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Abstract

The objective of this dissertation is to investigate the effects on the solution of the modified

Helmholtz equation, via the finite element method, of uniform and non-uniform meshes.

The modified Helmholtz equation is solved analytically on a simple two-dimensional geometry

and compared to numerical solutions with both mesh schemes. Errors between the analytic and

numerical solutions are then analysed before further investigations are made into the behaviour

of solutions with other mesh schemes.
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Chapter 1

Introduction

1.1 Aim

In this thesis we use the finite element method for solving the Modified Helmholtz equation in a

two dimensional domain. Mesh generators used in conjunction with the finite element method

do not always produce good quality meshes1. Within the mesh generation process, ill shaped

elements can be created, and this can lead to significant solution errors, particularly in regions

where there is rapid solution change. Generally, if the elements in such regions are too big, and

the order of the finite element method too low, the deviation in calculated solution from the

true solution will be large.

If there is a limitation on computational resources, then depending upon the solution sought,

it may not be judicious to utilise those resources using a uniform mesh across the entire solution

domain. However, if a method of producing non-uniform meshes can be found, the computing

resources can be better used by generating a dense mesh in regions of rapid solutions change,

and a less dense mesh otherwise. Furthermore, in this case, a more accurate solution (than in

the uniform mesh case) can be found with less resources.

In the problem considered in this dissertation, we are only concerned with a simple disc-like

region. On this region (with the appropriate boundary conditions), the modified Helmholtz

equation generates solutions that change rapidly towards the boundary, and as such, we are

looking to find an adaptive mesh generation method that utilises this fact.

1A good quality triangular mesh, for example, would have all (or as near as) equilateral triangular elements

(see [2]).
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1.2 Background

The Helmholtz equation ([8]) is an elliptic partial differential equation of the form

∇2u + αu = 0, (1.1)

where u = u(x) and α is a constant. [?] This equation arises in many areas of mathematics,

and for example, is readily seen to arise in the construction of a separation solution to the wave

equation

∇2u =
∂2u

∂t2
, (1.2)

where it is assumed that the function u(x, y) can be written

u(x, t) = Û(x)T̂ (t). (1.3)

Applying the form (1.3) to (1.2) we have

∇2
(

Û T̂
)

− ∂2

∂t2

(

Û T̂
)

= 0, (1.4)

which on expansion gives

∇ ·
(

T̂∇Û + Û∇T̂
)

− ∂

∂t

(

T̂
∂Û

∂t
+ Û

∂T̂

∂t

)

= 0, (1.5)

or
1

Û
∇2Û =

1

T̂

d2T̂

dt2
. (1.6)

Using the fact that both sides of (1.6) are independent of each other and so must be constant in

order to be equal for all x and t, we obtain the one and two-dimensional Helmholtz equations

d2T̂

dt2
− κ2T̂ = 0 and,

∇2Û − κ2Û = 0, (1.7)

where κ is the separation constant.

The Helmholtz equation considered in this thesis is of the form

−∇2u + K2u = g, in Ω (1.8)

where Ω is some domain and the function u = f on the domain boundary ∂Ω.
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1.3 Solution Approach

In Chapter 2 (which summarises [2]), we begin by using the Mesh Generator (described in [2])

to discretise a circular solution domain in a number of ways, creating a number of meshes upon

which (1.8) can be solved. In Chapter 3 we solve (1.8) on the same circular domain (in radial

coordinates) using the separation of variables method to reduce it to a pair of ODEs from which

the analytic solution is fairly easily generated. In Chapter 4 we solve (1.8) numerically by

applying the finite element method to meshes already generated in Chapter 2. Once confidence

is established that the numerical method works for a uniformly graded mesh, we then modify

our mesh generation algorithm and introduce a method for adaptively controlling the mesh size.

This method is then used to generate non-uniform meshes on the same domain (Chapter 7),

and the solutions generated further explored by comparing them to the analytic solution already

determined.
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Chapter 2

A Simple Mesh Generator in Matlab

The process of discretising regions or creating meshes is used in many areas of mathematics

such as in scientific computing and the production of computer graphics. Mesh generators are

often considered to be black boxes, where we input some variables and the generator produces

an output, but we do not have any knowledge of its internal working. However, for the purposes

of this dissertation, we use a commercially available mesh generator, where the source code is

freely accessible, and details of this are given in [2]. This enables us to understand and modify,

if required, the mesh generation process and to incorporate such a mesh generator in other

computer codes.

As part of the mesh generation process, a region must be broken up into a set of tesse-

lated subregions, the vertices of which have distinct nodal points. The critical features of the

mesh generation process are therefore the identification of the nodal point locations, and of the

individual subregions that comprise the full region of interest.

The process by which the mesh generator used in this dissertation creates the triangles from

the nodes is called Delaunay triangulation [2]. The process by which the nodes are located are

described in more detail in the following sections.

‘The mesh generator code’

The particular code detailed in [2], that we will be using in this dissertation, identifies whether a

point lie either inside or outside the region of interest. This is done by using a distance function

d(x, y) that is either negative or positive, respectively. The distance function in this project

returns the signed distance function from each node position. This helps to determine if we
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need to reject the node if it is outside of our region (when d(x, y) > 0) or move the points back

to the closest boundary point after each iteration.

In this generator there are three important steps:

1. Move nodes according to the force relationship.

2. Retriangulate the bars after applying force to the points (using Delaunay Algorithm).

3. Keep iterating and moving the points until the movement of the nodes is smaller than the

tolerance, (where tolerance is the error term).

‘Mesh Generator’ Triangulation Method

The triangulation process for a given set of nodal points P , joins the nodes in such a way that

most of the triangles produced are almost equilateral. By retriangulating skinny triangles this

leads to more accurate results. It does this by re-triangulating bad triangles (skinny triangles as

shown in Figure(2.1)). If necessary, the nodes within the region are moved until such a condition

is met. Triangultion is carried out using the Delaunay algorithm.

Any set of points can be triangulated by using the Delaunay algorithm which considers the

edges of the triangular subregions as rigid bars and the triangle vertices as movable joints joining

the bars.

Figure 2.1: Delaunay triangulation-Retriangulating Skinny triangle t [4]
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2.1 Algorithm

To summarise, the mesh generator begins by generating a uniform mesh on a bounding box

around our shape of interest, rejecting nodes that lie outside the shape. It then attempts to

move the nodes around in an iterative fashion by the force, retriangulating the nodes until the

nodes are moved by a distance less than a specific tolerance. Each of the bars in the mesh has

a force displacement relationship F(P), where F(P) depends on the internal and external forces

(internal forces come from the bar and external from the boundary).

F(P) is the vector relating the forces between all of the nodes, this is made up of f(l, l0) where

f(l, l0) is the force between any two nodes. There are many choices for the force displacement

function f(l, l0) in each bar, the one used in [2] models the ordinary linear spring so shown below.

f(l, l0) =







k(l0 − l) if l < l0

0 if l ≥ l0.
(2.1)

(k =constant, l=current length and l0=initial length). We want the force f(l,l0) function to give

repulsive forces hence f(l, l0) >0, the reason being that this will help the nodes spread out over

the region giving more accurate results and produce better quality meshes. Also for nodes which

do not move around and stay fixed in one position, f(l,l0)=0. This makes sense since fixed nodes

are not allowed to move at each iteration implying that initial length and current length are of

the same length.
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(a) Starting point (b) Steady state

Figure 2.2: Suppose we have a point placed inside a square box with four springs of equal lengths

attached to it, some stretched more than others. There will be forces acting on the point moving

it around until it reaches it steady state, i.e. its equilibruim position.

F(P) is a function which has to be solved for equilibrium mesh points. This is a difficult

problem to solve because of the discontinuity in the force function F(P) due to the fact that the

structure is changed by Delaunay as the points move due to the forces and also the external

reaction forces at the boundaries keeping the nodes inside the region.

In order to try and get an equation for this force function, we introduce an artificial time-

dependence for P , the locations of the points, with P(0)=P0 and t≥ t0. This gives the system

of Ordinary Differential Equations

dP

dt
= F (P ) t≥ 0. (2.2)

To find stationary solutions (when F(P)=0) the system can then be approximated using Forward

Euler, (other methods can also be used however this is the one mentioned in the paper[2]). The

main advantage of using this method is that it is simple:

Pn+1 = Pn + ∆tF (Pn). (2.3)

where Pn ≈ P (tn) and tn=n∆t. If any of the points move outside the region after the update,

they are moved back to the closest boundary point using the distance function implying that

the points can only move along the boundary but not go outside.

For uniform meshes l0=constant (defined in (2.1)) but sometimes it is better to have regions

of different size since, in some cases the solution method may require small elements close to a
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singularity to give good global accuracy in which case a high resolution is required. In some cases

Figure 2.3: An example of a nonuniform mesh- A high resolution (non-uniformity) is required

to capture this discontinuity, this is done by placing extra nodes near singularity-([2]).

the desired edge length provided by the user h(x,y) does not equal the actual size. For example

if h(x,y)=1+x in a unit square, the edge length close to x=0 will be about half the length of

the edge close to x=1. So to find the scaling factor between the actual and desired mesh size

we compute the ratio between the mesh area from the actual edge lengths l and ‘desired size’.

Scaling Factor = (
∑ l2i

h(xi, yi)2
)

1

2 . (2.4)

The scaling factor is used in the implementation to give the desired lengths l from (2.1) from

which we can calculate the force and use this to update the node position.

8



2.2 Implementation

The complete source code for the mesh generator can be found in [2], however this section gives

a brief overview of how the meshes are produced, illustrated in Figure (2.2)

Figure 2.4: A simple flow chart representing how the mesh works
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The mesh function produces the following outputs:

• node position p.

• triangle indices t.

Input arguments are as follow:

• fd- Distance function which returns all the signed distances from each node to the closest

boundary, this helps decide if the nodes are inside or outside the boundary.

• fh-desired edge length function which returns all h=h(x,y) for all input points (h=h(x,y)=maximum

size length, constants for uniform meshes, otherwise functions for non uniform meshes).

• h0-distance between points in the initial distribution p0 (In this thesis h0=h).

• bbox-bounding box=[xmin,ymin:xmax,ymax] places a box over our shape so we can calculate

the signed distances from the nodal points to the boundary (See Figure(2.5(a)) and (2.5(b))

Step 1)

• pfix-fixed node position, for example if we want to look at a unit square with a hole we

want to fix the four corners of the square so it does not move.
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Step 1

The first step in the program creates a bounding box with a uniform distribution of nodes,

corresponding to equilateral triangles. The domain that we seek is a mesh which must lie inside

the bounding box.

(a)
√

3h0

2
in the y direction, shifting all even rows h0

2
to

the right, all the points distance h0 from their closest

neighbors

(b) Bounding box

Figure 2.5: Bounding Box=[xmin,ymin:xmax,ymax] the one used is [-1,-1;1,1]

Step 2

Remove all the points outside the desired geometry (d(x,y)>0 where d(x,y) is the distance to

the boundary).

Step 3

Evaluate h(x,y) (from the fh function) at each node and keeping the points with a probability

proportional to 1
h(x,y)2

, giving us a much finer grid. (Explained in Chapter 6). If we reject too

many points there will be very few nodes in our domain to triangulate using Delaunay hence

the maximum node movement is never smaller than the tolerance causing non termination of

the algorithm.

11



(a) Uniform triangulation (b) Non uniform triangulation

Figure 2.6: Figure(2.6(a)) shows a uniform mesh and Figure(2.6(b)) a non uniform mesh reject-

ing the exterior points and some interior ones

Step 4

Now the code enters the main loop, Delaunay triangulation triangulates the nodes.

Step 5

If the centre of the triangle is outside the region it has to be removed.

Step 6

Since most edges will appear twice, duplicates have to be removed.

Step 7

Calculate the f(l, l0)=l0 − l (where f(l, l0)>0 to give repulsive forces) and update using (2.3)

(f(l, l0)=0 for fixed nodes).

Step 8

Is the new node outside the boundary? If so, then it is moved back to the closest boundary

(using the distance function).
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Step 9

If the maximum node movement in the final iteration is smaller than the tolerance then we

terminate the iteration, if not we go back to the Delaunay triangulation and repeat the whole

algorithm in an iterative fashion until the maximum node movement is smaller than the toler-

ance.

(a) Uniform Mesh where the maximum node movement

is smaller than the tolerance

(b) Non-uniform mesh where the maximum node move-

ment is smaller than the tolerance

Figure 2.7: After applying the Delaunay Algorithm to Figure (2.6(a)) we get (2.7(a)) and to

Figure (2.6(b)) we get (2.7(b)) where Figures (2.7(a)) and (2.7(b)) are better because maximum

node movement in the final iteration is smaller than the tolerance hence giving the optimal

mesh.

2.3 Quality of the meshes produced by the ‘Mesh Generator’

One way of measuring the quality of the mesh is calculating the ratio between the radii of the

largest inscribed circle (times two) and the smallest circumscribed circle:

q = 2
rin

rout
=

(b + c − a)(c + a − b)(a + b − c)

abc
(2.5)

Where a, b, c are side lengths.The mesh generator used in this thesis produces triangles that

are almost equilateral which implies that q=1, giving good quality meshes where q>0.5 and also

good uniformity. This is advantageous because all the triangles will of a similar shape, and most

13



of the angles will be close to 60o giving good numerical results.

2.4 Future Improvement

Advantages

• Code is short and simple with full documention [2] provided explaining how it works.

• Produce good distances to the boundary which in turn produces high quality meshes.

Disadvantages

• Slow execution and sometimes the possibility of non execution (because the maxmimum

node movement is never smaller than the tolerance).

• Sometimes it does not produce very good meshes especially when we reject too many

points and our region becomes unstable.

In Chapter 8 we will look at how changing the tolerance will affect the number of points in the

mesh or how big or small the errors are and whether it will give us a good solution.
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Chapter 3

Analytical Solution to The Modified

Helmholtz Equation

This chapter will look at solving the Modified Helmholtz equation with both a Neumann and

Dirichlet boundary conditions establishing the exact solution on a circle with radius 1.

Taking the modified Helmholtz equation to be of the form

−∇2u + K2u = 0 (3.1)

where K=constant, we seek u(r, θ) on a circular domain of radius 1. In order to establish the

solution we assume that u(r, θ) can be written in the form

u = R(r)Θ(θ), (3.2)

and begin by substituting (3.2) into (3.1) by writing the operator ∇2 in polar coordinates as

∇2 =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂θ2
. (3.3)
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Calculating the derivatives

∂2u

∂r2
=

∂2R

∂r2
Θ = R′′Θ (3.4)

1

r

∂u

∂r
=

1

r

∂R

∂r
Θ

=
R′Θ

r
(3.5)

1

r2

∂2u

∂θ2
=

1

r2

∂2Θ

∂θ2

=
Θ′′R

r2
, (3.6)

we obtain by substitution into (3.3)

−R′′Θ − R′Θ

r
− Θ′′R

r2
+ K2RΘ = 0. (3.7)

Dividing both sides of (3.7) by Θ and R, and rearranging, we obtain

−r2R′′

R
− rR′

R
+ K2r2 =

Θ′′

Θ
= C, (3.8)

where C is the separation constant. As in §1.2, since both sides are independent of one another,

they must both be constant giving rise to the two ODEs

r2 R′′

R
+

rR′

R
− (K2r2 + C2) = 0, and, (3.9)

Θ′′ − CΘ = 0. (3.10)

where Θ is 2π periodic.

Considering (3.10) we have three possible cases for the separation constant C, and these are:

C = 0:

In this case Θ=AΘ + B, and we must choose A = 0 and hence Θ = B to ensure a 2π periodic

solution.

C > 0:

In this case, since Θ = A sinh(θ) + B cosh(θ), the solution must be disregarded (i.e. C ≯ 0) as

the hyperbolic functions sinh and cosh are not 2π periodic.

C=-α2 < 0:

In this case, the solution is the periodic function Θ=A cos(αθ)+B sin(αΘ). In order to establish

2π periodicity, we must have

sin(α(θ + 2π)) = sin(αθ)

16



or

sin(αθ) cos(α2π) + cos(αθ) sin(α2π) = sin(αθ).

For this to be so, we conclude that α = n, where n ∈ Z.

Writing C = −n2 and defining a new variable r̃ = Kr allows (3.9) to be written as the modified

Bessel equation

r̃2R̃′′ + r̃R̃′ − (r̃2 + n2)R̃ = 0. (3.11)

This equation has the two modified Bessel function solutions (see [7])

R = I±n(r̃), and, (3.12)

R = Kn(r̃). (3.13)

The limiting form of Kn(r̃) for small arguments is of the form (referring to [7])

Figure 3.1: The variation in I+nx for n=1,2...,5 (see [6]).

Kn(r̃) ∼ ln r̃, n = 0,

Kn(r̃) ∼ 1
2Γ(n)(1

2 r̃)−n, n 6= 0.

When r = 0, Kn(r) becomes infinite in both cases and so cannot represent the solution to (3.1).

This implies that R(r) must take form R(r) = I±n(Kr) so that the solution to (3.1) for a single

mode n must be

un(r, θ) = I±n(Kr)[A cos(nθ) + B sin(nθ)]. (3.14)
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Since (3.1) is linear, all such modes (3.14) are solutions, and so the general solution is

u(r, θ) =
∞
∑

n=0

In(Kr)[An cos(nθ) + Bn sin(nθ)], (3.15)

where the constants An and Bn are determined by the applied boundary conditions.

3.1 Dirichlet Boundary Condition

We now consider the Dirichlet boundary condition

u(1, θ) = 1. (3.16)

Substituting (3.16) into (3.15) we obtain

u(1, θ) =
∞
∑

n=0

In(K)(An cos(nθ) + Bn sin(nθ)) = 1 (3.17)

To determine the constants An and Bn we proceed in a standard manner by pre multiplying

(3.17) by cos(mθ) and integrating over a 2π period giving

∫ 2π

0
cos(mθ)dθ =

∞
∑

n=0

In(K)

[

An

∫ 2π

0
cos(nθ) cos(mθ)dθ + Bn

∫ 2π

0
sin(nθ) cos(mθ)dθ

]

. (3.18)

Calculating each of the terms on the RHS of (3.18) we have

•
∫ 2π

0
cos(mθ)dθ =







0 for all m6=0

2π m=0

•
∫ 2π

0
cos(mθ) cos(nθ)dθ =



















0 if n+m and n-m both 6=0

π if n=-m or n=m but not both

2π n=-m and n=m so n=m=0

•
∫ 2π

0
cos(mθ) sin(nθ)dθ =







0 if n-m6=0 and m+n6=0

0 if n-m=0 or n+m=0

When these coefficients are substituted into (3.18) they must satisfy the following:

For m=0:

2π =
∞
∑

n=0

In(K)



An







2π if n=0

0 if n6=0
+ Bn(0)





18



A0 =
1

I0(K)
. (3.19)

For m6=0:

0 =
∞
∑

n=1

In(K)



An







π if n=m or n=-m

0 otherwise
+ Bn(0)





implying

0 = πAmIm(K)

So, either Am=0 or Im(K)=0, Im(K)=0 is only true if K=0 however this is a contradiction

because K 6=0 because K cannot equal to zero, and so In(K) 6=0 implying

Am = 0. (3.20)

for all m6=0.

We proceed in the same manner to find Bm, the typical sine coefficient: Return to (3.17),

multiply both sides by sin(mθ) and integrate giving us the following:

∫ 2π

0
sin(mθ)dθ =

∞
∑

n=0

In(K)

[

An

∫ 2π

0
cos(nθ) sin(mθ)dθ + Bn

∫ 2π

0
sin(nθ) sin(mθ)dθ

]

. (3.21)

Each of the term is calculated as follows

•
∫ 2π

0
sin(mθ)dθ =







0 for all m6=0

0 m=0

•
∫ 2π

0
cos(nθ) sin(mθ)dθ = 0

•
∫ 2π

0
sin(mθ) sin(nθ)dθ =







π if n=m or n=-m

0 otherwise

When these coefficients are substituted into (3.21) they must satisfy the following:

For m=0:

0 = I0(K)[πB0] (3.22)
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This implies that either I0=0 or B0=0, however I0 is a constant and cannot equal zero which

means that B0 must equal zero.

B0 = 0. (3.23)

For m6=0:

Bm = 0. (3.24)

Finally we go back to the equation (3.15) and substitute in the coefficients to get the following

solution

u(r, θ) = A0I0(Kr) =
I0(Kr)

I0(K)
. (3.25)

3.2 Neumann boundary condition

We now consider the Neumann boundary condition

∂u

∂r
(1, θ) = 1 on Γ (r=1) (3.26)

Differentiating (3.15), we get the following

∞
∑

n=1

KI ′n(K)[An cos(nθ) + Bn sin(nθ)] = 1 (3.27)

Using the recurrence relation from [7] (shown below)

I ′n(K) =
1

2
(In−1(K) + In+1(K)) (3.28)

Substitue into (3.27) we get the following

∂u

∂r
(1, θ) = 1 =

∞
∑

n=1

K

2
(In−1(K) + In+1(K)) [An cos(nθ) + Bn sin(nθ)]. (3.29)

To determine the constants An and Bn we proceed in a standard manner by pre multiplying

(3.29) by cos(mθ) and integrating over a 2π period giving

∫ 2π

0
cos(mθ)dθ =

∞
∑

n=0

K

2
(In−1(K)+In+1(K))

[

An

∫ 2π

0
cos(nθ) cos(mθ)dθ + Bn

∫ 2π

0
sin(nθ) cos(mθ)dθ

]

.

(3.30)
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Calculating each of the terms on the RHS of (3.30) we have

For m=0:

2π =
∞
∑

n=0

K

2
(In−1(K) + In+1(K))



An







2π if m=0

0 otherwise
+ Bn(0)





so

A0 =
2

K(I−1(K) + I1(K))

We can apply one of the properties of the Modified Bessel equation (from [7])

I−α(K) = Iα(K) (3.31)

implying

A0 =
1

KI1(K)
. (3.32)

For m6=0:

Am = 0. (3.33)

The same method produces Bn, the typical sine coefficient: Return to (3.27), multiply both

sides by sin(mθ) and integrate giving us the following:

∫ 2π

0
sin(mθ)dθ =

∞
∑

n=0

K

2
(In−1(K)+In+1(K))

[

An

∫ 2π

0
cos(nθ) sin(mθ)dθ + Bn

∫ 2π

0
sin(nθ) sin(mθ)dθ

]

(3.34)

For m=0:

B0 = 0. (3.35)

For m6=0:

0 =

∞
∑

n=0

K

2
(In−1(K) + In+1(K))



An × 0 + Bn







−π if n=m or n=-m

0 otherwise





0 =
∞
∑

n=0

K

2
[In−1(K) + In+1(K)][Bn(−π)]

So either [In−1(K) + In+1(K)]=0 or Bn=0 we know that [In−1(K) + In+1(K)]cannot equal,(

because if it does then K would have to be equal to zero, however this is a contradiction because

K cannot equal to zero). Hence

Bm = 0. (3.36)
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Finally we go back to the equation (3.15) u(r,θ) and substitute in the coefficients to get the

following solution

u(r, θ) =
I0(Kr)

KI1(K)
. (3.37)
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Chapter 4

Numerical Solution to the Modified

Helmholtz Equation

4.1 Finite Element Method

In general, there are many ways of solving Partial Differential Equations (PDEs) numerically

with advantages and disadvantages. This dissertation will use a finite element method to com-

pute the numerical solution to the Modified Helmholtz equation (3.1).

Advantages

• Can handle complex geometry.

• Neumann boundary conditions can be naturally incorporated into the Finite Element

formulation.

• Can solve a lot of complicated problems, for example the Helmholtz equation.

• Can handle complex boundaries for example a polygon.

Disadvantages

• Only approximate solutions.

• Has errors.

• Sometimes non-termination for the mesh generator.
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This chapter briefly explains the formulation of the finite element approximation. The finite

element method is a numerical method for solving the partial differential equation. Which place

piecewise polynomials in the region, where the pieces can be chosen to fit the geometry of the

problem and the computer can generate the polynomials.

4.2 Finite Element Discretization

We will be considering Modified Helmholtz Equation with a Neumann boundary condition, and

if we have time look at the Dirichlet boundary condition. The difference between these two

boundary conditions is that with a Neumann boundary condition all the basis functions have

half hats at the boundary. This is easier to calculate and can be more easier to implement than

that of the Dirichlet boundary condition condition’s, which have full hats at the boundary. This

means that we would have to choose the basis functions such that ω=0 on the boundary. We

consider the problem

−∇2u + K2u = g in Ω (domain of a circle) (4.1)

and the boundary condition given by

∂u

∂n
= 1 in Γ (on the boundary) (4.2)

To construct a weak form we multiply (4.1) by ω(x, y) and integrate over Ω (where ω(x, y) is a two

dimensional function belonging to a set of test functions which are at least once differentiable,

square integrable, piecewise once differentiable and continuous. Also u∈ C2(a,b), is at least

twice differentiable in the domain (a,b))

−
∫

Ω
ω∇2udΩ + K2

∫

Ω
uωdΩ = g. (4.3)

Now we use the two-dimensional equivalent of intergration by parts, which is Green’s theorem

in the form
∫

Ω
ω∇2u + ∇ω · ∇udΩ =

∮

Ω
ω∇u · n̂dΩ. (4.4)

which we substitute into the first term of (4.3) giving

∮

Ω
ω∇u · n̂dτ +

∫

Ω
∇ω · ∇udΩ +

∫

Ω
K2uωdΩ = (g)

∫

Ω
ωdΩ. (4.5)
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We want the first term (boundary term) to vanish, so we need to find a function that satisfies

∂f
∂r

=1 at r=1 and ∂f
∂r

=0 at r=0.

The function f where f= r2

2 satisfies the two conditions hence

Using change of variables

ũ = u − f = u − r2

2
(4.6)

Gives us a new boundary condition

∂ũ

∂n
=

∂u

∂n
− r = 0 at r=1 (4.7)

so ∂ũ
∂n

= 0. Substituting ũ into (4.1) we get the following

−∇2u + K2u = −∆

(

ũ +
r2

2

)

+ K2

(

ũ +
r2

2

)

= 0

Rewritting this in a simpler form:

−∇2ũ + K2ũ +

(

−∆
r2

2
+

K2r2

2

)

= 0. (4.8)

rewriting ∆ r2

2 = ∇2 r2

2 as a Laplacian equation in polar coordinates (3.3), we obtain

−∇2 r2

2
= − ∂2

∂r2

[

r2

2

]

+
1

r

∂

∂r

[

r2

2

]

(4.9)

=
∂

∂r
[r] +

1

r
[r] = 2.

Substituting (4.9) back into (4.8) gives the following:

−∇2u + K2u = −∇2ũ + K2ũ +

(

−2 +
K2r2

2

)

= 0 (4.10)

giving

−∆ũ + K2ũ = 2 − K2r2

2
. (4.11)

So by replacing ũ=u-f we now obtain a new equation where the first term in (4.5) (because of

our new boundary condition ∂ũ
∂n

=0 )vanishes and hence the new equation is given by

∫

Ω
∇ω · ∇ũdΩ +

∫

Ω
K2ũωdΩ =

(

2 − K2r2

2

)∫

Ω
ωdΩ. (4.12)

Since the derivatives in (4.12) are of first order compared to that of (4.1) we can approximate

ũ(x, y) by a linear combination of piecewise linear trial functions given by:

ũ(x, y) =

Ne
∑

j=1

Ujφj(x, y), ∇ũ(x, y) =

Ne
∑

j=1

Uj∇φj(x, y), ω(x, y) = φi(x, y) (4.13)
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where φj(x, y) are piecewise linear basis functions on a triangulation of the region Ω and the

corners given by i=1,.....Ne (where Ne are the number of nodes elements). We then triangulate

in Ω where the corners are (x̃i, ỹi) where i=1......Nt (where Nt are the number of triangles) and

choose basis functions φi(x̃i, ỹi) = δi,j . Note that ũ is differentiable only once and then only

between x′
is and U is piecewise once differentiable.

Substituting into (4.12) we get the following algebraic system:

Ne
∑

j=1

Uj

∫

Ω
∇φj(x, y)∇φi(x, y)dΩ+K2

Ne
∑

j=1

Uj

∫

Ω
∇φj(x, y)dΩ = (2− K2r2

2
)

∫

Ω
φi(x, y)dΩ (4.14)

rearranging gives

Ne
∑

j=1

Uj [

∫

Ω
∇φi(x, y)∇φj(x, y)dΩ + K2

∫

Ω
∇φi(x, y)∇φj(x, y)dΩ] = (2 − K2r2

2
)

∫

Ω
φi(x, y)dΩ.

(4.15)

The system of equations (4.15) is of the form

(K + M)U = F (4.16)

where U is a vector of unknowns Uj . The stiffness matrix K, mass matrix and load vector are

given by

Ki,j =

∫

Ω
∇φi(x, y)∇φj(x, y)dΩ, j = 1, ....Ne. (4.17)

Mi,j = K2

∫

Ω
φi(x, y)φj(x, y)dΩ. (4.18)

Fi = (2 − K2r2

2
)

∫

Ω
φi(x, y)dΩ. (4.19)

4.3 Stiffness matrix

In order to construct the stiffness matrix, we need to consider a general point P in a single trian-

gle. This can be described by the coordinates with vertices φA=φ(x̃1,ỹ1), φB=φ(x̃2,ỹ2), φC=φ(x̃3,ỹ3)

(refer to figure on other page) given by

φA =
Area(PBC)

Area(ABC)
φB =

Area(PCA)

Area(ABC)
φC =

Area(PAB)

Area(ABC)
(4.20)

where clearly φA+φB+φC=1. In this triangle there are three local linear basis functions,

φA, φB, φC (4.21)
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The area of a triangle with vertices φ(x̃1,ỹ1), φ(x̃2,ỹ2), φ(x̃3,ỹ3)

AreaΩi
=

1

2
D =

1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x̃1 ỹ1

1 x̃2 ỹ2

1 x̃3 ỹ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The basis function centred at (x̃1, ỹ1) is given by

φA = φ(x̃1,ỹ1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x̃ ỹ

1 x̃2 ỹ2

1 x̃3 ỹ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x̃1 ỹ1

1 x̃2 ỹ2

1 x̃3 ỹ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
x̃2ỹ3 − x̃3ỹ2 + (ỹ2 − ỹ3)x + (x̃3 − x̃2)y

(x̃2 − x̃1)(ỹ3 − ỹ1) − (x̃3 − x̃1)(ỹ2 − ỹ1)
=



















1 at (x̃1,ỹ1)

0 at (x̃2,ỹ2)

0 at (x̃3,ỹ3)

and hence
∂φ1

∂x
=

∂φx̃1,ỹ1

∂x
=

ỹ2 − ỹ3

(x̃2 − x̃1)(ỹ3 − ỹ1) − (x̃3 − x̃1)(ỹ2 − ỹ1)
(4.22)

∂φ1

∂y
=

∂φx̃1,ỹ1

∂x
=

x̃3 − x̃2

(x̃2 − x̃1)(ỹ3 − ỹ1) − (x̃3 − x̃1)(ỹ2 − ỹ1)
. (4.23)

Similar formulae hold for the basis functions centred at φB = φ(x̃2, ỹ2), φC = φ(x̃3, ỹ3). The

stiffness matrix is given by

Ki,j =

∫

Ω
∇φi(x, y)∇φj(x, y)dΩ =

Ne
∑

j=1

∫

Ω
∇φi(x, y)∇φj(x, y)dΩ. (4.24)
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The stiffness matrix is made of the entries

K =
1

4AreaΩi











K11 K12 K13

K21 K22 K23

K31 K32 K33











. (4.25)

we compute this, where the nine combinations of nodes is displayed below, and then assembled

into their appropriate locations in the stiffness matrix.

K11=ỹ2 − ỹ3)
2 + (x̃3 − x̃2)

2.

K12=(ỹ2 − ỹ3)(ỹ3 − ỹ1) + (x̃3 − x̃2)(x̃1 − x̃3).

K13=(ỹ2 − ỹ3)(ỹ1 − ỹ2) + (x̃3 − x̃2)(x̃2 − x̃1).

K21=(ỹ2 − ỹ3)(ỹ3 − ỹ1) + (x̃3 − x̃2)(x̃1 − x̃3).

K22=(ỹ3 − ỹ1)
2 + (x̃1 − x̃3)

2.

K23=(ỹ3 − ỹ1)(ỹ2 − ỹ1) + (x̃1 − x̃3)(x̃2 − x̃1).

K31=(ỹ2 − ỹ3)(ỹ1 − ỹ2) + (x̃3 − x̃2)(x̃2 − x̃1).

K32=(ỹ3 − ỹ1)(ỹ1 − ỹ2) + (x̃1 − x̃3)(x̃2 − x̃1).

K33=(ỹ1 − ỹ2)
2 + (x̃2 − x̃1)

2.

Where K is a symmetric and positive definite matrix.

4.4 Mass Matrix

The mass matrix is complicated to compute because we now have linear functions. The compo-

nents of the mass matrix are always of the form

Mi,j = K2

∫

Ω
φi(x, y)φj(x, y)dΩ i, j = 1, ....Ne. (4.26)

Each of these integrals are evaluated using the centroid rule on each triangle. One way of

avoiding this complication is to reduce this matrix to one with a more managable size and

structure (preferably diagonal). This will be a sparse and real symmetric matrix banded in

structure. Reducing the amount of computing time and saving more space

∫

Ω
φi(x, y) × φj(x, y)dΩ ≈

∫

Ω

∏

(φiφj)dΩ =







volume of pyramid if i=j

0 if i6=j
(4.27)
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Where
∏

is the sum of all the piecewise functions, and hence to evaluate our approximation to

M we add the contribution (single area)

1

3
areaΩi

φ(x̃i, ỹj) (4.28)

to the correct location for each of the three basis functions corresponding to the nodes of the

triangles i. In turn for i=1,...Nt giving the entry for one triangle:

M∆ =
K2

3











areaφ1
0 0

0 areaφ2
0

0 0 areaφ3











. (4.29)

4.5 Load Vector

This can be calculated in the same way as the mass matrix. However instead of having a 3 by

3 matrix we have a vector.

Fi = (2 − K2r2

2
)

∫

Ω
φi(x, y)dΩ (4.30)

We can take φi(x, y) outside the integral as is evaulated at the centroid and equals to 1
3 .

Fi = (2 − K2r2

2
) × 1

3











areaφ1

areaφ2

areaφ3











. (4.31)

Where we use the same area as the one used in the mass matrix

4.6 Linear Solver

The linear system can be solved using any linear solver. The conjugate gradient scheme is a

good choice because K is symmetric, positive definite and M is a diagonal matrix.

• runtime depends on size and sparsity pattern
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Chapter 5

Exact Solution to the Modified

Helmholtz Equation

From Chapter 3

u(r) =
I0(Kr)

KI1(K)
.

Refering to (3.37), the investigation conducted in Figure(5.1) and Figure (5.2) shows that the

constant K determines how fast the exact solution approaches infinity. For example a small

K results in the exact solution converges to inifinity a lot slower than that of a large K which

converges very quickly at r=1.

Figure 5.1: Exact solution plotted with different values of K
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Figure 5.2: This graph shows the rate of change as you increase K, where a logarithm of base

zero scale is used for the y axis

Further investigation shows that when approximating the Exact solution numerically we will

have to consider two different cases:

• Uniform: interval is spilt into equal partitions.

• Non-uniform: interval is spilt into unequal partitions.

The numerical method being used to obtain our approximate solution is the Finite Element

Method:

Finite Element

We wish to compare exact solution with our approximate solution method. We let our domain

be a closed interval [0,1] and let

0 = x0, x1, ......xN+1 = 1

be a partition of the interval. Then place piecewise linear functions through each of these nodes,

as shown in Figure (5.3(a)) and Figure (5.3(b)).
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(a) Uniform mesh with equal partitions accross the x axis (b) Non uniform mesh with more partitions at the

boundary r=1

Case 1: Uniform meshes

As K tends to zero a uniform mesh is perfect due to the fact that the solution does not change

very much since the exact solution is almost constant. So splitting the interval up into equal

partitions will be very beneficial because piecewise linear functions can be easily passed through

the nodes. Each of the partitions still give a good approximations (as seen in Figure (5.3(a)))

whereas for large K this is not a very good approximation to the exact solution as can be seen

for K=10, 50 and 100 (Figure (5.3(a))).

Case two: Non-uniform meshes

Close inspection shows that choosing K to be large (Figure (5.2)) places more nodes in the

interval [0,1] (near the boundary r=1 and less nodes at r=0) (Figure (5.3(b))) will be more

advantegous than that of an equal partition (Uniform mesh) which will not capture the steepness

of the solution (values close to r=1) (Figure (5.2)). Non-uniform meshes will give a better

approximation than that of uniform meshes. The reason being is that there are now more

partitions in the region where the solution is rapidly approaching infinity enabling us to capture

the steepness of the slope and give a better approximation at the boundary. (We could of spilt

the interval up into very small uniform partitions, the disadvantages of this is that it will take

a long time to compute, when a non-uniform mesh could compute this alot faster.)
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Chapter 6

Investigation into the Different

Types of Meshes

In this chapter, we will be looking at two different types of meshes, uniform and non-uniform.

The quality of different sized meshes is investigated by seeing if changing h (h0 = h - the distance

between the points in the initial distribution and h - the maximum side length of the triangle)

will give a more accurate mesh hence more accurate results. Throughout this section the values

h used are h=0.4, 0.2, 0.1 and 0.05 in a bounding box −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 with no fixed

points. The geometry is given as a distance function fd which returns the signed distance from

each node position. This is given by

fd =
√

x2 + y2 − 1 (on a unit circle). (6.1)

A program has been written in Matlab [2] to produce the meshes to calculate the uniformity

and quality for both uniform and non uniform meshes. There are two factors to be considered.

• Minimum Quality: Referring to (2.5) good quality meshes when q>0.5, poor quality meshes

either have vertices very close to each other or are very coarse.

• Uniformity of triangle shapes: everything is regular and unvarying all of the triangles have

similar characteristics. This helps tell how close the element sizes in the mesh p, t are to

the desired function fh.[5]

where fd is the gemometry given as a distance function which returns all the signed distance

from each node location to the boundary (from Chapter 1).
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Three different types of meshes will be considered (where fh returns all the h(x,y) (desired edge

length) for input):

• Uniform meshes-fh=h uniform.

• Non-uniform-fh=a-r.

• Non-uniform-fh captured by

Error ≈ h2

∥

∥

∥

∥

∂2u

∂r2

∥

∥

∥

∥

.

6.1 Rejection Method

Ideally we do not want to reject too many points because the mesh will become unstable and

produce inaccurate results, or leave too many and it takes a long time to iterate. The probabilty

to keep the points mentioned in the implementation is given by

r0 =
1

(fh)2
(6.2)

Rejecting the points if,
r0

max(r0)
< rand rand∈(0,1) (6.3)

ans also if,
max(r0)

min(r0)
(6.4)

is too large, we reject most of the points, or if it is very small (very close to 1) most of the points

are accepted.

6.1.1 Uniform meshes fh=h uniform

For a uniform mesh (6.3) r0

max(r0)
=1 hence no points are rejected because (0,1)<1.

Uniform meshes

h Minimum quality Uniformity (percent)

0.4 0.94 3.6

0.2 0.73 4

0.1 0.79 2.2

0.05 0.84 1.5
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(c) h=0.4, Uniform mesh (d) h=0.05, Non-uniform mesh

Inspection of h shows that all of the above meshes have a good minimum quality since q>0.5,

this is what to be expected. By making h small more points are being placed in the circle

(as can be seen by comparing Figure (6.1(c)) with Figure (6.1(d))) which has high resolution

everywhere capturing the discontinuity better than large h producing more accurate results

hence the approximate solution will be very close to the actual solution, one of the drawbacks

of using smaller h is it will take longer to produce hence slow execution and sometimes non

termination. There is no obvious pattern when inspecting the uniformity and the quality of

each of these meshes, but what can clearly be seen is that both the quality and the uniformtiy

of Figure (6.1(c)) is very high compared to that of h=0.05 (Figure (6.1(d))). This is because the

mesh generator produces triangles that are almost equilateral however this may not give good

results due to the error at the boundary.

6.1.2 Non uniform meshes fh=a-r

Suppose instead that r0 is small at most of the points and large at a few points, r0

max(r0)
<<1.

So we reject lots of the points and mesh becomes graded (the density of the triangles becomes

greater at the boundary of the triangle see Figure (6.2(a)) and (6.2(b))). This can be done by

using

fh=a-r=(min(a −
√

x2 + y2), b) min=minimum (6.5)
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Where r (the radius) is given by
√

x2 + y2, constant a >1 is the stabilty coefficient and b is the

length of the triangles in r=a− b (inside the radius r=a− b the mesh is uniform and the length

of the triangles is given b).

The fh function (6.5) can be defined as:

The minimum of (a−
√

x2 + y2) can be found when x2
i + y2

i = 1, giving h = fh = (a− 1) which

is non uniform in the region a − b <r<1.

Or if (a-r)=b, r=a−b implying that all the triangles length inside the circle of radius 0<r≤ a−b

are equal to b and are uniform.

Rejection method for fh=a-r

Figure 6.1: Rejection method-where the shaded region is uniform

For each point r, we compute

r0 =
1

fh2
=

1

(min(a −
√

x2 + y2), b)2
(6.6)

a=1.1 and b=0.8

Inside 0<r≤0.3 all the h are equal to 0.8 and all the triangles produced by the fh function

are uniform, with maximum triangles length (h). The function fh=(min(1.1-r)) is given when

x2
i + y2

i =1. This implies fh=0.1, so the maximum length of the triangles h=0.1 are non uniform

in the region 0.3<r≤1.

r0 = 1
((min(1.1−r))2,(0.8)2)

implying max(r0)
min(r0)

≈64 so we will be rejecting quite a lot of points, hence
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the mesh become graded.

a=1.1 and b=0.95

Inside 0<r≤0.15 the maximum length of the triangles are equal to 0.95 and in here the region

is uniform, otherwise non uniform. Here max(r0)
min(r0) ≈ 90, hence we will be rejecting more points

than that of a=1.1 and b=0.8. (See Figure (6.2(a)) and Figure (6.2(c)) for different sizes h).

a=1.3 and b=0.8

Inside 0<r≤0.5 the maximum length of the triangles are equal to 0.8, inside this region the mesh

is uniform. Here max(r0)
min(r0)

≈ 4, hence giving a much more uniform mesh since we are keeping most

of the points. (See Figure 6.2(f))

a=1.3 and b=0.95

Inside 0<r≤0.35 the maximum legth of the triangles are equal to 0.95, inside this region the

mesh is uniform. Here max(r0)
min(r0)

≈ 10, hence keeping less points than that where b=0.8 and a=1.3.

(See Figure (6.2(b)) and (6.2(e))).

Non-uniform meshes where a=1.1 and b=0.95

h Quality Uniformity (percent)

0.1 no output no output

0.05 no output no output

0.025 0.67 2.97

0.0125 0.69 2.4

Non-uniform meshes where a=1.3 and b=0.95

h Quality Uniformity (percent)

0.1 0.66 3.7

0.05 0.76 2.8

0.025 0.7 2.4

0.0125 0.8 2.2
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Non-uniform meshes where a=1.1 and b=0.8

h Quality Uniformity (percent)

0.1 no output no output

0.05 0.62 3.8

0.025 0.71 2.8

0.0125 0.71 2.5

Non-uniform meshes where a=1.3 and b=0.8

h Quality Uniformity (percent)

0.1 0.62 3.6

0.05 0.69 3

0.025 0.73 2.9

0.0125 0.76 2.2

(a) a=1.1 b=0.95 and h=0.025 (b) a=1.3 b=0.95 and h=0.025
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(c) a=1.1 b=0.95 and h=0.0125 (d) a=1.3 b=0.95 and h=0.0125

(e) a=1.3 b=0.95 and h=0.1 (f) a=1.3 b=0.8 and h=0.1

From looking at the tables above as h gets smaller the mesh become more defined at the

boundary giving a better quality mesh but worse uniform mesh. This is due to the fact that the

shapes of the triangles inside the mesh are no longer regular.

Increasing a (the coefficient of stabilty) tends to give a better quality mesh and more points in

the centre but a decrease in uniformity. This is because when increasing the stabilty coefficient

more nodes are placed in the centre of the region of interest making more triangles like that

of an equilateral triangle (q=1) giving a good accuracy everywhere. However it takes longer to

execute because not only do we have to move the nodes around the boundary we also have to

move the many nodes in the centre (Figure (6.2(b)) and Figure (6.2(a))). So a decrease in the

coefficient of stabilty may be more appropriate. This will be investigated later on.

Another important factor which must also be taken into consideration is the mesh size as a

decrease in the size of h produces more points at the boundary giving a better defined mesh and
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small errors. For example comparing Figure (6.2(b)) and Figure (6.2(a)) with Figure (6.2(c))

and Figure (6.2(d)). However sometimes this may not be nessesary since it takes longer and the

mesh is already well defined for a bigger h.

A change in b (the length of the triangles in r=a− b) for example in increasing b for large h does

not make a lot of difference e.g. Figure (6.2(e)) and (6.2(f)). In comparing the two tables above

where a=1.1 and b=0.8 with a=1.1 and b=0.95 it can be seen that the quality and uniformity

for them are both very similar showing that by changing b will not make a lot of difference.

However further investigation has shown that when b=0.5 the mesh become uniform.

Overall choosing a to be very small gives a more accurate answer than that of a very big a. This

is because when looking at the Exact solution (Chapter 5) at r=0 or r very close to zero the

exact solution is almost constant. So by placing more nodes near r=0 will not affect the error

much but only take up more time. The region of interest is at the boundary (at r=1) for large

K when the exact solution tends to infinity very quickly with a very steep gradient. We want

to try and caputure this and to get a good approximation close to the exact solution. A way

of doing this is by placing more nodes near the boundary then form triagles using Delaunay to

fit around the boundary. It is no good placing h very big at the boundary because we will not

get a very well defined boundary. Hence we will get very big errors and the centre of our region

will be very big with some very skinny triangles causing non-termination of the mesh generator

because Deluanay cannot triangulate.

So a good choice of a is in choosing a to be very small where a>1 ideally 1.1. (Notice that when

choosing a to be very small, no mesh is produced for big h, this is because when a is very small

we are rejecting a lot of points (as seen in the tables above )). Ideally we want h to be very

small at the boundary and 0.5< b <1. If we make b too small sometimes it will not terminate

or the mesh will become uniform.

6.1.3 Non uniform meshes-part 2

We will choose our fh to be of the form:

fh ≈ h2

∥

∥

∥

∥

∂2u

∂r2

∥

∥

∥

∥

.

40



Error Analysis

From investigating the error

Error ≈ h2

∥

∥

∥

∥

∂2u

∂r2

∥

∥

∥

∥

. (6.7)

we can decide what our h is so it gives the best possible solution with very small errors.

• h uniform-Uniform meshes, where the error is biggest when
∥

∥

∥

∂2u
∂r2

∥

∥

∥ is big.

• h non-uniform-Non uniform meshes, by choosinse h small
∥

∥

∥

∂2u
∂r2

∥

∥

∥ will be large or when h

is large
∥

∥

∥

∂2u
∂r2

∥

∥

∥
will be small.

We will investigate both the errors on a Dirichlet and Neumann boundary.

Dirichlet Boundary condition

Consider the following boundary condition

u(r, θ) =
I0(Kr)

I0(K)
, from (3.25) (6.8)

∂u

∂r
=

1

I0(K)
KI ′0(Kr) (6.9)

=
K

2I0(K)
[I−1(Kr) + I1(Kr)], (from [7]) (6.10)

∂u

∂r
=

K

I0(K)
[I1(Kr)] (6.11)

Differentiating ∂u
∂r

gives the following

∂2u

∂r2
= K2 I ′1(Kr)

I0(K)
=

K2

2I0(K)
[I0(Kr) + I2(Kr)] (from [7]) (6.12)

= a × [I0(Kr) + I2(Kr)] where a=constant

We are looking at when Kr is large, hence we can rewrite InKr as an asymptotic expansion

(from [7]) of the form

In(Kr) =
eKr

√
2πKr

(1 + O(
1

Kr
)). (6.13)

Giving
∂2u

∂r2
≈ C × eKr

√
Kr

(C=constant) (6.14)

So if we want to fix h2
∥

∥

∥

∂2u
∂r2

∥

∥

∥=constant

we set

h2C
eKr

√
Kr

= constant
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which on rearrangement gives

h2 =
constant

√
Kr

CeKr
= be−Kr

√
Kr (b=constant)

hence

h = b(Kr)
1

4 e−
Kr

2 . (6.15)

when Kr is large.

Neumann Boundary condition

This time consider

u(r, θ) =
I0(Kr)

KI1(K)

∂u

∂r
=

KI ′0(Kr)

KI1(K)
=

1

2I1(K)
[I−1(Kr) + I1(Kr)]

Differentiating twice gives the following

∂2u

∂r2
= K

I ′1(Kr)

I1(K)
= K

I0(Kr) + I2(Kr)

2I1(K)
(6.16)

= a × [I0(Kr) + I2(Kr)] a=constant

When Kr is large we can rewrite InKr as an asymptotic expansion similar to when using Dirichlet

boundary condition.

Giving
∂2u

∂r2
≈ C × eKr

√
Kr

(C=constant) (6.17)

So if we want to fix h2
∥

∥

∥

∂2u
∂r2

∥

∥

∥
=constant

we set

h2C
eKr

√
Kr

= constant

which on rearrangement gives

h2 =
constant

√
Kr

CeKr
= be−Kr

√
Kr (b=constant)

hence

h = b(Kr)
1

4 e−
Kr

2 . (6.18)

when Kr is large.

An ideal choice is when:
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Figure 6.2: Rejection method for case 2

• h=uniform away from the boundary.

• h≈ b(Kr)
1

4 e−
Kr

2 when r≈1.

We want h to satisfy the following two conditions:

• if r≤a we choose h to be uniform

• if a<r<1 we choose h≈b(Kr)
1

4 e−
Kr

2

• and finally if r=a we choose h=b(Ka)
1

4 e−
Ka

2

We can rewrite this as the following (where e−
Ka

2 is the dominant term):

• if 0<r≤a, h≈ be−
Ka

2 (region in which all the triangles are uniform)

• if a<r<1, h≈ be−
Kr

2

Changing the constant b will help determine what choices of b to choose in order to produce a

good mesh and small errors.

So for example a choice of b could be

b=e
K

2

function fh produces all the h for input, where

fh = min(
(

be
K

2
(1−r)

)

, B). (6.19)
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This is defined as the following:

B=h (h=maximum length of the triangles) is uniform in the region (0<r≤a). Having established

the rejection method in Section 6.1, we can apply it to fh where fh is now is given by (6.19).

We want to see how the constants b and K affect the amount of points we reject and hence the

accuracy of the solution.

The different values of h’s in the different regions is calculated as follows:

K=10, a=0.95:

h=1 (Substituting r=1 into fh), 0.95<r<1 implying that h=1 in the region 0.95<r<1.

B=h=12 (Substituting r=0.95 into fh, where a=0.95 radius in which it is uniform) implying

that B=h=12 in the region r≤0.95.

K=100, a=0.95: B=h=22026.5 is uniform in the region r≤0.95.

and h=1 where 0.95<r<1.

B is to big and hence no mesh can be generated.

b=e
K

4

function fh produces all the h for input, where

fh = min(
(

e
K

4
(1−2r)

)

, B) (6.20)

so h=min(
(

e
K

4
(1−2r)

)

, B).

Part 1:

K=10, a=0.95:

B=h=0.105399 is uniform in the region 0<r≤0.95.

and h=0.082 in the region 0.95<r<1.

From the rejection method max(r0)
min(r0) ≈60 showing that some points are rejected. This gives a very

stable uniform mesh as shown in Figure (6.3(a)).

Part 2:

K=100, a=0.95:

B=h=0.0000000000169 is uniform in the region 0<r≤0.95.

and h=0.0000000000139 in the region 0.95<r<1.

The rejection method shows that max(r0)
min(r0)

≈ 148.4 this shows that some points are being rejected
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more than that of K=10 (in Part 1 Figure(6.3(a))). The mesh produced here Figure (6.3(b)) is

very similar to the one produced in in Part 1 Figure (6.3(a)).

b=e
K

4

function fh produces all the h for input, where

fh = (min
(

e
K

4
(1−2r)

)

, B) (6.21)

so h=(min
(

e
K

4
(1−2r)

)

, B).

Part 3:

K=10, a=0.8:

B=h=0.22313016 is uniform in the region 0<r≤0.8.

and h=0.082 in the region 0.8<r<1.

The rejection method shows that max(r0)
min(r0)

≈ 7.39 (See Figure(6.3(c))) showing that less points

are being rejected compared to that of (Part 1) (Figure6.3(a)) with a smaller a. This produces

a non uniform mesh.

Part 4:

K=100, a=0.8:

B=h=0.0000003059 is uniform in the region 0<r≤0.8

and h=0.000000000013888 in the region 0.8<r<1.

The rejection method here shows that max(r0)
min(r0) ≈ 48515195 is very large hence most of the points

are rejected leading to an unstable mesh (Figure (6.3(d))).

b=e
K

8

Function fh produces all the h for input, where

fh = min(
(

e
K

8
(1−4r)

)

, B) (6.22)

so h=min(
(

e
K

8
(1−4r)

)

, B).

Part 5:

K=10, a=0.95:

B=h=0.0302 is uniform in the region 0<r≤0.95.

and h=0.02352 in the region 0.95<r<1.
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From the rejection method max(r0)
min(r0) ≈ 1.648 showing that very few points are being rejected

(Figure (6.3(e))) compared to that of part 1 Figure(6.3(a)) but for a different b.

Part 6:

K=100, a=0.95:

B=h=0.0000000000000006305 is uniform in the region 0<r≤0.95.

and h=0.000000000000000051755 in the region 0.95<r<1.

The rejection method shows max(r0)
min(r0) ≈ 148.413 (Figure (6.3(f))) showing that more points are

being rejected than for a smaller K (Part 5, Figure(6.3(e)))and also h is very close to zero, hence

no output as shown in Figure(6.3(f)).

Let

b=e
K

4

function fh produces all the h for input, where

fh = min(
(

e
K

4
(1−2r)

)

, B) (6.23)

so h=min(
(

e
K

4
(1−2r)

)

, B).

Part 7:

K=10, a=0.8:

B=h=0.0639 is uniform in the region 0<r≤0.8.

h=0.02352 in the region 0.8<r<1.

The rejection method here shows that max(r0)
min(r0) ≈ 7.4 showing that very few points are being

rejected giving a uniform mesh (See Figure (6.3(g))).

Part 8:

K=100, a=0.8:

B=h=0.00000000000114 is uniform in the region 0<r≤0.8.

h=0.000000000051755 in the region 0.8<r<1.

The rejection method max(r0)
min(r0) ≈ 485164, which is very large hence most of the points are rejected

giving us a very unstable mesh (See Figure (6.3(h))).

Investigation shows that Part 3 (Figure 6.3(c))and 7 (Figure 6.3(g)) gives non uniform meshes

when K=10, unstable meshes when K=100 for Part 4 (Figure 6.3(d))and Part 8 (Figure
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6.3(h)), where the unstable meshes comes from rejecting too many points. Finally no mesh

Part 6 (Figure 6.3(f))when h is very small in the two region 0<r≤a and a<r<1.

(a) Part 1: K=10 h=0.0125 (b) Part 2: K=100 h=0.0125

(c) Part 3: K=10 h=0.0125 (d) Part 4: K=100 h=0.0125
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(e) Part 5: K=10 h=0.0125 (f) Part 6: K=10 h=0.0125

(g) Part 7: K=10 h=0.0125 (h) Part 8: K=100 h=0.0125
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Chapter 7

Numerical Simulations and Results

for the Modified Helmholtz Equation

In this section, the results from the finite element method described in Chapter 4 are compared

with the exact solution described in Chapter 3.

Our aim is to investigate what mesh properties will give good results with the smallest possible

maximum errors.

Throughout this section we will choose our h (maximum length of triangles) to be of the values

0.4, 0.2, 0.1 and 0.05, because when choosing our maximum length to be very big the program

produces meshes that are not very good, giving bad results with very big errors. We will also

choose K (constant) to be very big, since investigation has shown that for small K the exact

solution and the finite element solution behave in a very similar fashion leading to very small

errors. However when choosing K to be very large our exact solution u(r,θ)(3.37)will be highly

peaked near the boundary. We want to be able to choose suitably sized triangles so that the

mesh can capture this steepness hence giving a very good approximation and very small errors.
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7.1 Uniform meshes

We start off by looking at a uniform mesh for different values of K. Comparing the number of

points, the smallest maximum error and the location of the errors for different mesh size (h).

7.1.1 K=10

Uniform meshes

h number of points maximum error location of error

0.4 19 0.1333 edge

0.2 88 0.0395 edge

0.1 362 0.009 edge

0.05 1452 0.0026 edge

0.025 5809 0.00069074 edge

7.1.2 K=50

Uniform meshes

h number of points maximum error location of error

0.4 19 0.1963 edge

0.2 88 0.0911 edge

0.1 362 0.0295 edge

0.05 1452 0.0099 edge

0.025 5809 0.0026 edge

7.1.3 K=100

Uniform meshes

h number of points maximum error location of error

0.4 19 0.2057 edge

0.2 88 0.1004 edge

0.1 362 0.0367 edge

0.05 1452 0.0218 edge

0.025 5809 0.0049 edge
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Initially the procedure was applied to K=10. Close inspection of the tables above shows

that as h decreases the number of nodes inside the mesh increases as shown in the table above

and also in Chapter 6. Hence the graph for the approximate and actual solution becomes more

dense (Comparing Figure (7.1(i)) and Figure(7.1(k))) giving larger errors at the boundary. This

is because for large triangles, the triangles cannot capture the solution near the boundary of the

circle very well (comparing Figure (7.1(j)) with Figure (7.1(l))).

(i) K=10, h=0.4, this graph shows the solu-

tions at each node, the x axis representing

the nodes and the y axis representing the so-

lutions u

(j) K=10, h=0.4, this graph shows an over-

head view of the solution at each node

(k) K=10, h=0.05, this graph shows the so-

lutions at each node, the x axis representing

the nodes and the y axis representing the so-

lutions u

(l) K=10, h=0.05, this graph shows an over-

head view of Figure (7.1(k))

Further inspection has shown that as K increases (Figure (7.1(m))) the exact solution men-
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tioned in Chapter 5 u(r,θ)(3.37) converges to infinity a lot faster at the boundary than small

K (Figure (7.1(i))). Thus making it harder to capture the steepness of the slope (7.1(j))(at the

boundary of the circle) as mentioned before, hence giving bigger errors as shown in the table

above. (Note that we do not reject any points inside the mesh because it satisfies the condition

(m) K=100, h=0.4, this graph shows the so-

lutions at each node, the x axis representing

the nodes and the y axis representing the so-

lutions

(n) K=100, h=0.4, this graph shows an over-

head view of Figure (7.1(m))

(o) K=100, h=0.05, this graph shows the so-

lutions at each node, the x axis representing

the nodes and the y axis representing the so-

lutions u

(p) K=100, h=0.05, this graph shows an over-

head view of Figure (7.1(o))

mentioned in Chapter 6 (6.3).)

As a result of this when choosing a uniform mesh and K to be large, we want h to be very

small to capture the peak near the boundary (comparing Figure (7.1(n)) with Figure (7.1(p)))

in order to give smaller errors (shown in the table above). However if K is very small, because
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the errors are already small, it may be more appropriate to use a larger h, because the solution

is not changing very much, making it easier to capture the peak. The graph (Figure (7.1.3))

Figure 7.1: Comparing the number of points with the maximum errors for a uniform mesh

shows that when K is large the solution becomes highly peaked at the boundary. This is because

as K increases the solution (3.37) will get very large and become very steep at the boundary.

Hence the maximum errors and the number of points will increase. So having a uniform mesh

is not ideal when K is very big.

53



7.2 Non uniform meshes fh=a-r

We start off by looking at a Non uniform mesh (fh=a-r) with different values of K, a and b.

Comparing the number of points, the smallest maximum error and the location of the errors

for different mesh size (h). The coefficient a is the stabilty coefficient and b is the length of the

triangles in r=a−b (inside the radius r=a−b the mesh is uniform and the length of the triangles

is given b) (In §6.1.2).

7.2.1 K=10

a=1.1 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 219 0.0291 centre

0.025 887 0.0074 centre

0.0125 3560 0.0017 centre

a=1.3 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 473 0.0055 centre and edge

0.025 1989 0.0012 centre and edge

0.0125 7870 0.00033848 centre and edge

a=1.1 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 224 0.0281 centre

0.025 886 0.0066 centre

0.0125 3558 0.0015 centre
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a=1.3 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 547 0.0047 edge

0.025 2056 0.0013 edge

0.0125 8126 0.0003319 centre

Figure 7.2: Comparing the number of points with the maximum errors for a non uniform mesh,

where fh=a-r. It can be seen from Figure(2.1) that choosing a=1.3 gives the best result capturing

the boundary a lot better than when a=1.1. This is because max(r0)
min(r0)

is very small.
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7.2.2 K=100

a=1.1 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 216 0.0402 centre

0.025 877 0.0109 centre

0.0125 3546 0.0028 centre

a=1.3 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 518 0.0169 edge

0.025 911 0.001 edge

0.0125 3568 0.0031 centre

a=1.1 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 219 0.0364 centre

0.025 908 0.0094 centre

0.0125 3540 0.0033 centre

a=1.3 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 499 0.0182 edge

0.025 2010 0.0055 edge

0.0125 7984 0.0022 centre
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Figure 7.3: Comparing the number of points with the maximum errors

From the graph above Figure (7.3), it can be seen that for K=100 choosing a=1.1 is better

than a=1.3 regardless of what b is. This is because the points and the errors converges a lot

faster than when a=1.3. From chapter 6 it can be seen that the mesh (Figure (6.2(d))) for

a=1.3 is much denser and contains more nodes than Figure (6.2(c)), this is the same for Figure

(6.2(a)) and Figure (6.2(b)).
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(a) Non-uniform mesh where K=10, a=1.1

and b=0.95 where h=0.025, this graph shows

an overhead view of the solutions at each

node, the x axis representing the nodes and

the y axis representing the solutions u

(b) Non-uniform mesh where K=100, a=1.1

and b=0.95 where h=0.025, this graph shows

an overhead view of the solutions at each

node, the x axis representing the nodes and

the y axis representing the solutions u

(c) Non-uniform mesh where K=10, a=1.3

and b=0.95 where h=0.025, this graph shows

an overhead view of the solutions at each

node, the x axis representing the nodes and

the y axis representing the solutions u

(d) Non-uniform mesh where K=100, a=1.3

and b=0.95 where h=0.025, this graph shows

an overhead view of the solutions at each

node, the x axis representing the nodes and

the y axis representing the solutions u
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(e) Non uniform mesh where K=10, a=1.1

and b=0.8 where h=0.025, this graph shows

an overhead view of the solutions at each

node, the x axis representing the nodes and

the y axis representing the solutions u

(f) Non uniform mesh where K=100, a=1.1

and b=0.8 where h=0.025, this graph shows

an overhead view of the solutions at each

node, the x axis representing the nodes and

the y axis representing the solutions u

Close inspection shows that when choosing h=0.4, the non uniform meshes behave almost

the same as the uniform meshes. As h gets smaller the meshes become better quality especially

at the boundary as shown in all the tables above and also in the previous chapter. This is

because smaller nodes are being placed in the b region (in which the values are uniform) giving

smaller errors than that of a larger h. The two important constants in this non uniform mesh

are a and b defined earlier in chapter 6. Increasing the coefficient of stabilty a, keeping b the

same, gives a better quality mesh with decreasing errors (hence taking longer to iterate). This is

because when a is very small, the radius in which all the values are equal to b is small resulting

in more points being placed in the centre as shown in Chapter 6. However an increase in b will

result in rejecting more points (at the centre of the mesh) leading to larger errors, as shown

in Chapter 6. (Figure (7.4(a)) and Figure (7.4(b)) compared with that of Figure(7.4(e)) and

Figure (7.4(f)) ).

We want to compare this with different K, where K=10 and 100. A noticable change when

making K larger is that a is small for b=0.95 and 0.8. The number of points inside the region

decreases leading to an increase in errors, because as K gets larger the exact solution becomes

more peaked at the boundary. This in turns lead to bigger errors when placing too little nodes

in the outer boundary because we will not be able to capture the peak at the boundary of the

circle.

The coefficients a and b behave similarly to that of small K and large K.
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(g) Non uniform mesh where K=10, a=1.3

and b=0.8 where h=0.025, this graph shows

an overhead view of the solutions at each node

where the x axis representing the nodes and

the y axis representing the solutions u

(h) Non uniform mesh where K=100, a=1.3

and b=0.8 where h=0.025, this graph shows

an overhead view of the solutions at each node

where the x axis representing the nodes and

the y axis representing the solutions u

By looking at Figure (7.2.2) it can be seen that choosing fh=a-r, a=1.1 gives the best results.

60



7.3 Non uniform meshes fh=be
−Kr

2

Finally looking at fh where fh is corporated by coding at exact values of u”

Part 1

K=10, b=e
K

4 and a=0.95

h number of points maximum error location of error

0.4 19 0.1333 boundary

0.2 47 0.0680 boundary

0.1 238 0.0131 boundary

0.05 914 0.0041 boundary

0.025 3584 0.0011 boundary

0.0125 14287 0.0002633 boundary

From Chapter 6

h=0.082 is uniform in the region 0.95<r<1.

and h=0.105399 in r≤0.95.

A close inspection shows that h is very similar in the two regions hence the mesh produced looks

almost uniform (see Figure (7.5(a))). Similar to that of a uniform mesh where K=10 which

has sligthly more points hence smaller errors than the one produced comparing the table above.

This is what is to be expected since Part 1 max(r0)
min(r0) ≈ 60.

Part 2

K=100, b=e
K

4 and a=0.95

h number of points maximum error location of error

0.4 19 0.2057 boundary

0.2 64 0.1005 boundary

0.1 241 0.0467 boundary

0.05 914 0.0201 boundary

0.025 3866 0.006 boundary

0.0125 15542 0.0065 boundary

From Chapter 6

h=1.39×10−11 ≈0 is uniform in the region 0.95<r<1.
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and h=1.69×10−11 ≈0 in r≤0.95.

By inspection the table shows that the results produced from part 1 and part 2 are very similar,

however this time the exact solution tends to infinity a lot faster.

So by making h very small we can capture this discontinuity a lot better than with a big h.

From comparing the uniform mesh where K=100 with Part 2 (see Figure (7.5(b)))shows that

Part 2 gives a better solution because it contains less points and smaller error because Part 2

max(r0)
min(r0)

≈ 148 and Part 1 ≈ 60.

Part 3

K=10, b=e
K

4 and a=0.8

h number of points maximum error location of error

0.4 19 0.2040 top

0.2 0 0 0

0.1 0 0 0

0.05 266 0.0150 boundary

0.025 1123 0.0032 boundary

0.0125 4488 0.00069624 boundary

From Chapter 6

h=0.082 is uniform in the region 0.8<r<1.

and h=0.2231301 in r≤0.8.

Notice however this time when making a smaller there is a more noticeable difference in h for

0.8<r<1 and r≤ 0.8 resulting in a non uniform mesh and max(r0)
min(r0)

approximately 7 . Com-

paring this with the previous non uniform mesh where K=10 and fh=a-r. Part 3 (see Figure

(7.5(c)))gives a better solution than that of all of the above non uniform results and of a better

quality. However there are no solutions for h=0.2 and 0.1.
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Part 4

K=100, b=e
K

4 and a=0.8

h number of points maximum error location of error

0.4 0 0 0

0.2 0 0 0

0.1 0 0 0

0.05 17 0.4132 middle

0.025 67 00.3908 middle

0.0125 247 0.4269 middle

From Chapter 6

h=1.389×10−11 ≈0 is uniform in the region 0.8<r<1.

and h=5.039×10−7 ≈0 in r≤0.8.

As can be seen from the previous chapter max(r0)
min(r0) quite big so lot of points are rejected (see

Figure (7.5(d))) especially in the centre giving very inaccuarate results which in turn leads to

bigger errors in the cenre of the mesh as can be seen in Chapter 6 hence this is not a good choice

and is to be avoided.

Part 5

K=10, b=e
K

8 and a=0.95

h number of points maximum error location of error

0.4 19 0.1333 boundary

0.2 53 0.0587 boundary

0.1 2208 0.0144 boundary

0.05 891 0.0040 boundary

0.025 3501 0.0011 boundary

0.0125 14173 0.0002735 boundary

From Chapter 6

h=0.02352 is uniform in the region 0.95<r<1.

and h=5.039×10−7 ≈0 in r≤0.95.

From inspection we can see that there is not a lot of different between the two different values

of h in the two regions (see Figure (7.5(e))), hence producing a uniform mesh as can be seen

in Chapter 6 max(r0)
min(r0) ≈ 1.64 whereas other uniform meshes produced in this section (Part 1)
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max(r0)
min(r0)

≈ 60 when K=10 giving a better solution than the one produced here.

Part 6

K=100, b=e
K

8 and a=0.95

h number of points maximum error location of error

0.4 19 0.2057 boundary

0.2 no ouput no ouput no ouput

0.1 no ouput no ouput no ouput

0.05 no ouput no ouput no ouput

0.025 no ouput no ouput no ouput

0.0125 no ouput no ouput no ouput

From Chapter 6

h=5.1755×10−11 ≈0 is uniform in the region 0.95<r<1.

and h=6.30511×10−7 ≈0 in r≤0.95.

This choice of a, b and K, causes too many points to be rejected so no results is produced. (see

Figure (7.5(f)))

Part 7

K=10 b=e
K

8 and a=0.8

h number of points maximum error location of error

0.4 19 0.2037 top

0.2 no ouput no ouput no ouput

0.1 no ouput no ouput no ouput

0.05 295 0.0137 boundary

0.025 1170 0.003 boundary

0.0125 4521 0.0071477 boundary

From Chapter 6

h=1.0.02352 is uniform in the region 0.8<r<1.

and h=0.0639 in r≤0.8.

Behave similarly to that of Part 3 (see Figure (7.5(c))), however this one produces better result

because the region contains less points and hence smaller errors. (see Figure (7.5(g)))
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Part 8

K=100, b=e
K

8 and a=0.8

h number of points maximum error location of error

0.4 no ouput no ouput no ouput

0.2 no ouput no ouput no ouput

0.1 0 no ouput no ouput

0.05 14 0.4538 everywhere

0.025 67 0.4135 centre

0.0125 243 0.3958 centre

From Chapter 6

We can clearly see that we are rejecting too many points hence for Part 8 it produces a very

unstable mesh and hence produces very inaccurate solutions (see Figure (7.5(h))).

Figure 7.4: Looking at the figure above we see that Part 3 and Part 8 give bad results. For Part

8, K=10, b=e12.5 and a=0.8
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(a) Non uniform mesh: Part 1 K=10 h=0.025, this graph

shows an overhead view of the solutions at each node

where the x axis representing the nodes and the y axis

representing the solutions u

(b) Non uniform mesh: Part 2 K=100 h=0.025, this

graph shows an overhead view of the solutions at each

node where the x axis representing the nodes and the y

axis representing the solutions u

It can be seen from Figure (7.5(a)) that the errors are at the boundaries of the circle and

that in Figure (7.5(h)), the errors are larger due to a coarser mesh. All the other Parts (1,2,4,5

and 7) produce better meshes. Part 1 and Part 5 have jagged rims as can be seen from Figure

(7.5(a)) and Figure (refpart5trisurf). This is when K is small.

For b=e12.5 when K=100 and a=0.95 (Part 6), we have a very unstable mesh by virtue of

rejecting too many points (from Chapter 6). Hence there is no output Figure (7.5(f)). Overall

we notice that for large K (for example K=100) that the output shown in Figure (7.5(f)) and

Figure (7.5(h)) produces very unstable meshes. This is because for large K, the error is peaked

at the boundary.

A close examination of a non uniform mesh where fh=a-r is better than a uniform mesh by

comparing graphs, this is what is to be expected as fh is more graded at the boundarywhere

a=1.1 gives the best result. Changing fh to fh=h2u” is better than a uniform mesh.
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(c) Non uniform mesh: Part 3 K=10 h=0.025, this graph

shows an overhead view of the solutions at each node

where the x axis representing the nodes and the y axis

representing the solutions u

(d) Non uniform mesh: Part 4 K=100 h=0.025, this

graph shows an overhead view of the solutions at each

node where the x axis representing the nodes and the y

axis representing the solutions u

(e) Non uniform mesh: Part 5 K=10 h=0.025, this graph

shows an overhead view of the solutions at each node

where the x axis representing the nodes and the y axis

representing the solutions u

(f) Non uniform mesh: Part 6 (No output) K=100

h=0.025, this graph shows an overhead view of the so-

lutions at each node where the x axis representing the

nodes and the y axis representing the solutions u
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(g) Non uniform mesh: Part 7 K=10 h=0.025, this graph

shows an overhead view of the solutions at each node

where the x axis representing the nodes and the y axis

representing the solutions u

(h) Non uniform mesh: Part 8 K=100 h=0.025, this

graph shows an overhead view of the solutions at each

node where the x axis representing the nodes and the y

axis representing the solutions u
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Chapter 8

Investigation in a Change in the

Tolerance in the Mesh Generator

It is expected that when we change tolerance ( in the generator) by making it bigger, the

program iterate and produce the solution and mesh a lot faster than of a smaller tolerance. This

is because the maximum node movement in the mesh generator has to be less than 0.02 whereas

before it had to be less than 0.01. Causing the program to terminate quicker.

8.1 Uniform meshes

8.1.1 K=10

Uniform meshes

h number of points maximum error location of error

0.4 19 0.1332 edge

0.2 88 0.0395 edge

0.1 362 0.0091 edge

0.05 1452 0.0026 edge

0.025 5809 0.0007059 edge
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8.1.2 K=50

Uniform meshes

h number of points maximum error location of error

0.4 19 0.1962 edge

0.2 88 0.092 edge

0.1 362 0.0295 edge

0.05 1452 0.0100 edge

0.025 5809 0.0367 edge

8.1.3 K=100

Uniform meshes

h number of points maximum error location of error

0.4 19 0.2056 edge

0.2 88 0.1006 edge

0.1 362 0.0367 edge

0.05 1452 0.0217 edge

0.025 5809 0.005 edge
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8.2 Non uniform meshes fh=a-r

8.2.1 K=10

a=1.1 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 220 0.0241 edge

0.025 878 0.0072 centre

0.0125 3526 0.0018 centre

a=1.3 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 486 0.005 centre and edge

0.025 1988 0.0013 centre and edge

0.0125 3496 0.0016 centre and edge

a=1.1 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 216 0.0316 centre

0.025 904 0.0066 centre

0.0125 7896 0.00034524 centre and boundary

a=1.3 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 531 0.00053 boundary

0.025 2056 0.0013 bnoundary

0.0125 8028 0.00030822 boundary
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8.2.2 K=100

a=1.1 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 211 0.0539 centre

0.025 903 0.0095 centre

0.0125 904 0.0120 centre

a=1.3 and b=0.95

Non-uniform meshes

h number of points maximum error location of error

0.05 473 0.0226 edge

0.025 1918 0.0062 edge

0.0125 7816 0.0023 centre

a=1.1 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 240 0.0346 edge

0.025 864 0.0105 centre

0.0125 3550 0.0034 centre

a=1.3 and b=0.8

Non-uniform meshes

h number of points maximum error location of error

0.05 492 0.0195 edge

0.025 1962 0.0060 edge

0.0125 7995 0.0026 centre

From comparing the first set of tables in Chapter 6 for uniform meshes it can be seen that:

by making the tolerance larger the results are roughly similar.

Whereas for fh=a-r:

By changing the tolerance we notice that for a=1.3 and b=0.95 the maximum error is now a lot
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bigger than when the tolerance was equal to 0.01.

This is what is to be expected, because when increasing the tolerance the mesh generator

produces meshes which still can be iterated to give a better mesh. However the majority of the

time it produces worse meshes because the nodes in the generator and still be moved around

until it is less than a smaller tolerance where it will give a better quality mesh. In order to be

able to analyse this properly more investigation is needed.
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Chapter 9

Conclusion

The Modified Helmholtz equation on a mesh was constructed and initially solved (both analyti-

cally and numerically). Exploring the solution to this problem using a uniform and non uniform

mesh was as expected. We confirmed that the instabilities are from rejecting too many points

(when using non-uniform meshes) making it hard for Delaunay to triangulate, or not placing

enough points in the region where the solution is blowing up rapidly giving very inaccurate

results.

This also depends on a the coefficient of stability and b the radius in which the mesh is con-

vergence mentioned in Chapter 6. In addition we confirmed that as h (maximum size of the

triangles) is reduced, the solution becomes more accurate, this is because we are now placing

more points in the region hence capturing the slope at r=1.

The Finite Element Method solution reveals that the behaviour at the boundary behaves exactly

as expected.

In addition we confirmed that by choosing fh=a-r gives the best results. However more inves-

tigation of fh=h2u” will give better results where the error is almost constant. We have also

shown that the smaller the mesh size the smaller the error. Also the smaller the tolerance the

better the meshes becomes.
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Chapter 10

Future work

Given more time, it would be worth investigating the following points:

Further investigation of the boundary condition

Instead of looking at a Neumann boundary condition, we would look at a Dirichlet boundary

condtion to see how the finite element method solution varies with the exact solution. Generation

of a mesh with greater concentration of elements at the boundaryh would be desirable.

Stabilty

During many runs of the iterative numerical methods, certain coefficients such as a and b (men-

tioned in Chapter 6) affects the error. It would be very beneficial to investigate this and see

which one gives a better solution.

Change in the tolerance

Given more time, we would investigate further into the change of tolerance and see how this will

affect the quality of the mesh and look at the different meshes.
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