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Abstract

The Tarr and Mulheran growth rate equation for island ripening on a material

substrate has been studied here with the continuity equation that contains the

growth rate equation which describes the evolution of an island and the distribu-

tion function representing the spread of islands on the material surface. We have

numerically solved the resulting conservation equation for the absolute distribu-

tion function using a non-standard L-W like central difference numerical method

with three different initial conditions. Previous work on growth rate equations,

including the Tarr and Mulheran growth rate equation, have only been concerned

with a scaling solution calculated from scaled variables in the quasi-steady state

since an analytic solution can be found which has always yielded an asymptotic

solution. Here, we look at the early stages of evolution and to see if an asymptotic

state is reached by the absolute distribution function using both the numerical

scheme and the characteristic equations giving a part numerical and part analytic

solution. A scaling solution is also looked at with a different growth rate equation

but using the same arguments used by Tarr and Mulheran to calculate the scaled

distribution function.
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Chapter 1

Introduction

Nanoscale devices are an upcoming advancement in the field of technology which

has been a large topic of research over the past decade within academia. Nanotech-

nology is the study of material properties on small scales of 10−9m and at this

scale the properties of materials change due to the small scale size with possible

quantum effects becoming dominant rather than the classical mean field approx-

imations. Since we are dealing with scales which are considerably smaller than

we are able to manipulate at this present time the applications appeal to a wide

range of industries. These include quantum computing and manufacture of quan-

tum devices which can be used in computers to increase storage capacity. There

are also medical applications in which smaller robotic devices can be made to help

diagnose illnesses such as cancer.

A nanoparticle is the object of interest here which is a grouping together of atoms,

or can possibly be just a single atom depending on the substance being used, the

properties of which we wish to explore. For example, when a group of nanoparticles

form how do they interact with other groups of nanoparticles. This is an integral

part of the research area since the knowledge of these interacting properties would

allow us to manipulate them and so use them in our various fields of technology.

The example given here is what we go on to look at in this project.

There are various ways in which this can be studied and here we look at island
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evolution on a material substrate. Figure 1 shows the basic procedure that takes

place in the evolution process.

Figure 1.1: Island evolution on a material substrate

An island is a group of nanoparticles, Figure 1, considered as one entity and vary-

ing in size. Once these islands have formed and with no addition of nanoparticles

added to the system, i.e a set amount of material on the surface, we look to see

how the islands evolve over time. The evolution process involves particles moving

about from different islands where the number of islands starts to decrease and at

some point will slow down enough that we can say that it is reached a quasi-steady

state. Note that the ripening process does not stop and islands will continue to

disappear where all depends on the temperature of the system although we will

not consider this variable in our calculations. The movement is due to different

types of interactions [3] that can be driving the evolution, of which part of the

research in this area is trying to study.

In this project we look at two properties of island evolution, the growth rate

equation for an island and the distribution function. The growth rate equation

describes how an island can possibly evolve and the distribution function is a

measure of islands over the whole surface. Firstly, we look at the origin of the

growth rate equation.
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1.1 Origin of the Growth Rate Equation

1.1.1 Lifshitz and Slyozov

The equations that we look at have their origin in a paper written by Lifshitz and

Slyozov [1] in 1961. They look at the diffusion effects of the precipitate formed in a

supersaturated solid solution. These diffusion effects bring about the formation of

grains of a new phase in the solution. The grains arise due to the supersaturated

part of the solution and then grow due to the coalescence effects brought about

by molecules attaching themselves onto larger grains making them bigger. The

smaller than average grains shrink and disappear back into the solution and so

larger grains grow at the expense of smaller grains. Lifshitz and Slyozov used a

set of fundamental equations starting with

CR = C∞ +
α

R
, (1.1)

in which CR, the equilibrium concentration at the grain boundary, is related to C∞,

the concentration of the saturated solution, the grain radius R and a parameter α

that contains atomic volume and surface tension of the solute. They also assume

that the degree of supersaturation is small so that

C − C∞ = ∆ ≪ 1, (1.2)

where C is the total concentration of the solution. The formation of the grains

brings about a concentration gradient in the solution that drives the grain flow

since the diffusion flux of solute toward the grain boundary must equal the rate,

j, at which solute is incorporated into the grain per unit area. This is given by

j = D
∂C

∂r

∣

∣

∣

∣

r=R
=

D

R
(C − CR) =

D

R

(

∆ − α

R

)

. (1.3)

There is a grain boundary at which the concentration gradient is zero and it follows

that there is a small initial supersaturation, ∆. The concentration gradient can
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now be approximated by (C − CR)/R shown by the second term in 1.3 and then

using 1.1 and 1.2 we obtain the final term on the right hand side of 1.3.

The rate at which solute is incorporated into the grain boundary, j, is simply the

rate of change of radius of the grain, so that equation 1.3 can be written as

dR

dt
=

D

R

(

∆ − α

R

)

. (1.4)

Depending on the amount of supersaturation, ∆, there will exist a critical radius

Rc when ∆ = α/R from equation 1.4. Therefore, if R > Rc then the grain will

grow and if R < Rc then the grain dissolves. Writing Rc0 = α/∆0 as the initial

critical radius and with T = R3
c0/αD and using the dimensionless variables

ρ =
R

Rc0
and t′ =

t

T
,

Lifshitz and Slyozov change 1.4 to a dimensionless form

dρ

dt′
=

1

ρ2

(

∆

∆0

ρ − 1

)

. (1.5)

Substituting in x(t) = ∆0/∆ = Rc/Rc0 which is a dimensionless critical radius

such that x(0) = 1 and using the relation

dρ3

dt′
= 3ρ2 dρ

dt′
,

Lifshitz and Slyozov end up with the volume growth rate for a grain

V̇ =
dρ3

dt′
= 3ρ2

(

ρ

x
− 1

)

. (1.6)

Note here that the above growth rate equation describes the volume growth of a

grain; however, it can be easily adapted for a two-dimensional growth equation

[2]. Next they introduce a volume distribution function f(ρ3, t) that tells us the
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volume distribution of grains in the solution. The volume distribution function is

an unknown quantity that we wish to find and is related to the growth law via

the continuity equation,

∂f(ρ3, t)

∂t
+

∂

∂ρ3
(V̇ f(ρ3, t)) = 0. (1.7)

The first term is the time rate at which the distribution increases and the second

term tells us the accumulation of material due to the grain growing or dissolving

in the solution. Note that the equation is essentially one-dimensional although

the quantities considered are three-dimensional in nature.

Conservation

A conservation property must hold for this system. As a grain grows the amount

of supersaturation must reduce to compensate for the growth. The grain grows

due to the over saturation of the solution. The total initial supersaturation of the

solution is

Q0 = ∆0 + q0, (1.8)

where the initial supersaturation ∆0 is as before and also a term q0 which allows

for the initial volume of material already in the grains. This term is quantified

through

q0 =
4

3
πR3

c0

∫

∞

0

fρ3dρ3 (1.9)

which is the volume of a grain multiplied by the first moment of the volume

distribution function. Also as we already know, the number density, n, of grains

(number of grains per unit volume) is represented by the area under the curve

which is the normalised zeroth moment
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n =

∫

∞

0

fdρ3. (1.10)

Lifshitz and Slyozov then use the normalisation to unit volume to relate a one-

dimensional distribution function F (ρ, t) to the three-dimensional volume distri-

bution function via

F (ρ, t)dρ = f(ρ3, t)dρ3. (1.11)

This can be simplified further to

F (ρ, t) = 3ρ2f(ρ3, t). (1.12)

From here on Lifshitz and Slyozov go on to solve the continuity equation by

changing the growth law to more appropriate units and using the type of scaling

used above to relate the volume distribution function to the absolute distribution

function. Their approach is to substitute a scaled distribution function which

is equal to the absolute distribution function, via a scaling relation like the one

above, into the continuity equation and solve for this, rather than the absolute

distribution function which relates the absolute dimensions of the grain.

The main conclusion reached in Lifshitz and Slyozov that is of relevance to this

dissertation is the asymptotic behaviour shown by the distribution function as the

coalescence process reaches a steady state. Here the critical radius (or size/volume

depending the dimension that is being used) of the grain is equal to the average

radius of the grain which has a linear relationship with time,

Rc = R = γt, (1.13)

where γ is the proportionality constant. Their conclusions will later be compared

when we look at the distribution function of the absolute size.
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1.1.2 Hillert

Further to Lifshitz and Slyozov [1], Hillert [2] approached the problem of grain

growth from a different view point but ultimately ending up with a similar growth

equation. This was done deliberately so that the method of Lifshitz and Slyozov

could be implemented when coming to solve the continuity equation. The grain

growth equation was

dR2

dt
= 2αMσ

(

R

Rc
− 1

)

, (1.14)

where M , α and σ are parameters controlling how and when grains come together.

Note here that the growth equation describes the rate of change of grain size rather

than grain volume, as Hillert found this to be easier to study theoretically. The

scaled distribution function, P (u), then comes out to be

P (u) = (2e)2
2u

(2 − u)4
exp

{ −4

2 − u

}

, (1.15)

where u = R/Rc the relative grain size. Note here the exponential (asymptotic)

nature of the solution as discussed in [1].

1.2 Tarr and Mulheran

Having discussed the origin of growth rate equations above we now move to its rel-

evance in this dissertation. The growth rate equations describe the basic process

of coalescence between particles and grains, therefore with a change of parameters

the growth equations above can be adapted to problems of a similar nature. Tarr

and Mulheran [3] used growth rate equations to describe island growth. As de-

scribed in the introduction above, islands grow and shrink until the process slows

down enough so that a quasi-steady state is reached. Tarr and Mulheran com-

pare distribution functions calculated from two different growth rate equations to

Monte Carlo simulation data describing island evolution.
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The Monte Carlo data look at two types of evolution; the pedophagous effect (PE)

and the non-pedophagous effect (NPE). The PE effect is when a particle escapes

from an island but the same island is then able to capture it back, thus enabling it

to absorb its own offspring, while the NPE is when this is not allowed to happen.

The results found were that the Hillert growth law in the 2-D form

ṡ =
ds

dt
=

r

r(t)
− 1, (1.16)

where s = πr2 the island size, r the island radius and r(t) the average radial island

growth, showed good correlation with the NPE simulation (with no spatial order

of islands) when the scaled distribution function

f(u) =











u
2

(

2

2−u

)4

exp

(

−2u
2−u

)

, u < 2

0, u ≥ 2

(1.17)

is that of Hillert [2]. Note that equation 1.17 has a cut-off point at u = 2 and

if u > 2 the scaled distribution function is zero. Spatial ordering is when islands

in the quasi-steady state exhibit ordering between neighbouring islands [3] which

can be calculated.

However, the PE effect which allows for particle recapture and gives rise to spatial

order of islands found good correlation with the growth equation

ṡ =
ds

dt
= k

(

s

s
− 1

)

, (1.18)

where k is a parameter allowing for particle recapture and the radius r has been

replaced by the size s = πr2 of an island. In this case, using this growth law along

with the continuity equation the scaled distribution function found was

g(u) =
π

2
u exp

(

− π

4
u2

)

, (1.19)

where u = s/s in this case. Again the quasi-steady state solution that is found

here is as found by Lifshitz and Slyozov where the exponential part represents the
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asymptotic nature of the solution. The conclusion reached is that a spatial order

of islands arise due to the PE but not in the NPE case. The growth rate equations

of Hillert and Tarr and Mulheran are the ones we go on to study.
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Chapter 2

Asymptotic Analysis

2.1 Tarr and Mulheran

The quasi-steady state solution as t → ∞, i.e the scaled distribution function, has

been the preferred choice for solving the continuity equation since an analytical

solution has been shown to be available [1, 2, 3, 4]. We also take a look at a scaling

solution following the working from Tarr’s Law [4]. Tarr’s Law uses the growth

equation

ds

dt
= k

(

s

s
− 1

)

= k(v − 1) (2.1)

as used by Tarr and Mulheran [3] where k is a parameter allowing for particle

recapture considered to be constant. Here, v = s/s, is the scaled island size with

s = πr2, the island size. The average island size s is equal to

s =

∫

∞

0
sF (s, t)ds

∫

∞

0
F (s, t)ds

=
Ω

N(t)
, (2.2)

in the early stages of evolution, where F (s, t) is the island distribution function.

The integrals represent the volume of material making up the islands, Ω and the
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number density of islands, N(t). Note that the volume of material, Ω should

remain constant throughout the evolution.

2.1.1 Scaling Solution

In the quasi-steady state limit Tarr’s Law makes the assumption s = ct with c

a constant of proportionality and made on the grounds of dimensionality. The

following quantities can then be calculated,

v =
s

ct
,

∂v

∂s
=

1

ct
,

∂v

∂t
= − s

ct2
= −v

t
, N(t) =

Ω

s
=

Ω

ct
,

The island distribution function, F (s, t), is now related to the scaled island distri-

bution function, f(v), and N(t) via the scaling relation

F (s, t)ds = N(t)f(v)dv (2.3)

which can be written as

F (s, t)ds =
Ω

c2t2
f(v), (2.4)

from the definitions defined above. The continuity equation for this growth law

then becomes (cf. 1.7)

∂F (s, t)

∂t
+

∂

∂s

[

k(v − 1)F (s, t)
]

= 0, (2.5)

where the derivatives can now be calculated using the scaling relation 2.4 to replace

F (s, t) by f(v). Working through this Tarr’s Law end up with the ODE

(

k

c
− 2

)

f(v) +

[

(

k

c
− 1

)

v − k

c

]

f ′(v) = 0. (2.6)

15



Tarr’s Law then takes a special case and chose f(0) = f0 = c/k = 1 where f(0)

comes from

Ṅ = −k
Ω

ct2
= lim

s→0

(

ds

dt
F (s, t)

)

= −k
Ω

c2t2
f(0) (2.7)

which describes how islands are able to disappear as s → 0 with a rearrangement

giving the required special case. Thus, the ODE reduces to

−f − f ′ = 0 (2.8)

which has the solution

f(v) = exp(−v). (2.9)

However, other solutions may exist by solving the original ODE 2.6 with a general

c/k = f0. This yields

(1 − 2f0)f(v) = [1 − (1 − f0)v]f ′(v) (2.10)

which gives

∫

df

f
=

∫

1 − 2f0

1 − (1 − f0)v
dv (2.11)

in the integral form. Thus, the scaling solution to the continuity equation is found

as

f(v) = A[1 − (1 − f0)v]
1−2f0
f0−1 , (2.12)

with A an integration constant. Tarr’s Law then uses the fact that v has a finite

range v ∈ [0, 1/(1−f0)] for a solution to exist and then normalising f(v) finds the

constant A = f0 to give another solution
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f(v) = f0[1 − (1 − f0)v]
1−2f0
f0−1 . (2.13)

So Tarr’s Law [4] finds two solutions to the continuity equation of which the special

case seems to be the solution of choice experimentally and the one that also should

be found numerically.

2.2 Hillert Growth Rate Equation

Using the above procedure we now try to find a scaling solution like the one above

using the Hillert growth rate equation in the form

ds

dt
= v1/2 − 1, (2.14)

where v1/2 represents the Hillert form,

v1/2 =

(

s

s

)1/2

=

(

πr2

πr2

)1/2

=
r

r
, (2.15)

and the constant k has for simplification been incorporated into the time deriva-

tive. Note that this will be the case throughout the rest of the dissertation. The

continuity equation for this growth equation is then

∂F (s, t)

∂t
+

∂

∂s

[

(v1/2 − 1)F (s, t)
]

= 0 (2.16)

and with the substitution of the scaling s = ct we can calculate the derivatives.

The time derivative becomes

∂F (s, t)

∂t
=

Ω

c2t3
(−2f(v) − vf ′(v)) (2.17)

and the size derivative becomes
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∂F (s, t)

∂s
=

Ω

c3t3
f ′(v), (2.18)

from equation 2.4. Now, using equation 2.18 the complete size derivative in the

continuity equation we find

∂

∂s

[

(v1/2 − 1)F (s, t)
]

=
Ω

c3t2

[

(v1/2 − 1)f ′(v) +
f(v)

2v1/2

]

. (2.19)

Substituting equations 2.17 and 2.19 into the continuity equation 2.16 we find the

ODE

f [1 − 4cv1/2] + f ′[2(v − v1/2) − 2cv3/2] = 0, (2.20)

where separation of variables gives

∫

df

f
=

∫

1 − 4cv1/2

[2(v − v1/2) − 2cv3/2]
dv. (2.21)

The left hand integral is trivial but the right hand side requires some calculation.

First we make the substitution v = w2 to give

ln f =

∫

1 − 4cw

cw2 − w + 1
dw (2.22)

and expand to

ln f =

∫ −2(2cw − 1)

cw2 − w + 1
dw −

∫

1

cw2 − w + 1
dw, (2.23)

enabling us to integrate. The solution to the above continuity equation using the

growth rate equation 2.14 depends on the value of c, so for 4c < 1 we find

f(v) = A(cv − v1/2 + 1)−2

(

2cv1/2 − 1 −
√

1 − 4c

2cv1/2 − 1 +
√

1 − 4c

)

−
1

√

1−4c

(2.24)
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and if 4c > 1

f(v) = A(cv − v1/2 + 1)−2 exp

{

−2√
4c − 1

arctan

[

2cv1/2 + 1√
4c − 1

]

}

(2.25)

where in both cases we have converted back to the scaled island size, v, with A

integration constant is dependent on the allowed values for v. We can also find a

solution when 4c = 1 by going back to equation 2.22 to give

ln f =

∫

1 − w
1

4
w2 − w + 1

dw (2.26)

which is equal to

ln f =

∫

1 − w
1

4
(w − 2)2

dw (2.27)

We can now integrate this by parts giving

ln f = 4

[−(1 − w)

w − 2
− ln(w − 2)

]

+ constant (2.28)

which gives the solution

f(v) = A exp

{

4(v1/2 − 1)

(v1/2 − 2)

}

(v1/2 − 2)−4 (2.29)

for the 4c = 1 case and where A is again an integration constant dependent on the

allowed values for v. Note that v1/2 = r/r = u from section 1.1.2. Since we are

using a growth rate equation similar to Hillert the solutions found should also be

similar to the Hillert scaled distribution function. We can see that when 4c = 1

we do obtain a similar equation to that of hillert but not exactly.
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2.3 Characteristics for the Tarr and Mulheran Scaling

Solution

The equation that we wish to solve has the form (cf. 1.7)

ut + g(u, s, t)s = 0 (2.30)

which represents a one-dimensional conservation law [5]. Note here that F (s, t) has

been replaced by u(s, t) for convenience (more standard notation in mathematics)

for the remaining part of this dissertation and g(u, s, t) represents the flux function

so that we have

ut + (ṡu)s = 0 (2.31)

as our continuity equation. Before using a type of numerical scheme we first take

a look at the characteristics of our problem. The characteristics are calculated

from the total derivative of u(s, t)

du

dt
=

∂u

∂t
+

ds

dt

∂u

∂s
(2.32)

which is equal to

du

dt
= −(ṡu)s + ṡus

= −
(

s

s
− 1

)

us −
u

s
+ ṡus, (2.33)

from the conservation law 2.30. Rearranging we find

du

dt
=

[

ṡ −
(

s

s
− 1

)]

us −
u

s
. (2.34)
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By setting the term in the square brackets to zero the characteristics are given by

the growth rate equation 2.1 where the constant k has been scaled into the time

derivative. The function u is not constant on the characteristics due to the total

derivative of u(s, t) being non zero

du

dt
= −u

s
. (2.35)

The characteristic equation is analytically solvable for the quasi-steady state of

the system when we replace s with t, in this case taking c = 1 for simplicity. The

growth rate equation becomes

ds

dt
=

s

t
− 1 (2.36)

which can be solved using the integrating factor t−1 to give

d

dt
(t−1s) = −t−1. (2.37)

Integrating we find

s = −t ln t + Bt, (2.38)

where B is a constant of integration.

However, since u is not constant on the characteristics, i.e u̇ 6= 0, we can solve

equation 2.35 as well, again with s = t, which tells us what happens on the

characteristics. This is trivial coming out to be

u = At−1, (2.39)

where A is a constant of integration.
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Now that we have the full characteristic story we can plot them. Using values of

t ∈ [1, 5] and with different values of B ∈ [0, 10] for each characteristic, they can

be plotted as shown in Figure 2.1.
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Figure 2.1: Characteristics for the continuity equation when s = t

The characteristics are curved as we expected and the curves indicate the move-

ment of material partly out the left hand boundary in the quasi-steady state.

This movement represents smaller islands disappearing which is still expected in

the quasi-steady since we know that ripening process does not stop.

Hence, an analytic solution is available if and when the system reaches a state

where s ∝ t using the characteristic equations. In chapter 4 we compute a numer-

ical method which can tell us if the relation s ∝ t is reached, and if so then we

can move to the characteristic solution.
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Chapter 3

Numerical Schemes

Let us now look at some numerical schemes that we could implement to solve the

continuity equation.

3.1 First Order Upwind (FOU) Scheme

Let us start with the first order upwind scheme. Using an upwind discretisation

of 2.30 gives

un+1
j − un

j

∆t
+

gn
j − gn

j−1

∆s
= 0 (ṡ > 0) (3.1)

un+1
j − un

j

∆t
+

gn
j+1 − gn

j

∆s
= 0 (ṡ < 0), (3.2)

where ṡ is the wave speed indicating the direction to take the discretisation. A

simple rearrangement of the above gives us

un+1
j = un

j − ∆t

∆s
(gn

j − gn
j−1) (ṡ > 0) (3.3)
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un+1
j = un

j − ∆t

∆s
(gn

j+1 − gn
j ) (ṡ < 0), (3.4)

in computable form.

3.2 A Second Order L-W like Scheme

We now construct a Lax-Wendroff (L-W) like central difference scheme based on

the Taylor expansion of u(s, t + ∆t) to second order,

u(s, t + ∆t) = u(s, t) + ∆tut(s, t) +
(∆t)2

2
utt(s, t). (3.5)

As in the L-W derivation the next step is to replace the first and second time

derivatives of u(s, t) with space derivative terms using 2.30,

utt = −((ṡu)s)t

= −((ṡu)t)s

= −[s̈u + ṡut]s. (3.6)

Expanding out and replacing ut from 2.30 we find

utt = −(s̈)su − s̈us + (ṡ)s(ṡu)s + ṡ[(s̈)ssu + ṡuss + 2(ṡ)sus]. (3.7)

Next we replace some of the terms with the computable terms below

s̈ = − ṡ

(s)2
s (3.8)

(s̈)s = − ṡ

(s)2
(3.9)

(ṡ)s =
1

s
(3.10)

(ṡ)ss = 0 (3.11)
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to give

utt =
ṡ

(s)2
u +

ṡ

(s)2
su +

1

s
((ṡu)s) + ṡ(ṡuss +

2ṡ

s
us). (3.12)

Finally substituting the above into 3.5 we obtain

u(s, t + ∆t) = u(s, t) − ∆t(ṡu)s

+
(∆t)2

2

[

ṡ

(s)2
u +

ṡ

(s)2
sus +

1

s
((ṡu)s) + ṡ(ṡuss +

2ṡ

s
us)

]

. (3.13)

However ṡ is non trivial and is calculated from the initial s value given by equation

2.2, using the product rule to give

ṡ =

∫

∞

0
suds

(
∫

∞

0
uds)2

∫

∞

0

(ṡu)sds −
∫

∞

0
s(ṡu)sds

∫

∞

0
uds

. (3.14)

Calculating the integrals, ṡ becomes in computable form

ṡ =

∫ N
0

suds

(
∫ N
0

uds)2
[ṡu]N0 − 1

∫ N
0

uds

(

[ṡsu]N0 −
∫ N

0

(ṡu)ds

)

, (3.15)

where the integration limits are now on the finite region [0,N] so as to be com-

putable. The scheme is thus achieved, as in the L-W schemes, by discretising 3.13

using central differences, giving

un+1
j = un

j − ∆t

[

(ṡu)n
j+1 − (ṡu)n

j−1

2∆s

]

+
(∆t)2

2

{

ṡ

(s)2

[

un
j + sn

j

(

un
j+1 − un

j−1

2∆s

)]

+
1

s

[

(ṡu)n
j+1 − (ṡu)n

j−1

2∆s

]

+
2ṡj

s

(

un
j+1 − un

j−1

2∆s

)

+ ṡ2
j

(

un
j+1 − 2un

j + un
j−1

(∆s)2

)

}

. (3.16)

This is longer than the standard L-W scheme but is still computable.
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3.2.1 The CFL Stability Condition

We cannot perform the usual fourier stability analysis for this scheme so we look

to the CFL stability condition which is a necessary condition for stability for

numerical schemes of this sort [5, 6]. The stability condition we require is

∣

∣

∣

∣

ṡ
∆t

∆s

∣

∣

∣

∣

≤ 1, (3.17)

where

ṡ =
s

s
− 1. (3.18)

Initially when s is large, depending on what domain size is taken, the value of ṡ

can be very large. Therefore, if the ratio ∆t/∆s is not small enough the stability

condition can be violated. By choosing a smaller time step, ∆t, we can avoid this

problem in the case of large s but at small s the condition is always satisfied.

Note that initially s is 1 but increases as time evolves which keeps the stability

condition satisfied from the initial time step.

3.3 Conservation

Numerically we can lose conservation of material if the correct boundary conditions

are not implemented but for this system we can always check the property

∫

∞

0

su(s, t)ds = 1 (3.19)

which tells us that the volume of material is constant. Notice that the integral is

equal to 1, here, but can be just a known fixed value depending on the initial vol-

ume of islands, as shown in Appendix A. So, we can check if our numerical scheme

conserves material by approximating the integral above using the trapezium rule

on the finite interval s ∈ [0, N ] representing the numerical boundary.
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Chapter 4

Numerical Results

4.1 Tarr and Mulheran Growth Law: Gaussian

We now have a second order L-W like numerical scheme that we can use to solve

the continuity equation 2.30. The conditions we start with are a Gaussian initial

condition with peak centered at s = 1 as a starting initial average island size and

we take ∆t = 2.5x10−5 and ∆s = 0.01 where the domain size is s ∈ [0, 100].

Ideally we would like to increase the domain size since this becomes important

toward the later stages of evolution. This means that the time step would have to

be very small and so increasing the execution time for the numerical scheme but

the domain size used is sufficient for the initial Gaussian condition. Also, initially,

the ∆t used satisfies the CFL condition at large s when s = 100

∣

∣

∣

∣

(

s

s
− 1

)

∆t

∆s

∣

∣

∣

∣

=

∣

∣

∣

∣

(100 − 1)
∆t

∆s

∣

∣

∣

∣

= |0.2475| ≤ 1. (4.1)

Since we are using a second order L-W like scheme there is a need for boundary

conditions. We use extrapolating boundary conditions since these would be the

most natural to use as we have a cut-off point at one of the boundaries. Beyond

this we still have part of the solution although it does not have much effect in this

case.
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Figure 4.1 shows what happens as we evolve to t = 1 where the initial Gaussian

condition is also shown for comparison.
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Figure 4.1: Solution to continuity equation evolving to t = 1 along with the initial

Gaussian curve in red

There are two main features to Figure 4.1; First the left hand boundary has risen

indicating that the solution may be evolving to an exponential solution as we

expect. We are expecting the asymptotic exponential solution because the scaled

distribution function, f(v), found in the quasi-steady state in section 2.1.1, was

an exponential solution for scaled variables when s = ct and c/k = 1 so this may

also be the case for the absolute distribution function, u(s, t), apart from some

scaling factor and if s ∝ t is reached. Second, the number density of islands, N(t),

represented by the area under the distribution curve and given by the definite

integral

N(t) =

∫ N

0

u(s, t)ds (4.2)

has reduced as can be seen from Table 4.1. as can be seen from Table 4.1.

This is what we expected since the number of islands initially on the material
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Time N(t) Ω s

0.0000000 0.99999902 1.0000000 1.0000010

0.9999750 0.95987905 1.0000000 1.0417979

1.9999500 0.72008166 0.9999999 1.3887313

2.9999249 0.51032327 1.0000000 1.9595422

3.9998999 0.38058150 1.0000000 2.6275580

4.9998749 0.29884216 1.0000000 3.3462480

Table 4.1: Table of Moments, s and evolution times

surface reduces as the system reaches a quasi-steady state where smaller islands

disappear [3]. The conservation property represented by

Ω =

∫ N

0

su(s, t)ds (4.3)

has remained constant, equal to 1 as shown in Table 4.1, as required. Note that

both integrals have been approximated using the whole domain as stated above

and not just the size shown in the figures. The figures are shown in this way so

that a clear picture of the solution can be shown.
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Figure 4.2: Solution to the continuity equation evolving to t = 5
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Figure 4.2 shows the solution obtained at t = 5. Note that the initial condition

has been omitted so that the solution can be seen more clearly. Here the solution

has started to look more like an exponential solution, as we expect, and N(t) has

also reduced in size from Table 4.1. There is a slight problem with the scheme

though. In Figure 4.2 there are very small oscillations that are just about visible

at about s = 2 which is because of the central difference nature of the numerical

scheme [5] where we know the L-W scheme generates oscillations.

However, they do not cause any problems since the linear relationship of s ∝ t

has been achieved in Figure 4.3 so now we can change to the solution from the

characteristic equations.
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Figure 4.3: This graph shows the linear relationship s ∝ t has been attained by

evolving to a time of t = 5

Before we calculate this we can make another comparison to check our numerical

results by converting to the scaled variables, f(v) and v. This is done through the

transformations

f(v) =
Ω

N2(t)
u(s, t) (4.4)
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and

v =
N(t)

Ω
s, (4.5)

where N(t) and Ω represent the integrals defined above. Figure 4.4 shows the

scaled distribution function at t = 5 and also at t = 10 and t = 20 to show that

the exponential solution found by the scaling solution is slowing being achieved

by the numerical solution.
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Figure 4.4: Scaled distribution function calculated from the absolute distribution

function at t = 5, t = 10 and t = 20

However, since we have already observed the relation s ∝ t by t = 5 this is where

we calculate the characteristic solution from since the oscillations observed above

will start to grow as time evolves.

4.1.1 Characteristic Solution

The characteristic solution is calculated from the numerical solution at t = 5, in

this case. Using the numerical solution we can calculate the constants A and B
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by rearranging the characteristic equations

u = At−1 (4.6)

and

s = −t ln t + Bt, (4.7)

where we use u(s, t) and s from the numerical scheme at t = 5 to calculate the

constants above. These constants now enable us to calculate the solution from

the above equations for any value of t we choose, thus enabling us to evolve the

system further.

Therefore, evolving the system to t = 10 the solution as expected is similar to the

solution in Figure 4.2 from the numerical scheme, shown in Figure 4.5.
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Figure 4.5: Characteristic Solution calculated at t = 10

The difference between the numerical scheme solution at t = 5, Figure 4.2, and

the characteristic solution at t = 10, Figure 4.5, is the area under the distribution

curve which has reduced and the shape of the curve which looks more like an

exponential solution at t = 10.

Evolving further in time to t = 40, Figure 4.1.1, we find the same shape to the

distribution curve except with a reduced number island density, N(t) but becoming
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Figure 4.6: Characteristic Solution calculated at t = 40

more asymptotic like as it reaches a quasi-steady state.

4.2 Tarr and Mulheran Growth Law: Exponential

Let us now look at a different initial condition, an exponential. For the scaled

distribution function, f(v), this is the analytical solution obtained making it in-

teresting to look at to see what happens. Ideally it should hold its shape and then

when it comes to changing to the scaled variables it should be exactly the expo-

nential solution found in section 2.1.1. The same domain has been used along with

the same values for ∆t and ∆s to ensure the CFL condition has been satisfied.

Evolving to t = 1, shown in Figure 4.7, we see that the value of N(t) has decreased

as we already know it should, from Table 4.2.

The conservation property, Ω, which should remain equal to 1 for the exponential

case as with the Gaussian initial condition remains the same, as it should.
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Figure 4.7: Solution to continuity equation evolving to t = 1 along with the initial

exponential curve in red

Time N(t) Ω s

0.0000000 0.99995858 0.99999166 1.0000330

0.9999750 0.50000001 0.99999163 1.9999832

1.9999500 0.33333426 0.99999165 2.9999665

2.9999250 0.25000130 0.99999165 3.9999458

3.9998999 0.20000140 0.99999162 4.9999229

4.9998749 0.16666803 0.99999070 5.9998948

Table 4.2: Table of Moments, s and evolution times
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Figure 4.8 shows the numerical solution at t = 5 where again the value of N(t) has

reduced, Table 4.2, but the shape of the curve remains similar to an exponential

solution.
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Figure 4.8: Solution to the continuity equation evolving to t = 5

Again at this time of t = 5 we observe the linear relationship of s ∝ t, Figure 4.9,

although in this case it seems that the relationship held from the beginning.

We can now move to the characteristic solution.

4.2.1 Characteristic Solution

Again, we start by finding the values of the constant A and B by rearranging

equations 4.6 and 4.7 and then using these values find the characteristic solution

at various times. The characteristic solution at t = 10 and t = 40 are given by

Figures 4.10 and 4.11.

Both figures show the asymptotic nature the solution is moving toward. We can

also convert the characteristic solutions to the scaled variables using

f(v) =
1

t2
u(s, t) (4.8)
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Figure 4.9: This graph shows the linear relationship s ∝ t has been attained by

evolving to a time of t = 5
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Figure 4.10: Characteristic Solution calculated at t = 10
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Figure 4.11: Characteristic Solution calculated at t = 40

and

v = ts, (4.9)

where we have taken s = t and Ω = 1 which ensures conservation of material

shown in Figure 4.12.

At t = 10 the solution is moving toward 1 on the left hand boundary and we know

this since at a later time t = 40 it reaches this and turns out to be exactly an

exponential. An exponential solution can be plotted with the scaled distribution

function in Figure 4.12 but it turns out that at t = 40 the exponential solution is

found.

4.3 Tarr and Mulheran Growth Law: Power law

Next we look at a power law, as an initial distribution function but this time we

choose a smaller time step, ∆t = 2.5x10−6 and a domain size s ∈ [0, 500] where

∆s has remained the same. The time step is very small so that the CFL condition

can be satisfied for this large domain size s
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Figure 4.12: Scaled distribution function calculated from the characteristic solution

at t = 10 and t = 40

∣

∣

∣

∣

(500 − 1)
∆t

∆s

∣

∣

∣

∣

= |0.12475| ≤ 1. (4.10)

The domain size has been changed because the value of u(s, t) at large s is signifi-

cant, for the power law, when calculating the conservation property so that we can

conserve material through the calculation of Ω shown by Table 4.3. However, even

with a large domain, it has not done so compared to the other initial conditions for

the same time period. Note that neither N(t) or Ω are initially equal to one, here,

compared to the Gaussian and the exponential starting conditions. This is not

a necessary requirement because their values depend on how much material has

been used at the starting point where for the Gaussian and exponential starting

conditions it happened to be the case.

Figures 4.13 and 4.14 shows the case at t = 1 and t = 5 where as expected we find

a reduction in the value of N(t), Table 4.3, as we evolve from the initial state to

t = 1 and then to t = 5.

Again we find very small oscillations in Figure 4.14 as with Figure 4.8 for the

exponential case at the same time t = 5.
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Figure 4.13: Solution to continuity equation evolving to t = 1 along with the initial

power law curve in red
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Figure 4.14: Solution to continuity equation evolving to t = 5
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Time N(t) Ω s

0.0000000 0.50002300 0.49799765 0.99594947

0.9999975 0.16687689 0.49600964 2.97230861

1.9999949 0.10030785 0.49402960 4.92513360

2.9999924 7.1781E-02 0.49205745 6.85496147

3.9999899 5.5932E-02 0.49009317 8.76219618

4.9999874 4.5846E-02 0.48813672 10.6472200

Table 4.3: Table of Moments, s and evolution times

However, the value of Ω has not held even when evolving to small times, t. This

is, as stated above, due to the domain size. The only way to get round this is to

increase the size of the domain but due to the small time steps taken this would

mean it would take much longer for the numerical scheme to execute.

This does not help us evolve the system further either by using the characteristics

or numerically because the system will not reach the the quasi-steady state where

s ∝ t and so moving to the characteristic solution would not be an option and

numerically we would not conserve material. Figure 4.15 shows us exactly that

where there is a slight bend in the line even though it is not very clear form the

figure.

However, if we assume that the line in Figure 4.15 is a straight line since there is

only a slight error, then we can move to the characteristic solution. Here, we find

much the same as the previous initial conditions as seen in Figures 4.16 and 4.17

at times of t = 10 and t = 40, respectively.

The area under the distribution curve reduces as time evolves and we also see the

asymptotic tail, which is due to the initial power law distribution function.
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Figure 4.15: This graph shows the linear relationship s ∝ t has not been attained

by evolving to a time of t = 5
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Figure 4.16: Characteristic Solution calculated at t = 10
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Figure 4.17: Characteristic Solution calculated at t = 40

42



Chapter 5

Conclusions and Further Work

Taking the Tarr and Mulheran growth rate equation we found that the assumption

where the average island size grows linearly with time in the quasi-steady state is

correct for the three different initial conditions tested in this dissertation. When

this happens we were able to solve the characteristic equations to yield a method

for solving the continuity equation using the numerical solution with the charac-

teristic solution. This proved to be very efficient because of the long execution

time needed when small time steps were taken. We also found that in the long

time limit as the quasi-steady state is approached the solution did tend toward

the asymptotic solution as shown first by Lifshitz and Slyozov.

The starting conditions used in this dissertation were all continuous functions

which was deliberate because of the type of numerical scheme used. Using a

discontinuous solution is something that does need to be looked at so as to check

that in the long time limit an asymptotic solution is found. To do this a better

and more efficient numerical method must be found where it is able to cope with

discontinuities.

Also work on other growth rate equations is recommended since the Tarr and

Mulheran growth rate equation is not the one that describes island evolution on

an experimental level [7]. In section 2.2 the Hillert growth rate equation was used

to calculate a scaling solution where a power half was used in conjunction with
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the Tarr and Mulheran growth rate equation. A general power could be used

here along with a numerical scheme that can sufficiently deal with the continuity

equation produced.
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Appendix A

Conservation Property

There is a conservation property we can check to ensure that we have conservation

of material. This is

∫

∞

0

sF (s, t)ds = constant. (A.1)

We can check this property is valid from the continuity equation

∂F (s, t)

∂t
+

∂

∂s

[

ṡF (s, t)
]

= 0. (A.2)

Multiplying through by s and integrating with respect to s the continuity equation

becomes

∫

∞

0

[ ∂

∂t

(

sF (s, t)
)

+ s
∂

∂s

(

ṡF (s, t)
)]

ds = 0. (A.3)

Separating the two terms we find

∫

∞

0

∂

∂t

(

sF (s, t)
)

ds +

∫

∞

0

s
∂

∂s

(

ṡF (s, t)
)

ds = 0, (A.4)
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where we can take out the time derivative to yield the conserving property A.1 in

the first term

d

dt

∫

∞

0

(

sF (s, t)
)

ds +

∫

∞

0

s
∂

∂s

(

ṡF (s, t)
)

ds = 0. (A.5)

The first integral on the left is the conservation property which we have said should

be constant. Therefore, the conservation property holds if

∫

∞

0

s
∂

∂s

(

ṡF (s, t)
)

ds = 0. (A.6)

We can integrate by parts to give

[

sṡF (s, t)
]

∞

0
−

∫

∞

0

ṡF (s, t)ds (A.7)

and substituting ṡ with the growth rate equation 2.1 we get

[

sṡF
]

∞

0
−

∫

∞

0

(

sF

s
− F

)

ds (A.8)

which can be written as

[

sṡF
]

∞

0
− 1

s

∫

∞

0

sFds −
∫

∞

0

Fds, (A.9)

since s(t) is only a function of time. Substituting the integral form of s(t) 2.2 we

find that the integrals all cancel out leaving

[

sṡF
]

∞

0
= sṡF

∣

∣

∣

∣

s=∞

− sṡF

∣

∣

∣

∣

s=0

. (A.10)

At s = 0 the term is zero so that we are left with

sṡF

∣

∣

∣

∣

s=∞

. (A.11)
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This term is zero since we know that F (∞, t) tends to zero quicker than any other

term. Hence from A.5

d

dt

∫

∞

0

(

sF (s, t)
)

ds = 0 (A.12)

and this conservation property is valid.
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