

turbulence. ’Using the second order diffusion term produces as result that looks

like a parabola in the example we have more of a cone shape [5]’.

Figure 4.16: Example of an advecting plume, [5]

To create a numerical scheme we use an upwind scheme to approximate the advec-

tion term and a central fractional scheme to approximate the diffusion term. The

gives us the following scheme Eq. (4.12) that produces the solution at a particular
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space step for the next time step.

cn+1
i,j = cn

i,j + ∆t
(

− u

∆x

(

cn
i,j − cn+1

i,j

)

(4.11)

+
Kη

∆yη

(1

2

j
∑

k=0

wkc
n
i,j−(k−1) +

1

2

N−j
∑

k=0

wkc
n
i,j+(k−1)

)

)

To get our numerical result we use the domain 0 ≤ x ≤ 10, 0 ≤ y ≤ 10 with the

initial condition of a small section in the middle of the x = 0 axis equal to one and

everywhere else equal to zero. To simulate a dye being continuously introduced

into the tank we set our boundary condition so that it is one for a small section in

the middle of the x = 0 axis and zero elsewhere. What we are doing is setting the

boundary back to its initial value each time step. We do not want to allow to pass

through the horizontal walls of the tank so the boundary conditions for both y axis

are set to zero. To simulate fluid begin able to flow through the far boundary we

use a Neumann boundary condition so ∂
∂x

c(10, t) = 0. In the solutions obtained

∆x = ∆y = 0.2, ∆t = 0.002, the final time is 10 seconds, u = 2 and Kη = 1. See

Fig. 4.17.

These are only preliminary results, further investigation needs to go into checking

there validity. A start would be to calculate the width of the plume for the various

values of η. Although from these we can see that as η decreases we get a result

that looks more linear.
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Figure 4.17: Numerical results for an advection diffusion plume



Chapter 5

A numerical scheme using

Spectral Methods

We now wish to develop a spectral method to numerically calculate our solution.

Our idea is that because spectral methods use global data rather than data from

immediate surrounding points, they should be better suited to fractional diffusion.

Fractional derivatives use data from over the entire domain so it is thought that

the spectral method will produce a more accurate numerical solution. The finite

difference method requires a sum over the entire domain for each discretized space

step, this makes it computationally expensive. Using a spectral method should

reduce the computation time as we will be using standard derivatives of the ex-

pansion functions so mean we do not have these large sums.

To begin with we will define the spectral method using the Galerkin approxi-

mation method for use with the ordinary diffusion equation. From this we can

then make the modifications to the method for fractional diffusion. The book Nu-

merical Methods for Wave Equations in Geophysical Fluid Dynamics [6] provides

an understandable explanation to spectral methods, where as the book Spectral

Methods Fundamentals in Single Domains [3] provides a very in depth discussion

on the subject.

43
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5.1 A spectral method for fractional diffusion

For our spectral method we want to approximate the solution to Eq. (2.4) as a

series expansion,

c(x, t) ≈ ch(x, t) =
N
∑

k=0

ak(t)ϕk(x) (5.1)

where the ak(t) are unknown coefficients and ϕk(x) are expansion functions, for

the value of ϕ(x) we will use exponential or trigonometric functions. The spectral

method works by reducing the partial differential equation (PDE) to a system of

ordinary differential equations (ODEs) that have solutions ak(t). Once these are

solved the approximate solution to the PDE can be obtained by substituting the

ak(t) back into Eq. (5.1).

To find this system of ODEs we will take the Galerkin approximation. This re-

quires us to use the weak formulation of Eq. (2.2) and set the residual of this to

equal zero giving us the following,

∫ 2π

0

∂ch

∂t
ϕl(x)dx =

∫ 2π

0

K
∂αch

∂xα
ϕl(x)dx for l = 0, ..., N

substituting in the series expansion then gives us,

∫ 2π

0

∂

∂t

(

N
∑

k=0

ak(t)ϕk(x)

)

ϕl(x)dx =

∫ 2π

0

K
∂α

∂xα

(

N
∑

k=0

ak(t)ϕk(x)

)

ϕl(x)dx

and then differentiating gives

N
∑

k=0

dak(t)

dt

∫ 2π

0

ϕk(x)ϕl(x)dx = K
N
∑

k=0

ak(t)

∫ 2π

0

dαϕk(x)

dxα
ϕl(x)dx. (5.2)

The functions ϕk(x) are chosen so they are orthogonal, this mean that in Eq. (5.2)

the part involving the time derivative only has a non zero values when k = l. Using

this fact and discretizing the time derivative using an implicit Euler integration
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scheme gives us the following system of ODEs,

∫ 2π

0

ϕl(x)ϕl(x)dx

(

an
l − an+1

l

∆t

)

= K
N
∑

k=0

∫ 2π

0

dαϕk(x)

dxα
ϕl(x)dxan+1

l .

Like the finite element method we can define a mass matrix M as,

Mkl =

(
∫ 2π

0

ϕl(x)ϕl(x)dx

)

δkl

and a stiffness or diffusivity matrix D as,

Dkl =

∫ 2π

0

dαϕk(x)

dxα
ϕl(x)dx.

This leaves us with a matrix system in the form of,

(M − D∆t)an+1
l = Man

l (5.3)

that needs to be solved over time. Then for time steps where the actual solution

is required we substitute the ak(t) into Eq. (3.9). Here we have discritized the

time step implicitly but it can just as easily be solved explicity or using any other

integration scheme.

One other thing to consider is obtaining the initial condition for the ak(t) this

can formulated as so,

∫ 2π

0

N
∑

k=0

ak(0)ϕk(x)ϕl(x)dx =

∫ 2π

0

Cinit(x)ϕl(x)dx
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and again using the orthogonality condition there is only a non zero solution when

k = l therefore we get N initial al(0)s given by,

al(0) =

∫ 2π

0
Cinit(x)ϕl(x)dx

∫ 2π

0
ϕl(x)ϕl(x)dx

. (5.4)

To begin with we take the domain [0, 2π], all the derivations are shown for this

domain size. However this is easily altered by changing the value of k to k = 2π
λ

where λ = i
L
. L being the length of the domain and i beging the value in the

summation. k still needs to be an integer so λ needs to be chosen so that it causes

the π cancels out.

5.2 Choices of expansion function

Examples of expansion functions ϕ(x) are cos(kx), sin(kx) combinations of the

two or even eikx, for more details on possible expansion functions see [3]. Both

cosine or sine only gives a valid result if we use a symmetric or antisymmetric initial

condition respectively. Therefore a combination of the two would be beneficial, but

this presents a problem when determining the initial conditions. Using a complex

exponential would also give us as more universal method without the issue with

the initial conditions. Using the definitions given in Chapter 3 we can develop

numerical schemes using various expansion functions. We shall look at the results

obtained from using each one, as well as the deciding whether it is acceptable to

only take the shorted definitions.
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5.2.1 Cosine Expansion Function

For the cosine expansion function we take ϕk(x) = cos(kx) and ϕl(x) = cos(lx)

this gives the mass matrix as,

Mkl =

∫ 2π

0

cos(kx)cos(lx)dx.

For cosine we have the orthogonality condition,

∫ 2π

0

cos(mx)cos(nx)dx =

{

2π if m = n

0 if m 6= n,

this means that the mass matrix only has diagonal entries. The stiffness matrix

can be defined as,

Dkl =

∫ 2π

0

dαcos(kx)

dxα
cos(lx)dx.

Using the definitions for the fractional derivative of cosine we see that the orthog-

onality condition is no longer valid so the derivative involves a shifted cosine wave.

Therefore there will be values in entries in the matrix other than in the diagonal

elements, this will increase the computational time.

In Chapter 3 we gave two definitions for the fractional derivative of cosine Eq.

(3.11) and Eq. (3.13). We see from an example that they both produce similar

results over the same domain, in this case 1000π < x < 1040π which changes the

integral limits on the mass and stiffness matrices to 1000 and 1040π. The initial

data is a Gaussian distribution. Fig. 5.1(a) shows the results using both definitions

after 10 seconds and Fig. 5.1(b) shows the results after 20 seconds. The results

for both definitions are the same for both final times indicating that it is suitable

to use the shortened definition Eq. (3.13) which produces results over any domain

not just that of large x. Another comparison can be seen in Fig. 5.2 here we are

using the domain given above when using Eq. (3.11) and the domain 0 < x < 40π

is used for Eq. (3.13) the final time is 20 seconds. We see that valid results are

produced which are similar, this also shows that if a transform for the derivative
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had been used it result obtained would have been reasonable.
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Figure 5.1: Comparision of definitions for the fractional derivative of cosine

If we use an odd function for the initial data the scheme does not produce a

valid solution. We therefore need to use different expansion functions to obtain a

solution.

5.2.2 Sine Expansion Function

For our expansion functions we now use ϕk(x) = sin(kx) and ϕl(x) = sin(lx) giving

the mass and stiffness matricies as,

Mkl =

∫ 2π

0

sin(kx)sin(lx)dx.

and

Dkl =

∫ 2π

0

dαsin(kx)

dxα
sin(lx)dx.

Sine has a similar orthogonality condition to cosine so the mass matrix again

only has diagonal elements and due to the definition for the fractional derivative
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(a) α = 1.2, definition Eq. (3.11)
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(b) α = 1.2, definition Eq. (3.13)
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(c) α = 1.8, definition Eq. (3.11)
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(d) α = 1.8, definition Eq. (3.13)

Figure 5.2: Results for cosine expansion function using both definitions

of sine the stiffness matrix has non zero elements over the whole matrix.

Using sine as an expansion function means that the scheme is only valid for initial

data that is an odd function we also find in our program for using sine that it does

not transform the initial data correctly and therfore needs futher work. We will

not use a sine expansion function.

5.2.3 Complex Exponential Expansion Function

To allow us to use any function for the initial data we can use a complex exponential

as the expansion function. However we first need the othogonality condition for
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complex exponentials,

∫ 2π

0

eimxe−inxdx =

{

2π if m = n

0 if m 6= n.

This means that our expansion functions are now ϕk(x) = eikx and ϕl(x) = e−ilx,

using the definition Eq. (3.15 the mass and stiffness matrices are now,

Mkl =

∫ 2π

0

eikxe−ilxdx

and

Dkl =

∫ 2π

0

(ik)αeikxe−ilxdx.

The orthogonality condition means that both matricies are diagonal. Due to this

and because it allows any initial data it will be the prefered choice of expansion

function. However using definition Eq. (3.15) produces a result that diffuses in a

left direction. We need to change this definition so it creates diffusion in a right

direction. These can then be halved and summed together. To find this we take the

derivative over −x this idea comes from the definitions for fractional derivatives

in which they are either definied as dαf(x)
dxα or dαf(x)

d(−x)α . This gives our right sided

fractional derivative for an exponential function as,

dα

d(−x)α
eλx = (−λ)αeλx (5.5)

Using both (3.15) and (5.5) gives the stiffness matrix as,

Dkl =

∫ 2π

0

(

(ik)α

2
eikxe−ilx +

(−ik)α

2
eikxe−ilx

)

dx.

This causes a problem when α = 1 as the values cancel out, however we also

find that α = 1 for cosine expansion functions does not produce a result. Since

α = 1 is advection and not diffusion we are not interested in this case. However, it

does mean that the schemes we have developed using spectral methods are not as

general as the finite difference methods and perhaps that our choice of expansion
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function is not the best choice.

On the positive side we also find that the complex exponential case is valid on

any domain.

5.3 Results and Comparison with Finite Differ-

ence Scheme

To look at a range of results and compare to our finite difference scheme we shall

use the spectral method that uses complex exponential expansion functions. This

is because it allows the diffusivity matrix to be diagonal and therefore reduces the

computational time.

One problem with our method is that it uses periodic boundary conditions, so

when the diffusion reaches the boundary it treats the value differently to the finite

difference scheme. For this reason we will only compare results over a large domain

so there is no interaction with the boundary.

As with our finite difference scheme our initial data is Gaussian with a mean

of 20π and standard deviation of four defined on 0 < x < 40π. We use the same

value of α as in the finite difference method with a final time of 20 seconds and

output every two seconds. The results we obtain are very similar, see Fig. 5.3.
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(a) α = 1.2
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(b) α = 1.5
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(c) α = 1.8
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(d) α = 2

Figure 5.3: Fractional diffusion using a spectral method with complex exponential
expansion functions
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We then evaluate the standard deviation at various times and calculate its evolu-

tion see Fig. 5.4 this gives a very similar result to that displayed in Fig. 4.10.
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Figure 5.4: Width of diffusing plume plotted on loglog scale for spectral method

The main difference is for the small values of α. If we increase the size of the

domain to 2500π and shorten the final time to 5 second to reduce the run time

of the program as 2500π is a large domain, we can compare the widths of the

concentration plumes for both methods Fig. 5.5 shows the results.

We notice that the scales are different but the slopes are similar. It appears that

the spectral method produces results closer to what we expect sooner than the

finite difference method. Perhaps this is due to the accuracy of the methods or

because of the definitions for fractional derivatives used in each case. However

to determine the cause this will require further investigation which will also help

in determining the suitability of the spectral method. These results were pro-

duced without viewing the diffusion pattern and therefore further investigation is

required in this area.



CHAPTER 5. A NUMERICAL SCHEME USING SPECTRAL METHODS 54

10
0

10
2.398

10
2.399

10
2.4

10
2.401

10
2.402

time

w
id

th

 

 

α = 1.2

α = 1.5

α = 1.8

α = 2

(a) Spectral method

10
0

10
2.4949

10
2.495

10
2.4951

10
2.4952

time

w
id

th

 

 

α = 1.2

α = 1.5

α = 1.8

α = 2

(b) Finite difference method

Figure 5.5: Comparision of Plume Widths



Chapter 6

Conclusions and Future Work

6.1 Fractional Diffusion

We have determined that Levy distributions are a solution to the fractional diffus-

ing equation, these Levy distributions have thicker tails meaning that the prob-

ability of of particles jumping further is increased. Meaning that the fractional

diffusion equation presents a valid alternative model to modelling diffusion in flows

which have large variations in the velocity field.

Using fractional diffusion to model certain diffusion processes instead of the second

of diffusion equation allows us to have greater control of the over the speed and

spread of the diffusion. It means that the value of α can be chosen so it fits the

diffusion pattern for any particular physical flow. In the paper by Benson [2] the

values of Kα and α so the model fits real life results.

We have seen that it is easy to use fractional diffusion to model diffusion in a

particular direction and at different rates. The control we have over the direction

and rate of the diffusion is perhaps most noticable in the two dimensional case.

Here we have seen that there are so many different combinations of scheme we can

use each giving very different results.

55
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Further work can be done to fit the fractional diffusion equation to a real world

example and assess the how well it fits the data over using the ordinary second

order diffusion equation.

6.2 Finite Difference Method

The finite difference method is well defined and is the predominant method used in

the literature. It is easy to implement and does not have any restrictions on intial

data or domain size. We have been able to validate the finite difference method

which gives us confidence that other results obtained from it are accurate.

The results obatained from using the central scheme show us different rates of

dispersion for different α with the smaller α allowing a wider spread of contami-

nant particles. One area for futher work is in determining a reason for the varying

standard deviation for different sized domains. We have see that the evolution of

the standard devation does not give what we expect. Indicating either that the

method does not like interaction with the boundary or that it is simply better

defined on a larger x domain.

This leads us on the another area for further work, the determination of valid

boundary conditions. For advection, a first order derivative, we just require one

boundary condtion. For second order diffusion we require two. With fractional

diffusion we are using a derivative with a real valued number between one and

two. This could mean that we do not require two boundary conditions to solve

this problem.

We have seen that the method is easy to expand into two dimensions and a wide

variety of patterns of diffusion can be obtained. We have only looked at a few cases,

further work could be done here to assessing the suitablility of different scheme

for different initial data. An interseting area to look at has been the attempt to
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modelling an advecting plume. Again only a few results have been produced here.

Further investigation would allow us to determine whether using the fractional dif-

fusion term allows a better fit for real life diffusing plumes such as smoke plumes

from chimmenys.

There is also future work in the determination of the relevence of the units in

Kα. As mentioned we could solve using a dimensionless equation.

6.3 Spectral Method

The spectral method using complex exponetials produces promising results for the

cases we have looked at in that they match up to the finite difference results well.

Further research needs to go into obtaining a method that will allow any boundary

condtion we define. Or how to allow the domain to be any size we require and

not just multiples of π. It is possible that the boundary condtion problem may be

solved by taking different expansion functions. We would then have to determine

what the fractional derivative of these expansion functions are. The reason for

choosing the expansion functions detailed in Chapter 5 is that fractional deriva-

tives for these functions have already been described in the literature. Once all

these areas have been dealt with another area for furture work is determining the

stability regions and the order of accuracy.

The spectral method we have developed here should really been seen as an initial

step forward and one that requires further research and validation.



Bibliography

[1] D Benson, S Wheatcraft, M Meerschaert. The fractional-order governing equa-

tion of Levy motion, Water Resources Research 36 6 1413-1423, 2003

[2] D Benson, S Wheatcraft, M Meerschaert. Application of a fractional

advection-dispersion equation, Water Resources Research 36 6 1403-1412, 2000

[3] C Canuto, M Y Hussaini, A Quarteroni, T A Zang. Spectral Methods Funda-

mentals in Single Domains, Scientific Computation Springer, 2006

[4] J Crank. The Mathematics of Diffusion, Clarendon Press, 2nd Edition, 1975

[5] B Cushman-Roisin. Beyond Adolf Fick: A new model of turbulent dispersion,

Presentation, 2006

[6] D Durran. Numerical Methods for Wave Equations in Geophysical Fluid Dy-

namics, Springer, 1999

[7] Y Lin, C Xu. Finite difference/spectral approximations for the time-fractional

diffusion equation, J. Comp. Phys. 225 1533-1552, 2007

[8] M Meerschaert. The Fractal Calculus Project, Presentation, 2007

[9] M Meerschaert, H P Scheffler, C Tadjeran. Finite difference methods for two-

dimensional fractional dispersion equation, J. Comp. Phys. 211 249-261, 2006

[10] M Meerschaert, C Tadjeran. Finite difference approximations for fractional

advection-dispersion flow equations, J. Comp. and App. Math. 172 65-77,

2004

58



BIBLIOGRAPHY 59

[11] R Metzler, J Klafter. The resturant at the end of the random walk:Recent de-

velopments in the description of anomalous transport by fractional dynamics,

J. Phys. A 37 R161-R208, 2004

[12] K Oldham, J Spanier. The Fractional Calculus, Academic Press, 1974

[13] R Schumer, D Benson, M Meerschaert, S Wheatcraft. Eulerian derivation

of the fractional advection-dispersion equation, J. Contam. Hydro. 48 69-88,

2001

[14] D Sornette. Critical Phenomena in Natural Sciences, Springer, 2nd Edition,

2006

[15] C Tadjeran, M Meerschaert, H P Scheffler. A second-order accurate numerical

approximation for the fractional diffusion equation, J. Comp. Phys. 213 205-

213, 2006

[16] E Weisstein. ”Gamma Function.” From MathWorld–A Wolfram Web Re-

source, http://mathworld.wolfram.com/GammaFunction.html, 2008


