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Abstract

The problem of determining the position of the boundary formed between a

plasma expanding into an evacuated region (subject to a large electric field)

and the vacuum itself has been formulated. The problem has been solved

in an analytical manner for the simple 1D planar case, and solutions to this

problem have been analysed. A different iterative method of solving the same

problem based on nodal equidistribution has been formulated and success-

fully implemented, and solutions compared with the analytic case. The same

iterative method has also been successfully applied to the more difficult 1D

radially symmetric problem and the effects of solution gradient and an input

parameter γ on nodal distribution have been studied.
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Chapter 1

Introduction

The neutron generator group at AWE are primarily concerned with the design

of a small particle accelerator called a Neutron Tube. These devices provide

a short high intensity pulse of neutrons which are used in applications such

as oil exploration and (of course) nuclear weapons.

1.1 Neutron Tube Basic Operation

In order to produce the pulse of neutrons, the neutron tube utilises the

deuterium-tritium fusion reaction which has a peak cross section of ∼120KeV.

For the fusion reaction to take place, deuterium (or tritium) ions must be

accelerated to an energy of ∼120KeV before striking a tritiated (or deuter-

ated) target thereby releasing neutrons with 14.1MeV (in addition to 3.5MeV

alpha particles).

To create the D-T reaction, the tube consists of an evacuated sealed enve-

lope across which the acceleration voltage is held off. A source of deuterium

ions is situated at one end of the tube (it is usual for deuterium ions to be

accelerated onto a tritiated target rather than the converse) whilst the triti-

ated target is at the cathode end (see Figure 1.1) Upon operation, a plasma

of deuterium ions expands into the acceleration gap forming a conductive

’gas’ which is generally impenetrable to the tube main accelerating field (due

6
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Figure 1.1: Neutron tube schematic

to this conductivity). At about the same time, the accelerating voltage is

applied across the tube, and ions begin streaming away from the plasma-

vacuum interface formed by the expanding plasma. Shaped electrodes within

the tube act as ion lenses focussing the ion beam onto the tritiated target

where the fusion reaction takes place.

Ions reaching the plasma-vacuum boundary at a specific rate cause the

boundary to bulge into the vacuum, thereby concentrating the electric field

within the region (since the plasma acts as a boundary for the electric field

within the tube main gap). The increased electric field causes ions to be

accelerated away from the boundary more rapidly than they arrive there, and

consequently the boundary recedes until the electric field at the boundary

is zero. In this final equilibrium state, ions leave the boundary at the same

rate they arrive there.

The determination of the equilibrium position of the plasma-vacuum

boundary, with a specific current density of ions arriving at the boundary,



CHAPTER 1. INTRODUCTION 8

and a specific potential difference across the main accelerating gap, is a free

boundary problem.

1.2 Free Boundary Problem

The ultimate aim in solving this problem is to be able to predict the position

of the plasma-vacuum boundary for two dimensional regions with geometri-

cally complex boundaries and associated boundary conditions. A schematic

of the problem in 2D is shown in Figure 1.2. Referring to Figure 1.2, either
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Figure 1.2: Schematic of 2D free boundary problem

Neumann or Dirichlet conditions are placed on each of the boundaries C1 to

C4, and C1 has the added condition

∂U

∂n
= 0

which is required to determine the boundary shape (n being normal to C1),

along with a specified current density. The governing equation describing

the electrostatic potential within the region Ω is Poisson’s equation, which

in this instance in cartesian coordinates is given by



CHAPTER 1. INTRODUCTION 9

∇2U =
−ρ(x, y)

ε0
(1.1)

Here ρ(x, y) is a source term representing the free charge density within Ω,

and ε0 is a scale factor termed the permittivity of free space.

It is the purpose of this dissertation to solve a simplified 1D version of this

free boundary problem for both radial and planar geometries.

1.3 Solution Approach

In Chapter 2 we begin with an essentially analytic solution to a reduced 1D

planar version of (1.1) and explore the solutions generated.

Since the equivalent 1D radial problem cannot be solved in the same way,

we modify the problem by introducing a pseudo-time variable and make the

assumption that the solution of the now parabolic moving boundary problem

tends to the solution of the original free boundary problem as time tends to

infinity.

In order to solve the parabolic moving boundary problem, we introduce

a numerical method based upon equidistribution of nodes (Section 2.3) in a

logical space and apply it to the planar case.

Once confidence is established that the method works in the 1D planar

case, we reformulate the method and apply it to the 1D radial case (Chapter

3), and again explore the solutions generated.



Chapter 2

1D Planar Case

The problem outlined in Section 1.2 can be reduced to the 1D planar prob-

lem shown in Figure 2.1. Within the region Ω, Poisson’s equation (1.1) is

W

Fixed Boundary

Free Boundary
X=S, U=U1

X=X , U=U0 0

Figure 2.1: 1D Planar problem setup

reduced to the second order ODE

d2U

dx2
= −

ρ(x)

ε0
(2.1)

which is subject to the following boundary conditions

U = U0 , x = x0

U = U1

dU
dx

= 0






x = S (2.2)
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2.1 Analytic Solution

In order to solve (2.1) subject to (2.2), an expression relating the charge

density ρ(x) (at any point within Ω) to the solution potential and the current

density at the free boundary is required. This relationship is found from the

expression

ρ(x) =
J

v(x)
, (2.3)

where v(x) is the particle velocity at a position x within Ω. In this 1D case,

the current density J at the free boundary is a constant. Clearly from (2.3)

as the particle velocity increases (due to acceleration from a large electric

field), particles spend less time within a unit volume thereby causing the

charge density ρ(x) to decrease.

The form of the particle velocity v(x) is also required to integrate (2.1),

and is found by equating the force exerted on a particle of charge q by

the electric field within the region Ω, and the force required to accelerate a

particle of specific mass m,

F = qE = −q
dU

dx

= mv(x)
dv

dx
(2.4)

Rewriting (2.4) as
m

2

d

dx

(

v(x)2
)

= −q
dU

dx

allows immediate integration to give

v(x)2 = −
2q

m
U(x) + c1 (2.5)

with c1 being a constant of integration. When x = S, U = U1 and v(x) = v0

(the initial velocity of an emerging particle) such that

c1 = v0
2 +

2q

m
U1

and

v(x) =

√

2q

m
(U1 − U(x)) + v0

2 (2.6)
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From (2.3) and (2.6) the ODE (2.1) becomes,

d2U

dx2
= −

J

ε0

(
2q

m
(U1 − U(x)) + v0

2
)− 1

2

(2.7)

Multiplying (2.7) by 2 dU
dx

gives,

d

dx

(

dU

dx

)2

= −
2J

ε0

(
2q

m
(U1 − U(x)) + v0

2
)− 1

2 dU

dx

which again allows immediate integration, giving

(

dU

dx

)2

=
2Jm

qε0

(
2q

m
(U1 − U(x)) + v0

2
) 1

2

+ c2 (2.8)

From (2.2), dU
dx

= 0 when U = U1 so that

c2 = −
2Jm

qε0
v0

and

dU

dx
=

√
√
√
√
√

2Jm

qε0







(
2q

m
(U1 − U(x)) + v0

2

) 1

2

− v0






(2.9)

The integration of (2.9) is not possible analytically, and so we appeal to a

standard explicit fourth order Runge-Kutta method to perform the integra-

tion.

2.2 Results from Analytic Solution

The forward stepping R-K algorithm is executed until the calculated solu-

tion derivative dU
dx

at each step falls below a tolerance. Since the discrete

spatial steps are constant in size, it is usual that the calculated derivative at

the penultimate node will fall outside the tolerance, such that a final step

must be taken. The constant step size will in general not be equal to the
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Figure 2.2: Position of calculated free boundary

distance between the penultimate node and the actual free boundary posi-

tion. The final node is then beyond the free boundary causing the RHS of

(2.9) to be undefined. This error condition is trapped, and the calculated free

boundary position is given as the position of this final node (see Figure 2.2).

The integration of (2.9) has been performed for a number of different

initial conditions in order to test the solution against expected results. In

all studies of the planar solution, the particle mass and charge are those of

a deuteron, and quantities that are varied are the initial particle velocity v0,

the current density at the free boundary J , and the accelerating potential

difference (U1 − U0).

It is expected that as J increases, plasma will bulge into the solution

region Ω such that the free boundary will settle closer to the fixed boundary

(at its equilibrium position), for a fixed potential difference. Similarly, if the

accelerating potential difference is small, plasma will again bulge into Ω such

that the free boundary settles (relatively) close to the fixed boundary. This

expected behaviour is examined.

In addition to examination of the above behaviour, parameters relating to a

typical neutron tube (the mean current density, initial particle velocity for

a 50eV deuteron, and main gap accelerating voltage) are used to find the

position of the free boundary in this case. It is expected that the calcu-

lated main gap dimensions will be of a similar order of magnitude to those of
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Figure 2.3: Change in potential across the solution region for varying emission

current densities.

typical neutron tube that has been designed to operate below space charge

limitation.

2.2.1 Variation in Solution Region Size with Emission

Current Density

As mentioned above, it is expected that as the current density increases with

a constant accelerating voltage (and constant emerging particle energy), the

distance between the free and fixed boundary will reduce accordingly. Figure

2.3 clearly shows this for an accelerating voltage of 100KV, and a variation

in current density from 0.1Am−2 to 1.0Am−2.

Referring to Figure 2.3, as the current density increases, the plasma bulges

into the solution region thereby reducing the gap between the free and fixed

boundaries. This is more clearly shown in Figure 2.4.
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Figure 2.4: Change in solution region size with emission current density.

2.2.2 Variation in Solution Region Size with Accelerat-

ing Potential

Again as previously mentioned, it is expected that as the potential difference

across the solution region increases, plasma is stripped off more readily from

the free boundary emission region thereby causing the boundary to recede.

Figure 2.5 shows the calculated potential solution across the solution

region for three different potential differences (with constant current density

and constant initial ion energy). Examining the position of the point where

the electric field (potential gradient) is zero (this is one of the boundary

conditions defining the position of the free boundary), clearly indicates that

the free boundary recedes away from the fixed boundary as the potential

difference across the solution region increases. This is more clearly shown in

Figure 2.6 where the free-fixed boundary distance is calculated as a function

of accelerating potential.
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Figure 2.5: Change in solution potential with distance from fixed boundary for

varying solution region potential differences.

2.2.3 Predicted Solution Region Size for a Typical Neu-

tron Tube

The source current density for operation of a typical neutron tube was deter-

mined and used, along with a range of typical accelerating voltages, as input

parameters to the planar calculation. The emitted ion energy was chosen to

be 50eV (a generally accepted energy for ions leaving a deuterium plasma).

The neutron tube generally operates outside space charge limited condi-

tions 1. However, space charge limitation can be relatively easily achieved

by lowering the tube accelerating voltage, or by significantly increasing the

ion current density from the source. As such, the tube inter-electrode gap

should be of a similar order of magnitude to the calculated free boundary to

fixed boundary spacing (the gap that would exist in true space charge limited

flow).

1Space charge limitation is the equilibrium state where the flux of ions reaching the

plasma boundary is equal to the flux of ions leaving it.
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Figure 2.6: Variation in free boundary position as a function of accelerating po-

tential (constant current density and initial ion energy).

Figure 2.7 shows the calculated solution for the planar free boundary

problem with typical neutron tube operating parameters. Clearly, at 100KV,

the calculated width of solution region is ∼8.5mm in comparison to the neu-

tron tube inter-electrode gap2 which is measured in mm. Although the free

boundary calculation is not fully representative of the tube geometry due to

being a planar calculation in 1D, the calculated distance between free and

fixed boundary is similar indicating that the calculated solution is at least of

the correct order of magnitude.

2.3 Equidistribution Method

The solution given in Section 2.1 is relatively easy to find, is for the main part

analytical, and behaves exactly as expected. In order to find the equivalent

solution in a radial coordinate system, we must appeal to a purely numeri-

2Accurate dimensions cannot be listed here.
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Figure 2.7: Change in solution potential with distance from the fixed boundary

for varying accelerating potentials, and typical neutron tube current density.

cal method since a similar analysis to the planar case is not possible. The

particular method used is a nodal equidistribution based method.

As an introduction, this method is initially applied to the planar case but

the following analysis can also be applied to the radial problem as is shown

in Chapter 3.

2.4 Introduction of Pseudo Time

In order to solve (2.7) subject to the conditions (2.2) using an iterative

method, we introduce a pseudo time variable τ and rewrite (2.7) as a parabolic

equation of the form
∂φ

∂τ
=
∂2φ

∂x2
+ g(φ) (2.10)

where g(φ) is the negative value of the RHS of (2.7) and the steady state
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function U(x) is now written as the time dependent function φ(x, τ). An

assumption is made that as τ → ∞, the function φ(x, τ) converges to the

steady state solution U(x) (i.e. as τ → ∞, φτ → 0 such that the original

equation (2.7) holds) 3.

2.5 Mapping from Physical Grid to Logical Grid

The equation (2.10) subject to the boundary conditions (2.2) is now a moving

boundary problem since the solution region evolves with the time variable τ .

We therefore seek a time-stepping procedure that calculates the velocity of

nodes within a discretised version of the physical solution region Ω (including

the node at the moving boundary). Nodal positions may then be updated at

each time-step along with the solution φ(x, τ), and the procedure continued

until the mean nodal velocity falls below a tolerance.

Mapping the nodes in the physical region Ω on to a logical region Ξ (the

mapping must be both injective 4 and surjective 5) such that the distribution

of nodes in the logical region is constant in time (the nodes in the logical

region are equally spaced), allows the nodal velocities in the physical region

to be calculated.

A mapping (or monitor) function M can be chosen such that

M
dx

dξ
= 1 (2.11)

where ξ represents the coordinate in the logical region Ξ. In this way, the

rate of change of logical space variable ξ with physical space variable x is

governed by the function M .

3The criteria for this to hold are not investigated here.
4Injective means that one node in the logical space maps to one node in the physical

space.
5Surjective means that for every point in the logical space, there exists a point in the

physical space.
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Integration over the entire region Ω (and corresponding logical region Ξ)

gives

∫ xn(τ)

x0

Mdx =
∫ ξn(τ)

ξ0

dξ

= ξn(τ) − ξ0

= Θ(τ). (2.12)

Here xn(τ) corresponds to the moving outer boundary (S in Figure 2.1)

indicating that Ω has been discretised with n nodal points. Integrating (2.11)

over a single ’element’ in the physical domain gives

∫ xi

xi−1

Mdx =
∫ ξi

ξi−1

dξ

= ∆ξ (2.13)

If the ratio, ∆ξ/(ξn(τ) − ξ0) is constant in time, then nodes in the logical

region Ξ will be equally distributed indicating that

1

Θ(τ)

∫ xi

xi−1

Mdx = ci− 1

2

(2.14)

where ci− 1

2

is a constant in time and refers to the ith ’element’. Taking the

derivative of (2.14) with respect to time gives

dc

dτ
= 0 =

∂c

∂x

dx

dτ
+
∂c

∂τ
(2.15)

(ci− 1

2

is written c for brevity).

From (2.14), the first term on the RHS of (2.15) is given by

∂c

∂x

dx

dτ
=

1

Θ

[

Mẋ
]xi

xi−1

(2.16)

and the second term on the RHS of (2.15) may be written

∂c

∂τ
=
∫ xi

xi−1

∂

∂τ

(
M

Θ

)

dx = 0, (2.17)
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which on expansion gives

∂c

∂τ
=

1

Θ

∫ xi

xi−1

∂M

∂τ
dx−

Θ̇

Θ2

∫ xi

xi−1

Mdx (2.18)

Combining (2.16) and (2.18) such that

∫ xi

xi−1

∂M

∂τ
dx−

Θ̇

Θ

∫ xi

xi−1

Mdx+
[

Mẋ
]xi

xi−1

= 0 (2.19)

and approximating the integrals using the trapezium rule yields an (n+1)×n

system of equations for the n nodal velocities and Θ̇ (ẋ0 = 0).

Since this is not a square system, an additional equation is required, and

this can be obtained from the mass balance equation,

d

dτ

∫ xn

x0

φdx =
∫ xn

x0

∂2φ

∂x2
+ g(φ)dx (2.20)

relating to the DE (2.10).

2.6 Choice of Monitor Function

2.6.1 Equally Distributed Nodes (M = 1)

Initially choosing the monitor function M to be equal to 1 means that from

(2.11) nodes in the physical domain are equally spaced, since the rate of

change of physical coordinate with logical coordinate is 1. From (2.12) and

(2.13), the ratio ∆ξ/(ξn(τ) − ξ0) is given by

∆ξ

ξn(τ) − ξ0
=

xi − xi−1

xn − x0

= ci− 1

2

(2.21)

which again clearly indicates that nodes in the physical domain are equally

distributed. As time progresses, if the moving boundary at xn(τ) moves in

a positive x direction then in order for the ratio (2.21) to remain constant
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in time, the node at xi will have a slightly higher velocity than the node at

xi−1 such that the ith element increases in size accordingly (e.g for the first

’element’ x0 is fixed, and x1 must move in a positive x direction to ensure

that the ratio is held constant).

Referring then to (2.19), the system of equations relating the nodal velocities

ẋ and Θ̇ is given by

[ẋ]xi

xi−1
−

Θ̇

Θ

∫ xi

xi−1

dx = 0,

which for the ith equation is

ẋi − ˙xi−1 − ci− 1

2

Θ̇ = 0 (2.22)

Referring to the mass balance equation (2.20), the LHS can be re-written

d

dτ

∫ xn

x0

φdx =
∂

∂τ

∫ xn

x0

φdx+ [φẋ]xn

x0
(2.23)

and approximating the integral on the RHS of (2.23) using the trapezium

rule gives

∂

∂τ

∫ xn

x0

φdx ≈
∂

∂τ

(

1

2

n∑

i=1

(xi − xi−1)(φi + φi−1)

)

≈
1

2

n∑

i=1

(φi + φi−1)(ẋi − ˙xi−1) + · · ·

· · · +(xi − xi−1)(φ̇i + ˙φi−1) (2.24)

with the second term on the RHS of (2.23) being given by

[φẋ]xn

x0
= φnẋn (2.25)

since ẋ0 = 0. The RHS of the mass balance equation (2.20) can also be

re-written with the first term being given by
∫ xn(τ)

x0

∂2φ

∂x2
dx = −

∂φ

∂x

∣
∣
∣
∣
∣
x0

, (2.26)

since ∂φ
∂x

= 0 (from the BCs (2.2)). The second term can then be approxi-

mated
∫ xn(τ)

x0

g(φ)dx ≈
1

2

n∑

i=1

(xi − xi−1) (g(φi) + g(φi−1)) (2.27)
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Combining (2.24), (2.25), (2.26), and (2.27) gives an expression relating the

nodal velocities ẋ and the nodal rate of change of solution φ̇,

1

2

n−1∑

i=1

(φi−1 − φi+1)ẋi +
1

2
(3φn + φn−1)ẋn +

1

2

n−1∑

i=1

(xi+1 − xi−1)φ̇i =

−
∂φ

∂x

∣
∣
∣
∣
∣
x0

+
1

2

n−1∑

i=1

(xi+1 − xi−1)g(φi) + · · ·

· · · +
(x1 − x0)

2
g(φ0) +

(xn − xn−1)

2
g(φn) (2.28)

Due to the choice of monitor function, there is no apparent way of linking the

nodal velocities ẋ and Θ̇ from equation (2.28). In addition, the differential

equation (2.10) does not appear globally in the system (2.22). As such it

is deemed that the use of the monitor function M = 1 in this application

is fruitless. We therefore seek a different monitor function which enables

a relationship between ẋ and Θ̇ to be established from the mass balance

equation, and one which allows the differential equation under study to be

more globally applied throughout the ẋ equations.

2.6.2 Gradient Dependent Monitor Function

If we choose M = 1 + γφx (γ being a constant) then from (2.11) it is clear

that when the solution gradient φx is large, the rate of change of nodes in

the physical domain with respect to the logical domain is small (i.e. nodes

are concentrated around areas where the solution changes rapidly). As in

section 2.6.1, from (2.12) and (2.13) the ratio ∆ξ/(ξn(τ) − ξ0) is now given

by

∆ξ

ξn(τ) − ξ0
=

(xi − xi−1) + γ(φi − φi−1)

(xn − x0) + γ(φn − φ0)

= ci− 1

2

(2.29)

If the moving boundary moves in a positive x direction, the denominator

of the term on the RHS of (2.29) will increase. In order that this term re-

main constant in time, either the solution gradient within the ith ’element’
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(φi−φi−1) must increase, the width of the element must increase (xi−xi−1),

or a combination of both. If the solution gradient within the ith element is

large relative to the element size, then the element width will not have to

increase greatly to ensure that (2.29) remains constant (indicating that nodal

velocities in areas of steep solution gradient should be small).

Following a similar analysis to section 2.6.1 and substituting M = 1 + γφx

into the expression (2.19) yields

γ
∫ xi

xi−1

φxτdx− ci− 1

2

Θ̇ +
[

(1 + γφx)ẋ
]xi

xi−1

= 0 (2.30)

which again represents an (n + 1) × n system of equations for the nodal

velocities ẋ and Θ̇. The first term on the LHS of (2.30) can be written

γ
∫ xi

xi−1

φxτdx = γ [φτ ]
xi

xi−1

= γ
[

φxx + g(φ)
]xi

xi−1

(2.31)

from the original equation (2.10), and the RHS of (2.31) can be approximated

using differences:

When i = 1,

γ
[

φxx + g(φ)
]xi

xi−1

≈ γ












∂φ
∂x

∣
∣
∣
x2

− ∂φ
∂x

∣
∣
∣
x0

(x2 − x0)




 − · · ·

· · · −






∂φ
∂x

∣
∣
∣
x1

− ∂φ
∂x

∣
∣
∣
x0

(x1 − x0)




+ g(φ1) − g(φ0)







= −b1 (2.32)

using central and backward differences to approximate φxx|1 and φxx|0 re-

spectively.

When i = 2 to n− 1,

γ
[

φxx + g(φ)
]xi

xi−1

≈ γ












∂φ
∂x

∣
∣
∣
xi+1

− ∂φ
∂x

∣
∣
∣
xi−1

(xi+1 − xi−1)




 − · · ·
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· · · −






∂φ
∂x

∣
∣
∣
xi

− ∂φ
∂x

∣
∣
∣
xi−2

(xi − xi−2)




+ g(φi) − g(φi−1)







= −bi (2.33)

using central differences to approximate both φxx|i and φxx|i−1.

When i = n,

γ
[

φxx + g(φ)
]xn

xn−1

≈ γ












− ∂φ
∂x

∣
∣
∣
xn−1

(xn − xn−1)




 − · · ·

· · · −






− ∂φ
∂x

∣
∣
∣
xn−2

(xn − xn−2)




+ g(φn) − g(φn−1)







= −bn (2.34)

using backward and central differences to approximate φxx|n and φxx|xn−1

respectively (and since ∂φ
∂x

∣
∣
∣
xn

= 0).

The system of equations (2.30) can then be written












(

1+γ ∂φ

∂x |x1

)

0 0 ··· −c 1
2

−

(

1+γ ∂φ

∂x |x1

) (

1+γ ∂φ

∂x |x2

)

0 −c 3
2

...
... ...

...

0 −

(

1+γ ∂φ

∂x |xn−1

)

1 −c
n− 1

2












× · · ·

· · · ×















ẋ1

ẋ2

...

ẋn

Θ̇















=












b1

b2
...

bn












(2.35)

2.7 Application of Mass Balance Equation

Since this system is not square, the discretised mass balance equation (2.28)

is required to offer an additional relationship between the nodal velocities ẋ
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and Θ̇. In order to use (2.28) an expression relating Θ̇ and φ̇i must be found.

Referring to (2.29) and summing the constants ci− 1

2

from i+ 1 to n gives

n∑

j=i+1

cj− 1

2

=
γ(φn − φi) + (xn − xi)

Θ
(2.36)

(using the expression (2.12) for theta in the denominator of (2.29)). Rear-

rangement of (2.36) gives an expression for φi in terms of Θ,

φi = φn −
Θ

γ
Ci +

1

γ
(xn − xi) (2.37)

where the summation in (2.36) is replaced by Ci for brevity. Taking the time

derivative of this gives us the required relationship

φ̇i = −
Θ̇

γ
Ci +

1

γ
(ẋn − ẋi), (2.38)

which can now be substituted into (2.28). Performing the substitution and

collecting terms gives the required final equation in ẋ and Θ̇,

1

2

(
n−1∑

i=1

{

(φi−1 − φi+1) −
1

γ
(xi+1 − xi−1)

})

ẋi +
1

2

(

(3φn + φn−1) + · · ·

· · · +
1

γ

n−1∑

i=1

(xi+1 − xi−1)

)

ẋn −
1

2γ

(
n−1∑

i=1

Ci(xi+1 − xi−1)

)

Θ̇

=
∂φ

∂x

∣
∣
∣
∣
∣
x0

+
1

2

n−1∑

i=1

(xi+1 − xi−1)g(φi) +
(x1 − x0)

2
g(φ0) + · · ·

· · · +
(xn − xn−1)

2
g(φn) (2.39)

Adding the line (2.39) to (2.35) gives a square system for ẋ and Θ̇ with a

characteristic bi-banded structure.

2.8 Matrix Inversion

The system generated from (2.35) and (2.39) can be represented by

A




ẋ

Θ̇



 = b (2.40)
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where

A =




B c1

R s



 , b =




b1

e



 . (2.41)

and

B is an n× n bi-diagonal matrix (columns 1 to n in (2.35)),

c is a column vector of length n (column n+ 1 in (2.35)),

R is a row vector of length n (given by the ẋi and ẋn coefficients in (2.39)),

s is a scalar (given by the Θ̇ coefficient in (2.39)),

b1 is a column vector of length n (given by the RHS of (2.35)),

e is a scalar (given by the RHS of (2.39)).

It is noted that due to the structure of the bi-diagonal matrix A shown

in (2.35), addition of successive rows will cancel the off-diagonal elements

rendering the matrix diagonal. Therefore adding successive rows of A and b

from 1 to n we have,

M




ẋ

Θ̇



 = n (2.42)

where

M =




D c2

R s



 , b =




b2

e



 . (2.43)

Now

D is an n× n diagonal matrix,

c2 is a column vector of length n (formed by the addition of successive rows

of c1),

b2 is a column vector of length n (formed by the addition of successive rows

of b1).
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Multiplying out the first row of (2.42) gives

Dẋ+ c2Θ̇ = b2 (2.44)

such that

ẋ = D
−1
(

b2 − c2Θ̇
)

(2.45)

Also from (2.42),

Rẋ+ sΘ̇ = e (2.46)

Substituting ẋ from (2.45) into (2.46)

RD
−1
(

b2 − c2Θ̇
)

+ sΘ̇ = e (2.47)

and rearranging gives,

Θ̇ =
(

e−RD
−1b2

)

.
1

RD
−1(−c2) + s

(2.48)

Once Θ̇ has been calculated from (2.48), substitution into (2.45) will give the

vector ẋ.

2.9 Results from Equidistribution Method for

Planar Geometry

The iterative method of solution provided by the equidistribution method

proceeds in the following way:

An initial solution region width is arbitrarily chosen, and an initial solu-

tion condition generated across this region (in this case the initial solution

condition was chosen to be a straight line stretching across the region and

ranging in height from φ0 to φn).

A time-stepping loop is started and the system of equations generated

from (2.35) and (2.39) is constructed. The solution of this system is found

from (2.48) and then (2.45). Since the nodal velocities ẋi have been found,

the nodal positions for the next time step are updated along with the value
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of Θ (found from (2.12)). The solution at the nodes φi is now found from

(2.37).

This procedure is repeated until the RMS nodal velocity falls below a

tolerance (or until the procedure is called to stop).

2.9.1 Boundary Quadratic Velocity

Initially the procedure was applied to a specific condition used for the analytic

method in Section 2.1 (J = 1Am−2, φ0=0KV, φn=100KV and an initial ion

energy of 50eV). It was expected that as time progressed, the solution would

move away from the initial condition and slowly converge towards the analytic

solution. However, Figure 2.8 shows the results of the method where it is

clear that convergence is not taking place.
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Figure 2.8: Output from the equidistribution method at differing times for the

conditions J = 1Am−2, φ0=0KV, φn=100KV and an initial ion energy of 50eV

Furthermore, the moving boundary appears to be moving with an al-

most parabolic velocity as is apparent in Figure 2.9. The cause of this
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Figure 2.9: Distance of moving boundary from fixed boundary (J = 1Am−2,

φ0=0KV, φn=100KV and an initial ion energy of 50eV)

non-convergence comes from the application of time to an originally time

independent problem (which is highly nonlinear and has the boundary veloc-

ity implicitly defined). Integration of the original differential equation (2.1)

on the RHS of the mass balance equation (2.20) will give rise to an arbitrary

constant
∫ xn

x0

∂2φ

∂x2
+ g(φ)dx = k1, (2.49)

since the integrand is equal to zero (from the original DE (2.1)). Equating

this to the LHS of the mass balance equation implies that the solution ’mass’6

has linear time dependence

d

dτ

∫ xn

x0

φdx = k1

or,
∫ xn

x0

φdx = k1τ + k2 (2.50)

Since the height of the solution curve is fixed by the boundary conditions

6The area under the solution curve.
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(2.2) and the solution is approximately linear (this is clear from Figure 2.5

amongst others), then in order for the solution ’mass’ to have a linear time

dependence, the solution region must change size quadratically as is roughly

the case in Figure 2.9.

2.9.2 Convergent Solution

This problem is corrected by setting the RHS of the mass balance equation

to be zero, thereby fixing the solution ’mass’ in time and forcing the iterative

method to converge. Setting the RHS of (2.39) to be zero in the iteration has

the desired effect as is shown in Figure 2.10. Here the the same conditions as

for Figure 2.8 were applied. Referring to Figure 2.10, the straight line initial
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Figure 2.10: Output from the equidistribution method at differing times for the

conditions for J = 1Am−2, φ0=0KV, φn=100KV and an initial ion energy of 50eV.

The RHS of the mass balance equation has been set to zero

condition is seen in addition to the analytic solution. As time progresses, the

calculated solution curves are approaching the analytic solution. Figure 2.11

shows the position of the moving boundary, which is clearly approaching a

limit as time progresses. Figure 2.12 is a repeat of Figure 2.3 but with the
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solutions having been generated using the equidistribution method. Clearly

the solution is behaving as expected since as the emission current density

increases, the solution region reduces in size (see Section 2.2.1).
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Figure 2.11: Distance of moving boundary from fixed boundary (J = 1Am−2,

φ0=0KV, φn=100KV and an initial ion energy of 50eV). The RHS of the mass

balance equation has been set to zero

Now that the equidistribution method has been established, we use it to seek

an equivalent solution in a radial coordinate system.
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Figure 2.12: Change in solution region size with emission current density (equidis-

tribution method)
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1D Radial Case

In order to construct a problem equivalent to that in Section 2 but in radial

geometry, the original Poisson’s equation (1.1) must be transformed into ra-

dial coordinates as follows,

∇2U(x, y) →
1

r2

∂2ψ(r, θ)

∂θ2
+
∂2ψ(r, θ)

∂r2
+

1

r

∂ψ(r, θ)

∂r
= −

ρ(r, θ)

ε0
(3.1)

Here the original potential function U(x, y) in (1.1) becomes an equivalent

function in radial coordinates ψ(r, θ).

3.1 Problem Construction

Since the solution sought is radially symmetric, the 2D potential function

ψ(r, θ) becomes ψ(r), with the transformed Poisson’s equation (3.1) becom-

ing the ODE

1

r

d

dr

(

r
dψ(r)

dr

)

= −
ρ(r)

ε0
(3.2)

Similarly to the planar case, the problem outlined in Section 1.2 can now be

reduced to the 1D radial problem shown in Figure 3.1. The problem is then

34
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Figure 3.1: 1D Radial problem setup

to find the function ψ(r) that satisfies (3.2) subject to the conditions,

ψ = ψ0 , r = r0

ψ = ψ1

dψ
dr

= 0






r = S (3.3)

Initially, as in the planar case, an expression relating ρ(r) to ψ(r) is required.

Since ψ is independent of θ, the relationship (2.3) holds with x→ r

ρ(r) =
J

v(r)
(3.4)

where v(r) is given by

v(r) =

√

2q

m
(ψ1 − ψ(r)) + v0

2 (3.5)

as in the planar case (2.6). From (3.4) and (3.5), the ODE (3.2) becomes

1

r

d

dr

(

r
dψ(r)

dr

)

= −
J

ε0
√

2q
m

(ψ1 − ψ(r)) + v0
2

(3.6)
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This nonlinear problem subject to the boundary conditions (3.3) is not solu-

ble analytically, and so we appeal to the equidistribution method introduced

in Section 2.3 to determine the solution. In order to do this and as in the

planar case we introduce a pseudo time variable τ and rewrite (3.6) as the

parabolic equation
∂φ

∂τ
=

1

r

∂

∂r

(

r
∂φ(r)

∂r

)

+ g(φ) (3.7)

where g(φ) is the negative value of the RHS of (3.6) and the steady state

radially symmetric function ψ(r) is now written as the time dependent func-

tion φ(r, τ). The same assumptions as the planar case for the convergence

with time of φ(r, τ) to the steady state function ψ(r), are made.

3.2 Mapping from Physical Grid to Logical Grid

Since (3.7) subject to the boundary conditions (3.3) is now a moving bound-

ary problem, we proceed in the same manner as in the planar case by mapping

the nodes in the physical region Ω on to a logical region Ξ. Again, forcing

the distribution of nodes in the logical region to be constant in time allows

the nodal velocities in the physical region to be calculated.

In this case, the monitor function M must be chosen such that1

Mr
dr

dξ
= 1 (3.8)

Proceeding as before and integrating over the physical solution region,

∫ rn(τ)

r0

Mrdr =
∫ ξn(τ)

ξ0

dξ

= ξn(τ) − ξ0

= Θ(τ) (3.9)

1dx in planar geometry becomes rdr in radial geometry.
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where rn(τ) corresponds to the moving outer boundary (S in Figure 3.1).

Also integrating (3.8) over a single ’element’ in the physical region gives
∫ ri

ri−1

Mrdr =
∫ ξi
ξi−1

dξ

= ∆ξ (3.10)

Holding the ratio, ∆ξ/(ξn(τ) − ξ0) constant in time

1

Θ(τ)

∫ ri

ri−1

Mrdr = ci− 1

2

(3.11)

again allows an expression relating the nodal velocities ṙ and Θ̇ to be found.

This is done by taking the time derivative of (3.11)

dc

dτ
= 0 =

∂c

∂r

dr

dτ
+
∂c

∂τ
(3.12)

with the first term on the RHS of (3.12) being given by

∂c

∂r

dr

dτ
=

1

Θ(τ)

[

Mrṙ
]ri

ri−1

(3.13)

The second term on the RHS of (3.12) may be written

∂c

∂τ
=
∫ ri

ri−1

∂

∂τ

(

Mr

Θ(τ)

)

dr = 0 (3.14)

which on expansion gives

∂c

∂τ
=

1

Θ

∫ ri

ri−1

Mṙdr +
1

Θ

∫ ri

ri−1

∂M

∂τ
rdr −

Θ̇

Θ2

∫ ri

ri−1

Mrdr (3.15)

Combining (3.13) and (3.15),
∫ ri

ri−1

Mṙdr +
∫ ri

ri−1

∂M

∂τ
rdr

−
Θ̇

Θ

∫ ri

ri−1

Mrdr +
[

Mrṙ
]ri

ri−1

= 0 (3.16)
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and approximating the integrals using the trapezium rule once again yields

an (n+1)×n system of equations for the n nodal velocities ṙ and Θ̇ (ṙ0 = 0).

Again, since this is not a square system, the mass balance equation relat-

ing to the original DE (3.7),

d

dτ

∫ rn

r0

φrdr =
∫ rn

r0

(

1

r

∂

∂r

(

r
∂φ(r)

∂r

)

+ g(φ)

)

rdr (3.17)

is used to provide a further relationship between the nodal velocities ṙ and

Θ̇ (see Section 3.4).

3.3 Choice of Monitor Function

The case for the monitor function M = 1 is not evaluated here for the reasons

given in Section 2.6.1.

If we choose M = 1 + γ
r
φr, then from (3.8)

dr

dξ
=

1

r + γφr
, (3.18)

it is clear that if the solution gradient φr is high, the rate of change of nodes in

the physical domain with respect to the logical domain will be small. In ad-

dition, as the radial coordinate increases this rate of change will also decrease.

Using this monitor function and from (3.9) and (3.10), the ratio ∆ξ/(ξn(τ) − ξ0)

is given by

∆ξ

ξn(τ) − ξ0
=

1
2

(

r2
i − r2

i−1

)

+ γ (φi − φi−1)
1
2
(r2
n − r2

0) + γ (φn − φ0)

= ci− 1

2

(3.19)

If the moving boundary at rn(τ) moves in a positive r direction, the de-

nominator of the term on the RHS of (3.19) will increase quadratically. In

order that this term remain constant in time, either the ith element solution
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difference (φi − φi−1) must increase, the element size must increase, or a

combination of both. For small i, the size of an element will increase more

significantly than for large i (for a similar element solution gradient) at each

timestep.

Substituting M = 1 + γ
r
φr into (3.16) gives

∫ ri

ri−1

(

1 +
γ

r
φr

)

ṙdr =
∂

∂τ

∫ ri

ri−1

rdr + γ
∫ ri

ri−1

ṙφr
r
dr

= [rṙ]riri−1
+ γ

∫ ri

ri−1

ṙφr
r
dr (3.20)

for the first term,

∫ ri

ri−1

∂M

∂τ
rdr = γ

∫ ri

ri−1

∂

∂τ

(

φr
r

)

rdr

= γ
∫ ri

ri−1

φrτ −
ṙφr
r
dr (3.21)

for the second term, and

−
Θ̇

Θ

∫ ri

ri−1

Mrdr = −ci− 1

2

Θ̇ (3.22)

for the third term (from (3.11)).

Combining (3.20), (3.21) and (3.22) and substituting into (3.16) gives the

expression

γ

[

1

r

∂

∂r

(

r
∂φ(r)

∂r

)

+ g(φ)

]ri

ri−1
︸ ︷︷ ︸

I1

+ [rṙ]riri−1
+ [(r + γφr) ṙ]

ri
ri−1

− · · ·

· · · − ci− 1

2

Θ̇ = 0 (3.23)

where the term I1 comes from the differential equation (3.7) and becomes

the RHS of the system (3.23). This system represents the main (n + 1) × n

equations in ṙ and Θ̇.

The second and third terms in (3.23) may be expanded to give

[rṙ]riri−1
= riṙi − ri−1ṙi−1 (3.24)

[(r + γφr) ṙ]
ri
ri−1

=
(

ri + γ φr|ri

)

ṙi −
(

ri−1 + γ φr|ri−1

)

ṙi−1 (3.25)
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and the term I1,

γ

[

1

r

∂

∂r

(

r
∂φ(r)

∂r

)

+ g(φ)

]ri

ri−1

= γ







1

ri

∂

∂r



ri
∂φ

∂r

∣
∣
∣
∣
∣
ri





∣
∣
∣
∣
∣
∣
ri

− · · ·

· · · −
1

ri−1

∂

∂r



ri−1
∂φ

∂r

∣
∣
∣
∣
∣
ri−1





∣
∣
∣
∣
∣
∣
ri−1

+ g(φi) − g(φi−1)

}

= −bi (3.26)

where the derivatives within (3.26) are approximated as follows:

When i = 1,

∂

∂r

(

r1
∂φ

∂r

∣
∣
∣
∣
∣
r1

)∣
∣
∣
∣
∣
r1

≈
r2

∂φ
∂r

∣
∣
∣
r2
− r0

∂φ
∂r

∣
∣
∣
r0

(r2 − r0)
(3.27)

using a central difference to approximate the outer derivative.

When i = 2 to n+ 1,

∂

∂r



ri
∂φ

∂r

∣
∣
∣
∣
∣
ri





∣
∣
∣
∣
∣
∣
ri

≈
ri+1

∂φ
∂r

∣
∣
∣
ri+1

− ri−1
∂φ
∂r

∣
∣
∣
ri−1

(ri+1 − ri−1)
, (3.28)

again using a central difference to approximate the outer derivative.

When i = n,

∂

∂r

(

rn
∂φ

∂r

∣
∣
∣
∣
∣
rn

)∣
∣
∣
∣
∣
rn

≈
rn−1

∂φ
∂r

∣
∣
∣
rn−1

(rn−1 − rn)
, (3.29)

using a backward difference to approximate the outer derivative (and noting

that φr|rn = 0 from (2.3))

Combining (3.24), (3.25) and (3.26), equation (3.23) may be written as the
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system












(2r1+γ φr|r1) 0 0 ··· −c 1
2

−(2r1+γ φr|r1) (2r2+γ φr |r2) 0 −c 3
2

...
... ...

...

0 −

(

2rn−1+γ φr |rn−1

)

2rn −c
n− 1

2












× · · ·

· · · ×















ṙ1

ṙ2
...

ṙn

Θ̇















=












b1

b2
...

bn












(3.30)

3.4 Application of Mass Balance Equation

Discretising the mass balance equation given in (3.17) and adding this to

the system (3.30) will cause the same non-convergence seen in Section 2.9.1.

With this in mind, the same correction as is applied in Section 2.9.2 will be

applied here, and the mass balance equation is therefore reduced to

d

dτ

∫ rn

r0

φrdr =
∫ rn

r0

∂

∂τ
(φr)dr + φnrnṙn

= 0 (3.31)

noting that ṙ0 = 0.

Expanding the first term on the RHS of (3.31) gives

∫ rn

r0

∂

∂τ
(φr)dr =

∫ rn

r0

rφ̇
︸︷︷︸

I2

+ φṙ
︸︷︷︸

I3

dr (3.32)

where I2 can be approximated by

∫ rn

r0

rφ̇dr ≈
1

2

n∑

i=1

(ri − ri−1)(riφ̇i + ri−1φ̇i−1)

=
1

2

n−1∑

i=1

(ri+1 − ri−1)riφ̇i (3.33)
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(noting that φ̇n = 0) and I3 by

∫ rn

r0

φṙdr ≈
1

2

n∑

i=1

(ri − ri−1)(φiṙi + φi−1ṙi−1)

=
1

2
(rn − rn−1)φnṙn +

1

2

n−1∑

i=1

(ri+1 − ri−1)φiṙi (3.34)

Clearly an expression relating φ̇i and Θ̇ is required to obtain a system in

ṙ and Θ̇ from (3.31). Such an expression can be found by summing (in a

similar manner to the planar case) the constant ci− 1

2

in (3.19),

Θ
n∑

j=i+1

cj− 1

2

=
1

2
(r2
n − r2

i ) + γ(φn − φi) (3.35)

such that

φi = φn −
Θ

γ
Ci +

1

2γ
(r2
n − r2

i ) (3.36)

where
∑n
j=i+1 cj− 1

2

= Ci as before.

Taking the time derivative of (3.36) gives the required expression

φ̇i = −
Θ̇

γ
Ci +

1

γ
(rnṙn − riṙi) (3.37)

Using (3.33), (3.34) and (3.37) in the mass balance equation (3.31) and col-

lecting terms in ṙi, ṙn and Θ̇ gives the final equation to be added to the

system (3.30),

1

2

n−1∑

i=1

(

φi −
r2
i

γ

)

(ri+1 − ri−1)ṙi +
1

2

{

(3rn − rn−1)φn + · · ·

· · · +
rn
γ

n−1∑

i=1

ri(ri+1 − ri−1)

}

ṙn −
Θ̇

2γ

n−1∑

i=1

ri(ri+1 − ri−1)Ci

= 0 (3.38)
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3.5 Results and Conclusions From the Equidis-

tribution Method for Radial Geometry

Inspection of the matrix in (3.30) shows that it has the same bi-diagonal

structure as in the planar case. Indeed successive addition of rows will lead

to the main bulk of the system becoming diagonal, such that the inversion

method detailed in Section 2.8 can be used.

The method of solution proceeds in a similar way to the planar case

(Section 2.9) with the exception of the initial condition which was chosen to

be the planar analytic solution generated in Section 2.1 (it was expected that

this would be close to the radial solution).

3.5.1 Large Solution Region - J = 0.01Am−2

Initially we compare the planar analytic solution with the radial solution for

the case J = 0.01Am−2 and an accelerating potential difference of 100KV

(ions are deuterons and have an initial energy of 50eV). Such a relatively

small current density is chosen because the calculated solution region width

is large (∼ 11m in comparison to ∼ 1m for J = 1Am−2). Due to this, it is

expected that there will be a reasonable difference in solution between the

radial and planar geometries. As the solution region width increases, the

inner fixed boundary appears more and more like a point charge relative to

the free boundary (such that the electric field there increases relative to the

remainder of the region), which appears more and more like a plane. It is

expected then, that differences in solution between the radial and planar cases

for the large solution region will occur primarily towards the fixed boundary.

Figure 3.2 shows the analytic planar solution for these conditions in addi-

tion to radial solutions at two different times. As time progresses, the radial

solution is moving away from the planar solution initial condition and as

expected, differences between the two solutions occur primarily towards the

fixed boundary. Figure 3.3 shows the position of the moving boundary for

the radial solution which is clearly moving away from the planar free bound-
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ary position and converging to a nearby position. Examination of the nodal
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Figure 3.2: Analytic free boundary and radial moving boundary solutions for the

conditions J = 0.01Am−2 and (φn − φ0) = 100KV .

positions with time also indicates that convergence is taking place, and that

the majority of nodal movement away from the initial condition occurs near

to the fixed boundary.

Figure 3.4 shows nodal positions with time for a selection of nodes with

equally spaced indices. At time t = 0, the nodes are equally spaced in

distance (due to the initial analytic planar solution being calculated using

an RK4 algorithm), but as time progresses the nodes bunch up at the fixed

boundary end. A close inspection of Figure 3.2 indicates that the solution

gradient (of the radial solution) near the fixed boundary end of the solution

region (φr ∼ 20KVm−1 near the fixed boundary end) is high relative to the

gradient towards the free boundary end of the region (φr ∼ 5KVm−1 near

the free boundary end). Referring to (3.18), this will cause dr
dξ

to be small

near the fixed boundary end of the physical solution region hence causing

the nodes to bunch up2. Figure 3.5 shows the distance the nodes have moved

2The radial position r in (3.18) has little effect since its absolute value is significantly
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Figure 3.3: Position of moving boundary as a function of time for the radial

solution with conditions J = 0.01Am−2 and (φn − φ0) = 100KV .

(relative to their starting position) as a function of time for the same selection

of nodes as in Figure 3.4. A close inspection of Figure 3.5 again indicates

that the majority of nodal movement occurs close to the fixed boundary.

3.5.2 Variation in Solution Region Size with Emission

Current Density

As in the planar case (Section 2.2.1) it is expected that as the current density

of the emitter increases (with a constant accelerating potential), the solution

region width will decrease. In addition, it is also expected that as the current

density increases, the difference between the planar and radial solutions will

decrease (for reasons given in Section 3.5.1).

Figure 3.6 is a repeat of Figure 2.3 but with radial and planar solutions

included. As expected the solution region does decrease in size with increas-

ing current density at the emitter. In addition, the difference between the

smaller than that of the solution gradient.
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Figure 3.4: Nodal position as a function of time for the condition J = 0.01Am−2

and (φn − φ0) = 100KV .

planar and radial solutions disappears as the current density increases (and

hence the solution region width decreases).

3.5.3 Variation in Solution Region Size with Accelerat-

ing Potential

Again as in the planar case, it is expected that as the accelerating potential

(φn − φ0) increases, the solution region will increase in size. This is (as

previously explained) due to plasma being more readily stripped away (due

to the higher electric field) from the free boundary, therefore causing it to

recede. Figure 3.7 is a repeat of Figure 2.5 but with radial and planar

solutions included. The solution region width does indeed increase with

increasing accelerating potential and as the accelerating potential decreases,

the difference between planar and radial solutions disappears.
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Figure 3.5: Nodal positions relative to their starting point as a function of time

(for the condition J = 0.01Am−2 and (φn − φ0) = 100KV .)

3.5.4 The Effect of the Parameter γ

Referring to (3.18), the parameter γ governs the effect the solution gradient

φr has on nodal spacing. As has already been seen in Section 3.5.1 the effect

of a high solution gradient appears to be to concentrate nodes in the area of

the high gradient.

If γ is of a size 1/φ̂r where φ̂r is the mean gradient over the region, the

effect of φr on the nodal spacing (and nodal velocity at each time step) can

be limited. Indeed if γ is sufficiently small, the effect of φr on the nodal

spacing can be removed altogether. We now investigate the effect of γ on a

test problem.

By the mean value theorem, at at least one point c within the solution region

the solution gradient will be given by

φr(c) =
φn − φ0

rn − r0
(3.39)

provided the solution is continuous and differentiable across the region. Re-
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Figure 3.6: Variation in potential across the solution region for different emission

current densities.

ferring to Figure 3.2 (100KV, 0.01Am−2) the solution gradient will therefore

take the value φr ∼ 8.5KVm−1 at some point within the solution region

(which has a width of 11.68m for this accelerating potential and current den-

sity in radial geometry). In order to show the effect of changing the parameter

γ, the nodal positions with time for this particular solution, are calculated

for varying values of γ.

Figure 3.8 shows the nodal positions with time for nodes in the region

near to the fixed boundary (nodes between 2m and 6m in Figure 3.4, 100KV,

J = 0.01Am−2) where the majority of nodal movement is observed. When

γ is increased from 1 to 100000, there is little effect since the value of the

ratio on the RHS of (3.18) with the mean solution gradient quoted above is

already very small. Increasing γ serves to cause the derivative on the LHS

to become closer to zero, with little net effect on the nodal spacing.

It is expected that due to the size of the mean solution gradient, γ must

be reduced to ∼0.001 to have a significant effect. It was not possible to
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Figure 3.7: Change in solution potential with distance for varying solution region

potential differences.

reduce γ to this value in practise as the calculation failed. This is most likely

due to the presence of γ in (3.36) and (3.37) causing large solution changes

with time. However, γ was set at a value of 0.007 which when multiplied

by the mean solution gradient given above reduces this product to a similar

order of magnitude to the variable r, hence increasing the RHS of (3.18).

Close examination of Figure 3.8 does show that there is slightly less nodal

movement with time for those nodes displayed with this value of γ.
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Figure 3.8: The effect of γ on nodal movement.
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Conclusions and Further Work

4.1 Conclusion

The problem of determining the position of the plasma boundary formed

between an expanding plasma and a large electric field was constructed and

initially solved (in the most part analytically) for the 1D planar case.

Exploration of the solution to this problem revealed that the behaviour of

the solution and boundary position as a function of various initial conditions

(such as accelerating voltage and current density) was exactly as expected.

We confirmed that the solution region width reduces in size as the ion

emission current density increases. In a physical sense, this is due to the

increase in ion flux reaching the plasma boundary being greater than the

ion flux being stripped away from the boundary by the accelerating electric

field. As such, the plasma bulges into the region, reducing it in size, until the

electric field is sufficiently high that the ion flux both reaching and leaving

the boundary are balanced. This is the equilibrium state and is the position

of the free boundary.

In addition we confirmed that as the accelerating voltage is reduced in

magnitude, the solution region size reduces. This is again due to the ion flux

reaching the plasma boundary being greater than the flux caused by ions

being stripped away by the (reduced) electric field. The solution region con-

51
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sequently reduces in size until the ion fluxes on both sides of the boundary

are balanced.

Since one of the aims of this project was to solve the same problem in a

1D radially symmetric geometry and it was apparent that this radial prob-

lem could not be solved in the same analytic way as the planar case, a new

iterative method of solution was constructed. The method was initially ap-

plied to the same 1D planar case.

In order to apply the iterative method, the problem was modified to

include an artificial time dependence. It was assumed that the solution of this

new moving boundary problem would converge to the solution of the original

fixed boundary problem as time proceeds to infinity. This assumption was

not explicitly proven.

Initially it was found that the correct convergence did not take place, and

that this was due to the application of the mass balance equation to an ini-

tially time independent problem where the position of the moving boundary

is implicitly defined. Convergence was achieved by setting the RHS of the

mass balance equation to be equal to zero which had the effect of fixing the

solution ’mass’ in time.

Confident that the iterative method was working in planar geometry, we ap-

plied the method to the equivalent 1D radially symmetric problem. Studies

into the solution of this problem indicated that it also behaved as expected,

and a closer investigation into the numerical method indicated that solution

nodes were also moving in an expected way as time stepping proceeded.

As far as we know, this work is new.
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4.2 Further Work

4.2.1 Convergence

By converting the original time independent free boundary problem to a

parabolic moving boundary problem, it has been assumed that the same

equilibrium solution would be ultimately obtained in both cases. We would

like to be able to show analytically that this is indeed the case.

4.2.2 Stability

During many runs of the iterative numerical method, it was noted that cer-

tain step sizes, time step sizes, current densities, and affected the stability

of the method. Indeed it would be expected that due to the difference ap-

proximations employed within the method, an increased step length would

adversely affect stability (and accuracy). It would therefore be pertinent to

investigate the stability of the method in relation to these input parameters.
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