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Abstract  
 
The  Mulheran and  Robbie  theory of  island and capture zone size 

distribution  in  thin  film growth  has been studied using  an equation which  

describes both the island growth inside the capture zones  and  the 

fragmentation which  occurs at the island  nucleation rate. We  have 

numerically approximated  the governing differential equation and  a  

boundary condition  equation, which have been solved simultaneously using 

an integration method in two steps, a  Semi – Lagrange step  and a  Runge – 

Kutta  second  order step. A  FORTRAN  90  programme was  constructed to  

investigate  the  model, which   generates profiles   from a given initial  data  

function. 
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Chapter  1. 

 

Introduction 
 

Nanotechnology is the science and engineering of the materials on the scales of 

atoms[1]. A nanometre (nm) is one-billionth of the metre ( m) , or the length 

of ten times the diameter of hydrogen atom. Advocates of this new 

multidisciplinary  area  of  research  promise  strong polymer constructions, clean 

energy,  and nanorobotic  devices which repair damage and infections in human 

cells. 

910 −

The  aim of this project is not only to describe the theory of the island and capture 

zone size distribution, but also to implement a numerical technique which can be 

used  to find the approximate solution of the differential equations that express the 

model.  

 
1.1    A  brief  history  of  Nanotechnology 

 

The idea of nanotechnology materialized in 1959, when Richard Feynman gave a 

lecture entitled  “ There is plenty of room at the bottom” . Feynman proposed the 

idea of developing things on the atomic scale, just as nature does [1]. The term 

nanotechnology was coined by  Professor Norio Taniguichi in 1974, and in 1986 

the term was defined by K. Eric Drexler in his book,  “ Engines of Creation : The 

coming era of Nanotechnology”  [2].  

Experimental nanotechnology started after the invention of the scanning 

tunnelling microscope ( STM ) by  IBM  researchers in  Zurich , Switzerland, in 

1981 , which made it  possible to observe the atomic world [1]. 
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On such small scales the properties of materials change in counterintuitive ways; 

for example, tiny particles of gold melt between  600 C - 800 C, while a large  0 0

nugget melts at  1064 C  [3]. This happens because of two main reasons:  0

(a) the ratio of surface of the material to  its volume increases, and  atoms on 

these surfaces are more active than those at the centre of the material,     

(b) at  small scales,  matter  follows  the laws  of  quantum  mechanics  and  is 

also  partially   affected  by molecular  Van  der  Waals   forces.  According  to     

      Heisenberg’s  uncertainty  principle, we  cannot   know  the exact position and  

      momentum  of  a  particle,  and   if  we  restrict  an   electron  by  reducing  the  

      dimensions of  a metal   (to which the electron belongs), its   energy increases  

      [4] . 

Nanotechnology affects a wide variety of industries because it can improve the 

existing identities of  materials or create new structures  by combining synthetic 

and natural components. 

 

1.2    Nanostructures and applications of nanotechnology  

 

Nanotubes.  In 1985, chemists discover how we can create a soccer ball – shaped 

molecule of  60  carbon atoms (buckminsterfullerene  or  C )  and in 1991, a 

researcher at the  NEC  corporation discovered a new form of carbon known as 

carbon nanotubes, which is much stronger than graphite and six times lighter than 

60

      steel. A nanotube is like a very strong sheet of graphite rolled into a cylinder, and   

can  behave either as a metal or as a semiconductor, depending on how the carbon 

hexagons are arranged [5] . This unique material has been made into fibres, maybe  

the world’s strongest polymer, and can be used in batteries, computer chips and  

sensors, or in  next – generation spacecrafts. 

Quantum dots are nanocrystals measuring only a few nanometres. Because of 

their size,  approximately the same as that of  a protein molecule, they are used as 

probes in  living cells and help researchers in medical diagnostics and gene 

expression analysis [6] .NASA researchers developed a synthesis of quantum dots 

of  CuInS   and  CdSe  useful in solar cells, that create an intermediate band 

which allows  the harvesting of large portion of the solar spectrum [7] . 

2
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Environmental Applications . Nanotechnology provides many environmental 

benefits. Nanoscale filters can improve water purification systems, neutralise toxic 

materials and clean up heavy metals and chemical pollution. By using 

nanotechnology  techniques, developing  countries  can grow  crops in fields  with  

high  levels  of  salt  or  low  levels of water. Similarly, by  using  nanotechnology, 

Thailand physicists have  rearranged rice  DNA to  develop a new rice plant which 

produces a better quality crops which is   insensitive to sunlight [8] , [9] . 

Nanomedicine is the application of nanotechnology  in medical diagnostics and  

research [10]. By using nanopolymer capsules, we can deliver precise doses of 

medicine through the patient’s bloodstream directly to the affected area  and 

nanorobots can identify cancer affected cells by using molecular markers [10]. 

Medical nanorobots, usually 0.5 – 3 micrometer in size,  allow instant  pathogen 

diagnosis or replacement of chromosomes and individual surgery in vivo [11] . 

Nanorobots could also deliver chemotherapy direct to tumours, minimizing the 

side effects to surrounding tissue.  

 

1.3    Potential  risks  

 

Nanoparticles  are likely to be more toxic and their chemical and biochemical 

properties will be different from those of  bulk solids. It is already known that 

some nanoparticles are harmful  to mice and fish [6]. The worst scenario is the 

grey –goo idea . This term, which was coined  by  Eric Drexler, describes  the 

hypothetical end of the world  because nanorobots might  self-replicate 

uncontrollably  and turn the Earth into grey goo [12] . So a moratorium might be 

needed in order to release nanoparticles into the environment when it is clear that  

they are safe for the environment and  human health [13].Therefore it is important 

to study in depth and  model this well promising scientific area. 

 

1.4   Plan  of  Dissertation 

 

In  chapter  2  we  state  some definitions appropriate for understanding the model. 

In chapter  3  there is the description of the model and in the next chapter we 

analyze  the numerical techniques used. The method of solution is explained in  
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chapter  5  and  in the following two chapters there are numerical results and 

general discussion.  
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Chapter  2  

 

Definitions 
 

Atoms  aggregate in order to gain binding energy and become more stable . This 

theory derives its origin from a 1921  study by  Polish physicist  Marian von 

Smoluchowski,  who  propounded the  aggregation theory to describe  the 

microscopic  diffusion  process  [14].  

A Nanoparticle is a group of atoms, or  just one atom,  depending on the material. 

The process by which an atom or a Nanoparticle forms bonds with atoms on the 

surface of the nanomaterial and sticks with them is defined as a  deposition  [15] . 

An island is a group of nanoparticles. In nanotechnology the size of an island is 

important because it affects the usefulness of the nanomaterial.  The critical size  i   

of an island expresses the number of the monomers that it has absorbed . The 

parameter  i  depends on the material’s temperature, it increases as the temperature 

increases [16] , and it is an integer . When an island absorbs  i+1  monomers, it 

becomes stable. Islands are represented by small circles which are centred on their 

nucleation site , not only for computation reasons  but also because circles  reflect  

the underlying  grid  symmetry . 

The capture zone  of  an  island  (see figure 2.1) is the area of the substrate  

where monomers are more able to diffuse into this  particular island than to any 

other island in the substrate [16] (page 10261). The geometrical approximation of 

a capture zone is a  Voronoi  polygon, which is defined as the set of points : 
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In practice the boundary of each polygon is made of segments of the 

perpendicular bisectors to the lines which joins the node to every  other node  

(figure  2.2 ). 

When an island absorbs monomers, the  Voronoi  polygon  network is updated . 

 

 

 

 
                                                

figure  2.1 

A snapshot  of islands and Voronoi polygons capture 

zones for island size i=1 (courtesy of  P. Mulheran ). 
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figure  2.2 

Voronoi  polygons 
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Chapter  3  

 

Model  description 
 

The paper  “ Theory of the island and capture zone size distribution in thin film 

growth” , by  P. A. Mulheran and  D. A. Robbie [17], studies the evolution of  

capture zones when new islands nucleate and reveals crescent nucleation when the 

critical island size  is   i = 0 . The model in the paper  is based on four principles: 

 

1. Islands grow consecutively at a rate analogous to their capture zone size . 

2. Island nucleation occurs according to  Mean – Field  Theory . The  main idea 

of this theory is that we can replace the interaction of a part of a field  by the 

average of neighbour  interactions . 

3.   Each  nucleation   that  occurs  divides  the  island’s  capture  zone, taking  a       

      proportion  λ   in order to  construct the new island’s capture zone and leaving                             

1 λ−  to   the existing island . This is a simplification of  reality , where a new 

island constructs its capture zone by  taking small parts of neighbouring 

island’s  capture zones  and not just from one,  but numerical simulations of  

the model  show  that  there is   little difference in the  effect  on  the results. 

      4.   The fragmentation probability in a capture zone , which has size   a  , is : 

 

)(ap  ≈   a 22 +i

    

            where  i    is the critical size of the island . 

      If  we consider  the joint  distribution     which  represents  the    ),,( tsaf da ds

number of islands of sizes between  s  and   dss +   inside the capture zones of          

sizes  between       and        at time   t .   Then for island sizes greater than   

=    the above rules are expressed by  the equation: 

a daa +

0s 1+i
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         ,   which  leads to the partial differential equation: ∀ ,1s 2s
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for  t > ,  > , where R  is the monomer deposition rate, 0t s 0s Ω   is the total area of 

the substrate and are constants,    is the island nucleation rate   and    )(tN
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max

min

max
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is   the     moment of the distribution  that normalises the fragmentation 

probability . It is this normalisation factor which couples together the equations 

for all   a   and   . 

22 +i

s
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 accounts for the island growth. 
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of   ( 3.1) expresses the fragmentation of the capture zone, while  the term   

 

32)1(
1

+− iλ
 

 

  accounts  for  the fragmentation  that occurs  in capture zones  of sizes between  

 

λ−1
a   and   

λ−
+

1
daa  . 

 

For  the  minimum island size  0ss =   the  model equation corresponding to (3.2) 

is assumed to be: 

 

),,(1
)(

)(),,(),,(
0

32
22

22.

00 tsaf
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atNtsaf
ds
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i
i

i

∑
>

+
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+
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Ω

−=
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∂

λλ
  ( 3.4 ) 

 

at  t > ,  which  expresses the fragmentation process that creates islands of size  

. The capture zone size in this particular case is finite and the term which 

expresses the island growth is a dimensionally correct estimate of the local 

behaviour. The model is completed by the imposition of an initial condition on  

  at     for > . 

0t

10 += is

),,( tsaf 0tt = s 0s
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      Chapter  4  

 

     Numerical   Techniques used  

 
      4 .1.   The   Semi – Lagrange   Method 

 

      We  consider the one-dimensional advection equation  

 

0),( =
∂
∂

+
∂
∂

x
utxc

t
u  

 

      for  t > t ,  <∞− x <  ,  where  u   is  the quantity being transported  and   

is the advection velocity . 

∞ ),( txc

      The above equation, using the Lagrangian  derivative 

 

x
txc

tDt
D

∂
∂

+
∂
∂

= ),(  

 

      can be written as           

 

0=
Dt
Du      ( 4.1 ) 

 

     that is,    is constant along the  Lagrangian trajectory. If  u x  is the position of the 

fluid quantity  at time   ,  its trajectory is given by the equation : t

 

),( txc
dt

dx
=       ( 4.2 ) 

 

      We now consider  u(x,t)  to be the solution of  ( 4.1 )  and construct  a mesh  with  

      uniform space and time intervals  xΔ   and  tΔ  , where  xjx j Δ=     ,1,2….   0=j
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      and     =0,1,2,…. tntn Δ= n

      If  u(x,t)  is  known  at time level   , we can find  the value  of  u  at time level 

 , using discretization  of   ( 4.1 ) , 

nt

1+nt

 

t
txutxu ndnj

Δ

−+ ),(),( 1 = 0  , 

 

      so at time level    the  value  of    is given  by : 1+nt ),( 1+nj txu

 

),( 1+nj txu  =    ( 4.3 ) ),( nd txu

 

       where     is the departure point  at time level   of the trajectory which passes 

through  the point  ( ). The  equation  (4.3)  states  that  the value of   

  is exactly equal to the value of u  at the previous time level  . At 

, we discretise equation  (4.1) which expresses  similar  behaviour of the 

values of  u  (  does not change  with time). In order to find     in 

terms  of   at  time level   , we can use Euler integration  method in  the 

trajectory  equation  ( 4.2 ) and  obtain : 

dx nt

1, +nj tx

),( 1+nj txu nt

dxx =

u ),( 1+nj txu

dx nt

 

),(
),(),( 1

nj
ndnj txc

t
txtx

=
Δ

−+  

 

or 

 

),(),(),( 1 njnjnd txtctxtx Δ−= +  

 

 

      The   departure point    will not necessarily  coincide  with a point on the grid , 

so we use interpolation  to evaluate        [18] . 

dx

),( nd txu
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       4 .2   Linear  interpolation 

 

      We shall use linear interpolation  in order to approximate unknown values of  a  

function     that  lie between known  values of the function . So if we know  the  

values     and     of   a   function    ,  the value  of    at 

f

))(,( 11 xfx ))(,( 22 xfx f f

        where      is  approximated  by the  formula: dxx = 21 xxx d <<

 

))()(()()( 12
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1
1 xfxf

xx
xx

xfxf d
d −

−
−

+=  

 

      The error in this approximation  is    )()( dxfxfe −=  . 

      If    has  two  continuous  derivatives  we  can prove, using  Rolle’s theorem,  

that  the  error   e   is  bounded  by: 

f
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2
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′′−
≤
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        [19] . 

 

 

      4 .3    Runge – Kutta   Methods 

 

      Rather than use the Euler method to approximate the trajectory equation (4.2) we 

shall use a  Runge - Kutta method. 

      Runge – Kutta  methods are one-step explicit schemes and they are of the form : 

 

),,(1 hyxhyy nnnn φ=−+  

 

where   ),,( hyx nnφ    is an approximation to 

 

∫ ++
1

0

)),(( dsshtshtyf nn  
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The general form of the  r – stage   Runge – Kutta  method is defined by : 

 

 

),,(1 hyxhyy nnnn φ=−+       where 
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      If we expand   ),,( hyxφ   in   Taylor  series we obtain : 

 

        
)()2)((
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1
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!2

1),,(

322 hOffffffffh

fffhfhyx

yyxyxxyyx

yx

+++++
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        ( 4.7 ) 

 

      Expanding  the equation   ( 4.6 )  in Taylor series we have : 

 16



 

)()2(
2
1)( 32

11
2
21

2
1212 hOfKfKfbhfKfhbfK yyxyxxyx ++++++=  

 

      and substituting   fyxfK == ),(1    and   212 ba =   we obtain : 
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      Substituting  in   ( 4.4 )  we  find : 
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      Now we compare   with   ( 4.7 )   and we have : 

 

      a ) for    r =1     and  so   ( 4.8 )   gives   02 =c

 

 

)(),,( 3
1 hOfchyx +=φ  

       

            which  is  the  Euler  method and   has order one . 

      b ) for   r = 2    we compare with   ( 4.7 )  and we can  find  that the equations 

 

121 =+ cc    and    
2
1

22 =ac  

 

            must  be  satisfied. These  equations  have a particular  solution: 
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2
1

1 =c   ,   = 2c
2
1   ,  and   12 =a  

 

            and  the method  in this case  becomes of the form: 

 

)],(,(),([
2
1

1 nnnnnnnn yxhfyhxfyxfhyy +++=−+  

   

            which is known as  improved   Euler  [20] . 

      This is the method that we used  to  calculate the numerical solution in the second 

step  of the program . 

 

      4 .4   Trapezoidal   Rule   
    
     In order to approximate  equation  (3.3) we  shall need numerical integration, 

which is have  based on the  Trapezium rule. 

     This is a numerical method that calculates the area under a curve     ,  

using  a  series of  trapezoids that lie in  the  intervals 

)(xfy =

 

],[ 1 jj xx −   ,   =j 1 , 2 , 3,……m 

 

    We consider  the function    over the interval  [a , b]  which is divided into   m  

subintervals       ,  

)(xf

],[ 1 jj xx − =j 1 , 2 , 3,……m   of   width : 

 

m
abh −

=  

 

      where     ,  =   for  ax =0 jx jhx +0 =j 1 , 2 , ….m-1  and     . The 

formula for the numerical approximation of the integral  of     over  [a , b] is 

given  by: 

=mx b

)(xf
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)())()((
2

)(
1

1
∑∫
−

=

++=
m

j
j

b

a

xfhbfafhdxxf +  ),( hfe

 

      If     has  two  continuous  derivatives  in  [a , b], there  exists   value  c   that  

belongs into interval  [a , b]  and  the  error    is of the form : 

)(xf

),( hfe

 

),( hfe = 2

12
)()( hcfab ′′−

−        [21]. 

 

     Trapezoidal rule can be used to approximate  double integrals  of the form  

  

∫ ∫
d

c

b

a

dxdyyxf ),(    ,  (see  (3.3) )  and the  formula is : 

 

∫ ∫
d

c

b

a

dxdyyxf ),( = +++ ∑
−

=

)],(2),(),([
2

{
2

1

1

21 cxfcbfcaf
hh m

i
i  

                                                  

                                                  +++ ∑
−

=

)],(2),(),([
2

1

1

2 dxfdbfdaf
h m

i
i  

 

                                                   2 )]}},(2),(),([
2

{
1

1

1

1

2
j

m

i
ijj

m

j
yxfybfyafh ∑∑

−

=

−

=

++       

      

where     
m

cdh −
=1     and     = 2h

m
ab −         [22] . 

 

      The error using Taylor series is: 

 

)(),,( 2
2

2
121 hhOhhfe = . 
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Chapter  5   

   

Method    of    solution 

 
This model has been solved combining these numerical techniques. Equation 

( 3.2) can be written as  

 

     )],,([),,( tsafRa
s

tsaf
t Ω∂

∂
+

∂
∂ =  

 

                                                         )],,
1

(
)1(

1),,([
)(

)( 32
22

22.
tsaftsaf

tm
atN i

i

i

λλ −−
+− +

+

+

, 

 

for   >  ,  > . t 0t s 0s

 

      Since  
Ω
Ra >0,  to be well-posed  it needs an initial  condition and  a boundary 

condition  at    (see figures  A , B). 0ss =

      In terms  of the Lagrangian  derivative 

       

s
Ra

tDt
D

∂
∂

Ω
+

∂
∂

=        the above equation becomes  

 

Dt
tsaDf ),,( = )],,

1
(

)1(
1),,([

)(
)( 32

22

22.
tsaftsaf

tm
atN i

i

i

λλ −−
+− +

+

+

   (5.1) 

 

      For each   a    this is  an  inhomogeneous  ordinary  differential equation  along a 

trajectory (or characteristic). To be  well – posed, it needs the boundary condition 

expressed  by  ( 3.4). 
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      The above equation is solved  numerically in two steps, where the mesh is 

 

jdsss += 0   ,  ndttt += 0  

 

      Since         )],,(),,([1),,( 1 n
d

n
j tsaftsaf

tDt
tsaDf

−
Δ

= +  

 

      in the first step we interpolate    to get   ,  i.e. ),,( ntsaf ),,( n
d tsaf

 

),,(),,( 1 n
d

n tsaftsaf =+ , 

 

      and in the second step  we solve  the  ordinary differential equation ( 5.1) 

      along the trajectory  from    to   using  a   Runge – Kutta  second order 

method .  

d js

      The initial data function is taken to be of the form of a Gaussian  hump: 

 

])()(exp[),,( 2

2
1

2

2
1

0
as

aasstsaf
σσ
−

−
−

−=    (5.1a) 

 

      at the point ( ). If the trajectory intersects the boundary   before 

reaching the line   (see figures  A, B)  the departure point  ( )  lies on 

  and  we need the boundary condition  on  

11 , sa 0ss =

ntt = dts ,0

0ss = 0ss = . 

 21



 j d 
n

n+1 

t 

s

figure  A 

 

sj s=s 0   
n

d 

n+1 

t 

 
figure  B 

 
5.1 Boundary  condition  equation 

 

      The equation  ( 3.4), which determines the boundary condition of the model,  is 

solved simultaneously. For  0ss =   we have  

 

ds
tsaRaf

t
tsaf

Ω
−=

∂
∂ ),,(),,( 00  
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      i.e.                                    =∫ f
tsadf ),,( 0 - dt

ds
Ra

∫ Ω       

 

      which  gives                   00 ln),,(ln ft
ds

Ratsaf
Ω

−=   

 

      or 

ds
Rat

eftsaf Ω
−

= 00 ),,(      

 

      where     at   , and so 0ff = 0=t

       

ds
Rat

n

n

eftsaf Ω
−

= 00 ),,(   ( 5.2 )    

 

        Therefore 

 

 ds
Rat

n

n

eftsaf Ω
−

+

+

=
1

001 ),,(   ( 5.3 )  , 

 

      where   is the step size of   the   s   interval . ds

      If we divide  ( 5.2 )  ,  ( 5.3 )   we obtain : 

 

ds
Radt

nn etsaftsaf Ω
−

+ = ),,(),,( 001  

 

      These equations give the values of     at  ),,( tsaf 0ss =   for all  t . 

      To obtain   when the  trajectory intersects the boundary  we 

solve  the ordinary  differential equation: 

),,( 1+n
j tsaf 0ss =

 

Dt
tsaDf ),,( = ),,(1

)(
)(

0

32
22

22.
tsaf

tm
atN

ss
i

i

i

∑
>

+
+

+

λλ
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      using interpolation  of      on the  line  ),,( tsaf 0ss =   to obtain  the departure 

point  and  Runge – Kutta  second order.  

 

5.2 Normalization  factor 

 

      Numerical approximation of the normalization factor   

 

)(22 tm i+ =  dsdatsafa
a

a

s

s

i ),,(
max

min

max

10

22∫ ∫
+

+

 

      which occurs in  ( 3.2)  and  ( 3.4), has been calculated  using  a  trapezoidal  rule 

of the form: 

 

dsdatsafa
a

a

s

s

i ),,(
max

min

max

10

22∫ ∫
+

+ =  ∑∑
= =

+
1

0 1

22 ),()(
m

k

m

j

i jkdadsfka

 

where 

      

1m =
da

aa minmax −    and   =m
ds

ss 0max −  

 

Here    and   ds  are  step sizes  of    and     respectively.  da a s

 

5.3  Data  scaling 

 

The given data for the equations   ( 3.2 )  and  ( 3.4 )  are : 

 

∈a [ 10 , 10 6 ]   ,  2 ∈s [ 2 , 2250 ]   , ∈t [ 10 , 10  ]  ,  i = 0 7− 1−

 

N(t) = 2000 3
1

t  ,  R = 1 , Ω = 1  and  λ = 0.3  ,  λ = 0.4  or  λ = 0.5 
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Because some of these numbers are quite large for the computation, we scale  

them  as follows: 

 

â = 410
a   ,  = ŝ

150
s   ,  = t̂ 210−

t  

 

and so 

 

ssds
sd

s ˆ150
1

ˆ
ˆ

∂
∂

=
∂
∂

=
∂
∂       

 

ttdt
td

t ˆ10ˆ
ˆ 2

∂
∂

=
∂
∂

=
∂
∂  

 

 

After the scaling,  the equations  ( 3.2 )  and  ( 3.4 )  respectively  become : 

 

 

 +
Ω∂

∂
−=

∂
∂ )]ˆ,ˆ,ˆ(

3
ˆ2[

ˆ
)ˆ,ˆ,ˆ(ˆ tsafaR

s
tsaf

t
 

 

  (
ˆˆ)ˆ,ˆ,ˆ(ˆ10ˆ45

ˆ2
max

min

max

0

3
8

3
2

ˆ

ˆ

ˆ

ˆ

22

22

∫ ∫ +

+

a

a

s

s

i

i

sdadtsafat

a ))ˆ,ˆ,
1

ˆ
(

)1(
1)ˆ,ˆ,ˆ( 32 tsaftsaf i λλ −−

+− +  

 

      for    > ,  >  and t 0t s 0s

 

+
Ω

−=
∂
∂ )ˆ,ˆ,ˆ(

ˆ3
ˆ2)ˆ,ˆ,ˆ(ˆ 00 tsaf
sd

aRtsaf
t

 

 

)ˆ,ˆ,
ˆ

(1

ˆˆ)ˆ,ˆ,ˆ(ˆ10ˆ45

ˆ2

0
max

min

max

0

3
8

3
2 ˆˆ

32ˆ

ˆ

ˆ

ˆ

22

22

tsaf
sdadtsafat

a
ss

ia

a

s

s

i

i

∑
∫ ∫

>
+

+

+

λλ
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for   t >   and    0t 0ss =

and the given  initial data function   in  (5.1a)  is : )ˆ,ˆ,ˆ( 0tsaf

 

)ˆ,ˆ,ˆ( 0tsaf = ]
10000

)90ˆ(
100

)15
1ˆ(

30exp[
22

2 −
−

−
−

as
      at   =10   . 0̂t

5−
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Chapter  6 . 

 

Results  

 
We  consider the following  process: 

At  start time    we deposit atoms on a thin film surface  with no atoms on it, 

with a constant  flux  F .  Atoms  arrive on the surface, increasing its mass, and 

they diffuse. When atoms meet other atoms dispersing on the surface they glue 

together and form islands. The flux   F   is in inverse proportion to the diffusion 

so, with time, more islands are  created inside smaller  capture zones, the  density 

of the islands  increases, and the Voronoi polygon is updated in each time-step. If 

the flux is small, the deposited atoms have more time to diffuse before they meet 

another atom [15]. 

0t

The program numerically  simulates the above process. 

We have plotted  results of      against    a   and       after   500, 1000   

and  1500   time - steps,  for values  of  the parameter   

),,( tsaf s

λ = 0.3  ,  λ = 0.4  and 

     λ = 0.4, using step  sizes   da=1 , ds= 15
2   and dt=10  (see figures ( 6.1 ) – ( 6.9 ),  4−

      pages 35 – 40). 

      There are three more graphs  using step sizes  da=1 , ds= 15
1   and dt=10 , 4−

      da=0.5 , ds= 15
2   and dt=10  and    da=1 , ds=4−

15
2   and dt=5E-5  in the part 

where  we have investigated  the convergence  of the method. 

      The curve moves during  time to  bigger  values  of    s   and smaller  values    

of      , which  is expected by the model  because, with time, the  fragmentation  

process creates  more islands within smaller  capture zones. (In practice this 

process is limited). 

a

λ   is  a  free  parameter  of the  model which expresses the proportion  of 

nucleation of new islands,  and because new  capture zones  created (in reality) 
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from neighbouring  island capture zones, this multiple  fragmentation is linked in 

size with the  approximation of the  Voronoi  polygons  [23] . 

J. Blackman  and  P. Mulheran in their later paper  “ Growth of clusters on 

Surfaces :  Monte Carlo simulations  and scaling properties” characterise the 

nature of the fragmentation model as crude, because it ignores the complex 

geometry of the  Voronoi  polygons  network but on the other hand, the model 

satisfies experimental results  [23] (page 201). 

According  to  Mulheran, if we enlarge a part of the  Voronoi polygon net at    

time-step K    by a factor, we obtain the  Voronoi polygon net  at  time-step    

1−K . This  self-affine  fractal behaviour of the Voronoi net is not  visible on the 

graphs. 

 

6.1    Convergence  

 

If     denotes  the values of   the function   at final time  t   using step 

sizes  da  ,  ds , dt  for a, s  and  t   respectively,   denotes values of   the 

function   at  the same time  using step sizes da  ,  

f ),,( tsaf

1f

),,( tsaf
2
ds  ,  dt,     the 

same values using step sizes da  ,  ds,  

2f

2
dt ,  and   using step sizes 3f

2
da  ,  ds , dt   

then the relative  error in every case is given by the formula: 

 

∑∑

∑∑

= =

= =

−

=
1

1

0 0

2
1

0 0

2
1

)),((

)),(),((

m

k

m

j

m

k

m

j
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jkf

jkfjkf
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∑∑

∑∑

= =

= =

−

=
1
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2
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2
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m

k

m

j

m
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m

j
t
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jkfjkf
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and  

 

∑∑

∑∑

= =

= =

−

=
1

1

0 0

2
3

0 0

2
3

)),((

)),(),((

m

k

m

j

m

k

m

j
a

jkf

jkfjkf
e  

 

where   =1m
da

aa minmax −    and   =m
ds

ss 0max −  

 

   The  figures  ( 6.10 ),  ( 6.11 ),  and  ( 6.12 )  are the corresponding  graphs  for     

   λ =0.5  at  final time  0.05  and the values of  the relative errors  are: =t

    

=se 0.15894,  = 0.00745   and  =0.117686 te ae

 

6.2   Conservation  Laws 

 

According to the model, three conservation laws  should be satisfied.  

 

i )     expresses  the total  volume  under the curve   and  ∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsaaf f

should be a  constant  during the  fragmentation  process. So the first conservation  

law  is described  by the equation  

 

∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsaaf = Ω  

 

which  signifies the invariability of the volume. Initially 

 

∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsaaf = 2.806384E+14 
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which is incompatible with  data  but we can multiply initial data by a factor  so 

that it is satisfied. 

In the figure  ( 6.13 ) we show an approximation  of the volume conservation  law  

for  the appropriate  value  of    Ω . The curve varies  (due to numerical 

approximation ) but only  by  
806.2
022.0 <1%. 
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figure  6.13 

∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsaaf   against  time after 1500time-steps (at final time=0.15). 

 

ii )  The  quantity  

 

∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsasf  

 

expresses  the total mass of the system deposited and, according to the model,  

increases linearly with time. So  the second  conservation law is  
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 =R t  ∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsasf

 

Similarly we   observe that the given  initial data function  is  not  satisfied 

initially for  0tt = =10    and   5− R =1  because  

 

∫ ∫
max

0

max

min

),,( 0

s

s

a

a

dadstsasf = 13807307312.3  0Rt≠  

 

In figure  (6.14)  we can see an approximation to  the second  conservation law  

for appropriate values of  R ,  t   and  initial data function. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

11

t

do
ub

le
 in

te
gr

al
 o

f  
sf

(a
,s

,t)
da

ds

 
figure  6.14 

∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsasf  against  time after 1500time-steps (at final time=0.15). 

 

We observe that the curve is linear but the scale is wrong. 
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iii )  The third  conservation  law, which expresses the total number of islands, is:  

 

∫ ∫
max

0

max

min

),,(
s

s

a

a

dadstsaf =    ( 6.1 ) )(tN

 

where      denotes  the number of islands  at time   t  )(tN

and is also not  satisfied  by the given  initial data function  because:  

a)  at =10   the  left hand side  of the  equation   ( 6.1 )  gives 0tt = 5−

 

∫ ∫
max

0

max

min

),,( 0

s

s

a

a

dadstsaf =503305041.195 

 

      and  the right  hand side  =9.28317618081 )( 0tN

b)  the graph    of            is  a  “straight line” (up to 2% error)  

figure  ( 6.15 ),  while  the  graph of  the  function   increases  with time  

figure ( 6.16 ). We do not  have a reason  for this behaviour. 
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∫ ∫
max

0

max
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),,(
s
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dadstsaf  against  time after 1500time-steps (at final time=0.15). 
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figure  6.16 

N(t) against  time after 1500time-steps (at final time=0.15). 
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      Chapter  7 

 

     Discussion 

 
     The “ Theory of the island and capture zone size distributions in thin film growth” 

is based on a brilliant study “Fractal concepts in surface growth”  by A.L. 

Barabasi and H. E. Stanley [15], and experimental results in film deposition  by P. 

Mulheran and J. Blackman (Phys. Rev B, 53 (1996)  10261). 

      The  boundary condition equation  (3.4) contains  the term  ds , step –size  in  s  

direction according to the model, which is finite in the equation but it becomes an 

infinitesimal  quantity  during  the process of the numerical solution. The term 

belongs to the denominator so for very small values of ds , which give better 

approximation  to the numerical method, may produce  problems in the model’s 

stability .  

      The numerical methods  we used  at first in this project were splitting with First 

Order Upwind  and  Euler, but the results were not satisfactory because of the first 

order accuracy of the methods. The second order combination of  semi-Lagrange 

and Runge-Kutta proved  more satisfactory. All methods contain a time 

consuming  loop which  approximates   the value  of  , in which   

is involved, in two places in the programme  for    calculation  

(equations  3.2  and 3.4 ). The programme, which runs for small values of   and  

 on the limits of the computer, using  step sizes   da=1 ,  ds=

)(22 tm i+

),,( tsaf 2K

da

ds 15
2   and  dt=10  

for  a ,  s  ,   respectively, needs 80  minutes to produce results at final time 

=0.15 . 

4−

t

t

      This project, unfortunately, finishes with a discrepancy in the paragraph where we 

discussed the conservation laws to be satisfied, but  we ran out of time.  
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figure  6.1 

f(a,s,t)  for λ =0.3  after  500 time-steps (final time =0.05). 

 

 

 
figure  6.2 

f(a,s,t)   for  λ =0.3   after 1000  time-steps (final time = 0.1). 
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figure  6.3 

f(a,s,t)   for  λ =0.3   after 1500  time-steps (final time =0.15). 
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figure  6.4 

f(a,s,t)   for  λ =0.4   after 500  time-steps (final time =0.05). 

 

 

 
figure  6.5 

f(a,s,t)   for  λ =0.4   after 1000  time-steps (final time =0.1). 
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figure  6.6 

f(a,s,t)   for  λ =0.4   after 1500  time-steps (final time =0.15). 
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figure  6.7 

f(a,s,t)   for  λ =0.5   after 1000  time-steps (final time =0.1). 

 

 
figure  6.8 

f(a,s,t)   for  λ =0.5   after 1500  time-steps (final time =0.15). 
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figure  6.9 

f(a,s,t)   for  λ =0.5   after 500  time-steps (final time =0.05). 

 

 
figure  6.10 

f(a,s,t)   for  λ =0.5  and  ds= 15
1   after 500  time-steps (final time =0.05). 
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figure  6.11 

f(a,s,t)   for  λ =0.5  and  dt=5E-5   after 500  time-steps (final time =0.05). 

 

 
figure  6.12 

f(a,s,t)   for  λ =0.5  and  da=0.5   after 500  time-steps (final time =0.05). 
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