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Abstract

The Ewald summation method is a key way to improve the accuracy of computer sim-

ulations, which are essential in building our understanding of the behaviour of dipolar

substances, particularly magnetic fluids. Implementation and accuracy in a three dimen-

sional periodic geometry are discussed comprehensively, drawing together many of the

key publications in this field. The procedure is then extended to account for the confined

geometry representative of thin layers of ferrofluids. This is done using the EW3DLC

method, which allows us to work with a three dimensional system that is periodic in only

two directions.
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1 Introduction

Owing to the complex nature of molecular systems the ability to model them effectively

using computers is increasingly important. Computer simulations allow macroscopic sys-

tems to be modelled on a microscopic level by studying the intermolecular interactions

contained within. Thus computers allow us to find solutions where analytical methods

fail and compare them to results obtained experimentally. In this way simulation aims

to bridge the gap between experimental and theoretical physics. Clearly the size of the

system being modelled is restricted by the available storage on the host computer and the

speed with which the program can be run.

The method of molecular dynamics coupled with the application of periodic boundary

conditions (PBCs) allows larger systems to be modelled at reduced computing costs. An

efficient use is made of these in the implementation of the Ewald summation when dealing

with long range interactions, which can easily be adapted to allow its application to a

variety of scenarios.

The Ewald method was established in 1921 by Paul Peter Ewald, a US crystallographer

(although German by birth), who used it to determine the electrostatic energies of ionic

crystals. It has since been developed for other uses and is the most commonly used

technique when dealing with many-body systems that have periodic boundary conditions.

A particular advantage it has over other methods is its ability to employ fast Fourier

transforms (FFTs) to drastically reduce computing requirements in simulations.

1.1 Dipolar Interactions

Many of the most interesting molecular systems are charged systems such as those gov-

erned by dipole-dipole interactions. These electrostatic interactions can have important

biological consequences since water, which is a dipolar substance, is contained in all

biological tissues [33]. They are also essential in the modelling of ferrofluids and magneto-

rheological (MR) fluids, which are colloidal liquids consisting of small magnetic particles

dispersed in a solvent. Such fluids become strongly magnetised when under the influence

of an external magnetic field, although the changes undergone are reversible and the sub-

stances return to their original states once the field is no longer present. Simulations of

such fluids illustrate the tendency of the particles to form chains aligned with the mag-

netic field as demonstrated in Figure 1. Furthermore, these chains combine to create

labyrinthine structures (see Figure 2) where the complexity of the pattern is dependent

on the density of the particles and the restraints of the system in the direction of the

external field [26]. With such interesting properties it is no wonder that magnetic fluids

have attracted the interest of scientists from many different fields.
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Figure 1: Side view of particles to
illustrate chain formation in the di-
rection of the magnetic field.

Figure 2: View of particles from
above to demonstrate labyrinthine
structure.

In the late 1990s and early 2000s researchers were fascinated by the structures exhib-

ited and published works modelling this behaviour [19,26,35]. It was then that the effective-

ness of Ewald summations in this area was first investigated [35]. Due to the long range

nature of dipole-dipole interactions Ewald summations (as derived rigorously by De Leeuw

et al. [11]) provided more accurate results, as verified by the error calculations performed

by Wang and Holm [33], as well as reducing computational requirements. Since then work

has begun to simulate the behaviours of magnetic fluids in a slab geometry where the

system is confined in one direction [5,7,15]. This extension into a confined geometry is of

key interest in current studies.

In 2007 Ivanov et al. [20] wrote a comprehensive critique comparing experiment, theory

and computer simulation in the modelling of ferrofluids, comparing the methodologies of

much of the published work in this field. They praise molecular dynamics simulations for

their reliability and considerations of computational convenience and efficiency. However,

they do recognise its sensitivity to the method of discretisation and numerical integration

used.

1.2 Applications of Magnetic Fluids

A key difference between ferrofluids and magneto-rheological fluids is the size of the mag-

netic particles, which are smaller (nanoscale) in ferrofluids than in MR fluids (microscale).

Furthermore, permanent magnetic dipole moments are inherent in ferrofluids, whereas in

MR fluids the magnetic properties are induced by an external field. Hence, ferrofluid
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particles remain suspended in Brownian motion under normal conditions whereas those

in MR fluids settle over time as they are denser than their surrounding fluid. As a result

the two types of magnetic fluid have very different applications.

The colloidal properties of ferrofluids (the possession of properties of both the liquid

and solid states of matter) allow them to be used as seals and lubricants. In particular,

they form liquid seals around the spinning drive shafts in hard disks. They also have

numerous medical applications including cancer detection and treatment, hypothermia

treatment, targeted drug delivery and retina repairs [10,22,24]. Rich et al. [31] recently ex-

pressed hope that ferrofluids may continue to be exploited in the creation of materials

with unique electrical or optical properties (for example, optical tweezers). MR fluids, on

the other hand, are used in the automotive and aerospace industries in devices such as

dampers, shock absorbers, clutches and brakes [16]. They also have military applications

in the development of enhanced body armour.

Due to the sensitive nature, and hence the accuracy required, of many of these applica-

tions a thorough understanding of the microstructure of magnetic fluids and how it affects

the macroscopic properties is important. For this reason, the ability to model magnetic

fluids continues to be be an area of interest for many scientists from different disciplines.

Simulations are particularly beneficial when new ferrofluids are discovered, such as those

detailed by López-López et al. [25], since the ability to model them can prelude control of

their magnetic properties and lead to further applications being developed.

1.3 Project Aims

Initially this report reviews existing literature concerning computer simulations of dipolar

interactions in order to gain an understanding of the application of molecular dynamics

in this field (§2). In particular, we will study the mathematics behind Ewald summations

and their role in optimising the performance of simulations (§3). In §4 the Ewald model

discussed in §3 will be used to run simulations of fascinating dipolar systems, namely

ferrofluids. This will be carried out by specifying initial positions for the particles and

then tracking their movement over time as the simulation runs using existing programs.

Finally, the methods discussed throughout this project will then be extended to represent

a slab geometry rather than the standard three dimensional system (§5).
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2 Molecular Dynamics

Molecular dynamics is a method for solving Newton’s laws of motion that is used in

computer simulations of molecular behaviours where intermolecular potentials are in-

volved [1,17]. It can be used to compute the properties of a classical 1 many-body sys-

tem, [12] such as temperature, energy and shear viscosity [28]. The result is a path tracking

the movement (positions and velocities) of the particles in a system over time. The method

was developed in the late 1950s and in the first instances it was assumed that the particles

moved with constant velocity allowing problems to be solved easily without making ap-

proximations (within computational limits). In the early 1960s this work was developed

to model systems in which the forces involved change as the particles move [1,17,23]. The

first simulation of a fluid was performed in 1971.

Newton’s second law of motion is stated in the box below:

The net force, F, acting on a particle is directly proportional to and in the same

direction as the acceleration, a, of the particle and the acceleration is inversely

proportional to the mass, m, of the particle (a = F
m

).

It is the differential equations implicit in this law that are utilised in molecular dynam-

ics [23]:
d2x

dt2
=
Fx
m
. (1)

The equation (1) is solved for our sample of N particles until the properties of the system

reach equilibrium [12]. In this way we can study the behaviour of the particles in the system

over time.

Molecular dynamics can be used in a variety of ways depending on the property of

interest and the system being modelled. The method to be applied for this project can

be broken down into the following steps [12,14]:

1. Set up a random configuration of initial positions and velocities for the set of par-

ticles being modelled (initial conditions).

2. Calculate the force acting on each particle using the formula derived in §3.2.1.

3. Use numerical methods to integrate Newton’s law and hence compute the positions

and velocities of particles at the next time step.

4. Repeat steps 2 and 3 until the required situation is achieved.

Step 2 is the most time consuming, and hence computationally expensive, part of the

simulation since we need to consider the interaction between each particle and all of its

1The use of ’classical’ here means that the particles in the system adhere to the laws of classical
mechanics [12]
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neighbours. Hence for a system ofN particles there are N(N−1)
2

pairs to be evaluated and so

the computation time is O(N2), although there are techniques that can reduce this time to

O(N) (when there are no long range interactions), O(N
3
2 ) or at best O(N logN) [12,28,33].

Step 3 involves finding the solution of a system of second order ordinary differential

equations (ODEs) and is commonly done using finite difference methods, as discussed in

§2.1.

2.1 Finite Differences Methods

In the system we are modelling we assume that the force on a particle changes as the

position of the particle does, which results in the presence of pairwise potentials; these

are discussed in more detail in §3.1. The basic idea behind finite difference methods is

that the solution is broken down into time steps and at each time step the net force on

each particle is calculated using the pairwise interactions of the particles. From the force

we can calculate the positions and velocities of the particles at the next time step and

hence use this to compute the force at the next step and so forth [1,23]. In this way the

relevant equations are solved time step by time step.

There are many different finite difference methods and so it can be difficult to know

which is the most appropriate to use. A major factor in this is the computational time

and effort required as these can massively impact the cost of running the simulation.

Leach [23] describes how algorithms that are normally expensive may allow a significantly

larger time step to be used and thus actually be more cost effective in the end. This idea

is echoed by Frenkel and Smit [12] who go on to say that accuracy is the most important

consideration when choosing which method to use. Once a method has been selected it

remains to choose an appropriate time step. Key considerations here are making sure

that the time step is chosen to maintain stability of the system without compromising the

accuracy of the result. In more complicated systems the time step can be varied across

the total running time of the simulation.

2.1.1 The Leapfrog Method

In many mathematical applications finite difference methods are applied across a compu-

tational grid, with xj = j∆x being the discretisation with respect to space and tn = n∆t

being the discretisation with respect to time. It is then assumed that the numeri-

cal solution at these grid points approximates the true solution at these positions, i.e.

unj ≈ u(j∆x, n∆t).

The leapfrog scheme is then derived by using the Mean Value Theorem to discretise

the first derivatives with respect to space and time. The result when applied to the simple

differential equation ut = −aux (the linear advection equation) is as follows:
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ut
∣∣n
j

=
un+1
j − un−1

j

2∆t
, ux

∣∣n
j

=
unj+1 − unj−1

2∆x
.

This gives the leapfrog scheme [27,29]

un+1
j = un−1

j − a∆t

∆x

(
unj+1 − unj−1

)
= un−1

j − ν
(
unj+1 − unj−1

)
where ν = a∆t

∆x
is standard notation. This can easily be transformed into the staggered

leapfrog method by using information at half steps in space and time instead. The inter-

esting name of the scheme comes from the fact that it makes use of the two time intervals

surrounding unj to calculate a central time difference but does not actually require any

information to be given at this intermediate time step. This scheme is second order accu-

rate in both space and time and is stable when |ν| ≤ 1 (Morton and Mayers [27] and Press

et al. [29] give more rigorous analyses of the stability condition).

As this leapfrog scheme operates on three levels of the grid it requires a one level

scheme to be used to start the process and gain enough information to get the leapfrog

method started. For this reason other methods that have the same accuracy but only

require information at two grid levels are sometimes preferred. However, such methods

are significantly more complicated to apply.

In molecular dynamics simulations, however, there is only a discretisation over time

(and not space) and so the leapfrog method, whilst essentially the same as the staggered

method described above, is presented differently. It is an adaptation of the Verlet al-

gorithm, which uses Taylor series approximations to the variables. In this case the key

components are [1,17,23]

rn+1 = rn + ∆tvn+ 1
2 (2)

vn+ 1
2 = vn−

1
2 + ∆tan (3)

where r refers to position, v represents velocity and a is acceleration. In order to apply

the leapfrog algorithm (3) is first used to calculate the velocity at time t + 1
2
∆t. This

velocity is then used in (2) to calculate the position at the next time step. The velocity

at the current time can be calculated by use of the central difference [1,23]

vn =
1

2

[
vn+ 1

2 + vn−
1
2

]
.

Hinchliffe [17] praises the accuracy and stability of the leapfrog method for use in molec-

ular dynamics and recommends the time step ∆t = 10−15s (a femtosecond). Allen and

Tildesley [1] credit the accuracy of the scheme to the fact that there is never the require-
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ment to difference two large numbers to generate a small number, which would result in

loss of precision.

In mathematics predictor-corrector methods tend to be favoured due to the accuracy

gained. Such methods operate by using one scheme to perform a calculation and obtain

a predicted value. This predicted value is then put into a second, more accurate, scheme

to give a corrected value. However, in molecular dynamics simulations such a method is

not computationally efficient as it increases the number of calculations that are required.

2.2 Long Range Interactions

Allen and Tildesley [1] define long range forces to be those in which the spatial interaction

decays at a rate no faster than r−d, where r is the particular separation and d is the

dimensionality of the system. Since dipole-dipole interactions in three dimensional space

are approximated by r−3 they fall into this category. In §3.1 charge-charge interactions

are discussed as an introduction to the Ewald method, which are approximated by r−1

and hence are long range too.

Such systems can be difficult to represent computationally since for a typical simulation

the interaction range of the molecules is much larger than half of the simulation box length.

The solution is not as simple as increasing the box size as this would make the cost and

computing time required to run a simulation far too great. There are 2 key problems, as

described by Hinchliffe [17]; the molecules at the edge of the box will be under the influence

of different forces to those in a more central position and also, over time, molecules may

leave the simulation box and thus reduce the density within.

Figure 3: Simplified representation of two-dimensional slice of periodic boxes.

These issues can be tackled by creating a system of adjoining simulation boxes that are

identical on an atomic level, as demonstrated in Figure 3. Mathematically, this involves

simulating the behaviour in one cell and applying periodic boundary conditions (PBCs)

to it. So, if a molecule leaves the simulated space it will be replaced by its image entering

from another box, hence maintaining the density. Furthermore, if we take a central cell,

the molecules contained within will be interacting with every other molecule in that cell
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and in the surrounding cells. This resolves the problem of varying influences due to the

position of walls as we assume the system is infinite [1,17]. Computing ability is enhanced

since we are able to study a microscopic portion of the system and use the PBCs to

extrapolate the results throughout the macroscopic system.

The interactions of a molecule with all of its periodic images can be modelled efficiently

using Ewald summations [1], which are described in detail in §3.
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3 Ewald Summations

Since we have assumed an infinite system a cut-off needs to be decided in order to per-

form calculations, which introduces truncation errors to the model. This is where the

Ewald summation proves to be most effective as it is designed to split the problem into

two parts, both of which decay rapidly, and so the system can be truncated with much

less loss of accuracy. Allen and Tildesley [1] and Leach [23] criticise the Ewald method for

placing too much emphasis on the periodicity of the system being modelled. In partic-

ular, any temporary fluctuations in the molecular interactions are likely to be repeated

periodically rather than being damped out. Computation of the reciprocal part of the

Ewald summation is also expensive. However, use of the Ewald sum with an optimal

splitting parameter and fast Fourier transforms (FFT) can reduce the computation time

from O(N2) to approximately O(N logN), where N is the number of particles in a sim-

ulation box [23,28,33]. Hence, the increase in efficiency outweighs the faults in the method

for basic implementations.

Throughout this section the trigonometric definition of an exponential with an imag-

inary component is used to switch between the two formats and so it is stated here for

convenience.

eix = cos(x) + i sin(x) (4)

3.1 Derivation of Ewald Summations

Since the Ewald method was originally developed for charge-charge interactions (such as

those in proteins and DNA) we begin by looking at these (§3.1.1) and then extend the

method to derive the appropriate formulae for dipolar interactions (§3.1.2).

The derivations in this section are based on a cubic simulation box with sides of length

L. It would be possible, and indeed trivial, to instead use a cuboid simulation box with

dimensions Lx × Ly × Lz, much like the one discussed in §5.2.

In order to calculate the force on an individual molecule (and hence understand how

it moves over time) we need to look at the inter-molecular interactions, which are mod-

elled using potentials. Although, as detailed by Ogbonna [28], the potentials in a system

containing N particles can be split into terms depending on single particles, pairs of par-

ticles, triplets and so forth we only study pairwise interactions since they have the most

significant contribution. These pairwise interactions depend on the distance between the

two molecules, given by rij = ri− rj, where ri and rj are vectors describing the positions

of molecules i and j respectively. So, the total potential energy is a function of rij de-

termined by the system being modelled summed over all integer values of i and j from 1

to N . Furthermore, for the potential energy to be finite we assume that the system as a

whole is electrically neutral [12].

Coulomb’s law (see Appendix B) describes the electrostatic interactions between par-
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ticles in the manner discussed in the previous paragraph and includes a proportional-

ity constant of (4πε0)−1, where ε0 is the permittivity (a measure of resistance) of free

space [17].Throughout this report all factors of 4πε0 have been omitted to make the nota-

tion compact, as is the convention. This equates to using Gaussian rather than SI units

of charge; in this case charge will have units of mN
1
2

[1].

It is worth noting that the derivation of the Ewald summation takes the periodicity

of the system into account by the use of the Fourier sum, so no further calculations are

required to this end.

3.1.1 Charge-Charge Interactions

The total paired potential energy of a three dimensional periodic system involving charge-

charge interactions can be written as 2

Uc =
1

2

∑
n

′

(
N∑
i=1

N∑
j=1

qiqj
|rij + n|

)
(5)

where qi and qj are two charges and the subscript c denotes that this is the derivation for

charge-charge interactions [1,23]. Also, n = (nxL, nyL, nzL) for nx, ny, nz integers and L

the length of the simulation box so that this vector represents a cube. The notation
∑

n ′
signifies that the term where i = j has been omitted when n = 0. In other words each

particle interacts with all other particles and all images of itself but doesn’t interact with

itself.

Since the result in (5) is conditionally convergent when dealing with long range in-

teractions the result of the sum depends on the order terms are added in. A seemingly

natural choice would be to start with the boxes closest to the central box and branch out

in a roughly spherical manner, as demonstrated in Figure 4.

Figure 4: Simplified two-dimensional representation of the summation of periodic boxes.

2Remember that all factors of 4πε0 have been omitted.
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The relative permittivity of the medium surrounding the sphere containing our summed

boxes can differ vastly. For example, a system surrounded by a metal that conducts well

has relative permittivity εs =∞ outside the sphere and outside a system surrounded by

a vacuum we have εs = 1. These two extremes are related in the following way

Uc(εs =∞) = Uc(εs = 1)− 2π

3L3

∣∣∣∣∣∑
i

qiri

∣∣∣∣∣
2

when the size of the sphere of boxes is sufficiently large [1]. Whilst the Ewald summation

is an effective method of calculating Uc(εs = ∞) we are assuming that our system is

surrounded by a vacuum, (εs = 1), and therefore the surface term

U surf
c =

2π

3L3

∣∣∣∣∣
N∑
i=1

qiri

∣∣∣∣∣
2

(6)

needs to be added to our potential.

De Leeuw et al. [11] (see also Smith and Perram [32]) provide a detailed mathematical

account of the derivation of the Ewald method. However, an in depth knowledge of various

mathematical processes is required to fully understand this and so it is not recounted here.

However, the principle idea behind the Ewald method is to convert the slow converging

summation in (5) into two rapidly (and absolutely) converging components using the

mathematical identity [23]

1

r
=
f(r)

r
+

1− f(r)

r
. (7)

The first term on the right hand side of (7) will correspond to a summation in real

space and the second term will be a summation in reciprocal space. This provides a

more accurate result than just using the left hand side in its original state as the Fourier

transform performed on the second term takes account of a much wider space.

Each charge is surrounded by a neutralising charge distribution as described in (8)

that is assumed to be Gaussian.

ρchargeG1 (r) =
qiα

3e−α
2r2

π
3
2

(8)

where α is an arbitrary splitting parameter describing the width of the distribution and

r = |r| = |rij + n| gives the position in respect of the centre of the distribution [1,12,23].

Taking this into account (5) becomes a sum of the pairwise interactions combined with

these Gaussian distributions given by

U r
c =

1

2

∑
n∈Z3

′

(
N∑
i=1

N∑
j=1

qiqj
erfc(α|rij + n|)
|rij + n|

)
(9)
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where erfc(x) = 2√
π

∫∞
x
e−t

2
dt is the complementary error function [1,23], which tends

to zero as x increases. Equation (9) gives the amended real space contribution to our

potential.

We now have a system of screened charges, as illustrated in Figure 5, consisting of the

point charges and the neutralising distribution. So, a second charge distribution needs

to be introduced in order to counteract the Gaussian distribution added previously, as

depicted in Figure 6 (i.e. Figures 5 and 6 combined leaves just the point charges we

require) [1,12,23,28].

Figure 5: Screened charges. [28] Figure 6: Cancelling distribution. [28]

It may seem easier to simply ignore the contribution of the screening distribution.

However, its inclusion means that the summation in (9) converges rapidly and so can be

truncated with less loss of accuracy. The speed of convergence is dependent on the width

of the Gaussian distribution in (8) as wider distributions will converge more quickly [23].

This can be controlled by selecting an optimal value of the parameter α. A further

important development is that we can now subtract a cancelling function which can be

expressed as a rapidly converging Fourier series. 3

In order to calculate the contribution from the cancelling charge distribution we start

with the periodic sum of Gaussians in (10) at the position of ri
[12].

ρchargeG2 (r) =
N∑
j=1

∑
n

qjα
3e−α

2|rij+n|2

π
3
2

(10)

We then take the Fourier transform of (10) where k = 2πn
L2 = 2π

L2 (kx, ky, kz) for kx, ky, kx

integers is the corresponding vector in reciprocal space [1,12,14,23].

3There is a slight abuse of notation in this derivation since i is taken to represent
√
−1 but subscript

i still relates to the summation index, as in previous appearances.
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ρ̂chargeG2 (k) =
1

L3

∫
L3

ρchargeG2 (r)e−ik·rdr

=
1

L3

∫
L3

N∑
j=1

∑
n

qjα
3e−α

2|r−(rj+n)|2

π
3
2

e−ik·rdr

=
1

L3

∫
allspace

N∑
j=1

qjα
3e−α

2|r−rj |2

π
3
2

e−ik·rdr

=
1

L3

N∑
j=1

qje
−ik·rje

−k2
4α2 (11)

The Fourier form of Poisson’s equation (−∇2φcharge1 (r) = 4πρchargeG2 (r) in standard form)

applied to our situation is

k2φcharge1 (k) = 4πρ̂chargeG2 (k) (12)

where k = |k| and Uk
c = 1

2

∑N
i=1 qiφ

charge
1 (r) is the Fourier space contribution to the

potential. Substituting (11) into (12) gives

φcharge1 (k) =
4π

k2

1

L3

N∑
j=1

qje
−ik·rje

−k2
4α2 (13)

which is only defined when k 6= 0 because of the conditional convergence of the Ewald

summation. However, ignoring the k = 0 term is consistent with a periodic system with

εs = ∞ [12]. So, we shall ignore it as we are performing calculations as if the system had

an infinite dielectric constant and then adding the correction term given in (6) to allow

for a vacuum surround. Using (13) to compute φcharge1 (r) gives

φcharge1 (r) =
∑
k 6=0

φcharge1 (k)eik·r

=
1

L3

∑
k 6=0

N∑
j=1

4πqj
k2

eik·(r−rj)e
−k2
4α2 .

So, we have

Uk
c =

1

2L3

N∑
i=1

qi
∑
k 6=0

N∑
j=1

4πqj
k2

eik·(ri−rj)e
−k2
4α2

=
2π

L3

∑
k 6=0

N∑
i=1

N∑
j=1

qiqj
k2

eik·rije
−k2
4α2 . (14)

In (14) we have the contribution from the second charge distribution (i.e. the reciprocal

part of our potential energy equation). However, we can use the identity given in (4) to
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rewrite it as

Uk
c =

2π

L3

∑
k 6=0

N∑
i=1

N∑
j=1

qiqj
k2

e−
k2

4α2 cos(k · rij) (15)

where we have ignored the imaginary sin term since we need to be able to perform com-

putations in real space [23]. Since the number of terms required in (15) increases as the

Gaussian distribution gets wider it is important to balance the real space and reciprocal

space sums to achieve optimal accuracy. Generally, α is set to be 5
L

and 100-200 vectors

k are used [1,23].

When introducing the cancelling distribution cloud described in (10) we included self-

interaction terms, which we excluded from the real space sum using the
∑
′ notation. So,

a further correction term is required to counteract this. The charge distribution that we

have over counted by is

ρchargeG3 (r) =
qiα

3e−α
2r2

π
3
2

.

Using Poisson’s equation as we did in the derivation of Uk
c we can work out the contribution

of this to the overall potential. Using the spherical geometry of the cancelling charge cloud

we can use Poisson’s equation in the following form [12]:

−1

r

∂2rφcharge2 (r)

∂r2
= 4πρchargeG3 (r)

⇒ −∂
2rφcharge2 (r)

∂r2
= 4πrρchargeG3 (r) (16)

where U self
c = −1

2

∑N
i=1 qiφ

charge
2 (r) is the self contribution to the potential. Partial inte-

gration of (16) gives

−∂rφ
charge
2 (r)

∂r
=

∫ r

∞
4πrρchargeG3 (r)dr

= −
∫ ∞
r

2πqiα
3e−α

2r2

π
3
2

dr2

= −2qiαe
−α2r2

√
π

.

Performing a second partial integration gives

rφcharge2 (r) =

∫ r

0

2qiαe
−α2r2

√
π

dr

= qierf(αr)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the Gauss error function related to the complementary

error function used previously. The term we are trying to find occurs when r = 0. To

14



this end we have

φcharge2 (r = 0) =
2qiα√
π
.

Hence the self contribution to the potential is given by [12,23]

U self
c = − α√

π

N∑
i=1

q2
i . (17)

The same result can be obtained by using the Fourier space term given in (15) and setting

i = j.

Combining the four terms; (6), (9), (15) and (17); discussed in this section gives the

final expression

Uc(εs = 1) = U r
c + Uk

c + U self
c + U surf

c

=
N∑
i=1

N∑
j=1

qiqj

[
1

2

(∑
n∈Z3

′erfc(α|rij + n|)
|rij + n|

)
+

2π

L3

∑
k 6=0

1

k2
e−

k2

4α2 cos(k · rij)

]

− α√
π

N∑
i=1

q2
i +

2π

3L3

∣∣∣∣∣
N∑
i=1

qiri

∣∣∣∣∣
2

(18)

for the Ewald summation of the potential energy of charge-charge interactions.

3.1.2 Dipole-Dipole Interactions

The original Ewald method described in §3.1.1 is easily extended to dipolar systems by

simply replacing qi by µi · ∇ri , where µi is a dipole, in the derivation of (18). The

detailed derivations given by De Leeuw et al. [11] include the Ewald method for dipole-

dipole interactions but again the details are not repeated here.

The total paired potential energy of dipole-dipole interactions in a three dimensional

periodic system is given by 4

Ud =
1

2

∑
n

′

(
N∑
i=1

N∑
j=1

µi · µj

|rij + n|3
− 3[µi · (rij + n)][µi · (rij + n)]

|rij + n|5

)
(19)

where µi and µj are two dipoles and the subscript d denotes that this is the derivation

for dipole-dipole interactions. The rest of the components are as defined in §3.1.1 (see

Appendix A) [33].

The simulation boxes are to be summed by building up in the spherical manner de-

scribed in Figure 4 as we did for charge-charge interactions. Also, as discussed in §3.1.1 a

surface term is required in order to satisfy the relationship between the dielectric constants

εs = ∞ and εs = 1. In the case of dipole-dipole interactions the surface contribution for

4Remember that we are omitting all factors of 4πε0.
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a system surrounded by a vacuum is [1,33]

U surf
d =

2π

3L3

N∑
i=1

N∑
j=1

µi · µj. (20)

Combining the slow converging summation in (19) with a suitable neutralising Gaus-

sian distribution we get the following real space contribution to our potential [1,33]:

U r
d =

1

2

∑
n∈Z3

′
N∑
i=1

N∑
j=1

[
(µi · µj)B(|rij + n|)− (µi · (rij + n))(µj · (rij + n))C(|rij + n|)

]
(21)

where the two components B and C are given by

B(r) =
erfc(αr) + (2αr√

π
) exp(−α2r2)

r3
,

C(r) =
3 erfc(αr) + (2αr√

π
)(3 + 2α2r2) exp(−α2r2)

r5
.

As before we get the Fourier contribution to the potential by introducing another

Gaussian distribution to negate the effects of the one added previously and taking the

Fourier transform. This gives the final result [1,33]

Uk
d =

2π

L3

∑
k∈Z3

k 6=0

N∑
i=1

N∑
j=1

1

k2
(µi · k)(µj · k)e

−k2
4α2 cos(k · rij). (22)

Finally, a further term is introduced and manipulated to subtract the self-interactions

that were introduced by the second, cancelling, Gaussian distribution. Once this has been

done we get the following correction term [1,33]:

U self
d = −

N∑
i=1

2α3µ2
i

3
√
π
. (23)

Combining the four components; (20), (21), (22) and (23); gives the final expression

for the Ewald summation of the potential energy of dipole-dipole interactions (24) [1]. At a

glance it is obvious that this is much more complicated than the corresponding formula for

charge-charge interactions, which is one reason early simulations of dipolar interactions

did not make use of Ewald summations. 5

5Again all factors of 4πε0 have been omitted.
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Ud(εs = 1) = U r
d + Uk

d + U self
d + U surf

d

=
N∑
i=1

N∑
j=1

[
1

2

∑
n∈Z3

′
[
(µi · µj)B(|rij + n|)− (µi · (rij + n))(µj · (rij + n))C(|rij + n|)

]
+

2π

L3

∑
k∈Z3,k 6=0

1

k2
(µi · k)(µj · k)e

−k2
4α2 cos(k · rij)


−

N∑
i=1

2α3µ2
i

3
√
π

+
2π

3L3

N∑
i=1

N∑
j=1

µi · µj (24)

with

B(r) =
erfc(αr) + (2αr√

π
)e−α

2r2

r3
,

C(r) =
3 erfc(αr) + (2αr√

π
)(3 + 2α2r2)e−α

2r2

r5
.

3.1.3 Fast Fourier Transforms

In §3.1.1 (and §3.1.2) we make use of Fourier transforms. The computing time required for

the Ewald summation can be greatly reduced by using fast Fourier transforms (FFTs), a

technique introduced in 1965, instead. There are many different variations of the FFT but

they all make use of the ideas detailed in this section. The account of the method for the

one dimensional case given here closely follows that provided by Gibbs [14]. It can easily

be extended to three dimensional space for our problem by replacing the product rk that

arises with the dot product r · k. Bracewell [3] gives two alternative ways of approaching

the derivation of the FFT as well as discussing practical implications surrounding its

application.

To begin with we take an infinite series of Dirac delta functions, that are zero every-

where except at the point n∆r and multiply the function f(r) by this series [14].

δ1(r) =
∞∑

n=−∞

δ(r − n∆r)

⇒ δ1(r)f(r) =
∞∑

n=−∞

δ(r − n∆r)f(r)

=
∞∑

n=−∞

f(n∆r) (25)
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Taking the Fourier transform of (25) and integrating gives

δ̂1f(ξ) =
∞∑

n=−∞

f(n∆r)e−2iπξn∆r (26)

for some ξ ∈ R. We can truncate the sum in (26) by assuming that f(r) = 0 unless

0 ≤ n < M for a sufficiently large M so that

δ̂1f(ξ) =
M−1∑
n=0

f(n∆r)e−2iπξn∆r.

This equation now contains M pieces of information that need to be evaluated at points

ξ = k
M∆r

for k = 0, · · · ,M [14]. So, the discrete Fourier transform (DFT) is taken to be

F (k) = δ̂1f

(
k

M∆r

)
=

M−1∑
n=0

f(n∆r)e−
2iπnk
M . (27)

However, in (27) many values are calculated twice and it is by preventing this that the

FFT makes computation quicker. If we take M to be even we can split the sum in (27)

into its even and odd components as shown below.

F (k) = Feven(k) + Fodd(k)

=

M
2
−1∑

n=0

f((2n)∆r)e−
2iπ(2n)k

M +

M
2
−1∑

n=0

f((2n+ 1)∆r)e−
2iπ(2n+1)k

M (28)

Using the results in (28) we can derive an equation for F
(
k + M

2

)
.

F

(
k +

M

2

)
=

M
2
−1∑

n=0

f((2n)∆r)e−
2iπ(2n)(k+M2 )

M +

M
2
−1∑

n=0

f((2n+ 1)∆r)e−
2iπ(2n+1)(k+M2 )

M

=

M
2
−1∑

n=0

f((2n)∆r)e−
2iπ(2n)k

M e−iπ(2n) +

M
2
−1∑

n=0

f((2n+ 1)∆r)e−
2iπ(2n+1)k

M e−iπ(2n+1)

(29)

However, using the identity stated in (4) we have the following results

e−iπ(2n) = cos(−π(2n)) + i sin(−π(2n))

= 1 + 0 = 1,
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and

e−iπ(2n+1) = cos(−π(2n+ 1)) + i sin(−π(2n+ 1))

= −1 + 0 = −1.

So, (29) becomes

F

(
k +

M

2

)
=

M
2
−1∑

n=0

f((2n)∆r)e−
2iπ(2n)k

M −
M
2
−1∑

n=0

f((2n+ 1)∆r)e−
2iπ(2n+1)k

M

= Feven(k)− Fodd(k). (30)

It is the relationship between F (k) and F
(
k + M

2

)
given in (30) that the FFT uses to

avoid having as many calculations to perform as would be required in an ordinary Fourier

transform. Press et al. [29] recognise the particular advantage of using the above technique

recursively to further enhance computational ability and go into great detail regarding

the implementation of this.

An advanced adaptation of the FFT method called the FFTW (fastest Fourier trans-

form in the West) chooses from several variants of the method in order to reduce the

computing time to O(N logN) [13]. It is the fastest free software that implements the

FFT.

3.2 Application of Ewald Summations

From this point forward we assume that the dielectric constant is εs = 1, as in previous

calculations, so we will not continue to carry this parameter forward explicitly in the

notation used. This section is only concerned with the application of dipole-dipole inter-

actions and so we consider only the formulae derived in §3.1.2. To avoid complicating the

notation here we will drop the subscript d when discussing individual components and

replace Ud with U since we know that all calculations relate to dipoles.

In order to program, and hence apply, the Ewald summation given in (24) we need to

truncate the two infinite sums contained within. This is done by choosing a cut-off in real

space, rc, at which to end the sum in (21) and a cut-off in reciprocal space, kc, at which to

end the sum in (22). If rc ≤ L
2

then the real space sum reduces to the standard minimum

image convention [33] (i.e. each particle only interacts with the closest image of the other

particles in the system). Truncating the summations introduces errors as discussed in

§3.3.

When the formulae for dipolar interactions were derived the results of all summations

were halved. This is because the way that the equations were written meant that each in-

teraction was counted twice; i.e. particle i interacting with particle j was counted as well
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as particle j interacting with particle i when in fact these are the same thing. An alterna-

tive way to avoid this would be to write the double summation as
∑N−1

i=1

∑N
j=i+1 instead

(meaning the factor of 1
2

is not needed). This approach is favoured when programming

since it means less calculations are performed, saving valuable computing effort.

Newton’s third law of motion is stated in the box below, where F represents force, τ

is torque and the subscript ij means that particle i is influencing particle j:

For every action there is an equal and opposite reaction (Fij = −Fji and

τ ij = −τ ji).

This means that if we know the force or torque of particle i acting on particle j then we

also know the effect particle j has on particle i. This relationship can be used to reduce

the number of calculations required and provide another way of cutting computational

time in simulations.

3.2.1 Force

Hinchliffe [17] provides the following account for the relationship between the potential

energy, U , and force. An expression for the total energy of a system is given by

E =
1

2
m(v · v) + U (31)

where 1
2
m(v · v) is the kinetic energy given mass, m, and velocity, v. Differentiating (31)

with respect to time gives

dE

dt
= m

(
v · dv

dt

)
+
dU

dt

⇒ dE

dt
= m

(
v · dv

dt

)
+
dU

dr
· dr
dt

by the chain rule. As the energy, E, is constant in time (since we are dealing with a

closed system, i.e. a microcanonical ensemble (NVE) ) its first derivative will be zero and

v = dr
dt

which leads to the following:

0 =

(
m
d2r

dt2
+
dU

dr

)
· dr
dt
.

Since we know that the velocity is not zero the contents of the brackets must either be

zero or orthogonal to the velocity. Furthermore, using Newton’s second law of motion

(stated in §2) we know that the first term in the brackets is mass × acceleration and thus,

is force. So, finally we have the relationship

F = −∇(U).
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Hence, in order to find the force, Fi, acting on a particular particle, i, we need to take U

for that particle and differentiate with respect to ri.

Due to the complexity of the equation it is easier to tackle this task component by

component; i.e. Fi = −∂(Ui)
∂ri

= −∂(Uri )

∂ri
− ∂(Uki )

∂ri
− ∂(Uselfi )

∂ri
− ∂(Usurfi )

∂ri
. Clearly there is no

contribution from the U self and U surf terms since there is no dependence on ri in either.

Physically, this means that particles do not exert any force on themselves and there is no

effect from forces outside of the system. So, from (21) we get

Fr
i = −∂(U r

i )

∂ri

= −
N∑
j=1

∑
n∈Z3

′{(µi · µj)
∂

∂ri
B(|rij + n|)

− ∂

∂ri
[µi · (rij + n)][µj · (rij + n)]C(|rij + n|)}. (32)

Differentiating B(r) and C(r) (remembering that r = |rij + n| and rij = ri − rj) gives

∂B

∂r
=
r3
[
− 2α√

π
e−α

2r2 + 2α√
π
e−α

2r2 − 2α2r
(

2αr√
π

)
e−α

2r2
]
− 3r2

[
erfc(αr) + 2αr√

π
e−α

2r2
]

r6

=
−4α3r3√

π
e−α

2r2 − 3erfc(αr)− 6αr√
π
e−α

2r2

r4

= −(|rij + n|)C(r)

and

∂C

∂r
=
r5
[
− 6α√

π
e−α

2r2 + 6α√
π
e−α

2r2 − 2α2r
(

6αr√
π

)
e−α

2r2 + 12α3r2√
π
e−α

2r2 − 2α2r
(

4α3r3√
π

)
e−α

2r2
]

r10

−
5r4
[
3erfc(αr) + 6αr√

π
e−α

2r2 + 4α3r3√
π
e−α

2r2
]

r10

=
−8α5r5√

π
e−α

2r2 − 15erfc(αr)− 30αr√
π
e−α

2r2 − 20α3r3√
π
e−α

2r2

r6

= −(|rij + n|)D(r)

where

D(r) =
15erfc(αr) +

(
2αr√
π

)
(15 + 10α2r2 + 4α4r4)e−α

2r2

r7
.

Using the results given above we can now perform the required differentiation in (32) as
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follows:

Fr
i =

N∑
j=1

∑
n∈Z3

′
{

(µi · µj) [(rij + n)C(|rij + n|)−B]

+ C(|rij + n|)(µj[µi · (rij + n)] + µi[µj · (rij + n)])

+ [µi · (rij + n)][µj · (rij + n)][C − (rij + n)D(|rij + n|)]
}

=
N∑
j=1

∑
n∈Z3

′
{
{(µi · µj)(rij + n) + µj[µi · (rij + n)] + µi[µj · (rij + n)]}C(|rij + n|)

− [µi · (rij + n)][µj · (rij + n)](rij + n)D(|rij + n|)
}

(33)

since we can eliminate the scalar terms. Notice that we were able to ignore the modulus

signs when differentiating as a result of the periodicity of the system. Similarly, using

(22) we get

Fk
i = −∂(Uk

i )

∂ri

= −4π

L3

N∑
j=1

∑
k∈Z3

k 6=0

1

k2
e−( πkαL)

2

(µi · k)(µj · k)
∂

∂ri
cos (k · rij)

=
4π

L3

N∑
j=1

∑
k∈Z3

k 6=0

k

k2
e−( πkαL)

2

(µi · k)(µj · k) sin (k · rij) . (34)

Combining (33) and (34) gives the total force calculation

Fi =
N∑
j=1

{∑
n∈Z3

′
{
{(µi · µj)(rij + n) + µj[µi · (rij + n)] + µi[µj · (rij + n)]}C(|rij + n|)

− [µi · (rij + n)][µj · (rij + n)](rij + n)D(|rij + n|)
}

+
4π

L3

∑
k∈Z3

k 6=0

k

k2
e−( πkαL)

2

(µi · k)(µj · k) sin (k · rij)
}
.

3.2.2 Torque

Torque is an important factor in the behaviour of dipoles, particularly when considering

magnetic fluids, as the particles have a tendency to orientate themselves in the direction

of the external field being applied. This is one of the behaviours noticed when simulating

the formation of the chain structures discussed in §1.

The torque, τ i, of a particle, i, is calculated using the electrostatic field, Ei, at the
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position of i using the following relationship

τ i = µi × Ei

where Ei = −∂(Ui)
∂µi

. As with force we will calculate the torque one component at a time.

Clearly there is again no contribution from the self term. So, calculating the torque

contribution in real space for a particular i yields

Er
i = −∂(U r

i )

∂µi

= −
∑
n∈Z3

′
N∑
j=1

∂

∂µi

[
(µi · µj)B(|rij + n|)− (µi · (rij + n))(µj · (rij + n))C(|rij + n|)

]
= −

∑
n∈Z3

′
N∑
j=1

[
µjB(|rij + n|)− (rij + n)(µj · (rij + n))C(|rij + n|)

]
⇒ τ ri = −

∑
n∈Z3

′
N∑
j=1

[
(µi × µj)B(|rij + n|)− µi × (rij + n)(µj · (rij + n))C(|rij + n|)

]
.

(35)

Similarly, the Fourier space contribution is given by

Ek
i = −∂(Uk

i )

∂µi

= −4π

L3

∑
k∈Z3

k 6=0

N∑
j=1

1

k2
e(

−πk
αL )

2

cos (k · rij)
∂

∂µi

[
(µi · k)(µj · k)

]

= −4π

L3

∑
k∈Z3

k 6=0

N∑
j=1

1

k2
k(µj · k)e(

−πk
αL )

2

cos (k · rij)

⇒ τ ki = −4π

L3

∑
k∈Z3

k 6=0

N∑
j=1

1

k2
(µi × k)(µj · k)e(

−πk
αL )

2

cos (k · rij) . (36)
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Finally the surface term contribution is

Esurf
i = −∂(U surf

i )

∂µi

= − 4π

3L3

N∑
j=1

∂

∂µi

µi · µj

= − 4π

3L3

N∑
j=1

µj

τ surfi = − 4π

3L3

N∑
j=1

µi × µj. (37)

Combining the three terms; (35), (36) and (37); to obtain the overall torque we get

τ i = τ ri + τ ki + τ surfi

= −
N∑
j=1

{∑
n∈Z3

′
[
(µi × µj)B(|rij + n|)− µi × (rij + n)(µj · (rij + n))C(|rij + n|)

]
+

4π

L3

[∑
k∈Z3

k6=0

1

k2
(µi × k)(µj · k)e(

−πk
αL )

2

cos (k · rij) +
1

3

N∑
j=1

µi × µj

]}
.

3.3 Errors in Ewald Summations

As with the previous section we are only concerned with dipolar interactions, since these

are the ones present in magnetic fluids. As such we will again omit the subscript d when

discussing various elements in order to keep notation simple.

Wang and Holm [33] derived and successfully tested estimates for the errors in the

Ewald summation derived for dipoles in §3.1.2 and also the forces and torques given in

§3.2. All of the equations and results discussed in this section are taken from their work.

As described in §3.2 there are two cut-offs; one in real space, rc, and one in reciprocal

space, kc. So, there are errors in real space and reciprocal space, which we assume to be

independent of each other. There are no errors in the surface or self terms since there are

no truncations in these. Due to the assumption of independence of errors we can write

the total cut-off error for the Ewald summation as

∆Θ =

√
(∆Θr)2 + (∆Θk)2

where Θ represents U , F and τ .

In molecular dynamics accuracy is generally tested using the root mean square (rms)
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error in the forces:

∆F =

√√√√ 1

N

N∑
i=1

(∆Fi)2 =

√√√√ 1

N

N∑
i=1

(Fi − Fexact
i )2 (38)

where Fi is the force on particle i calculated by the Ewald summation and Fexact
i is

the exact force on that particle. This method will be employed throughout this section,

although clearly our results will all be approximations since we do not know what the

exact force is.

The error estimates can be used to look at the three key parameters; rc, kc and α; with

the aim of balancing them to achieve the highest possible accuracy without compromising

efficiency. This is discussed further in §3.3.3.

3.3.1 Errors in Real Space

The error in Fr
i comes from the N−1 interactions of particle i with all of the other dipoles

in the system and each contribution to the error must be proportional to the two dipoles

involved. Hence we define the real space cut-off error in the force to be

∆Fr
i = |µi|

N∑
j=1
j 6=i

|µj|χr
ij. (39)

The vector χr
ij uses the orientations and separation distance of two dipoles to ascertain the

direction and magnitude of their interaction’s contribution to the error. By performing

the dot products in the real space force term given by (33) we can see that χr
ij is defined

as follows:

χr
ij =

∑
r

r>rc

{
[r̂ cosω(µ̂i, µ̂j) + µ̂i cosω(µ̂j, r̂) + µ̂j cosω(µ̂i, r̂)]rC(r)

− r̂ cosω(µ̂i, r̂) cosω(µ̂j, r̂)r3D(r)

}
(40)

where µ̂i and µ̂j are unit vectors along the orientation of dipoles i and j, r̂ is a unit vector

along r = rij + n and ω(a,b) denotes the angle between vectors a and b.

Although it is not true for all dipolar systems, it is a reasonable starting point to

assume that the positions and orientations of dipoles beyond our cut-off are random and

hence, that their contributions to the error are uncorrelated. Based on this assumption

the average error contribution over all configurations of particles is given by

〈χr
ij · χr

im〉 = δjm〈(χr
ij)

2〉 = δjm(χr)2 (41)
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where δjm is the Kronecker delta function, which equals one if j = m and zero otherwise.

The change of notation in (41) comes about because the mean square force error for two

dipoles, 〈(χr
ij)

2〉, is no longer dependent on i and j.

Combining the results in (39) and (41) we look at the average over all particle config-

urations of the squared real space error:

〈(∆Fr
i )

2〉 = µ2
i

∑
j 6=i

∑
m 6=i

|µj||µm|〈χr
ij · χr

im〉

= µ2
i

N∑
j=1

µ2
j(χ

r)2 (42)

Substituting the approximation

〈√√√√ 1

N

N∑
i=1

(∆Fi)2

〉
≈

√√√√ 1

N

N∑
i=1

〈(∆Fi)2〉

into (38) and using the term derived in (42) we can get an expression for the configurational

average value 〈∆F 〉.

〈∆F 〉 ≈

√√√√ 1

N

N∑
i=1

µ2
i

N∑
j=1

µ2
j(χ

r)2

⇒ ∆F ≈ 1√
N

N∑
j=1

µ2
jχ

r (43)

From the definition of χr
ij we can approximate (χr)2. Let µ̂ and µ̂′ be two unit

orientation vectors of arbitrary dipoles. Then choosing the z axis of the spherical co-

ordinate system (r, θ, φ) to be along µ̂ means that ω(µ̂, r̂) = θ. Furthermore,

cosω(µ̂′, r̂) = cos θ cosω(µ̂, µ̂′) + sin θ sinω(µ̂, µ̂′) cosφ.

Using all of this information in conjunction with (40) gives

(χr)2 ≈ 1

L3

∫ ∞
rc

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ

{
[r̂ cosω(µ̂, µ̂′) + µ̂(cos θ cosω(µ̂, µ̂′)

+ sin θ sinω(µ̂, µ̂′) cosφ) + µ̂′ cos θ]rC(r)− r̂ cos θ(cos θ cosω(µ̂, µ̂′)

+ sin θ sinω(µ̂, µ̂′) cosφ)r3D(r)

}2

.

Based on our assumption that the positions and orientations of different particles are

uncorrelated we have the following results [5]:
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〈sin2 θ〉 = 〈cos2 θ〉 =
1

2
, 〈sin θ cos θ〉 = 0. (44)

These results can be substituted into our expression for (χr)2 reducing the equation to a

more manageable format. Wang and Holm [33] then make further simplifications by ap-

plying the asymptotic expansion formula. This leads to the following approximation to

(χr)2:

(χr)2 ≈
13
6
C2
c + 2

15
D2
c − 13

15
CcDc

L3r9
cα

4
e−2α2r2c (45)

where

Cc = 4α4r4
c + 6α2r2

c + 3,

Dc = 8α6r6
c + 20α4r4

c + 30α2r2
c + 15.

Taking the square root of (45) and substituting the result into (43) gives

∆F r ≈
N∑
j=1

µ2
je
−α2r2c

√
13
6
C2
c + 2

15
D2
c − 13

15
CcDc

L3r9
cα

4N
(46)

The real space cut-off error in the torque is derived by following the same method

used for the force cut-off error, which results in (47).

∆τ r ≈
N∑
j=1

µ2
je
−α2r2c

√
1
2
B2
c + 1

5
C2
c

L3r7
cα

4N
(47)

with

Bc = 2α2r2
c + 1

and Cc as stated before.

Whilst the derivation for the real space cut-off error for the total potential energy

is also calculated in the same way as the force there is a small difference. Since the

interaction energy between two dipoles is split equally between them the sum of the mean

square contains each pair’s contribution twice in this case. Thus, the error is taken to be

half of this sum.

∆U r ≈
N∑
j=1

µ2
je
−α2r2c

√
1
4
B2
c + 1

15
C2
c − 1

6
BcCc

L3r7
cα

4N
(48)

The cut-off errors given in (46), (47) and (48) all contain the exponential e−α
2r2c . So,

to keep the errors small we require αrc > 1 and hence the error estimates can be simplified

by only keeping the highest powers of αrc. Wang and Holm [33] did this for an error of
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e−π
2 ≈ 5× 10−5 to get the following simplified versions:

∆F r ≈ 8α4

N∑
j=1

µ2
je
−α2r2c

√
2r3

c

15NL3
,

∆τ r ≈ 4α2

N∑
j=1

µ2
je
−α2r2c

√
rc

5NL3
,

∆U r ≈ 4α2

N∑
j=1

µ2
je
−α2r2c

√
rc

15NL3
.

An advantage of this format is that it makes it easier to determine how the error depends

on the parameters rc and α, which is useful when deciding how to optimise them as

discussed in §3.3.3.

3.3.2 Errors in Reciprocal Space

Further to the assumptions made in §3.3.1 we now assume that the radial distribution

function of the particles, which represents the variation in density as a function of the

distance from a certain particle, approximates to unity at all distances.

From the reciprocal space force term (34) we can see that the reciprocal space cut-off

in the error of the force acting on particle i is given by

∆Fk
i =

N∑
j=1

∑
k

k>kc

4πk

L3k2
(µi · k)(µj · k)e−( πk

αL
)2 sin(k · rij). (49)

In (49) the diagonal term (when j = i) in the sum is not reliant on the positioning of the

particles and so provides a systematic contribution to the reciprocal cut-off error. In the

force and torque cut-off errors this term is zero and so the systematic contribution is not

present. It will, however, become important in the derivation of the cut-off error in the

total potential.

The off-diagonal terms in (49) do depend on position and will have alternating signs

as a result of the nature of the sin function. We can deal with these using the same

statistical methods used in the approximation of the cut-off error in real space. Defining

the reciprocal space cut-off error in the same format as (39) we get

∆Fk
i,off = |µi|

N∑
j=1
j 6=i

|µj|χk
ij (50)

with

χk
ij =

∑
k

k>kc

4πk

L3
cosω(µ̂i, k̂) cosω(µ̂j, k̂)e−( πk

αL
)2ie−ik·rij
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where k̂ is a unit vector along k and the sin term has been rewritten using the identity

given in (4) and the symmetrical nature of the summation over k. Once more assuming

that the positions and orientations are random gives us the following result

〈(∆Fk
i )

2〉 = µ2
i

∑
j 6=i

∑
m6=i

|µj||µm|〈χk
ij · χk

im〉

= µ2
i

N∑
j=1

µ2
j(χ

k)2

where again χk does not depend on i or j and δjm is the Kronecker delta function.

As before we use the definition of χk
ij to write

(χk)2 ≈
(

4π

L3

)2 ∫ ∞
kc

e−2( πk
αL

)2k4dk

∫ π

0

sin θdθ

×
∫ 2π

0

cos2 θ[cos θ cosω(µ̂, µ̂′) + sin θ sinω(µ̂, µ̂′) cosφ]2dφ. (51)

Applying the same process as in the derivation of the real space cut-off error Wang and

Holm [33] simplify (51) to give

(χk)2 ≈ 128π2α2k3
c

15L5
e−2(πkc

αL
)2 .

Hence, the reciprocal space cut-off error in the forces is

∆F k ≈ 4α

L2

N∑
j=1

µ2
je
−(πkc

αL
)2

√
2πk3

c

15N
. (52)

where we have not distinguished between diagonal and off diagonal contributions since

the diagonal contribution is zero in this case.

Calculating the reciprocal space cut-off error for torque in the same way as for force

and ignoring the zero diagonal contribution gives

∆τ k ≈ 4α

L2

N∑
j=1

µ2
je
−(πkc

αL
)2

√
πkc
5N

.

Following this method again the reciprocal space error in the total interaction potential

is calculated, taking into account the systematic contribution from the diagonal term. As

was the situation in the real space case the sum of the mean square of the total interaction

energy double counts each pair of interactions and this has been taken into account to

get the following results:

∆Uk = ∆Uk
off + ∆Uk

diag
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where

∆Uk
off ≈

4α

L2

N∑
j=1

µ2
je
−(πkc

αL
)2

√
πkc
15N

∆Uk
diag =

1

2
√
N

N∑
i=1

∑
k

k>kc

4π

L3
µ2
i e
−(πkc

αL
)2 cos2 ω(µ̂i, k̂)

≈ 2π

L3
√
N

N∑
j=1

µ2
j

∫ ∞
kc

e−(πkc
αL

)2k2dk

∫ π

0

sin θdθ

∫ 2π

0

cos2 θdφ

≈ 4α2kc

3L
√
N

N∑
j=1

µ2
je
−(πkc

αL
)2 .

Comparing the diagonal and off diagonal terms we can see that the systematic contri-

bution to the reciprocal space error is a factor of ∼ Lα
√
kc larger than the off-diagonal

term. Since this is much greater than one this term dominates the reciprocal space error

in the total interaction energy.

3.3.3 Optimising the Parameters

Wang and Holm [33] give the overall computing time required for using the Ewald summa-

tion to calculate the forces as

T = arN
2
(rc
L

)3

+ akNk
3
c

where ar and ak can only be determined through numerical work and depend on how the

code is implemented. The numerical work carried out by Wang and Holm [33] (in which

they used standard Fourier transforms rather than FFTs) found them to be ar = 2.5µs

and ak = 0.7µs for their implementation and so we shall proceed using these values. Using

(46) and (52) we have the following constraints on the error bounds

δ√
2

=
N∑
j=1

µ2
je
−α2r2c

√
13
6
C2
c + 2

15
D2
c − 13

15
CcDc

L3r9
cα

4N
(53)

δ√
2

=
4α

L2

N∑
j=1

µ2
je
−(πkc

αL
)2

√
2πk3

c

15N
(54)

where δ is the required accuracy. If δ ≤ 5 × 10−5 then the simplified version of the

real space cut-off error given by Wang and Holm [33] could be used instead of (46).

From (53) and (54) we get the following relationships between α and the two cut-offs:

rc(α) ≈ −A
√

ln δ

α
, kc(α) ≈ −Bα

√
ln δ.
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Substituting these into the equation for overall computation time alongside the values for

ar and ak and differentiating with respect to α gives:

T ≈ −2.5N2

(√
ln δ

Lα

)3

− 0.7N(Bα
√

ln δ)3

⇒ δT

δα
≈ 7.5N2

(
(
√

ln δ)3

L3α4

)
− 2.1N(B

√
ln δ)3α2.

Setting this equal to zero in order to find the minimum value of α we see that α ∝ N
1
6 ,

which means that kc ∝ N
1
6 as well and rc ∝ N−

1
6 . If the parameters are chosen in this way

the overall computation time becomes proportional to N
3
2 where the required accuracy

decides the proportionality constant [33].
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4 Simulation

The code controlling the simulation run in this section is all written in the C programming

language and was provided by Dr. Zuowei Wang of the University of Reading (supervisor

for this project). As a result its implementation is not discussed here.

The details of finely controlled simulations run from this code have been published

previously [19,33]. However, for this project further simulations were run to provide a

cursory visualisation of the behaviours of ferrofluids discussed in §1 and demonstrate

some of the ideas discussed in this report. This required a basic knowledge of the code

involved, particularly how to adjust the various parameters in the program to achieve the

desired result. Visual Molecular Dynamics (VMD) software was also utilised to produce

the diagrams that are included in this section [18]. Finally, since the output from the

original code was not in the required format two trivial programs in C++ were created

to convert output from the simulation into one format that could be graphed and one

that was compatible with the VMD software. The diagrams in this section only show one

simulation box; remember that we are dealing with a system of adjoining boxes displaying

identical behaviour.

To allow for comparison two ferrofluids with different particle sizes were simulated.

The small particles have a diameter of 10nm and the larger ones have a 16nm diameter.

In each case the simulation was run with 1000 particles, which were to account for 5%

of the volume of the simulation box, since at this density it is easier to see what is

happening pictorially. In order to satisfy all of the conditions that have just been specified

the program used the following relationship to calculate the size of the simulation box

required:

V =
N

φ

πσ3

6

where φ is the volume fraction, σ is the particle size and V is the volume of the simulation

box [35]. Substituting the relevant values in and then taking the cubic root (since we are

dealing with a cubic simulation box) gives L = 21.9 for the small particles and L = 35

for the large particles.

The root mean square (rms) error, as defined in §3.3, was set to be ∆F ≤ 10−4 and

the corresponding optimal values of α, rc and kc were selected in the way discussed in

§3.3.3. The time step used was ∆t = 2.5 × 10−3, which is sufficiently small to keep the

leapfrog scheme (§2.1.1) stable.

4.1 Average Cluster Size

Figure 7 looks at the average size of clusters in our system as time progresses. As might

be expected a cluster is a group of particles that are touching and the size is simply how

many particles are in that cluster. In order to calculate cluster size the program is set up
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to consider dipoles as part of the same cluster when the dipolar interaction energy is less

than a value predetermined by

Ubond = −1.4λkBT

where λ is the dipolar coupling constant (= 4 in this case) and kBT is the temperature

measured in Kelvin (= 1 in this case) [19,35]. This is equivalent to 70% of the dipolar

interaction energy between two touching particles with their dipole moments perfectly

aligned. The average cluster size is then taken to be

〈S〉 =

∑
s sns∑
s ns

where ns is the number of clusters that have size s [19,35].

Cluster size is something that cannot be measured in experimental work and so this

highlights the importance of simulations in enabling scientists to see more than they can

in a lab. Kantorovich et al. [21] go into detail about the struggle of experimental work

to even obtain proof of the chain formations recognised so easily in simulative works.

Many other researchers have published articles in recent years regarding the aggregation

(formation of clusters) of magnetic fluids, so data such as that taken from this simulation

are an invaluable contribution to the field [8,9,30].

Figure 7: Comparison of average cluster size over time for large and small particles after
the application of external magnetic field.

Since we are starting from a random configuration of the particles we would expect

the average cluster size to take value 1 at time t = 0. This is clearly evident in Figure

7. Figures 8 and 10 show the starting configurations for the small particles and the large
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particles respectively, and we can see that the set-up indeed appears to be random. In

Figures 9 and 11 we can see the position of the particles at the end of the simulation.

Although the chain formation is evident in both sets of particles there is clearly more

structure in the system of larger particles. The graph verifies this as we can see that the

large particles form clusters four times the size of the small particles in the equivalent

time frame. This demonstrates how essential the definition of touching stated earlier is

since in Figure 9 the clusters appear to be much larger for small particles than the data

indicates. Also, from Figure 7 we can see how soon after the external field is applied

aggregation begins.

Figure 8: Starting configuration of
small particles under external mag-
netic field.

Figure 9: Final configuration of
small particles under external mag-
netic field.

Figure 10: Starting configuration of
large particles under external mag-
netic field.

Figure 11: Final configuration of
large particles under external mag-
netic field.
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It may appear in Figure 7 that there are several measurements taken at some time

steps. This is not the case; it is simply a result of the scale of the graph in comparison to

the size of the time step.

There are other results that can be studied using simulations, such as magnetisation

response (how quickly the particles react to the presence of the magnetic field). Results

from simulations where the conditions are changed by varying any of the inherent pa-

rameters are also easily achieved. However, these ideas are not discussed in great detail

here as there is limited time to complete this work and running many simulations can be

quite time consuming. The aim of this section was merely to provide a visual context to

the behaviours of magnetic fluids and to demonstrate the clarity of simulation data in

contrast with experimental work in some instances.
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5 Dealing with a Confined Geometry

The Ewald method discussed in §3 is designed for application to a standard three dimen-

sional geometry. In this section the method is adapted to enable its use in a geometry

that is confined in one direction (called a slab geometry). The method used previously is

no longer valid in this situation since periodicity in the confined direction is lost and the

formulae were derived assuming periodicity in all three directions.

Slab geometries are found in many scenarios of interest to physicists and chemists in-

cluding fluids contained between two walls, electrolyte solutions between charged surfaces

and transport through membranes [2,6]. More interestingly in relation to this project, slab

geometries are also characteristic of thin films of ferrofluids, such as those simulated in

§4.

5.1 What is a Confined Geometry?

In order to create a confined, or slab, geometry we start with the standard three dimen-

sional periodic system discussed in §2.2 and insert two planes parallel to the top and

bottom of the simulation cube. The substance being modelled (magnetic fluids in our

case) is then contained between these walls, as demonstrated very crudely in Figure 12.

So, when we model our system the strips containing the fluid are now infinitely periodic

in only two directions and are finite in the third. This leads to the creation of what is

termed a 2D+H system; i.e. two dimensions are as before but the third is restricted

according to the height, H, of the strips containing fluid.

Throughout this section the word ‘strip’ is used to represent the cuboids that the

simulation fluid is contained in and ‘gap’ refers to the spaces in between the strips that

are empty. The term ‘standard geometry’ refers to the three dimensional periodic system

we looked at in §3 whilst both ‘slab geometry’ and ‘confined geometry’ describe the new

2D+H setup.

Figure 12: Simplified two-dimensional representation of confined geometry set up.
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One way to approach this scenario would be to ensure that the gaps between strips are

sufficiently large to eliminate interaction between particles in different strips. However,

this is computationally expensive due to the large dimensions required to cancel out such

long range interactions. So, instead we introduce a correction term, as detailed in §5.2,

in order to maintain equilibrium and keep computational efforts within acceptable limits.

5.2 Ewald Method for a Confined Geometry

Arnold et al. [2] first proposed the EW3DLC (3 dimensional Ewald summation with layer

correction) approach for dealing with a slab geometry and derived this for charge-charge

interactions. Essentially the method operates by firstly amending the summation order

of the Ewald summation to sum slab-wise and secondly corrects for the introduction of

interactions between strips. Bródka [4] later responded with an alternate version of the

electrostatic layer correction (ELC term), which was also adapted to model dipole-dipole

interactions [5]. The derivations in this section are based heavily on Bródka’s work.

Although i has been used as the primary summation index in the previous sections

of this report it becomes problematic when working in a confined geometry due to the

introduction of imaginary numbers in some of the calculations. Hence, in this section the

summation index k will be used instead. This is not to be confused with the superscript

k that represents Fourier space terms.

As with the derivation of the original Ewald method it is easiest to apply the theory

to the situation of charge-charge interactions (§5.2.1) to begin with and then extend it

to account for dipole-dipole interactions (§5.2.2) by replacing qk with µk · ∇rk as before.

In the following derivations we are assuming we have the dielectric constant εs = 1 as in

previous calculations, so this is not stated explicitly in the formulae.

5.2.1 Charge-Charge Interactions

To begin with we take a simulation box with dimensions Lx×Ly ×Lz but we confine the

particles to a cuboid of dimensions Lx × Ly × H (where Lz > H) contained within the

simuliation box, which corresponds to adding in the walls. This set up is then repeated

periodically as demonstrated in Figure 12. Note that no further restrictions have been

placed on H other than that it must be less than L. As before, we make the assumption

that the total system is charge neutral and furthermore, that each strip is also charge

neutral.

In §3.1 the simulation boxes were summed in a spherical manner (see Figure 4), which

means that the number of image simulation boxes considered grows faster than the number

of boxes considered in the primary layer of boxes. In a confined geometry this results in

large errors as we are effectively including more unwanted terms as opposed to the ones

we desire. Yeh and Berkowitz [36] solve this problem by adding the following term to the
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potential (see also Arnold et al. [2]):

U slabsum
c =

2πM2
z

V
(55)

where V = LxLyLz is the volume of a simulation box and M =
∑N

k=1 qkrk with Mz

being the z component of this. This results in the summation being performed slab-wise

rather than the spherical manner considered before, which is far more useful. Slab-wise

summation means that we first consider the original strip by adding images of the original

simulation box in the x and y axes directions and then add simulation boxes in symmetrical

pairs (above and below) in the z axis direction. This new term already takes into account

the change of behaviour at the surface of the system and so the surface term used in §3.1

is no longer required. On inspection the similarities between this term and the surface

term used previously are obvious.

The real space part of the Ewald summation is almost identical in a slab geometry to

the standard three dimensional set-up. It is given by

U slabr
c =

1

2

∑
n∈Z2

′

(
N∑
k=1

N∑
j=1

qkqj
erfc(α|γkj + n, zkj|)
|γkj + n, zkj|

)

where γkj describes the projection of rkj onto the (x, y) plane and n = (nxLx, nyLy). In

fact by clever choice of α we can restrict the real space summation to our basic simulation

box and then for this term we can use (9) [7]. We will assume that α has been chosen in such

a way as to enable us to use the real space term derived previously. The self-interaction

term is the same in both geometries and so we can use (17) in the slab geometry potential

too.

The Fourier space summation in a slab geometry is given by

U slabk
c =

π

2LxLy

∑
G 6=0

N∑
k=1

N∑
j=1

qkqje
iG·γkj 1

G

[
eGzerfc

(
G

2α
+ αz

)
+ e−Gzerfc

(
G

2α
− αz

)]
(56)

where G = 2π( kx
Lx
, ky
Ly
, kz
Lz

) is a vector in reciprocal space and G = |G| [7]. This term

can be rearranged using results taken from the derivation of the two dimensional Ewald

summation and then after analytical solving of the integral introduced (56) becomes

U slabk
c =

2π

V

∑
G6=0

N∑
k=1

N∑
j=1

qkqj
1

G2
e−

G2

4α2 cos(G · rkj). (57)

Bródka and Grzybowski [7] provide interim steps in the transition from (56) to (57). They

also demonstrate how the Fourier space term when G = 0 reduces to (55), the term that

compensates for the change in summation technique. At a glance we can see that the
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expression in (57) is basically the same as the Fourier term in our previous derivation

with k and k replaced by G and G respectively. From the definition of G we can see that

this makes sense.

Now that we have amended our Ewald summation from §3 to fit our new geometry

we need to subtract the inter-strip interactions from our total potential. Bródka [4] takes

the difference between the reciprocal space term for a two dimensional system and the

equivalent term derived in three dimensions. Then analysis of the convergence of each

term in the resulting expression is discussed in order to simplify it. This yields the

following expression for the ELC term [4–6]:

UELC
c = − π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

N∑
k=1

N∑
j=1

[
Sc+,k(Gγ)S

∗
c−,j(Gγ) + Sc−,k(Gγ)S

∗
c+,j(Gγ)

]
(58)

where Gγ describes the projection of G onto the (x, y) plane and

Sc±,k(Gγ) = qke
iGγ ·γke±Gγzk

is the structure factor. The ∗ notation used on some of the terms indicates complex

conjugates, which are taken to be

S∗c±,j(Gγ) = qje
−iGγ ·γje±Gγzj .

Combining the components (9), (57), (17), (55) and (58) we get the final expression for

the Ewald summation with the added ELC term for charge-charge interactions. 6

U slab
c = U r

c + U slabk
c + U self

c + U slabsum
c + UELC

c

=
N∑
k=1

N∑
j=1

qkqj

[
1

2

∑
n∈Z3

′
(
erfc(α|rkj + n|)
|rkj + n|

)
+

2π

V

∑
G6=0

1

G2
e−

G2

4α2 cos(G · rkj)

− π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

[
Sc+,k(Gγ)S

∗
c−,j(Gγ) + Sc−,k(Gγ)S

∗
c+,j(Gγ)

]
− α√

π

N∑
k=1

q2
k +

2πM2
z

V

5.2.2 Dipole-Dipole Interactions

Using the substitution µk · ∇rk in place of qk in the derivations for charge-charge inter-

actions clearly leads us directly to the real space and self terms, (21) and (23), that we

had in the standard Ewald summation. We can also directly achieve the reciprocal space

6Remember that we have chosen α in such a way that the real space summation is contained within
the simulation box.
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term for dipole-dipole interactions [5,7,15].

U slabk
d =

2π

V

∑
G6=0

N∑
k=1

N∑
j=1

(µk ·G)(µj ·G)
1

G2
e−

G2

4α2 cos(G · rkj) (59)

The term correcting for the change in summation technique takes the same form as (55)

but the definition of M has changed. So, we have

U slabsum
d =

2πM2
z

V
(60)

where M2 =
∑N

k=1

∑N
j=1 µk · µj and M2

z is again the z component of this.

In the new ELC term for dipolar interactions the only change is to the format of the

functions S±,k(Gγ) and S∗±,j(Gγ).

UELC
d = − π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

N∑
k=1

N∑
j=1

[
Sd+,k(Gγ)S

∗
d−,j(Gγ) + Sd−,k(Gγ)S

∗
d+,j(Gγ)

]
(61)

where

Sd±,k(Gγ) = (iµγ
k ·Gγ ± µzk ·Gγ)e

iGγ ·γke±Gγzk ,

and

S∗d±,j(Gγ) = (−iµγ
j ·Gγ ± µzj ·Gγ)e

−iGγ ·γje±Gγzj .

In the above result µγ
k and µzk denote components of the dipole moment µk that are parallel

and perpendicular to the (x, y) plane respectively. Combining all the terms discussed in

this section ((21), (59), (23), (60) and (61)) gives the overall dipole-dipole potential in a

confined geometry. 7

U slab
d = U r

d + U slabk
d + U self

d + U slabsum
d + UELC

d

=
N∑
k=1

N∑
j=1

[
1

2

∑
n∈Z3

′
[
(µk · µj)B(|rkj + n|)− (µk · (rkj + n))(µj · (rkj + n))C(|rkj + n|)

]
+

2π

V

∑
G6=0

(µk ·G)(µj ·G)
1

G2
e−

G2

4α2 cos(G · rkj)

− π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

[
Sd+,k(Gγ)S

∗
d−,j(Gγ) + Sd−,k(Gγ)S

∗
d+,j(Gγ)

]
−

N∑
k=1

2α3µ2
k

3
√
π

+
2πM2

z

V

7Again recall that we have chosen α in such a way that the real space summation is contained within
the simulation box.
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A direct comparison with the Ewald method derived for dipolar interactions in a three

dimensionally periodic system indicates that the main change is the addition of the final

term. The only other differences are the change of notation in the reciprocal space term

and the requirement to deal with the z component only in the final term. An additional

consideration is that α must be chosen in such a way as to keep the real space summation

within the simulation box to avoid complicating this term.

5.3 Application of Ewald Method for a Confined Geometry

As we did when looking at the standard three dimensional Ewald summation we are only

going to look at applications and errors in relation to dipolar interactions, so we will drop

the subscript d from our notation. All of the considerations to be made when programming

the three dimensional Ewald summation remain the same for a slab geometry. It is simply

the terms involved that have changed. As a result the program used in §4 could be utilised

to simulate the new geometry with only minor changes required. These are, chiefly, the

addition of the extra term in the Ewald summation and the introduction of the walls into

the program.

Clearly since we are using the same real space term as in the standard geometry the

force and torque for this term will be the same as those given in §3.2. The self term is

also the same as was used in the standard three dimensional geometry and hence it once

again does not contribute to either the force or the torque.

The discussions in this section relating to the contribution of the new ELC and sum-

mation terms to the force and torque are only preliminary. I was unable to find any

publications that have calculated them previously and due to time constraints have been

unable to carry out any numerical work to examine their accuracy.

5.3.1 Force

As discussed in §3.2.1 the force, Fk, acting on a particular particle, k is found by dif-

ferentiating U slab with respect to rk and negating the answer. We can state the force

contribution in reciprocal space directly as a result of the similarities between (59) and

(22):

Fslabk
k =

4π

V

N∑
j=1

∑
G∈Z3

G6=0

G

G2
e−(πGαL )

2

(µk ·G)(µj ·G) sin (G · rkj) .

There is no contribution to the force from the summation method term, since it is not

dependent on the position of individual particles. Hence, it only remains to calculate the

ELC term’s contribution to the overall force. Although rk is not explicitly present in this
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term it is contained within γk, its representation in the (x, y) plane. So we have

FELC
k = −∂(UELC

k )

∂rk

= −∂(UELC
k )

∂γk
γ̂k −

∂(UELC
k )

∂zk
ẑk

=
2π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

N∑
j=1

{
∂

∂γk

[
S+,k(Gγ)S

∗
−,j(Gγ) + S−,k(Gγ)S

∗
+,j(Gγ)

]
γ̂k

+
∂

∂zk

[
S+,k(Gγ)S

∗
−,j(Gγ) + S−,k(Gγ)S

∗
+,j(Gγ)

]
ẑk

}
(62)

where ẑk and γ̂k are unit vectors in the relevant directions. Differentiating S±,k(Gγ) with

respect to γk gives

∂

∂γk
(S±,k(Gγ)) = (iµγ

k ·Gγ ± µzk ·Gγ)(iGγ)e
iGγ ·γke±Gγzk .

From this we get

∂

∂γk
S = S∗−,j(Gγ)

∂

∂γk
S+,k(Gγ) + S∗+,j(Gγ)

∂

∂γk
S−,k(Gγ)

= (−iµγ
j ·Gγ − µzj ·Gγ)e

−iGγ ·γje−Gγzj(iµγ
k ·Gγ + µzk ·Gγ)(iGγ)e

iGγ ·γkeGγzk

+ (−iµγ
j ·Gγ + µzj ·Gγ)e

−iGγ ·γjeGγzj(iµγ
k ·Gγ − µzk ·Gγ)(iGγ)e

iGγ ·γke−Gγzk

=
[
(−iµγ

j ·Gγ − µzj ·Gγ)(iµ
γ
k ·Gγ + µzk ·Gγ)e

−GγzjeGγzk

+(−iµγ
j ·Gγ + µzj ·Gγ)(iµ

γ
k ·Gγ − µzk ·Gγ)e

Gγzje−Gγzk
]

(iGγ)e
iGγ ·γke−iGγ ·γj

=
[
(−iµγ

j ·Gγ − µzj ·Gγ)(iµ
γ
k ·Gγ + µzk ·Gγ)e

Gγzkj

+(−iµγ
j ·Gγ + µzj ·Gγ)(iµ

γ
k ·Gγ − µzk ·Gγ)e

Gγzjk
]

(iGγ)e
iGγ ·γkj (63)

where S =
[
S+,k(Gγ)S

∗
−,j(Gγ) + S−,k(Gγ)S

∗
+,j(Gγ)

]
, γkj = γk − γj and zkj = zk − zj.

Differentiating S±,k(Gγ) with respect to zk we get

∂

∂zk
(S±,k(Gγ)) = ±Gγ(iµ

γ
k ·Gγ ± µzk ·Gγ)e

iGγ ·γke±Gγzk ,

which gives us

∂

zk
S = S∗−,j(Gγ)

∂

∂zk
S+,k(Gγ) + S∗+,j(Gγ)

∂

∂zk
S−,k(Gγ)

= (−iµγ
j ·Gγ − µzj ·Gγ)e

−iGγ ·γje−GγzjGγ(iµ
γ
k ·Gγ + µzk ·Gγ)e

iGγ ·γkeGγzk

+ (−iµγ
j ·Gγ + µzj ·Gγ)e

−iGγ ·γjeGγzj(−Gγ)(iµ
γ
k ·Gγ − µzk ·Gγ)e

iGγ ·γke−Gγzk

=
[
(−iµγ

j ·Gγ − µzj ·Gγ)Gγ(iµ
γ
k ·Gγ + µzk ·Gγ)e

Gγzkj

+(−iµγ
j ·Gγ + µzj ·Gγ)(−Gγ)(iµ

γ
k ·Gγ − µzk ·Gγ)e

Gγzjk
]
eiGγ ·γkj (64)
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where S, γkj and zkj are as defined previously. Substituting (63) and (64) into (62) gives

FELC
k =

2π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

N∑
j=1

{[
(−iµγ

j ·Gγ − µzj ·Gγ)(iµ
γ
k ·Gγ + µzk ·Gγ)e

Gγzkj

+(−iµγ
j ·Gγ + µzj ·Gγ)(iµ

γ
k ·Gγ − µzk ·Gγ)e

Gγzjk
]

(iGγ)e
iGγ ·γkj γ̂k

+
[
(−iµγ

j ·Gγ − µzj ·Gγ)Gγ(iµ
γ
k ·Gγ + µzk ·Gγ)e

Gγzkj

+(−iµγ
j ·Gγ + µzj ·Gγ)(−Gγ)(iµ

γ
k ·Gγ − µzk ·Gγ)e

Gγzjk
]
eiGγ ·γkj ẑk

}
.

As in §3.2.1 the total force is calculated by summing the contribution from each term

as follows:

Fslab
k = Fr

k + Fslabk
k + FELC

k .

5.3.2 Torque

As discussed in §3.2.2 the torque, τ k, of a particular particle, k, is calculated by employ-

ing its relationship with the electrostatic field, Ek of the same particle. This involves

differentiating the total potential with respect to dipole µk, taking the cross product with

µk and then negating the result.

As with the force we can write the reciprocal space torque for a slab geometry directly:

τ slabkk = −4π

V

∑
G∈Z3

G 6=0

N∑
j=1

1

G2
(µk ×G)(µj ·G)e(

−πG
αL )

2

cos (G · rkj) .

The term added to alter the summation method will also contribute to the torque since

there is µk dependence in the definition of M. The contribution is as follows:

Eslabsum
k = −∂(U slabsum

k )

∂µk

= −∂(U slabsum
k )

(∂µk)z
ẑ

= −4π

V

N∑
j=1

∂

∂µk

[(µk)z · (µj)z]ẑ

= −4π

V

N∑
j=1

(µj)z ẑ

⇒ τ slabsumk = −4π

V

N∑
j=1

(µk)× (µj)z ẑ

where ẑ is a unit vector in the z axis direction introduced to account for the fact that we

are differentiating with respect to the z component of µk only.
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Finally, we look at the torque contribution from the ELC term added to allow us to

work in this geometry:

EELC
k = −∂(UELC

k )

∂µk

= −∂(UELC
k )

∂µγ
k

µ̂γ
k −

∂(UELC
k )

∂µzk
µ̂zk

=
2π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

N∑
j=1

{
∂

∂µγ
k

[
S+,k(Gγ)S

∗
−,j(Gγ) + S−,k(Gγ)S

∗
+,j(Gγ)

]
µ̂γ
k

+
∂

∂µzk

[
S+,k(Gγ)S

∗
−,j(Gγ) + S−,k(Gγ)S

∗
+,j(Gγ)

]
µ̂zk

}
(65)

where µ̂zk and µ̂γ
k are directed unit vectors. The derivative with respect to µγ

k of S±,k(Gγ)

is:
∂

∂µγ
k

(Sk±(Gγ)) = eiGγ ·γke±Gγzk(iGγ).

From which we get:

∂

∂µγ
k

S = S∗−,j(Gγ)
∂

∂µγ
k

S+,k(Gγ) + S∗+,j(Gγ)
∂

∂µγ
k

S−,k(Gγ)

= (−iµγ
j ·Gγ − µzj ·Gγ)e

−iGγ ·γje−GγzjeiGγ ·γkeGγzk(iGγ)

+ (−iµγ
j ·Gγ + µzj ·Gγ)e

−iGγ ·γjeGγzjeiGγ ·γke−Gγzk(iGγ)

=
[
(−iµγ

j ·Gγ − µzj ·Gγ)e
Gγzkj + (−iµγ

j ·Gγ + µzj ·Gγ)e
Gγzjk

]
(iGγ)e

iGγ ·γkj (66)

where S, γkj and zkj are as defined for the force calculations in §5.3.1. Differentiating

S±,k(Gγ) with respect to µzk gives:

∂

∂µzk
(Sk±(Gγ)) = eiGγ ·γke±Gγzk(±Gγ).

So we have

∂

∂µzk
Sk = S∗−,j(Gγ)

∂

∂µzk
S+,k(Gγ) + S∗+,j(Gγ)

∂

∂µzk
S−,k(Gγ)

= (−iµγ
j ·Gγ − µzj ·Gγ)e

−iGγ ·γje−GγzjeiGγ ·γkeGγzkGγ

+ (−iµγ
j ·Gγ + µzj ·Gγ)e

−iGγ ·γjeGγzjeiGγ ·γke−Gγzk(−Gγ)

=
[
(−iµγ

j ·Gγ − µzj ·Gγ)Gγe
Gγzkj + (−iµγ

j ·Gγ + µzj ·Gγ)(−Gγ)e
Gγzjk

]
eiGγ ·γkj .

(67)
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Substituting (66) and (67) into (65) then gives

EELC
k =

2π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

N∑
j=1

{[
(−iµγ

j ·Gγ − µzj ·Gγ)e
Gγzkj + (−iµγ

j ·Gγ + µzj ·Gγ)e
Gγzjk

]
× (iGγ)e

iGγ ·γkj µ̂γ
k +

[
(−iµγ

j ·Gγ − µzj ·Gγ)Gγe
Gγzkj + (−iµγ

j ·Gγ + µzj ·Gγ)(−Gγ)
]

×eGγzjkeiGγ ·γkj µ̂zk

}
.

Hence, the contribution to the torque from the ELC term is found by taking the cross

product of EELC
k with µk as follows

τELCk =
2π

LxLy

∑
Gγ 6=0

1

Gγ(eGγLz − 1)

N∑
j=1

{
µk ×

[
(−iµγ

j ·Gγ − µzj ·Gγ)e
Gγzkj

+(−iµγ
j ·Gγ + µzj ·Gγ)e

Gγzjk
]

(iGγ)e
iGγ ·γkj µ̂γ

k + µk ×
[
(−iµγ

j ·Gγ − µzj ·Gγ)Gγe
Gγzkj

+(−iµγ
j ·Gγ + µzj ·Gγ)(−Gγ)e

Gγzjk
]
eiGγ ·γkj µ̂zk

}
.

The overall torque is then given by summing the various components discussed in this

section:

τ slabk = τ rk + τ slabkk + τ slabsumk + τELCk .

As mentioned previously the results in this section are a discussion of possibilities only

as I was unable to verify the results contained within in the absence of numerical work.

5.4 Errors in Ewald Method for a Confined Geometry

Clearly, the real space errors are as detailed in §3.3 as the real space term (and hence its

force and torque have not changed). The reciprocal space errors can also be obtained by

taking those derived in the standard geometry and replacing k with G and K with G.

So, neither of these results is recounted here although Bródka [5] observes that the real

space error is likely to be overestimated since it takes into account all of the space in the

simulation box even though some parts of it are empty of particles.

It is of more interest for us to look at the contribution to the error from the ELC

term added to deal with a confined geometry. This term contributes to the error since

it is heavily dependent on the reciprocal space variables G and G, which means that the

choice of kc, where kc is the reciprocal space cut-off as before, will affect this term. In fact

the cut-off in relation to this term is taken to be Gc = 2πkc
Lx

[5].Bródka [5] provides details

of the error calculations for UELC and the results in this section are taken from his work.

As we found for the reciprocal space term in three dimensional geometry there are

different contributions to the error from the diagonal and off diagonal terms and the overall

error contribution is taken to be the sum of these. Using (61) and making substitutions
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(as in §3.3) by employing a spherical co-ordinate system allows Bródka [5] to state the

following:

∆UELC
i,off = − 4π

LxLy

∑
G

G>Gc

G

eGLz − 1
{sin2 θ cosω(µγ

i ,G) cosω(µγ
j ,G) cos(G · γij) cosh(Gzij)

+ [sin θ cos θ cosω(µγ
i ,G) + sin θ cos θ cosω(µγ

j ,G)] sin(G · γij) sinh(Gγij)

− cos2 θ cos(G · γij) cosh(Gzij),

∆UELC
i,diag = − 2π

LxLy

∑
G

G>Gc

G

eGLz − 1
[sin2 θ cos2 ω(µγ

i ,G)− cos2 θ].

Following this it is again assumed that the positions and orientations are uncorrelated

and so the relationships given in (44) can be used to simplify the results above. Making

use of the Kronecker delta function and then taking the averages under the assumption

of no correlation gives [5]

〈(∆UELC
i,off )2〉 = −

(
πµ2

LxLy

)2 ∑
G

G>Gc

G2

(eGLz − 1)2
{[cos2 ω(µγ

i ,G) cos2 ω(µγ
j ,G) + 1]〈cosh2(Gzij)〉

+ [cos2 ω(µγ
i ,G) + cos2 ω(µγ

j ,G)]〈sinh2(Gγij)〉, (68)

〈∆UELC
i,diag〉 = − π

LxLy
µ2
∑
G

G>Gc

G

eGLz − 1
[cos2 ω(µγ

i ,G)− 1]. (69)

In the continuation of this calculation Bródka [5] rewrites (68) and (69) in integral notation

and then evaluates these analytically. Finally he combines the diagonal and off diagonal

terms using the following formula for the error of the ELC term in the total potential

energy:

∆UELC ≈

√√√√√1

2

N∑
i=1

N∑
j=1
j 6=i

〈(∆UELC
i,off )2〉+

N∑
i=1

〈∆UELC
i,diag〉.

This results in an upper bound for the error of the ELC term given by

∆UELC ≈ Nµ2

4

1

eGLz − 1
{g2(Gc, Lz) +

1

2

√
π

2LxLy

×
√

9e2Gchg1(Gc, Lz − h) + 22g1(Gc, Lz) + 9e2Gchg1(Gc, Lz + h)}

where

g1(G, x) =
G3

x
+

3G2

2x2
+

3G

2x3
+

3

4x4
,

g2(G, x) =
G2

x
+

2G

x2
+

2

x3
,
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and h is taken to be the distance between two strips. Care has to be taken not to confuse

h with H, which is the height of the strips (i.e. H = Lz − h).

The method employed by Bródka [5] echoes the method used by Wang and Holm [33]

that was recounted in §3.3. As was demonstrated in the case of the Ewald method for

a standard geometry the same process can be used to perform error calculations relating

to the expressions for the force and torque. Once the ideas discussed in §5.3 have been

developed error calculations and numerical work will test the accuracy of the results

obtained. However, due to time restraints this has not been accomplished in this report.
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6 Conclusion

This project has provided a comprehensive look at the theory surrounding the Ewald

summation and its ability to model dipolar interactions. In any computer simulation the

ability to decrease the running times and costs of programs is pivotal and this idea has been

discussed throughout this report. The Ewald method itself is computationally effective

but this effect can be enhanced by the use of fast Fourier transforms and optimising the

parameters. Although this report does not generate new results other than discussions

regarding the force and torque contribution from the electrostatic layer correction (ELC)

term (as far as I could see such work has yet to be published) it provides a thorough

background to the work that has been done previously. The knowledge gained from this

provides a spring board to developing the ideas discussed and there is clearly an interest

among scientists in furthering this field.

6.1 Further Work

Unfortunately due to the time constraints of this project I was unable to program the

formulae discussed in relation to a slab geometry in order to simulate the behaviour

here. However, I will continue to work in this area as part of my PhD studies with

the aim of publishing any advances made. It will be of great value to use the methods

discussed in §3.3 and §5.4 to perform and verify error calculations for the force and torque

contributions from the ELC term in a confined geometry. As part of this I aim to discuss

the optimisation of the parameters for dipolar interactions in a confined geometry.

Another obvious action will be to program the results given in §5 and once successful

to look at the situations this model can be applied to. Its application in the modelling of

shear stress in a system of latticed boxes is of particular interest. The Ewald summation

cannot be used to model shearing in a system such as that described in §2.2 as creating

shear between layers of simulation boxes destroys the periodicity inherent in the Ewald

method. However, once we can apply the Ewald method to a confined geometry we can

use this to our advantage. The walls created to simulate the slab geometry can be used

to create the shear, leaving the structure of simulation boxes, and hence the periodicity

of the system, unchanged. In initial simulations the top wall can be ’pulled along’ at

a steady rate to simulate steady shear and later simulations may model more sudden

shear by ’pulling’ the wall with more force. A further extension to this would be to use

a sin function to simulate oscillation of the top wall and model the effect of this on the

system. This will have similarities to the work of Wang et al. [34] who modelled shear in

electro-rheological (ER) fluids but were unable to implement the Ewald method owing to

the restrictions described previously.
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Appendix A List of Symbols

Most of the symbols included in this list are given in their general form only although

many are used in conjunction with various subscripts and superscripts. The following

notes give an idea of the subscripts and superscripts used, although it is not intended to

be exhaustive.

Throughout this report a subscript c generally means that charge-charge interactions

are being discussed whilst a subscript d refers to dipole-dipole interactions. If neither

subscript is given it is likely to be dealing with dipolar interaction since no subscript is

used in chapters dealing with these only. However, be wary as a subscript c is also used

when discussing cut-offs for dipolar systems. Check the notes at the start of each section

for further clarification. Other subscripts, such as i, j and k refer to individual particles

whilst subscripts x, y or z refer to a symbol relating to an element of the co-ordinate

system.

Superscripts are used to denote individual terms of an element that is usually obtained

by summing all such terms. Superscript r refers to an expression in real space, whilst a

symbol with superscript k is given in reciprocal space. Other superscripts used include

surf to indicate surface terms and self to indicate terms of self-interaction. When refer-

ring to the confined geometry system the superscript of various components is modified

to have the word slab in front.

A.1 Latin Alphabet

d dimensionality of the system

E electrostatic field

F force

H width of strips containing particles in confined geometry representation

k absolute value of k

kc cut-off in reciprocal space

k Fourier space position in respect to the centre of the distribution

L length of the simulation box

M total dipole moment

n vector representing the simulation box

ns number of clusters of size s

i



N number of particles in the simulation box

q a charge

r absolute value of r

rc cut-off in real space

r position

rij distance between particles i and j given to be ri − rj

T total computing time

U potential energy of particle-particle interactions

V volume of simulation box

A.2 Greek Alphabet

α Ewald splitting parameter that describes the width of the Gaussian charge distribution

γij projection of rij into (x, y) plane

δ required accuracy

∆F error in the force calculation

∆τ error in the torque calculation

∆τ error in the potential energy calculation

∆Θ cut-off error for dipolar Ewald summation

ε0 permittivity of free space

εs relative permittivity (dielectric constant)

λ dipolar coupling constant

µ a dipole

ρcharge Gaussian charge distribution used in derivation of Ewald summation

ρ̂charge Fourier transform of ρcharge

σ particle size

τ torque

ii



φ volume fraction of particles

χ direction and magnitude of a pair-potential’s contribution to error

ω the angle between two vectors
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Appendix B Glossary

Brownian motion The presumably random drifting of particles that are suspended in

a fluid.

charge A unit of matter which is either positive (contains more protons than electrons)

or negative (contains more electrons than protons).

colloid A substance dispersed microscopically throughout another substance. In this

project we look at magnetic particles dispersed in liquid.

colloidal suspension A material that possesses attributions of more than one state of

matter.

complementary error function (denoted by erfc(x)) The complement of the Gaus-

sian error function given by 1− erf(x).

Coulomb’s law A law describing the electrostatic interaction between charged particles.

In scalar form it is
zizj

4πε0r2
.

coupling constant A measurement of the strength of the force involved in an interac-

tion.

dipole A unit of matter that is negatively charged at one pole and positively charged at

the opposite pole.

electro-rheological (ER) fluid A fluid that changes behaviour when an electrical field

is applied.

electrostatic interaction An interaction between charged particles.

ferrofluid A fluid with nanometric particles that changes behaviour when a magnetic

field is applied.

free space A perfect vacuum used in theoretical physics to discuss idealised situations.

Gauss error function (denoted by erf(x)) A special function used in measurement

theory; its use in other areas of maths is not related to errors in measurements

except by name.

long range interaction A spatial interaction that decays at a rate no faster than r−d,

where r is the molecular separation and d is the dimensionality of the system [1].

magneto-rheological (MR) fluid A fluid with micrometric particles that changes be-

haviour when a magnetic field is applied.
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microcanonical ensemble (NVE) A system where the moles (N), volume (V) and

energy (E) remain constant over time.

minimum image convention A form of periodic boundary conditions whereby each

particle only reacts with the closest image of each of the remaining particles.

molecular dynamics A computer simulation method used to solve Newton’s laws of

motion.

Newtonian fluid A fluid that can be categorised by its viscosity at a certain tempera-

ture.

pair potential The potential energy between two interacting objects.

permittivity The measure of resistance when an electric field is formed in a given

medium.

point charge An idealised zero dimensional particle used to represent an object when

the size and shape is irrelevant in the given context.

potential energy The energy of an object or system affected by position.

reciprocal space (also called k-space) The space in which Fourier transforms are repre-

sented.

rheology An area of physics involving the study of the deformation and flow of non-

Newtonian fluids.

screened charge A point charge that has been damped by a surrounding field of charges.

shear stress A stress that arises as a result of force applied parallel to the cross section

studied.

torque The tendency of a force to rotate an object about an axis.
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[6] A. Bródka. Optimal parameter values of the Ewald method with electrostatic layer

correction for Coulomb interactions in slab geometry. Journal of Molecular Structure,

792-793:56–61, April 2006.
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