
University of Reading

MSc Dissertation

Numerical Approximation of a
Quenching Problem

Author:

Michael Conland

Supervisor:

Professor Michael J. Baines

August 21, 2010

I confirm that this is my own work, and the use of all material from other sources has

been properly and fully acknowledged.

Signed:
Date:

1

Abstract

This dissertation contains a study of the effectiveness of using an r-adaptive moving mesh

method on the quenching equations ut = 1
a2uxx + f(u) and ut = 1

a2∇2u + f(u), where

f(u) = 1
(1−u)θ

, which under the right conditions are known to blow up in finite time in

the centre of the domain on which they are being solved. Preliminary studies are carried

out using fixed mesh methods, before using ut as a monitor function for calculating nodal

velocities in both a one and a two dimensional case. Numerical results are compared and

conclusions drawn on the use of ut as a monitor function.

Acknowledgements

The greatest of thanks must be directed towards my supervisor Mike Baines, whose door

was never closed. Without his continued support, wealth of knowledge, ideas and that

draw which never seems to run out of scrap paper, none of this would have been possible.

Contents

1 An Introduction 3

1.1 What is Quenching? . 3

1.2 Adaptive Methods . 5

1.3 Monitor Functions and Methods For Solution 6

1.4 Aims of This Study . 7

2 Preliminary Tests 9

2.1 A Test in One Dimension . 9

2.2 A Test in Two Dimensions . 13

3 One Dimensional Adaptive Method 16

3.1 The Finite Element Part . 18

3.2 Numerical Solution . 19

3.3 Results . 23

3.4 Adaptations . 24

3.5 Critical Analysis . 27

4 A Two Dimensional Adaptive Method 28

4.1 The Finite Element Part in 2 Dimensions 32

4.2 The Triangulation . 33

4.3 Assembling the Matrices . 37

4.4 Considering p . 41

4.5 Considering The Mass Matrix . 42

4.6 The Two Dimensional Solution . 45

1

4.7 Results . 47

4.8 Critical Analysis . 48

5 Conclusions and Futher Work 49

5.1 Conclusions . 49

5.2 Further Work . 51

6 Appendices 55

6.1 Appendix 1 . 55

6.1.1 Pseudo Code for the One Dimensional Adaptive Method 55

6.2 Appendix 2 . 57

6.2.1 Pseudo Code for the Two Dimensional Adaptive Method 57

2

Chapter 1

An Introduction

1.1 What is Quenching?

Quenching can refer to two very different phenomena. The first of these refers to physical

processes, often relating to the cooling of materials. For example, steel and other alloys

are often quenched by heating them to a certain temperature and then rapidly cooling

the metal to harden it. However, this is not the form of quenching being considered in

this dissertation, which is a mathematical idealisation of quenching and therefore it will

be with reference to partial differential equations (PDE) that we discuss quenching.

It is often seen when integrating a partial differential equation that the solution will

change rapidly and result in the solution tending to infinity. Often this is caused by the

rapid change in values of one particular term within the partial differential equation. For

example, the equation

ut = uxx + f(u), (1.1)

posed by Kawarada [8] (where f(u) = 1
1−u) and subsequently Liang et al [9] is known to

quench due to the rapid growth of the ut term.

Quenching can also arise in different forms. In the case of references [8] and [9], both

show that the problem being considered is symmetrical and that the quenching takes

place at a single point in the centre of the one dimensional domain. Karawada [8] also

found conditions on which the above problem will quench within finite time. Deng and

Levine [7] summarised Karawada’s work, stating that if equation (1.1) is considered in

3

the domain 0 <= x <= L, then if L > 2
√

2, u(L/2, t) will reach unity in finite time and

if that is the case, ut(L/2, t) will become unbounded in finite time. Put more crudely,

equation (1.1) will generate quenching/blow up in the centre of the domain, in finite time,

assuming the domain’s length is greater than 2
√

2.

However, it is not always the case that quenching occurs at a single point in a domain.

Chan and Ke [5] and Chan [4] found that, for equation (1.1), if f(0) > 0, f ′ ≥ 0 and

f ′′ ≥ 0, the solution will eventually reach the quenching point throughout the domain.

This is referred to as complete quenching. Studies have also been undertaken as to what

occurs post quenching, as (according to [9]) the post quenching results can also have a

physical meaning.

On another note, despite the earlier statement that the quenching referred to in this

paper will be mathematical, mathematical quenching is often related to the modelling of

physical processes. Budd et al [2] state that quenching, amongst other mathematical phe-

nomena, is known to appear in problems concerning gas modelling (Liang et al base their

paper on gas within a porous wall), combustion, detonation and mathematical biology

amongst others.

This project will centre around the solving of a quenching problem using an adaptive

method and thus we must consider why the use of an adaptive method is particularly

relevant here, since it is possible to find a quenching solution using a fixed mesh. Obviously

a numerical method is required because there is no analytic solution to equation (1.1) and

despite it being possible that a complete quenching solution exists, this only occurs under

specific conditions. Often, the quenching will occur at a single point and the issue with

a fixed mesh method is that, without high resolution, the quenching point can be missed

entirely. As such, unless the quenching point is known before the mesh is created, a very

large number of nodes is required to guarantee the uncovering of a quenching point.

This is where the adaptive methods become ideal, especially the h and r-methods

(which will be explained shortly). By starting with a fixed grid and either adding extra

nodes in or shifting them based on the solution, one can create a high resolution of nodes

around the point where the greatest rate of change (and hence the quenching point) occurs.

Therefore the advantage of using an adaptive method for a quenching problem is that the

4

mesh resolution about the quenching point is increased, thus increasing the chance of

actually locating the quenching point (assuming we do not know its location). Moving

mesh methods also have the possibility of being more efficient than their mesh refinement

counterparts, as in theory they should use fewer nodes and therefore less computational

effort.

1.2 Adaptive Methods

Generally there are three forms of adaptive method, these being the mesh refinement (h),

order enrichment (p) and mesh movement (r). This dissertation will centre around the

use of a mesh movement method with a fixed number of nodes. Rather than using the

more well known mesh refinement methods, which add extra points into the mesh where

they are required, the number of nodes will be set at the start of the method and these

will be shifted to the areas of the domain which require them.

There are both positives and negatives to the use of the mesh movement methods

rather than the refinement methods. Budd et al [2] state that h-methods have been

studied in great depth over many years, so much so that these methods now exist in

commercial codes. r-methods on the other hand have seen far less interest and as such

there are fewer studies to consider. Adding that adaptive methods can suffer greatly from

a requirement for high levels of computation. Generally, the nodes in the mesh are often

shifted using another PDE, as well as the PDE which is actually being solved upon the

mesh. As such the computational cost can be rather large, since two different systems are

being considered. This introduction of another PDE can also lead to a need to solve a stiff

system, thus increasing the computational costs again. A further complication can arise

when nodes move too quickly, forcing parts of the domain to overlap and thus invalidating

the solution.

However, despite these negative aspects, there are still arguments for the use of r-

adaptive methods. Although the computational cost of shifting the mesh can be high,

a high computational cost is just as much an issue in h-methods as it is in r-methods.

The h-method may not need to calculate a solution of a PDE to shift the nodes, but it

does have to calculate how new nodes (or the removal of nodes) get incorporated into the

5

solution. It is also stated in [2] that r-methods lend themselves well to problems in which

the spatial and temporal length scale are very different, suggesting that this should result

in an r-adaptive method being suitable in the solution of a quenching problem.

1.3 Monitor Functions and Methods For Solution

Having briefly explained both quenching and the type of method being considered here,

the means of calculating the changes to the mesh should be considered. There are two

aspects of the r-adaptive method which dramatically change the solution of the PDE.

These two aspects are the monitor function and subsequently the class of the method.

If we consider two examples for this, we can see the scope for different methods for

the solution. The first of these is the aforementioned paper by Liang et al [9]. This is

technically an h-method, but the monitor function used serves as a good example for the

different choices which can be made. In [9] a monitor function is used which is

µ(ut) =
√

1 + u2
tt,

an arc length monitor function. It should be noted that in [9], equation (1.1) is being

solved by considering the domain to have some number of equally spaced nodes in the

spatial direction. However, it is the time stepping in this paper which is adaptive and

this is what the monitor function is used for. The monitor function governs the time step

at each of the spatial nodes and alters it based on values of ut.

There are many different options when it comes to using monitor functions in refine-

ment methods. One which is particularly relevant here is that used by Baines et al [1], as

well as the various others noted in [2]. This monitor function is the mass (or area) under

the function u in the domain and the study in [1] is particularly relevant to this paper

as the method used here is very similar. The method used in [1] of conserving the mass

under the curve in time equates to preserving the area under the curve between two nodes

to be its initial values. The nodes are moved by forcing each of these areas to retain their

area (relative to the total mass under the curve) at each time step.

The subsequent part of such schemes is again summarised by Budd et al in [2]. Two

options are referred to as velocity and location based methods. Velocity based methods

6

calculate the mesh velocity to move the mesh, similar to Lagrangian methods. These

methods have spanned a vast amount of literature alone and contain studies into how to

avoid mesh tangling, solving using finite elements, methods based on conservation laws

(GCL method, explained by Cao et al [3]) and the use of penalty functions to avoid

singularities. However, there also exist studies which are centred on avoiding the use of

penalty functions as well as those advocating the use of them.

Location-based (according to [2]) methods on the other hand, employ a monitor func-

tion to determine the moving of the coordinates and the movement of the mesh will be

based on a minimisation.

1.4 Aims of This Study

The final part of this introduction is to briefly explain the aims of this study. The main

aim is to complete the derivation and subsequently the coding of a velocity-based, r-

adaptive moving mesh method. There will be two main components to this, the first of

which will be to solve the problem posed by Kawarada and Liang et al (equation (1.1))

by means of using the scaled version from [9]. This will be explained later. The second

aim is to complete a two dimensional, finite element version of this method, applied to a

circular domain using a modified version of the scaled equation posed by [9].

Clearly it will be far from simple to calculate the truncation errors created by such

schemes using analytic methods and as such, two preliminary tests will be carried out in

section 2. The one dimensional test will use exactly the same PDE as that of the one

dimensional adaptive case, whereas the two dimensional case will use a radial version of

the PDE, rather than a genuinely two dimensional version. Since the problem is known

to be symmetric (from [9]), it must be radially symmetric in two dimensions. As such,

providing a sufficient number of nodes are used, the results of a radial and a genuinely

two dimensional version of the same equation should be much the same. Both the one

and two dimensional tests will use standard, explicit finite difference schemes to solve the

PDEs.

The preliminary tests using fixed meshes will set the benchmark for the adaptive

methods, the hope being that the adaptive methods show themselves to be more efficient

7

or produce more effective results around the quenching point than that of their standard

finite difference counterparts.

The two adaptive methods shall then be considered in sections 3 and 4 respectively.

They will use the same initial conditions as the preliminary tests and in the case of

the one dimensional problem, exactly the same equation. The two dimensional case will

differ slightly from the preliminary tests, as a genuinely two dimensional equation will

be considered. However, much of the solution will be considered radially and the output

from this method will also be in radial form.

Finally, conclusions on the methods will be drawn in section 5 and then suggestions

for further work, based on what has been found in this study, will be made.

Previous work has been carried out on a very similar problem to this, using the method

from [1], by Cole [6]. The equation ut = uxx + u2 was considered, with u as the monitor

function. Her study proved that the method from [1] could be applied to such a PDE and

thus, the hope is that this similar method will prove successful in solving the PDE being

used in this dissertation.

8

Chapter 2

Preliminary Tests

The reasoning behind performing these basic tests is to give benchmark values using

schemes with known error estimates. The equation proposed in [8] has no analytic solution

and therefore there is no definite solution to test the adaptive methods against. As such,

two preliminary tests will be undertaken, one for the one dimensional case and a second

to give an approximation to a two dimensional solution, since the the problem posed is

radially symmetric. Both tests will be carried out on uniform grids and with fixed time

steps using standard finite difference methods.

2.1 A Test in One Dimension

The problem being solved here is exactly that of [9] p5, which is simply a scaled version

of the equation posed by Kawarada in [8]. Thus the equation being solved is

ut =
uxx
a2

+ f(u), (2.1)

where

f(u) =
1

(1− u)θ
. (2.2)

θ will be set to 1 for the duration of this paper. The boundary conditions here are the

same as those used in [9], therefore u(t, 0) = u(t, 1) = 0. However, they did not specify

an initial condition in their paper. As such, with the one dimensional adaptive method in

mind (this will come clear later), the initial condition applied will be u(0, x) = 1
10

sin (πx).

9

Now that the initial and boundary conditions have been set, the solution can begin.

If the mesh indices are j, n and one lets u(t, x) = u(n∆t, j∆x) ≈ unj and then expands

the uxx terms using a central difference scheme and the ut term as a forward difference

scheme, then (2.1) becomes

un+1
j − unj

∆t
=
unj−1 − 2unj + unj+1

a2∆x2
+ f(unj). (2.3)

which can be rearranged to show that

un+1
j = unj + ∆t

[
unj−1 − 2unj + unj+1

a2∆x2
+ f(unj)

]
. (2.4)

By considering (2.1) and using the fact that an approximation for u has been found using

(2.4), one can also very quickly derive a approximation for ut. If the right hand side of

equation (2.1) is expanded in the same way as above, then one has

(ut)i =
unj−1 − 2unj + unj+1

a2∆x2
+ f(unj). (2.5)

Having an approximation for ut as well as u is particularly useful, as it is the ut value’s

growth which causes the quenching and as such, an approximation of it with a known

truncation error provides a useful tool for analysing the adaptive one dimensional case.

Using this fairly straightforward method of numerically solving the problem also allows

for the truncation error of the scheme to be found fairly simply. If we consider equation

(2.3), then the truncation error estimate can be calculated by first considering

τnj =
un+1
j − unj

∆t
−
unj−1 − 2unj + unj+1

a2∆x2
− f(unj), (2.6)

with unj replaced by u(j∆x, n∆t). These terms can all be expanded using the Taylor

Series about u(j∆x, n∆t). Applying this expansion to equation (2.6) results in

τnj = 1
∆t

[
u+ ∆tut + ∆t2

2
utt + · · · − u

]

− 1
a2∆x2

[
u−∆xux + ∆x2

2
uxx − ∆x3

3!
uxxx + ∆x4

4!
uxxxx + . . .

−2u+ u+ ∆xux + ∆x2

2
uxx + ∆x3

3!
uxxx + ∆x4

4!
uxxxx + . . .

]
− f(u),

where u represents u(j∆x, n∆t) here. Clearly, many of these terms cancel, which leaves

us with

τn = ut +
∆t

2
utt −

1

a2
uxx −

∆x2

12
uxxxx − f(u) +O(∆t2) +O(∆x4).

10

Using equation (2.1), three more terms can be removed, thus reducing the above equation

to

τn =
∆t

2
utt −

∆x2

12
uxxxx +O(∆t2) +O(∆x4). (2.7)

Therefore the method is first order in time and second order in space.

Applying the schemes from equations (2.4) and (2.5), using different time steps and

numbers of nodes, produces reasonable results even using time steps as large as 0.01 and

∆x as large as 0.1. However, in an attempt to keep the errors low and since this is the

simplest method being used, ∆t has been set to 0.0001 and ∆x to 0.02. This should give

a reasonable estimate as to when the problem quenches under these conditions.

Applying these conditions results in the quenching occurring at t=0.4588. Using a ∆t

value of 0.0001 finds a convergent result. Lower values find a more exacting quenching

point, but are in the same region as produced using these conditions. It is known from

both [9] and [7] that this problem is going to quench at the centre of the domain, in finite

time, provided that the domain (0, a) is larger than 2
√

2. Since a is set to π throughout

this study, the problem will quench in finite time and at the centre of the domain.

The figures below illustrate the behaviour of u and ut in time.

(a) u plotted against x (b) ut plotted against x

Figure 2.1: u and ut plotted in time between t = 0.36 and t = 0.45 with intervals of 0.01.

11

(a) u plotted against x (b) ut plotted against x

Figure 2.2: u and ut plotted in time between t = 0.451 and t = 0.458 with intervals of

0.001.

(a) u plotted against x (b) ut plotted against x

Figure 2.3: u and ut plotted in time between t = 0.4575 and t = 0.4587 with intervals of

0.0001.

We can see from the results in figures 2.1-2.3 results that, given the parameters ∆t =

0.0001 and ∆x = 0.02, the problem quenches at approximately t = 0.4587. Figure 2.3a

shows how u is just touching 1 at this time and by this point ut has certainly blown up,

as evidenced by figure 2.3b. By the next time step the solution is post quenching and the

results no longer provide any useful information.

These results correspond to those of [9] and the solution behaves as stated by [7]. As

12

such, these results should give a reasonable estimation of what to expect from the one

dimensional adaptive case, as this will use the same initial and boundary conditions.

2.2 A Test in Two Dimensions

In this two dimensional case, equation (2.1) will need to be modified so that it applies

to a two dimensional case. The problem is known to be symmetrical and therefore,

the problem will also have radial symmetry. This lends it to being solved as a radial

differentially equation, rather than using a ∇2u term. Therefore, as a radial problem,

equation (2.1) becomes

ut =
1

a2r

∂

∂r

(
r
∂u

∂r

)
+ f(u), (2.8)

where f(u) is still defined as in equation (2.2), with θ remaining set to one.

If u(t, r) = u(n∆t, jh) ≈ unj (where h is the spacing between nodes along the radius)

and both the space and time derivatives are expanded as forward differences, then equation

(2.8) becomes

un+1
j − unj

∆t
=

1

ha2rj

(
rj+1/2

(
unj+1 − unj

h

)
− rj−1/2

(
unj − unj−1

h

))
+ f(unj),

where rj+1/2 = 1
2

(rj+1 + rj). Rearranging this shows that

un+1
j = unj +

∆t

h2a2rj

(
rj+1/2

(
unj+1 − unj

)
− rj−1/2

(
unj − unj−1

))
+ f(unj)∆t. (2.9)

Once again, ut can be approximated once the new u values have been calculated, this

time using

(ut)
n
j =

1

ha2r

(
rj+1/2

(
unj+1 − unj

h

)
− rj−1/2

(
unj − unj−1

h

))
+ f(unj). (2.10)

However, this method does require a slight alteration to work throughout the domain.

If we look at the above scheme, it can been seen that there is a division by the radial

position rj. This is not a problem throughout the domain except for one point. At the

origin, this value is 0 and thus causes a singularity. As such, an alteration is made using

using the substitution proposed by Smith [10] (p76). If for the solution of ut at the origin

we substitute in 2urr for 1
r
∂
∂r

(
r ∂u
∂r

)
, then (2.8) becomes

ut =
1

a2
2urr + f(u).

13

Applying a central difference schemes to this results in

un+1
j − unj

∆t
=

2

h2a2

(
unj−1 − 2unj + unj+1

)
+ f(unj),

which can be further rearranged to show that

un+1
j =

2∆t

h2a2

(
unj−1 − 2unj + unj+1

)
+ ∆tf(unj) + unj . (2.11)

With this condition imposed and the initial condition u(0, r) = 1
10

cos
(
π
2
r
)

and the bound-

ary condition u(t, 1) = 0, the solution can begin. The following figures show the solution

using ∆t = 0.0001 and ∆x = 0.02 for several different time intervals.

(a) u plotted against r (b) ut plotted against r

Figure 2.4: u and ut, plotted in time between t = 0 and t = 0.4 with intervals of 0.05.

(a) u plotted against r (b) ut plotted against r

Figure 2.5: u and ut, plotted in time between t = 0.41 and t = 0.423 with intervals of

0.001.

14

(a) u plotted against r (b) ut plotted against r

Figure 2.6: u and ut, plotted in time between t = 0.422 and t = 0.4233 with intervals of

0.0001.

This version of the problem quenches at t = 0.4234, which is slightly faster the one

dimensional case, although it follows the expected pattern as u and ut evolve, and finally

it quenches on the left hand boundary, which represents the origin here. As with the one

dimensional case, the ∆t and ∆x chosen ensure that the problem is converging. Using

smaller values would show a more accurate solution, but it would still quench at around

the same point in time.

Two preliminary sets of results have now been produced. They show what an approx-

imate result should be when using the two different schemes for the two cases and will

later be used as a comparison with the results from the adaptive methods. If the adaptive

methods are working correctly, one would expect them to quench at a time similar to that

of these methods.

15

Chapter 3

One Dimensional Adaptive Method

Starting from the scaled equation from [9], we have

ut =
1

a2
uxx + f(u) (3.1)

where f(u) = 1
(1−u)θ

and θ = 1. The boundary conditions are given by u(0, t) = u(1, t) = 0

and the initial condition chosen is u(x, 0) = 1
10
sin(πx). This choice of initial condition

will be explained later.

There are numerous ways in which to apply an adaptive method. In this case and

using this equation, it is known that the ut term in the solution of the PDE is the part of

the equation causing the quenching or blow-up. In [1] u is used as the monitor function,

but in this dissertation ut will be used to govern the refinement of the mesh in a very

similar fashion to that of [1]. If one lets Ai be the absolute area between two points xi

and xi+1 then we have ∫ xi+1

xi

ut dx = Ai. (3.2)

However, since the total integral from 0 to 1 is not conserved, conservation of the absolute

area is of little use in this case. A better measure is that of a percentage or relative area

with respect to the total area under ut. If we define a new variable σ to represent the

total area and Ci to represent the relative area under the curve between xi and xi+1 then

we have

σ =

∫ 1

0

ut dx (3.3)

16

and the relative area is

Ci =
1

σ
Ai =

1

σ

∫ xi+1

xi

ut dx. (3.4)

It is this quantity that will be conserved in time. At this point the choice of initial

conditions must be explained. From [9], we know that the initial u values must be in the

region 0 ≤ u0 < 1, with u(0) = u(1) = 0). Also, equation (3.3) stipulates that the initial

condition must also be twice differentiable in time, due to the use of the initial uxx term.

The sine function 1
10

sin (πx) is used, since it satisfies these criteria.

We need to know how σ changes with respect to time, as this will affect the areas Ci

in equation (3.4). As such, we differentiate equation (3.3) with respect to time to give

dσ

dt
=

d

dt

∫ 1

0

ut dx =

∫ 1

0

utt dx.

We can now substitute equation (3.1) into this to give

dσ

dt
=

∫ 1

0

(
1

a2
uxx + f(u))t dx.

Applying the time derivative and using the fact that the differentiations can be carried

out in any order produces

dσ

dt
=

∫ 1

0

1

a2
(ut)xx + f ′(u)ut dx.

From equation (3.1), ut can be substituted in again to give

dσ

dt
=

∫ 1

0

1

a2

(
1

a2
uxx + f(u)

)
xx

+ f ′(u)

(
1

a2
uxx + f(u)

)
dx.

Integrating gives

σ̇ =
1

a4
uxxx

∣∣∣∣1
0

+
1

a2
f ′(u)ux

∣∣∣∣1
0

+

∫ 1

0

f ′(u)

(
1

a2
uxx + f(u)

)
dx, (3.5)

where σ̇ = dσ
dt

. This equation will be considered later, when the numerical solution begins.

Now, equation (3.4) states that the relative area under ut is constant, so differentiating

it with respect to time gives

d

dt

[
1

σ(t)

∫ xi+1(t)

xi(t)

ut(t) dx

]
= 0.

Since σ and ut are both functions of t, the product rule must first be applied to give

d

dt

(
1

σ

)∫ xi+1

xi

ut dx+
1

σ

d

dt

∫ xi+1

xi

ut dx.

17

If we firstly considers the second term, then we can see that the Leibniz Integral Rule can

be applied to show that

d

dt

∫ xi+1

xi

ut dx =

∫ xi+1

xi

utt dx+

[
ut
dx

dt

]xi+1

xi

,

which implies that

d

dt

(
1

σ

)∫ xi+1

xi

ut dx+
1

σ

(∫ xi+1

xi

utt dx+

[
ut
dx

dt

]xi+1

xi

)
= 0.

Once again, ut can be substituted into the utt term from equation (3.1), as well as using

d
dt

(1
σ
) = − σ̇

σ2 . This gives

− σ̇

σ2

∫ xi+1

xi

ut dx+
1

σ

(∫ xi+1

xi

(
1

a2
uxx + f(u)

)
t

dx+

[
ut
dx

dt

]xi+1

xi

)
= 0

Clearly this can be multiplied through by σ, but also note that earlier Ci was defined as

equation (3.4). This can be substituted into the first term, along with the multiplication

by σ to give

−σ̇Ci +

∫ xi+1

xi

(
1

a2
uxx + f(u)

)
t

dx+

[
ut
dx

dt

]xi+1

xi

= 0.

Substituting equation (3.1) in again and rearranging produces[
ut
dx

dt

]xi+1

xi

= σ̇Ci −
1

a2

∫ xi+1

xi

(
1

a2
uxx + f(u)

)
xx

dx−
∫ xi+1

xi

1

a2
f ′(u)ut dx.

A little more simplification results in[
ut
dx

dt

]xi+1

xi

= σ̇Ci −
1

a4
uxxx

∣∣∣∣xi+1

xi

− 1

a2
f ′(u)ux

∣∣∣∣xi+1

xi

−
∫ xi+1

xi

1

a2
f ′(u)ut dx. (3.6)

The majority of these terms are known, although not all of them are simple to calculate.

The integral can be approximated using the trapezium rule and the first derivatives by

standard finite differences. However, the third derivative uxxx is more complicated and

will be evaluated using finite elements.

3.1 The Finite Element Part

To evaluate the uxxx term in equation (3.6), one can use a finite element method. If one

begins by introducing v = −uxx, then a weak form is∫ 1

0

φiv dx = −
∫ 1

0

φiuxx dx,

18

where φi is a one dimensional linear hat function. Subsequently, integration by parts

shows that ∫ 1

0

φiv dx = −φiux |10 +

∫ 1

0

(φi)xux dx.

This can be written in matrix form as

Mv = φ+Ku, (3.7)

where φ = (ux|0, 0, 0, ..., 0,−ux|N),

M =

x1−x0

3
x1−x0

6
0

.

.

0 xi−xi−1

6
xi+1−xi−1

3
xi+1−xi

6
0

.

. 0 xN−xN−1

6

xN−xN−1

3

and

K =

1
x1−x0

− 1
x1−x0

0
.

.

0 − 1
xi−xi−1

1
xi−xi−1

+ 1
xi+1−xi − 1

xi+1−xi 0

.

. 0 − 1
xN−xN−1

1
xN−xN−1

.

At this point, u and x are known and thus the solution for v can be found by applying a

tri-diagonal matrix solver, in this case the Thomas algorithm.

3.2 Numerical Solution

The first part of the numerical solution is to calculate the v values. The explanation for

calculating these values is given above. However, the initial v values can be found in a

far simpler manner. It is known that v = −uxx and that when t = 0, u = 1
10
sin(πx).

Therefore the initial values of v are given by v = π2

10
sin (πx). At later times, v is calculated

using the method explained in the previous section.

Once the initial v values have been calculated the Ci values can be found from equation

(3.4). Substituting equation (3.1) into (3.4) gives

Ci =
1

σ

∫ xi+1

xi

1

a2
uxx + f(u) dx.

19

Substituting v = −uxx into this gives

Ci =
1

σ

∫ xi+1

xi

f(u)− v

a2
dx, (3.8)

which can be approximated using the trapezium rule. The Ci values are only calculated

once, directly after the initial v′s have been calculated and are constant for all time.

If we first consider the problem at t = 0, we know the exact values of u at all points.

Once the initial values have been applied, the v values can be calculated and thus an

approximation to ut can also be calculated. This is given by

ut = f(u)− v

a2
. (3.9)

Once the time loop begins, ut is considered in two different ways. Firstly an approximation

of ut is calculated from equation (3.9), using v at each node. All of the other calculations

mentioned so far use this approximation. ut is approximated at the end of the loop, this

time using a midpoint rule applied to equation (3.4). The v values are also recalculated

at the end of the loop.

Now that ut has a value at all points, the time loop can begin. Bearing in mind that

ut, σ, the Ci values and v have all been calculated before the time loop begins, the first

thing to be calculated in the loop is σ̇.

σ̇ has already been defined in equation (3.5). However, in equation (3.5), all of the ut

terms have been expanded using equation (3.1), but now that ut has been approximated

using v, it can be reintroduced, since this is far simpler to calculate than the two terms

which are otherwise created. As such, equation (3.5) becomes

σ̇ =
utx
a2

∣∣∣1
0

+

∫ 1

0

f ′(u)ut dx. (3.10)

The first term can be approximated using finite differences applied to ut, while the integral

can be approximated using the composite trapezium rule. The approximation to the utx

term is given by one sided differences, as in

utx
a2

∣∣∣1
0
≈ 1

a2

(
(ut)N − (ut)N−1

xN − xN−1

− (ut)1 − (ut)0

x1 − x0

)
Once σ̇ is known, the next σ value in time is calculated using the forward Euler method

σn+1 = σn + ∆tσ̇

20

with a suitable choice of ∆t. Next comes the movement of the nodes. This is calculated

using equation (3.6). In equation (3.6), every term is known apart from the two dx
dt

terms.

However, two of the dx
dt

values are known. To keep the domain the same size for all time,

the two outermost nodes (x0 and xN) are fixed in position and therefore dx
dt

at these nodes

is 0. In equation (3.6) the dx
dt

terms are evaluated at xi and xi+1. Starting from i = 0, the

evaluation at xi (since there is no node movement at this point) is known and therefore

equation (3.6) can be rearranged to find the unknown dx
dt

term and all the subsequent ẋ

terms explicitly.

As with equation (3.5), one can reform any expanded ut terms using (3.1), as ut is

now known. As such, equation (3.6) becomes[
ut
dx

dt

]xi+1

xi

= σ̇Ci −
utx
a2

∣∣∣xi+1

xi
−
∫ xi+1

xi

1

a2
f ′(u)ut dx.

This can then be rearranged into the form

ẋi+1 =
α− β − γ
ut|i+1

, (3.11)

where

ẋi+1 =
dx

dt

∣∣∣∣
xi+1

α = σ̇Ci + utẋ|xi (3.12)

β =
utx
a2

∣∣∣xi+1

xi
(3.13)

and

γ =

∫ xi+1

xi

f ′(u)ut dx. (3.14)

β can generally be approximated using finite differences, with the derivatives being ap-

proximated using a central difference scheme. However, the scheme for calculating β does

need to be slightly modified if the velocity being calculated is at the first internal node

x1.

Therefore in general

β ≈ 1

a2

(
(ut)i+2 − (ut)i
xi+2 − xi

− (ut)i+1 − (ut)i−1

xi+1 − xi−1

)
. (3.15)

But, at i = 0

β ≈ 1

a2

(
(ut)i+2 − (ut)i
xi+2 − xi

− (ut)i+1 − (ut)i
xi+1 − xi

)
.

21

γ can be approximated by simply using the trapezium rule. However, wherever the trapez-

ium rule is being used to approximate an integral between xi and xi+1, the approximation

accuracy is very dependent on the number of nodes being used. The values between

nodes are unknown and thus it is not possible to increase the number of trapeziums be-

ing used to approximate any given integral. Therefore to maintain the accuracy of these

approximations, a reasonable number of nodes must be used throughout.

Once these velocities have been calculated, the positions of the nodes can be updated

using the same forward Euler method,

xn+1
i = xni + ∆tẋni . (3.16)

Once the nodes have been repositioned, the new value of ut at the nodes can be approxi-

mated by applying the midpoint rule to equation (3.4) in the form

1

σ

∫ i+1

i−1

u dx = Ci−1 + Ci.

The standard midpoint rule applied here produces

(xi+1 − xi−1) ut|xi ≈ σ(Ci−1 + Ci),

which can then be rearranged to show that

ut|xi ≈ σ
Ci−1 + Ci
xi+1 − xi−1

. (3.17)

The extra σ is present to make up for the fact that the C’s are actually a relative mea-

surement of the areas under ut, rather than the absolute values. It would be possible to

use the absolute areas Ai, but this would mean recalculating Ai at every time step using

the trapezium rule, rather than applying the above, simpler step.

Normally (if a fixed grid is used), since ut is now known, one could use

un+1
i = uni + ∆tut

to find the new ui values. However, a different approach must be taken here. We start

by defining a new variable Θ to be

Θi =

∫ xi+1

xi−1

u dx. (3.18)

22

Θi can be approximated using a trapezium rule before the time loop begins. We can

then differentiate Θi and use this derivative to calculate the new Θi values. As such,

differentiating (3.18) with respect to time produces

Θ̇i =
d

dt

∫ xx+1

xi−1

u dx.

Applying the Leibniz Integral Rule to this results in

Θ̇i =

∫ xx+1

xi−1

ut dx+ [uẋ]xi+1

xi−1
. (3.19)

The first term in equation (3.19) can be calculated using a composite trapezium rule

(the ut value here is the midpoint approximation) once again, while the second term is a

straightforward operation, since ẋ has already been found.

Now that Θ̇i is known, the new Θi values can simply be calculated using Θn+1
i =

Θn
i + ∆tΘ̇i. Once the new values of Θ are known, the new u values can be calculated

using a midpoint rule. This produces

ui =
Θi

xi+1 − xi−1

(3.20)

With the new u values known, the v and ut values are recalculated, the time step advanced

and then the time loop begins again. A summary of the numerical method in terms of its

pseudo code is displayed in Appendix 1.

3.3 Results

The method explained was coded up in C++ but does not seem to produce any form of

usable results, as the scheme becomes hugely unstable very quickly. The method does

not last anywhere near as long as the preliminary results would suggest, which seems to

be a problem caused by the movement of the nodes. Quite quickly certain nodes begin

to overlap and thus tangle up the mesh. As such, a number of adaptations have been

considered in an attempt to allow the method to produce a result similar to that of the

preliminary test.

23

3.4 Adaptations

The first adaptation used is a simple one. If we consider the calculation of β in equation

(3.15), we can see that generally β can be calculated using a central difference scheme.

However, when considering β when calculating the velocity of the first internal point, a

forward difference scheme must be considered, since the boundary conditions do not allow

for any form of ghost point to be considered. This is a problem which can be mediated

using the symmetry of the problem. It is known from both [8] and [9] that equation (3.1)

is symmetric around the centre of the domain. Therefore we can calculate the the velocity

of the nodes from the centre to u = 1 (where ẋ = 0 and then use those values to state the

velocities of their opposite nodes on the other side of the centre node.

This however, does enforce another condition on the problem, which is that as well as

ẋ being 0 at both x = 0 and x = 1, ẋ must also be 0 at x = 0.5. This further implies that

there must be an odd number of nodes so that one node lies directly on x = 0.5.

Applying these conditions does allow the method to produce more sensible results,

although they are still not entirely expected. The method is far more unstable than the

fixed mesh method, but it will run for slightly longer than the original adaptive method

using N = 10 (N represents the number of areas created, so the number nodes is in fact

N + 1) and a ∆t value of 0.001, but still fails very quickly. However, using a smaller time

step or a greater number of nodes results in the method failing more quickly, so the plots

below use ∆t = 0.001 and ∆x = 0.1.

24

(a) The solution from t = 0 to t = 0.24 at intervals

of 0.02.

(b) The solution from t = 0.241 to t = 0.25 at inter-

vals of 0.001.

Figure 3.1: u plotted against x using ∆t = 0.001 and ∆x = 0.1

So, using this slight modification (forcing the central node to remain stationary), a

quenching solution can be found. However, it is clearly not forming a solution overly

similar to that of the preliminary tests. It lasts a little over half of the time that the

preliminary method could run for under the same conditions before quenching. Although

whether this can even be described as quenching is debatable. It should also be noted

that adding more nodes and reducing ∆t did not improve this solution. Reducing the

time step makes little to no difference, while adding more nodes forces the method to fail

even faster. Lowering the number of nodes does appear to aid stability, but the solution

becomes unusable in the process as it becomes near triangular.

A greater difference between the methods so far can been when comparing the ut from

the preliminary method with that of the ut values calculated using v and the midpoint

rule from the adaptive method.

25

(a) The v estimate of ut. (b) The midpoint rule version of ut

Figure 3.2: The two different methods of calculating ut in the time period of t = 0 to

t = 0.24, with intervals of ∆x = 0.1 and a ∆t value of 0.001.

Other adaptations were made, such as forcing the v end point values to be equal to

a2 (by rearranging (3.1)) and attempting to solve for v using a central finite difference

scheme instead of a finite element scheme. The reasoning behind trying to use these two

methods is that in the formulation of the finite elements solution to v, the hat functions

(φ) and therefore ux at each end of v remain present. These hat functions themselves

are not particularly an issue, it is the multiplication by the ux term evaluated on the

boundary which is the problem.

The only boundary conditions given are that u (and therefore ut) must be equal to

zero at the boundaries, which means that ux is not specified. This poses a problem as an

estimation of ux needs to be made. A simple way to try to find these terms was to apply

a forward finite difference scheme to the ux term at x = 0 and a backwards difference at

x = 1. However, this is very crude and likely to be a major cause of problems during the

solution of v. Unfortunately, without a boundary condition, these terms are very difficult

to evaluate.

Based on this, another adaptation considered was assuming that ux = 0 weakly on

the boundaries alongside u = 0, the aim being to remove the extra terms created in the

calculations of v. However, this proved even more unstable than having the approximation

to ux in the solution.

On a positive note, forcing the central node to remain in the same position throughout

26

and thus removing the tricky β term does appear successful. The β term when calculating

the velocity of the first internal point also needed to be considered using a forward differ-

ence scheme. When solved using this, the method barely worked at all. Removing that

term by using the symmetry of the problem seemingly improved it. This in turn suggests

that perhaps the forward and backward difference schemes used in the calculation of v is

another element of the solution causing an issue.

3.5 Critical Analysis

Clearly this method has proved somewhat unsuccessful in this study. Admittedly, it could

be something as simple as a programming error, although this seems unlikely. Using the

method as originally derived proved completely unusable. The introduction of the forced

central node seems to help, but the solution produced is still very poor. Even with the

addition of the stationary central node, the scheme is highly unstable, especially when

altering the number of nodes. Raising N above 10 results in the solution method failing

very quickly indeed, due to the unstable nature of forward Euler time stepping.

It is possible that the issue is inherent in the boundary conditions. By forcing u to be

zero at the boundaries, it is possible that ut suffers at the boundaries since ut contains a

uxx term, which at the boundary is going to differ greatly from that of the internal points

because u is being forced to 0. Now, since the monitor function here is ut, it stands to

reason that perhaps it is the boundary conditions causing the issue, since they are forcing

ut to have erratic values near the boundaries. One can see in figure 3.2b that there are

three areas with large gradients in the v approximation to ut. These are most likely caused

by the large uxx values being found nearest the boundaries.

One could also consider that the choice of monitor function is not ideal. It can be

viewed in two ways. [9] stated that it is ut causing the blow up and thus, while hoping

to improve the resolution of the mesh about the quenching point, it could be argued that

moving the mesh with regards to the term forcing the blow up may work. Conversely,

since it is ut is causing the blow up, it could also be suggested that this is likely to force

the mesh to tangle as ut tends to infinity.

27

Chapter 4

A Two Dimensional Adaptive

Method

Like the one dimensional case this method begins with the equation from [9], but in this

case it clearly needs to be modified slightly. The equation has already been considered

once as a radial problem, but here it will be considered in two dimensions and thus

becomes

ut =
1

a2
∇2u+ f(u). (4.1)

For this case, f(u) remains as before (f(u) = 1
(1−u)θ

, with θ set to 1), but the initial

conditions are altered slightly. In this case the domain is circular and although the problem

will be solved using radial symmetry and thus the solution will appear one dimensional,

the same initial conditions cannot be used to represent each end of the radius. Instead,

the outer boundary of the domain will be taken to be 0 and the origin will have the

condition ∇u = 0 imposed upon it.

Like the one dimensional case, a twice differentiable function is required in the domain

which satisfies the boundary conditions. In particular u(x, y, 0) = 1
10

cos
(

2
π

√
x2 + y2

)
will

be used.

As in the one dimensional case, the means by which the points move centres around

conserving the relative volumes between points with respect to ut. So in this case we can

let

σ(t) =

∫
Ω(t)

ut dΩ, (4.2)

28

where Ω represents the domain on which the equation (equation (4.1)) is being solved,

and consider the relative area for this method, thus defining constants ci which are given

by

ci =
1

σ

∫
Ωi

ut dΩ. (4.3)

The integral over Ωi here represents the integral over the area created between two circular

rings of radius ri and ri+1. If equation (4.3) is rearranged, we get

σci =

∫
Ωi

ut dΩ. (4.4)

However, once the mesh begins its movement the σ values will be calculated using a

finite element method. This entails introducing a test (a member of a partition of unity)

function to equation (4.3) to produce

ci =
1

σ

∫
Ω

wiut dΩ, (4.5)

where w moves with v and therefore must satisfy the advection equation

∂wi
∂t

+ v · ∇wi = 0. (4.6)

Equation (4.5) can then be rearranged to show that

σci =

∫
Ω

wiut dΩ. (4.7)

For the initial σ values, all the u terms are known initially and the rings are evenly spaced.

Now, we need to know how σ changes with time and therefore equation (4.7) must be

differentiated with respect to time. This gives

σ̇ci =
d

dt

∫
Ω

wiut dΩ,

where σ̇ = dσ
dt

. Using the Reynolds Transport Theorem this becomes

σ̇ci =

∫
Ω

(wiut)t dΩ +

∮
∂Ω

(wiutv) · n ds.

The first term can be expanded using the product rule to show that

σ̇ci =

∫
Ω

wiutt + ut(wi)t dΩ +

∮
∂Ω

(wiutv) · n ds.

29

Then, by using the Divergence Theorem, this becomes∮
∂Ω

uv · n ds =

∫
Ω

∇ · (uv) dΩ.

One can quite easily show that equation (4.7) can be further rearranged to give

σ̇ci =

∫
Ω

wiutt + ut(wi)t +∇ · (wiutv) dΩ.

The third term can then be split using the fact that ∇ · (wiutv) = wiut∇ · v + v∇ · wiut

to show that

σ̇ci =

∫
Ω

wiutt + ut(wi)t + utv · ∇wi + wi∇ · (utv) dΩ.

Multiplying equation (4.6) by ut, we can quite clearly see that two of the above terms are

cancelled out and thus the equation becomes

σ̇ci =

∫
Ω

wi (utt +∇ · (utv)) dΩ. (4.8)

Now one can begin substituting equation (4.1) into the first term of (4.8), which shows

that

σ̇ci =

∫
Ω

wi

[(
1

a2
∇2u+ f(u)

)
t

+∇ · (utv)

]
dΩ.

This can then be expanded to give

σ̇ci =

∫
Ω

wi

[
1

a2
∇2ut + f ′(u)ut +∇ · (utv)

]
dΩ.

A further substitution of equation (4.1) can be made, but before this a similar approach

as in the one dimensional case is used to remove the complications produced by having

to try to evaluate a ∇4u term. Once again a substitution is made, this time allowing

p = −∇2u. The solution of p will be explained later. Substituting equation (4.1) in again

produces

σ̇ci =

∫
Ω

wi

[
1

a2
∇2

(
1

a2
∇2u+ f(u)

)
+ f ′(u)

(
1

a2
∇2u+ f(u)

)
+∇ · (utv)

]
dΩ.

If the substitution of −p for ∇2u is now used the above equation becomes

σ̇ci =

∫
Ω

wi

[
1

a2
∇2
(
f(u)− p

a2

)
+ f ′(u)

(
f(u)− p

a2

)
+∇ · (utv)

]
dΩ. (4.9)

So far, the final term of the equation has been left untouched because it needs to be

considered in a different way to the other terms. If we consider the term ∇· (utv), then it

30

can be seen that, under these current conditions, v has no unique solution since the curl

of an arbitrary function λ could be added to utv and it would not alter the solution. To

ensure uniqueness, a velocity potential ψ is introduced such that

v = ∇ψ. (4.10)

By introducing this potential, the aforementioned last term in equation (4.9) is altered

such that ∫
Ω

wi∇ · (utv) dΩ =

∫
Ω

wi∇ · (ut∇ψ) dΩ.

One of Green’s theorems can then be applied to this to show that∫
Ω

wi∇ · (ut∇ · ψ) dΩ =

∮
∂Ω

wiut∇ψ · v n ds−
∫

Ω

ut∇wi · ∇ψ dΩ

The first oterm on the right hand side is clearly zero, since ut is zero on the boundary.

This reduces equation (4.9) to

σ̇ci =

∫
Ω

wi

[
1

a2
∇2
(
f(u)− p

a2

)
+ f ′(u)

(
f(u)− p

a2

)]
dΩ−

∫
Ω

ut∇wi · ∇ψ dΩ. (4.11)

Next, an aspect taken from the one dimensional case must be considered. In the one

dimensional case a variable Θ was introduced so that a midpoint rule could be used to

calculate the new ut value. However, since the nodes are not equally spaced, the standard

midpoint rule is not particularly accurate and thus Θ was used. It is much the same case

in two dimensions. Once again a variable Θ is defined, albeit it in two dimensions this

time, such that

Θi =

∫
Ω

wiu dΩ. (4.12)

Note that Ωi represents the ringed area created between the nodes. Since this problem

is being solved on a circle with a boundary condition which is uniform along the circum-

ference it can be considered radially. Therefore, where a node previously represented a

single point on a one dimensional line, each node actually represents a circle centred about

the origin. These circles will start uniform distances apart, but then will obviously move

once the adaptive method begins. The full geometry of this problem will be explained

alongside the finite element solution.

31

As with one dimension, the change in Θ needs to be considered and thus equation

(4.16) must be differentiated with respect to time to give

Θ̇i =
d

dt

∫
Ω

wiu dΩ. (4.13)

From the previous workings involving σ and σ̇, it is clear that

Θ̇i =

∫
Ω

wi (ut +∇ · (uv)) dΩ

Once again one of Green’s theorems can be applied to the second term to show that

Θ̇i =

∫
Ω

wiut − u∇ · (wi · v) dΩ. (4.14)

4.1 The Finite Element Part in 2 Dimensions

Currently only the test function wi has been introduced. To complete a finite elements

solution to the problem a function must actually be chosen here and in this case it will

be the standard two dimensional hat function φ. Several equations ((4.11), (4.16) and

(4.17)) need to be slightly altered to take into account this hat function. Equation (4.11)

becomes

σ̇ci =

∫
Ω

φi

[
1

a2
∇2
(
f(u)− p

a2

)
+ f ′(u)

(
f(u)− p

a2

)]
dΩ−Ki(ut)ψ. (4.15)

Equation (4.12) becomes

Θi =

∫
Ω

φiu dΩ (4.16)

and (by expanding ψ as Σψjφj) equation (4.14) becomes

Θ̇i =

∫
Ω

φiut dΩ−K(u)iψi,

which can also (by expanding ut as Σ(ut)jφj) be written as

Θ̇ = Mut −K(u)ψ (4.17)

K(u) and M will be defined later in this dissertation and ψ will be known after solving

equation (4.15), thus reducing equation (4.17) to an explicit means of calculating Θ̇i.

Now, if u is approximated using u = ΣN
i=0φjwj, then equation (4.16) reduces to

Θi = (Mu)i.

32

This further reduces to

Θ = Mu, (4.18)

where M is the standard finite elements mass matrix.

As mentioned in an earlier section, the matrices K and M need to be defined, as well

as the matrix functions K(ut) and K(u). However, before the assembly of the matrices

can take place, the triangulation of the region must be considered.

4.2 The Triangulation

The two dimensional problem is being considered upon a circle with radius of 1. As with

the one dimensional case, the problem has been scaled and thus, regardless of the actual

radius, the solution is always shown on a circle with a radius of one.

To begin the triangulation, there must be a means of choosing nodes, upon which the

triangles can be based. In this case, a number (N) of ’rings’ will be placed about the

centre of the circle. Initially, they will all be equally separated, but once the adaptive

method begins this will clearly change. Upon each of these rings, an even number (M)

of nodes will be placed. Using an even number of nodes (which remains fixed) retains

the symmetry of the triangulation and forces every triangle to be isosceles. These nodes

will be alternately placed depending on which ring they lie upon. So for example: if four

nodes are chosen, then the first ring out from the centre of the circle will have its nodes

positions at 0, 90, 180 and 270 degrees. On the next ring, the nodes will be placed at

45, 135, 225 and 315 degrees. This pattern is then repeated throughout, as illustrated by

figure 4.1.

33

Figure 4.1: For this case, one can see that both N and M are 4. The centre point is

counted as one of the rings despite not actually being a ring itself. Also note that this

is a very simple example which could not be used in practice, as the angles in the larger

triangles are beginning to turn obtuse, at which point the method will fail.

By considering the problem like this, all of the triangles become isosceles, thus lending

a great deal of extra symmetry to the problem. However, it does mean that two different

types of triangle must be considered: inward and outward pointing. Clearly, the circle

created by the first ring and the centre point of the circle will only have inward pointing

triangles, but from then on each area created between the rings will be made up of both

inward and outward pointing triangles.

34

(a) The angles used in the triangulation [Note that

this figure assume that it is either K(ut)ψ or K(u)ψ

being solved.

(b) Lengths used in the triangulation

Figure 4.2: Labelling of the triangulation

It will become clearer when assembling the aforementioned K and M matrices that

every angle, side length and height for all of the triangles must be found. It was stated

above that the first set of triangles (the set between the centre point and the first ring)

are all inward pointing. They are also the most simple to calculate, as the lengths of

the pair of equal sides in each triangle are already known, as is the single angle in each

triangle.

The rest of the triangles are a little more difficult to calculate. If one considers figure

4.2, then one can see how it is possible to calculate all of the values required.

As stated above, the first set of triangles are all inward pointing and straightforward

to calculate. As such, the first triangle to be considered after this is an outward pointing

one. If one considers the height (HI
i−1) of the inward pointing triangle which has two of

its corners touching the ith ring, then one can use this to calculate the height (HO
i) of the

outward pointing triangle which shares a base with it. If one lets ri represent the position

of the ith ring, then one can see that the sum of the two heights must be equal to

HI
i−1 +HO

i = ri+1 − ri−1

35

At this point, the two r values are known and HI
i can be quite easily calculated using

Pythagoras’ Theorem to show that

HI
i−1 =

√
A2
i−1 −

R2
i−1

4
. (4.19)

Note that both the R and A terms are known here, since they come from previously

calculated values. With HI
i−1 calculated, HO

i can then be calculated using

HO
i = ri+1 − ri−1 −HI

i−1. (4.20)

Since HO
i bisects the outward pointing triangle, one can use Pythagoras’ Theorem again

to show that

Ai =

√
R2
i−1

4
+ (HO

i)2. (4.21)

Continuing with the triangle formed by the bisection, it is possible to find the remaining

angles using the sine rule by showing that

βi = sin−1
(
HO
i /Ai

)
. (4.22)

Using the fact that the triangles are all isosceles, one can then say that

δi = π − 2βi. (4.23)

γi can now be found, using one of two conditions. If it is γ1 being calculated, then

γ1 = 2π − 2β1 − 2α0, (4.24)

otherwise

γi = 2π − 2αi−1 − δi−1 − 2βi. (4.25)

Using γ, α can then be found using

αi =
π − γi

2
. (4.26)

The remaining triangle base (Ri) can then be calculated using another sine rule and

therefore

Ri = Ai
sin γi
sinαi

. (4.27)

36

Finally, the loop used to calculate the values required can only begin if the lengths and

angles in the original triangles are known. If there are M nodes on each ring, then

γ0 =
2π

M
(4.28)

α0 =
π − γ0

2
(4.29)

A0 = r1 (4.30)

R0 = A0
sin γ0

sinα0

. (4.31)

Now that the triangulation is complete, the finite elements formulation and assembly can

begin.

4.3 Assembling the Matrices

As stated in an earlier section, there are several different matrices which need to be

assembled. Three of these matrices (K, K(ut) and K(u)) are very similar and assembling

just one of them gives the general form the the remaining two. M will also need to be

assembled. However, we shall start by considering K(ut) first, as this will also give K

and K(u).

It was mentioned during the triangulation that both inward and outward pointing

triangles must be considered and therefore there are two elemental matrices which need

to be considered for assembly. If one starts by considering the standard finite elements

K matrix in two dimensions and then multiply it by İi (since this is K(ut)) and then

considers equation (4.15), then for an inward pointing triangle each element is given by

(K(ut)
I
e)i ψ =

İi
2

2 cotαi − cotαi − cotαi

− cotαi cotαi + cot γi − cot γi

− cotαi − cot γi cotαi + cot γi

ψi

ψi+1

ψi+1

 =

f Ii

f Ii

f Ii

 .

The outward pointing triangle can similarly be given by

(K(ut)
O
e)i ψ =

Ȯi

2

cot βi + cot δi − cot βi − cot δi

− cot βi 2 cot βi − cot βi

− cot δi − cot βi cot δi + cot βi

ψi

ψi+1

ψi

 =

fOi

fOi

fOi

 .

37

Where (K(ut)
I
e)i represents the elemental matrix for the ith inward pointing triangle, İ

and Ȯ represent the midpoint values of ut of the element. So İi is equal to the area of the

inward pointing triangle, multiplied by the average of the values of ut on the tips of the

triangle. As such

İi =

(
RiH

I
i

2

)(
(ut)i + 2(ut)i+1

3

)
(4.32)

and therefore Ȯ can be calculated using

Ȯi =

(
Ri−1H

O
i

2

)(
2(ut)i + (ut)i+1

3

)
(4.33)

Concentrating again on the matrices representing the elements shows that they can be

simplified due to the values of ψ on every given ring having the same value. Using this

symmetry reduces the two matrix systems to

(K(ut)
I
e) iψ = İi

 cotαi − cotαi

− cotαi cotαi

 ψi

ψi+1

 =

 f Ii

2fi

 (4.34)

and (
K(ut)

O
e

)
iψ = Ȯi

 cot βi − cot βi

− cot βi cot βi

 ψi

ψi+1

 =

 2fOi

fi

 . (4.35)

Now, to consider each area (between two rings) of triangles as a single matrix, (4.34) and

(4.35) must be combined. This results in

(K(ut)e)i ψ =

 gi −gi

−gi gi

 ψi

ψi+1

 =

 f Ii + 2fOi

2f Ii + fOi

 , (4.36)

where

gi = İi cotαi + Ȯi cot βi (4.37)

for i = 1 to N .

Now that the matrix system is known at each element it is possible to assemble the

elements to form a system covering the entire domain. However, one must first note that

the first element is different from the rest, as only inward pointing triangles exist between

the centre of the circle and the first ring. Therefore the assembly begins with İ0 cotα0 −İ0 cotα0

−İ0 cotα0 İ0 cotα0

 ψ0

ψ1

 =

 f I0

2f I0

 .

38

Adding the next element to this produces
İ0 cotα0 −İ0 cotα0 0

−İ0 cotα0 İ0 cotα0 + g1 −g1

0 −g1 g1

ψ0

ψ1

ψ2

 =

f I0

2f I0 + f I1 + 2fO1

2f I1 + fO1

 .

Adding a second element shows
İ0 cotα0 −İ0 cotα0 0 0

−İ0 cotα0 İ0 cotα0 + g1 −g1 0

0 −g1 g1 + g2 −g2

0 0 −g2 g2

ψ0

ψ1

ψ2

ψ3

=

f I0

2f I0 + f I1 + 2fO1

2f I1 + fO1 + f I2 + 2f 0
2

2f I2 + fO2

.

Adding this second full element gives the general form of the system and therefore one

can show that

K(ut)ψ =

İ0 cotα0 −İ0 cotα0 0 · · · 0

−İ0 cotα0 İ0 cotα0 + g1 −g1 0 · · · 0

0 −g1 g1 + g2 −g2 0 · · · 0

0
. 0 · · · 0

0 0 −gi−1 gi−1 + gi −gi 0 · · · 0

0
. −gN−1

0 −gN−1 gN−1

ψ0

ψ1

ψ2

...

ψi
...

ψN

= f,

(4.38)

where

f =

f I0

2f I0 + f I1 + 2f 0
1

2f I1 + f 0
1 + f I2 + 2fO2

...

2f Ii−1 + f 0
i−1 + f Ii + 2fOi

...

2f IN−1 + fON−1

. (4.39)

Note that the subscripts in the K and f matrices both have maximum values of N − 1.

This is due to the rings in the domain being labelled from 0 to N , with the elements in

the first area being labelled as element 0. Clearly, if the final ring is labelled N , then the

final elements are actually labelled as N − 1, as that is the (N − 1)th area in the domain.

39

To begin solving K(ut)ψ = f , both f Ii and fOi must be defined. Both terms come

from equation (4.15), but differ due to the φi term. If one rearranges equation (4.15) so

that K(ut)iψi is the subject then one has

Ki(ut)ψ =

∫
Ω

wi

[
1

a2
∇2
(
f(u)− p

a2

)
+ f ′(u)

(
f(u)− p

a2

)]
dΩ− σ̇ci. (4.40)

The σ̇ term is simple enough for each triangle, but the integral is a little more complicated.

If the integral has ut reintroduced and then the two terms split, then∫
Ω

φi

[
1

a2
∇2
(
f(u)− p

a2

)
+ f ′(u)

(
f(u)− p

a2

)]
dΩ =

1

a2

∫
Ω

φi∇2ut dΩ +

∫
Ω

φif
′(u)ut dΩ.

Expanded like this, the second integral is now also simple to calculate for any given

triangle, since it is simply one third of the area of the triangle, multiplied by f ′(u)ut on

the ith ring. The first term can be solved in a similar way, but using the symmetry of

the problem to approximate the ∇2ut term. Currently, the problem is being considered

on a Cartesian domain, but the problem is known to be radially symmetric and is being

solved along the radius. Therefore, rather than using ∇2ut,

1

r

∂

∂r

(
r
∂ut
∂r

)
will be considered instead. The derivation has already been seen for this in the preliminary

results section. Therefore the f values in the system can be given by

f Ii = F I
i

(
2

rja2(ri+1 − ri−1)

[
ri+1/2

(
(ut)i+1 − (ut)i
ri+1 − ri

)
− ri−1/2

(
(ut)i − (ut)i−1

ri − ri−1

)]
+ f ′(u)(ut)i

)
+σ̇ci,

(4.41)

where

F I
i =

1

6
HI
i Ri (4.42)

and ri+1/2 = 1
2
(rj+1 + rj). Similarly

fOi = FO
i

(
2

rja2(ri+1 − ri−1)

[
ri+1/2

(
(ut)i+1 − (ut)i
ri+1 − ri

)
− ri−1/2

(
(ut)i − (ut)i−1

ri − ri−1

)]
+ f ′(u)(ut)i

)
+σ̇ci,

(4.43)

where

FO
i =

1

6
HO
i Ri−1. (4.44)

Now that K(ut) is known, K(u) from equation (4.17) can also be stated.

40

K(u) given by

K(u)ψ =

I0 cotα0 −I0 cotα0 0 · · · 0

−I0 cotα0 I0 cotα0 + h1 −h1 0 · · · 0

0 −h1 h1 + h2 −h2 0 · · · 0

0
. 0 · · · 0

0 0 −hi−1 hi−1 + hi −hi 0 · · · 0

0
. −hN−1

0 −hN−1 hN−1

,

(4.45)

where

hi = Ii cotαi +Oi cot βi, (4.46)

Ii =

(
RiH

I
i

2

)(
ui + 2ui+1

3

)
(4.47)

and

Oi =

(
Ri−1H

O
i

2

)(
2ui + ui+1

3

)
. (4.48)

4.4 Considering p

It was stated earlier that p = −∇2u. As with the one dimensional case (in which p = v),

p will be solved using a finite element method. So far one has

p = −∇2u. (4.49)

If this is multiplied through by a test function wi and then integrated one has∫
Ω

wip dΩ = −
∫

Ω

wi∇2u dΩ.

Using one of Green’s theorems this can be rewritten as∫
Ω

wip dΩ =

∫
Ω

∇wi · ∇u dΩ−
∮
dΩ

wi∇u ds.

If the two dimensional hat function is introduced, this becomes∫
Ω

φip dΩ =

∫
Ω

∇φi · ∇u dΩ−
∮
dΩ

φi∇u · ds.

41

Since the hat function is not 0 around the boundary, the second term on the right hand

side is removed by weakly imposing ∇u = 0 on the boundary, thus reducing the problem

to ∫
Ω

φip dΩ =

∫
Ω

∇φi · ∇u dΩ (4.50)

This reduces to the matrix form

Mp = Ku,

where K is the standard finite elements stiffness matrix and M is a standard mass matrix.

Therefore K is given by

K =

cotα0 − cotα0 0 · · · 0

− cotα0 cotα0 + C1 −C1 0 · · · 0

0 −C1 C1 + C2 −C2 0 · · · 0

0
. 0 · · · 0

0 0 −Ci−1 Ci−1 + Ci −Ci 0 · · · 0

0
. −CN−1

0 −CN−1 CN−1

,

(4.51)

where

Ci = cotαi + cot βi (4.52)

4.5 Considering The Mass Matrix

So far three different K matrices have been considered and assembled, but to complete

the finite elements solution the M matrix must be assembled, as this is required for the

solutions of Θ, p and subsequently u. To assemble M , we shall consider it using the

equation (4.16). From equation (4.16), we know that

Θi =

∫
Ω

φiu dΩ

and therefore

Θ = Mu.

42

This is a standard finite element result, however the matrix produced does need to be

assembled, since there are multiple different sizes of triangles to be considered. Generally

an elemental matrix is given by

M =
triangle area

12

2 1 1

1 2 1

1 1 2

 . (4.53)

However, there are two different types of triangle and so a different area is considered

for each one. F I
i represents the area of the ith inward pointing triangle and FO

i the ith

outward. This produces two elemental matrices, such that

(M I
i)eu =

F I
i

12

2 1 1

1 2 1

1 1 2

ui

ui+1

ui+1

 ,

which simplifies to

(M I
i)eu =

F I
i

6

 1 1

1 3

 ui

ui+1

 . (4.54)

Similarly the inward element is given by

(MO
i)eu =

FO
i

12

2 1 1

1 2 1

1 1 2

ui

ui+1

ui

 ,

which simplifies to

(MO
i)eu =

FO
i

6

 3 1

1 1

 ui

ui+1

 . (4.55)

Combining these two results in the full elemental matrix for M , which can now be shown

to be

Meu =
1

6

 F I
i + 3FO

i F I
i + FO

i

F I
i + FO

i 3F I
i + FO

i

 ui

ui+1

 . (4.56)

If one lets Fi = F I
i + FO

i , then as with the K matrices, the first element only contains

inward pointing triangles and therfore

M0u =
1

6

 F I
0 F I

0

F I
0 3F I

0

 u0

u1

 .

43

Adding the next full element to this gives

Mu =
1

6

F I

0 F I
0 0

F I
0 3F I

0 + F I
i + 3FO

1 F1

0 F1 3F I
1 + FO

1

u0

u1

u2

 .

Adding a further element produces

Mu =
1

6

F I

0 F I
0 0 0

F I
0 3F I

0 + F I
i + 3FO

1 F1 0

0 F1 3F I
1 + FO

1 + F I
2 + 3FO

2 F2

0 0 F2 3F I
2 + FO

2

u0

u1

u2

u3

.

From this, one can see the general form of the matrix is

M =
1

6

F I
0 F I

0 0 · · ·

F I
0 3F I

0 + F I
1 + 3FO

1 F1 0 · · ·

0 F1 3F I
1 + FO

1 + F I
2 + 3FO

2 F2 0 · · ·
.

0 Fi−1 3F I
i−1 + FO

i−1 + F I
i + 3FO

i Fi 0

.

FN−1 3F I
N−1 + FO

N−1

.

(4.57)

From this, Θ can be solved using a tri-diagonal solver applied to the system

Θ = Mu,

where

u =

u0

u1

...

ui
...

uN

44

4.6 The Two Dimensional Solution

Now that all of the required variables have been defined, a method for the solution of the

problem can begin. As with the one dimensional case, a twice differentiable function has

been chosen and thus the u values can be immediately set. However, the ut values are not

so simple to set initially. In the one dimensional case the sine function being used could

simply be differentiated twice with respect to x. The initial function for u being used here

is not so easy to differentiate, as it contains both an x and a y term. Fortunately, the

symmetry of this problem allows it to be considered radially and thus the initial condition

can also be stated as 1
10

cos
(
π
2
r
)
.

It was stated in the preliminary section of this paper that the∇2u term can be replaced

with with

1

r

∂

∂r

(
r
∂u

∂r

)
. (4.58)

Substituting in the radial initial condition for u gives

1

r

∂

∂r

(
−rπ

20
sin
(π

2
r
))

(4.59)

Applying the product rule to this produces.

−1

r

(
π

20
sin
(π

2
r
)

+
rπ2

40
sin
(π

2
r
))

. (4.60)

Once in this form, it can then be seen that the initial ut can be written as

ut = f(u)− 1

a2

(
π

r20
sin
(π

2
r
)

+
π2

40
sin
(π

2
r
))

. (4.61)

Once the initial conditions are set, both the initial σ, Θ and ci values can be calculated.

The boundary conditions however, are slightly different. For the one dimensional case

both x = 0 and x = 1 had the condition u = 0 imposed upon them and therefore ut

was also equal to zero at the boundary. In this, two dimensional case, only the condition

at the outer boundary of the circle (r = 1) will have the condition u = 0 on it. This

obviously leads to ut = 0 on this boundary as well.

Once the initial condition is set, the first p values are already known since p = −∇2u

and this has already been calculated using a radial form when finding the initial ut.

Therefore the initial p values are given by π
r20

sin
(
π
2
r
)

+ π2

40
sin
(
π
2
r
)

. This will give the p

45

estimate in ut. Once this is known, σ̇ can be calculated. Equation (4.15) only refers to

each area between the rings on the circle. If equation (4.15) is summed from 0 to N , then

the K(ut) term is removed since all the rows sum up to 0. Similarly, the φi terms all sum

to 1, thus reducing the equation to

σ̇c =

∫
Ω

[
1

a2
∇2
(
f(u)− p

a2

)
+ f ′(u)

(
f(u)− p

a2

)]
dΩ, (4.62)

where c is simply the sum of all the ci values.

Once σ̇ is known, equation (4.40) can be solved and therefore the system K(ut)ψ = f

can be solved using a tri-diagonal solver.

This solution will find ψ and thus the solution of Θ̇ can begin found by considering

equation (4.17). It has already been stated that this solution is explicit, since all of the

right hand terms are known.

Once ψ is known, v can be found since v = ∇ · ψ. Once again the symmetry of the

problem can be employed to simplify this calculation. Obviously ∇ · ψ is made up of the

two components ∂ψ
∂x

and ∂ψ
∂y

, but exploiting the symmetry means that one of these terms

is 0. If for example, we assume the radius we are considering is in fact the x axis, then

∂ψ
∂y

= 0 and ∂ψ
∂x

= ∂ψ
∂r

. Therefore v can be found by simply considering a central finite

difference scheme on ψ.

It should also be noted when calculating ψ that K is singular and therefore cannot

be inverted as it is. It is known that the outer ring and the origin will not shift and thus

∇ψ = 0 at these points. However, this tells us little about the actual value of ψ at these

points. As such ψN is assumed to be zero so that the K matrix can be inverted.

With all of the above calculated, σ, r and Θ̇ can all be updated. All three are updated

using a first order Eulerian method. As such,

σn+1 = σn + ∆t σ̇n, (4.63)

rn+1 = rn + ∆t vn (4.64)

and

Θn+1 = Θn + ∆t Θ̇
n
. (4.65)

Now u can be calculated. Unlike the one dimensional method, this does not need to use

any form of midpoint rule, as the finite elements formulation produced equation (4.18),

46

which suggests that

Mu = Θ. (4.66)

Θ has already been updated and therefore this can be solved using a tri-diagonal solver,

with the final row and column of the M matrix ignored, since u is known to be 0 on the

boundary.

With this time step effectively over ut can be updated. In some ways the solution for

this more elegant than that of the one dimensional case. If one considers equation (4.7)

and adds in the hat function φ then one has

σci =

∫
Ω

φiut dΩ.

When summed from i = 0 to N , the integral becomes the standard finite elements mass

matrix and therefore

σc = Mut.

Clearly this is another system which can be solved using a tri-diagonal solver. However,

the system is slightly different from the M given in an earlier section since ut is known

to be 0 on the boundary and therefore the last row and column of the M matrix can be

ignored.

Following ut is the recalculation of p (and subsequently the estimate for ut using p)

and then the re-triangulation of the domain using the new positions of the rings.

As with the one dimensional case, the pseudo code for this method is in Appendix 2.

4.7 Results

As with the one dimensional case the method was coded up using C++ and like the

one dimensional case, the method produced nothing of use. However, whereas the one

dimensional case has almost certainly been calculated correctly, the failure of the two

dimensional case is less clear. Within one time step the mesh points have moved far too

far (well outside the domain in fact), which (assuming the programming is working for

the most part) is due to the calculation of σ̇. More about this will be said in the critical

analysis section of this method.

47

4.8 Critical Analysis

In the case of the two dimensional method it does appear that it is the program at fault,

or at least this is the easiest assumption to make. When running the program, the σ̇ value

becomes very large and negative. Further exploration into this revealed that it is not the

coding causing this outright. σ̇ is calculated by applying the trapezium rule across the

radius and then using the radial symmetry of the problem to generate the volume under

the curve. So for example, the method starts by calculating the area under the curve

between r0 and r1. This value is then multiplied by πr2
1. Therefore the volume of the

region between the origin and the first ring is given. The second ring is then calculated

by considering the area under the curve (along the radius) between r0 and r2 and then

multiplying this by πr2
2. The value from the previous area is then subtracted from this to

give the volume under the curve on the annulus between r1 and r2. This is then repeated

across the domain.

However, problems begin to arise when arriving at the penultimate area, as this re-

quires the value of ut on the boundary. ut is zero on the boundary and this forces the

radial approximation to ∇2p to generate a rather large, negative value. There is also the

added issue of calculating the value of ∇2p on the boundary.

As such, it would appear that attempting to create a solution like this is not particu-

larly viable. The integral used to calculate σ̇ would need a different method of solution,

which includes some method to approximate the ∇2ut term on the boundary.

Other than this, it is difficult to speculate on this method, as the results produced are

so poor.

48

Chapter 5

Conclusions and Futher Work

5.1 Conclusions

This dissertation has covered the use of an r-adaptive method for solving a particular

quenching problem for both one and two dimensions. Initial tests and papers by [7, 9]

gave an indication as to where in the domain the problem would quench and at what

point in time the quenching point should be reached.

Both one and two dimensional methods were attempted. The two dimensional method

added little to the study other than to illustrate that the boundary conditions play a huge

part in trying to calculate a solution if ut is taken as the monitor function.

The one dimensional method on the other hand, did provide some results and thus

several conclusions can be drawn. Though the results produced were relatively poor and

the method required some alterations to function, it does imply that ut could be used as

a monitor function, but not successfully. Assuming the coding used was indeed correct,

then the method is hugely unstable and prone to mesh tangling. Using smaller time steps

and a greater number of nodes does little to alleviate this. In fact, in the case of adding

extra nodes, once over around 21 nodes the method becomes totally unusable.

Assuming the code is operating correctly, the one dimensional method could be seen

to indicate that ut should not be used as a monitor function as it appears to create a

hugely unstable mesh. There is a fairly simple explanation for this. ut is made up of both

a uxx/a
2 term and f(u). f(u) is known to be monotonically increasing from [9] and is

49

always largest at the centre of the domain. As such, this is the term contributing a great

deal to the blow up, as while it gets larger itself, it also forces uxx to grow larger at the

centre of the domain.

However, the forcing of u and ut to be zero at the boundaries also creates two other

large values of uxx. In terms of the solution, this is not actually an issue because if u

is forced to zero at the boundaries, then uxx and thus ut will be reasonably large at the

first few internal points. However, in terms of the moving mesh, this is an issue, because

the method is attempting to cluster the points about three areas. Although it is not the

ut itself causing this issue, but the utt values which are required by the method. The

gradient of ut is very large near the boundaries, because of the forcing of u and ut to zero,

thus forcing the uxx and σ̇ values to become large and therefore forces the method to fail.

As such, the main conclusion which can be drawn from this study is that using ut as

a monitor function is incredibly dependent on the boundary conditions of the problem.

Using u = 0 at the boundaries creates such large changes in ut that the method soon

becomes unstable. What this study does allow though, is to consider further work in this

area.

50

5.2 Further Work

Having completed this study, the list of possible alterations and future work is vast. With

hindsight it is clear that aspects of this study should have been approached differently.

The poor results produced by the one dimensional adaptive method are difficult to explain,

since it it difficult to know whether it is the scheme itself which is poor, the programming

or whether the scheme simply does not suit the equation it was designed to solve. Since

it is difficult to conclude where the issue is within the method, it would seem sensible to

derive the method once more, but begin with a generic PDE of the form ut = Lu. Once

derived like this, a PDE with a known analytic solution could be chosen as a test for

the method. Possibly the largest shortcoming of this study, especially in the case of the

one dimensional adaptive method, was to not approach the method in such a way that it

could solve a generic PDE, rather than the specific case taken from Kawarada and Liang

et al.

The one dimensional case was also peculiar, in that it used an array of different

methods for solving different parts of the scheme. It would be interesting to see whether

this could be streamlined to perhaps use just finite differences for the most part, with

the trapezium rule aspect still required to solve the numerical integrations. The bulk of

the movement of the mesh would remain the same (although v would be approximated

using finite differences rather than finite elements), but a finite difference scheme on an

uneven grid could certainly be considered in one dimension and could perhaps prove more

accurate than the midpoint rule used.

The method used here is that of a mesh movement or motion scheme. A further study

could be to redefine the scheme entirely by continuing with ut as a monitor function,

but from there on the method would differ as the aim would be to refine the localities

with the greatest rate of change. It is clear from the literature that using an arc length

monitor function has provided some success with regards to refinement methods, so it

should prove interesting to attempt to refine a mesh using a new monitor function.

Adaptive time stepping has not been used in this case, but it is another aspect which

could improve this scheme. The ut values growing too rapidly at certain points has been

seen to force the mesh to overlap. Using an adaptive time stepping scheme, even a simple

51

method, could improve the way the mesh moves. A scheme considered during this study

would have centred around applying a universal change in time step should the change

under ut become too great. This would be crude, but being so simple it would only take

a small amount of work to implement it. Equally, it would be possible to apply a much

more complex method, similar to that of [9] to the adaptive time stepping.

Also, using ut as monitor contains two terms causing growth. uxx is large nearest the

boundaries, due to the drop off to 0, but f(u) is largest in the centre of the domain. This

suggests that ut is quite large at three different points, which could be forcing the mesh

to shift poorly. If the problem being solved is one of the form of (1.1), perhaps using f(u)

as the monitor function would prove more effective.

It was also noted during this dissertation that the use of two different methods for

calculating ut is somewhat redundant. However, this may not have made sense here, but

if f(u) is the monitor function then the method starts to become more useful. In this

case, (where ut is the monitor), ut was found and then a forward Euler method was used

to update u. However, f(u) is a function of u and therefore the midpoint method used

in the one dimensional method could actually be used to find u, rather than the Eulerian

method.

52

Bibliography

[1] M. J. Baines, M. E. Hubbard and P. K. Jimack, A Moving Mesh Finite Element

Algorithm for the Adaptive Solution of Time-Dependent Partial Differential Equations

with Moving Boundaries, Applied Numerical Mathematics (2005), 54 (3-4). pp. 450-

469.

[2] C. J. Budd, W. Huang and R. D. Russell, Adaptivity with moving grids, Acta Numerica

(2009), pp. 1-131.

[3] W. Cao, W. Huang and R. D. Russell, A Moving Mesh Method Based On The Geo-

metric Conservation Law, SIAM J. Sci. Comput., Vol. 24, No. 1 pp. 118-142.

[4] C. Y. Chan, New results in quenching, Proc. 1st World Congress Nonlinear Anal., de

Gruyeter, Berlin, 1996, 427-434.

[5] C. Y. Chan and Lan Ke, Beyond quenching for singular reaction-diffusion problem,

Mathematical Methods in the Applied Sciences, 17(1994), 1-9.

[6] S. L. Cole, Blow-up in a Chemotaxis Model Using a Moving Mesh Method, Reading

University, Dissertation, 2009.

[7] K. Deng and H. Levine, On The Blowup of ut at Quenching, The American Mathe-

matical Society, Volume 106, No. 4 (August 1989), pp. 1049-1056.

[8] H. Kawarada, On the solutions of initial-boundary value problems for ut = uxx+ 1
1−u ,

Res. Inst. Math. Sci 10 (1975), 729-736.

[9] K. W. Liang, P. Lin and R. C. E Tan, Numerical Solution of Quenching Problems

Using Mesh-Dependent Variable Temporal Steps, Applied Numerical Mathematics,

Volume 57, Issues 5-7, May 2007, Pages 791-800.

53

[10] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference

Methods, Third Edition, Oxford University Press, ISBN 0-19-859650-2

54

Chapter 6

Appendices

6.1 Appendix 1

6.1.1 Pseudo Code for the One Dimensional Adaptive Method

• Parameters are set (N , ∆x, ∆t).

• The x positions are set.

• Initial u values (u = 1
10
sin (πx)) are set.

• Initial v values (v = π2

10
sin (πx)) are set.

• Initial ut values (ut = f(u)− v
a2) are set.

• Ai values are calculated using a combination of the exact integral of uxx and the

trapezium rule.

• σ is calculated by summing the Ai values.

• Ci values are calculated by dividing each Ai value by σ.

• The initial Θ values are calculated.

• The time step is moved forward to ∆t and the time loop begins.

– σ̇ is calculated.

– σ is updated.

55

– The ẋ values are calculated.

– The x positions are updated.

– The Θ̇ values are calculated.

– The Θ values are updated.

– The u values are updated.

– The ut values are calculated using the midpoint method.

– The v values are calculated.

– The v estimate of ut is calculated using vut = f(u)− v
a2 .

– The time step is advanced and the loop begins again.

56

6.2 Appendix 2

6.2.1 Pseudo Code for the Two Dimensional Adaptive Method

• Parameters are set (N , ∆x, ∆t).

• The r positions are set.

• The initial u values (u = 1
10

cos
(
π
2
r
)

are set.

• The initial p values are set by approximating ∇2u using a radial version of the

derivative.

• The initial ut values are calculated using ut = f(u)− p
a2 .

• The initial c values are calculated.

• The triangulation of the domain takes place.

• The initial Θ values are calculated.

• The time loop begins.

– σ̇ is calculated.

– The ψ values and subsequently the v values are calculated.

– σ and the r positions are updated.

– The Θ̇ values are calculated.

– The Θ values are updated.

– The u values are updated.

– The p values are updated.

– The approximation of ut using p (put = f(u)− p
a2) is calculated.

– The ut values are updated using the tri-diagonal solver.

– The time step is advanced and the loop begins again.

57

