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Abstract

In this dissertation, we are considering the heat transfer from a pipe buried underground. This

is a classic heat diffusion problem which has many applications in the oil and gas industry as well as

other agricultural and domestic uses. The simplified problem under consideration in this dissertation

concerns an underground pipe with circular cross-section buried in soil which we assume has constant

thermal properties. Heat diffuses with a given flux rate across the boundary of the pipe, and at

a different flux rate at ground level. We are interested in the temperature distribution below the

ground surface, exterior to the pipe when the temperature is in a steady state. Since there is no time

dependency, we are effectively solving Laplace’s Equation in two dimensions on an exterior domain

with Neumann boundary conditions given on the pipe boundary and at the ground surface.

The aim of this dissertation is to derive an accurate numerical solution using Boundary Element

Methods. There are several methods we could deploy to solve this equation, depending on the

boundary conditions, but we will demonstrate why this method is highly suitable for this particular

problem. There will be numerous examples given to demonstrate that an accurate solution has been

achieved and we will also highlight techniques which enhance accuracy often for very little extra

computational cost. The examples given may not necessarily accurately reflect real world physical

situations - rather the aim is to be able to benchmark numerical solutions versus analytic solutions

where possible so that we can prove the method to be robust.

In Section 1 we introduce the problem and give some background material, then in Section 2 we

formulate the Boundary Integral Equation using Green’s Second Identity. In Section 3, we introduce

the numerical methods and techniques we will use when solving the Boundary Integral Equation and

in Section 4, we give numerical examples to support the theory. In Section 5, we look at the situation

where the pipe is only partially buried underground. This requires some adaptation of the previous

theory which we will outline. Some further examples are provided to illustrate the robustness of

adapted method.
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1 Introduction

1.1 Background

The problem of heat transfer from a buried pipe is a classic heat conduction problem that has many
applications in the real world. These applications can be as small-scale as underfloor heating systems
such as the Ondol system used in Korea which uses heat generated from cooking stoves [7], to more large
scale applications such as oil or gas pipelines either under the seabed or underground. Agriculture has
other applications for the consideration of heat transfer of pipes [8]. Soil warming in agriculture is an
efficient method of increasing crop yield and growth rates, and can be cost-effective if it uses low energy
sources such as industrial waste heat, geothermal or solar energy.

The oil industry clearly has a major interest in the field of heat transfer from buried pipes, and many
research companies [13] devote considerable resources trying to model the effects for the large oil and gas
companies. One reason for this is that temperature and pressure affect the viscosity of the fluid travelling
through the pipeline. This can, in turn, determine the state of the fluid flowing through the pipe (i.e.
liquid or gas). Another concern particularly with increasing volumes of oil and gas coming from Arctic
regions is the effect of freezing around oil and gas pipes in the vicinity of permafrost [15]. Of importance
here is the outward advance of the thaw front around the warm pipe.

In this dissertation, we consider the numerical solution of a simple model of heat transfer from a buried
pipe. It is unrealistic to model all the physical factors that could affect the temperature distribution
around the pipe. These may include, to name only a few, moisture in the soil, gravitational effects, phys-
ical properties due to geological formation around the pipe, and variable heat conductivity throughout
the region of interest. Most models make idealised assumptions, such as constant thermal properties of
the soil surrounding the pipe, to facilitate a tractable solution. In this dissertation, we therefore consider
heat transfer in two dimensions only which effectively looks at a cross-section of the pipe in the ground.
The region we are considering is external to the pipe and below ground level. We also assume that the
steady-state temperature has been reached so that we can ignore any time dependency; this also implies
that the heat flux is constant throughout the region. Despite all these simplifications, the solution can
still give a good insight into how heat may be diffused throughout the region.
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Figure 1: Schematic of the physical situation

1.2 Governing equation

The starting point for our model is derived from Fourier’s Law [21] which specifies that heat transfer is
governed by the equation:

q = −κ∇u (1)

where:

q ≡ heat flux vector per unit length

κ ≡ heat conductivity of the soil

u ≡ temperature throughout the region.

If our system is in steady-state, then Conservation of Energy [21] implies that, in the absence of heat
sinks or sources, the heat flux throughout the region must satisfy:

∇ · q = 0. (2)

In one dimension, this would imply that heat flux must be constant at all points; in more than one
dimension, it implies that heat flux entering a control region must equal heat flux leaving the same
region. If we assume that all thermal properties are constant, then κ is constant and (2) reduces to
Laplace’s Equation:

∇2u = 0.
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The simplest scenario for which we can solve this problem analytically is to assume that:

• the pipe is buried deep underground

• the temperature depends only on the distance from the centre of the pipe, O

• the region exterior to the pipe is unbounded.

Under these assumptions, we could now transform Laplace’s equation into polar coordinates (r, θ), centred
at O, which would yield the solution:

u(r) = A ln r +B

where A and B are constants; these can be determined if we know u(r) and
∂u

∂r
on the boundary of the

pipe r = a, where a is the radius of the pipe. This solution blows up as r → ∞ so is only of limited
interest in estimating the temperature distribution near the pipe. When the boundary at ground level is
introduced, it becomes clear we cannot parametrise the solution by r alone. The purpose of highlighting
this solution is that it provides the basis for the Fundamental Solution of Laplace’s Equation which we
will discuss later in this dissertation (see §2.1).

1.3 Boundary Conditions

In this problem, we have two boundaries of interest which will determine the solution u; the pipe boundary
and the ground surface/mudline. There has been much research on modelling the heat transfer associated
with buried pipes with constant wall temperatures [7]. A widely used concept here is the conduction shape
factor, S, which for a buried pipe takes the form:

S =
2π

cosh−1
(
Y
a

)
where a is the pipe radius, and Y is the distance of the pipe centre from the ground.
This formulation leads to some unphysical heat transfer properties at the surface when both pipe and
surface boundary temperatures are constant. This approach gives better results when the heat flux is
given on the ground surface - a more detailed account is given in the paper by Bau and Sadhal [4].

Rather than prescribing the temperature on these boundaries, we are assuming that the heat flux, q

will be known, and hence
∂u

∂n
can be prescribed on each boundary. On the pipe boundary, we set

∂u

∂n
= f

and on the ground surface we set
∂u

∂n
= g, where f, g are known functions. On the pipe boundary, in

terms of polar coordinates (r, θ), r is fixed so f will depend only on θ; in terms of Cartesian coordinates
(x, y), g will depend on x alone since y is fixed so will depend on both r and θ. This type of problem,

where we seek a solution u in a region outside a closed domain (i.e. the pipe) and
∂u

∂n
is given on the

boundary, is known as an exterior Neumann problem.

As we get further away from the heat source of the pipe, we wish the solution to tend towards an
ambient temperature. The ambient temperature at the ground surface, T0, is easy to measure, but as we
go further underground it is realistic to expect the temperature to increase. Again this is an idealised
condition since in some shallow underground caves the temperature would be much cooler than at the

3



surface due to lack of sunlight and moisture considerations. However, in some deep mines (4 km un-
derground) in South Africa for example, temperatures have been known to climb to around 55◦C, well
above ambient ground temperatures [19]. As a simplification we assume u → cy + T0 as we get further
away from the pipe, where c is a negative constant, |y| is the depth below the centre of the pipe, O. A
more mathematically rigorous analysis of this asymptotic behaviour will be given in §2.4.

1.4 Methods of Solution

First, we summarise the exterior Neumann problem we wish to solve:

∇2u = 0 in D (3a)

∂u

∂n
= f on Γa (3b)

∂u

∂n
= g on Γ1 (3c)

u→ cy + T0 as |x| → ∞, y → −∞ (3d)

where D is the region exterior to the pipe, Γa is the pipe boundary, and Γ1 is the ground surface boundary
(for a fuller description see §2.1 and Figure 3).

There are several ways we could go about trying to solve (3). We now describe some of the options
available highlighting strengths and weaknesses of each approach, with some illustrative examples where
appropriate. At this point we will not be applying full mathematical rigour to any results; this will be
done later in §2.4.

1.4.1 Analytic solution using polar coordinates (r, θ)

Generally it is not possible to solve this problem analytically for a general boundary condition at ground
level. There are two scenarios where it is possible to have an analytic solution (depending on the na-
ture of the boundary conditions f, g). This is very useful because this gives us a benchmark solution
for our numerical model, and gives us an indication of how accurate our solution will be in other scenarios.

The first scenario is when the pipe is buried deep underground and the heat flux at ground level is
0. Thus we can set g = 0. We also assume for now that c = 0, T0 = 0 for simplicity. Problem (3) now
reduces to:

∇2u = 0 in D

∂u

∂n
(a, θ) = f(θ) on Γa. (4)

In summary, this becomes an eigenvalue problem such that there are an infinite number of solutions,

un =
1
r

(An cosnθ +Bn sinnθ)

u =
∞∑
0

un (5)
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where we have used the fact that un must not blow up as r →∞ and un is 2π-periodic. Furthermore,

An =
a2

π

∫ 2π

0

f(θ) cosnθdθ

Bn =
a2

π

∫ 2π

0

f(θ) sinnθdθ. (6)

Thus for a simple closed-form solution, we could for example choose f to be sin θ or cos θ which would
leave u with one term only. A solution as an infinite sum could be reduced down to a simpler integral
form but this would still require numerical methods to solve and would not be that useful as a benchmark.

The second scenario where we may be able to obtain an analytic solution is when the pipe is exactly
half-buried. In this case, our boundary conditions apply along the constant lines r = a, θ = π, θ = 2π.
Our ability to produce a simple analytical expression depends on the boundary conditions. For example,
using the following boundary conditions:

f(θ) = sin 2θ

g(x) =
a3

x3

would yield the closed-form solution, u =
a3 sin 2θ

2r2
, where a is the radius of the pipe. Again, this solution

would provide useful benchmarking for our numerical solution.

1.4.2 Finite Difference and Finite Element Methods

The finite differerence (FD) method is often used as a brute force method to solve many Partial Differential
Equations (PDEs) as it is often easy to set up and understand [9, pp. 167–187]. A two dimensional
regular mesh (N×M grid points) is constructed on the region in which we are looking for a solution, using
Cartesian coordinates in this case. At each mesh point (xi, yj), we use the discretised version of Laplace’s
Equation:

(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j)
∆x∆y

= 0

where ui,j ≈ u(xi, yj),∆x = xi+1−xi,∆y = yj+1− yj for a uniform mesh. For a Neumann problem, this
requires us to solve a system of equations [N×M]×[N×M], so for 10 x, y nodes each, the linear system to
be solved would be 100×100. We can immediately see several problems with this method:

• Since this is an external Neumann problem, the mesh would need to cover a large truncated region
meaning either a large number of points leading to long compute time, or a coarse discretisation
which would imply a significant error. It would also be difficult to check in the model whether the
ambient temperature had been reached as |x|, |y| → ∞.

• The pipe boundary is circular which does not lend itself well to a square mesh. We may need to
resort to a more sophisticated finite element approach.

• The error in general would be O(∆x2) which may be unacceptably large.
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• Although the matrix above would be sparse (many of the elements would be zero), storing such
large data structures could have an adverse effect on computational speeds.

Hence for problem (3), we do not expect the Finite Difference Method to provide an acceptably quick
and accurate solution.

1.4.3 Conformal mapping

This technique maps the physical region onto a rectangular domain by using a complex transformation
[7]:

w = ln

(
z − i

√
h2 − a2

z + i
√
h2 − a2

)
.

The transformed boundaries now form the boundary of a rectangle in the complex domain which may be
easier to handle using separation of variables, although the boundary conditions are different and may
be more difficult to handle. For most problems, however, numerical methods may still be involved so this
does not necessarily help us solve the problem.

For a much more detailed discussion, refer to [7].

1.4.4 Bipolar coordinates

There are two standard definitions for bipolar coordinate systems:

• Bipolar coordinates (σ, τ). These are defined in Wikipedia [18] as follows:

x = a
sinh τ

cosh τ − cosσ

y = a
sinσ

cosh τ − cosσ
(7)

where the σ-coordinate of a point P equals the angle F1PF2 and the τ -coordinate is given by

τ = ln
d1

d2
, where d1, d2 are the distances to the two foci F1, F2 located at (−a, 0) and (+a, 0)

respectively, as shown in Figure 2.

Figure 2: Illustration of bipolar coordinates σ, τ [18]
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In (σ, τ) coordinates, ∇2 =
1
a2

(cosh τ − coshσ)2(
∂2

∂τ2
+

∂2

∂σ2
).

• Two-centre bipolar coordinates (r1, r2) [20]. For a given point p = (x, y), then r1 is the distance
between p and the point (−a, 0) and r2 is the distance between p and the point (+a, 0).

r1 =
√

(x+ a)2 + y2

r2 =
√

(x− a)2 + y2.

Simple rearrangement yields the transformation to Cartesian coordinates from bipolars (r1, r2):

x =
r2
1 − r2

2

4a

y = ± 1
4a

√
16a2r2

1 − (r2
1 − r2

2 + 4a2)2. (8)

Whilst either of these coordinate systems may be of use solving problem (3), we have not focussed
on this method of solution in this dissertation. Elsewhere, analytic solutions have been obtained
through this method (see [13],[14]).

1.4.5 Boundary Element Methods

This approach works when the PDE we are looking to solve has a simple Fundamental Solution associated
with it. In the case of Laplace’s Equation, the Fundamental Solution at a point p = (xp, yp) is:

G(x, y|xp, yp) =
1

4π
ln
[
(x− xp)2 + (y − yp)2

]
. (9)

G is defined everywhere in R2 apart from at (xp, yp) where it is singular. As we will see later in §2, we
can now transform the PDE (3) into a Boundary Integral Equation (BIE) which we can solve numerically
on the boundary of the pipe.

With this approach, there is no need to mesh the semi-infinite domain; we only need to discretise the pipe
boundary. In fact we have reduced the dimensionality of the problem from two dimensions to one, as we
discretise θ only. When the boundary is smooth as is the case here, we will get rapid convergence as we
shall demonstrate in §4. On the downside, we do have to invert dense matrices with this approach, but
they tend to be relatively small since we can use a small number of sample points for rapid convergence.

Given the advantages of this approach, we shall now use this method to obtain a solution for (3). There
are a couple of different ways this can be done via the Direct Method (which solves for u directly) or the
Indirect Method (which solves for a density function which then generates solutions for u). Both these
methods are summarised succinctly in [17, 290-297]. We shall use the Direct Method because in this
case it has the advantage of immediately yielding the boundary temperature, which we will then use to
compute solutions very close to (but not on) the boundary.
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2 Formulating the Boundary Integral Equation

2.1 Background

Given the complicated nature of the different domains and boundaries we need to consider, it is helpful
to define these in detail for later reference (see Figure 3).

• Let the origin of our Cartesian (x, y) plane, O, be at the centre of the oil pipe.

• Let Da be the interior of circular pipe radius a, with boundary Γa.

• Let the large bounded domain Dbox be defined by the interior of the region enclosed by the lines
y = Y, x = −R, y = −R, x = +R.

• Let the boundary of Dbox be Γ1,Γ2,Γ3,Γ4 as shown in the diagram below, where Γ1 coincides with
the line y = Y , Γ2 coincides with the line x = −R, Γ3 coincides with the line y = −R, and Γ4

coincides with the line x = +R.

• Define point p ∈ Dbox/Da and let Dε be a small circular domain, centre p, radius ε and boundary
Γε.

• Let D = Dbox/(Da ∪Dε) with boundary Γ = Γa ∪ Γε ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

• Let G be the Fundamental Solution to Laplace’s Equation, G(p,q) =
ln |p− q|

2π
or in Cartesian

terms G(xp, yp|xq, yq) =
ln |(xp − xq)2 − (yp − yq)2|

4π
.

• Let u be the temperature exterior to the pipe, therefore in steady state, u is harmonic on D subject

to the boundary conditions
∂u

∂n
= f on Γa and

∂u

∂n
= g on Γ1. The functions f, g are assumed to

be continuously infinitely differentiable i.e f, g ∈ C∞.

8



Figure 3: Layout of the different domains and boundaries

To formulate our BIE and to specify constraints on our boundary conditions, we will also need to
regularly make use of Green’s Second Identity [11, p.69] . This states that if φ and ψ are twice continuously
differentiable on D in R2 then:∫∫

D

(φ∇2ψ − ψ∇2φ)dA =
∫

Γ

(φ
∂ψ

∂n
− ψ∂φ

∂n
)ds. (10)

We define
∂φ

∂n
= ∇φ.n where n is the unit normal vector pointing out of the domain D, perpendicular to

the boundary Γ.

2.2 Assumptions

In order for us to be able to solve Laplace’s Equation subject to Neumann boundary conditions, certain
constraints need to be imposed to establish existence and uniqueness of solution.

• We assume u→ cy+T0 as |x|, |y| → ∞, where c is some real constant and T0 is the ambient ground
surface temperature. For convenience we therefore introduce a new variable:

v = u− cy − T0 (11)
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so that v → 0 as |x|, |y| → ∞. v is still harmonic on D and
∂v

∂n
=

∂u

∂n
− cny where ny is the y

component of the outward normal vector to the boundary.

• In order that the solution v does not blow up as |R| → ∞, we need to stipulate that for some real
α > 0:

∂v

∂x
= O(|x|−(1+α)) as |x| → ∞

∂v

∂y
= O(|y|−(1+α)) as y → −∞ (12)

v → 0 as |x|, |y| → ∞, (which immediately follows from our first assumption).

We will see later in §2.4 that this together with compatability (see below) is sufficient to guarantee
existence of a unique solution to (3).

• For any harmonic function v in D, substituting φ = v and ψ = 1 into (10), we get:∫
Γ

∂v

∂n
ds = 0. (13)

Rewriting boundary conditions for v as f̃ = f + c sin θ on Γa and g̃ = g − c on Γ1, then as R→∞
the integrals over Γ2,Γ3,Γ4 disappear and the above condition (13) reduces to:∫

Γa

f̃ds+
∫

Γ1

g̃ds = 0. (14)

This is known as the compatability condition.

Since f = f̃ − c sin θ and g = g̃ + c, it follows that we require:∫
Γa

fds+
∫

Γ1

gds = 0

as all integrals involving the constant c sum to 0.

2.3 Formulation of BIE

To formulate our BIE using the Direct Method, we could make use of (10) by substituting φ = v and
ψ = G. Since v and G are harmonic on D, this would give us:∫

Γ

(v
∂G

∂n
−G∂v

∂n
)ds = 0 in D. (15)

Taking each element of Γ in turn, we can see that (15) incorporates values of v on Γa,Γ1,Γε since
∂G

∂n
6= 0

on these boundaries. The integrals over Γ2,Γ3,Γ4 all disappear as R → ∞ because of our assumptions

for v,
∂v

∂n
on these boundaries. Solving for v over two distinct boundaries would be cumbersome and also

difficult to get an accurate solution since x ∈ (−∞,∞) on Γ1. Therefore we introduce a modified Green’s
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function G̃ using method of images such that
∂G̃

∂n
= 0 on Γ1.

The modified Green’s function G̃ is defined by:

G̃(xp, yp|xq, yq) = G(xp, yp|xq, yq) +G(xp, yp|xq, yq′ ), where yq′ = 2Y − yq. (16)

On Γ1:
∂G̃

∂n
=
∂G̃

∂yq
=
∂G(xp, yp|xq, yq)

∂yq

∣∣∣∣
yq=Y

−
∂G(xp, yp|xq, yq′ )

∂yq′

∣∣∣∣∣
y
q
′=Y

= 0. (17)

G̃ now has two singularities both of which are outside the domain D. Therefore within D, G̃ is still
harmonic and so we can still use Green’s Second Identity to formulate our BIE.

Using our modified Green’s function we can now state that for p ∈ D:

∫
Γ

(
v(q)

∂G̃(p,q)
∂nq

− G̃(p,q)
∂v(q)
∂nq

)
dsq = 0. (18)

which will only incorporate values of v on Γa and Γε since
∂G̃

∂n
= 0 on Γ1. We set out below each element

of the above integral and will prove each result in turn.

2.4 Theorems

Theorem 1. If p ∈ D and q ∈ Γa, and G̃ is as defined in (16), then for any f̃ ∈ C, v satisfies:

∫
Γa

[
v(q)

∂G̃(p,q)
∂nq

− G̃(p,q)
∂v(q)
∂nq

]
dsq = −a

∫ 2π

0

[
v(θ)

(
∂G̃(p,q)
∂xq

cos θ +
∂G̃(p,q)
∂yq

sin θ

)
+ G̃(p,q)f̃(θ)

]
dθ

(19)
where q = (xq, yq) = (a cos θ, a sin θ).

Furthermore, if p∗ ∈ Γa,

∫
Γa

[
v(q)

∂G̃

∂nq
(p∗,q)− G̃(p∗,q)

∂v

∂nq
(q)

]
dsq = −

∫ 2π

0

v(θ)
[

1
4π

+ a
∂G

∂xq
(p
′
,q) cos θ + a

∂G

∂yq
(p
′
,q) sin θ

]
dθ

−
∫ 2π

0

af̃(θ)
[

1
4π

ln
(

4a2 sin2 (θ∗ − θ)
2

)
+G(p

′
,q)
]
dθ

(20)

where p∗ = (a cos θ∗, a sin θ∗),p
′

= (a cos θ∗, 2Y − a sin θ∗).

Proof. On the left hand side (LHS) of (19),
∂G̃

∂nq
is defined to be ∇G̃.nq where nq is unit normal vector

to boundary.
In this case, the outward direction is towards the centre of the pipe as this out of the domain D.

11



Since Γa describes a circle, nq = (− cos θ,− sin θ). Therefore
∂G̃

∂nq
= − ∂G̃

∂xq
cos θ − ∂G̃

∂yq
sin θ.

In this case, dsq describes small changes in arc length, therefore dsq = adθ.

Finally we can substitute
∂v

∂nq
= f̃ on Γa, leading to equation (19).

To prove equation (20), first observe that for p ∈ Γa:

∂G

∂xq
(p∗,q) =

(xq − xp)
2π[(xq − xp)2 + (yq − yp)2]

∂G

∂yq
(p∗,q) =

(yq − yp)
2π[(xq − xp)2 + (yq − yp)2]

and substitute in the trigonometric expressions for xp, xq, yp, yq.

This yields:

∂G

∂nq
(p∗,q) =

−a(cos θ − cos θ∗) cos θ − a(sin θ − sin θ∗) sin θ
2πa2[(cos θ − cos θ∗)2 + (sin θ − sin θ∗)2]

= − (1− cos(θ − θ∗))
2πa[2− 2 cos(θ − θ∗)]

= − 1
4πa

. (21)

We also observe that for the reflected Green’s function:

G(xp, yp|xq, 2Y − yq) = G(xp, 2Y − yp|xq, yq) (22)

∂G

∂nq
(xp, yp|xq, 2Y − yq) =

∂G

∂nq
(xp, 2Y − yp|xq, yq). (23)

Hence
∂G̃

∂nq
(p∗,q) =

∂G

∂nq
(p∗,q) +

∂G

∂nq
(p
′
,q). (24)

Using expressions (21) and (24), the first term on the LHS of equation (20) becomes:

−
∫ 2π

0

v(θ)
[

1
4π

+ a
∂G

∂xq
(p
′
,q) cos θ + a

∂G

∂yq
(p
′
,q) sin θ

]
dθ. (25)

Now looking at the second term on the LHS of equation (20), we again observe that:

G̃(p∗,q) = G(p∗,q) +G(p
′
,q). (26)
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Furthermore,

G(p∗,q) =
1

4π
ln
[
a2(cos θ − cos θ∗)2 + a2(sin θ − sin θ∗)2

]
=

1
4π

ln
[
a2(2− 2 cos(θ − θ∗))

]
=

1
4π

ln
[
4a2 sin2 (θ − θ∗)

2

]
. (27)

Substituting (26) and (27) into (20), we obtain the following for the second term on the LHS:

−
∫ 2π

0

af̃(θ)
[

1
4π

ln
(

4a2 sin2 (θ∗ − θ)
2

)
+G(p

′
,q)
]
dθ. (28)

Hence our proof is complete for the case where p∗ ∈ Γa.

Theorem 2. If p,q, G̃ and Γε are as defined in §2.1–§2.3, then v satisfies:

lim
ε→0

∫
Γε

[
v(q)

∂G̃(p,q)
∂nq

− G̃(p,q)
∂v(q)
∂nq

]
dsq =

−v(p) if p ∈ D/Γa

−v(p)
2

if p ∈ Γa.
(29)

Proof. For p ∈ D,Γε describes a circle, so p = (xp, yp),q = (xp + ε cos θ, yp + ε sin θ) and dsq = εdθ.
Hence,

G̃ =
1

4π
(2 ln ε+ ln(ε2 + 2βε sin θ + β2)) where β = 2(Y − yq) > 0 (30)

by substituting above values of xp, yp, xq, yq into (16).
As ε → 0, it can be seen immediately that the second term in the integral (29) is O(ε ln ε). Using

L’Hôpital’s Rule on lim
ε→0

ln ε
ε−1

, it can easily be shown that this limit is 0. Therefore we only need to
consider the first term.

If q ∈ Γε,
∂G̃

∂nq
= −∂G̃

∂ε
= − 1

2πε
− ε+ β sin θ

2π(ε2 + 2βε sin θ + β2)
(31)

by differentiating (30) with respect to ε, which gives us:

lim
ε→0

∫
Γε

v(q)
∂G̃(p,q)
∂nq

dsq = − lim
ε→0

∫ 2π

0

v(q)[
1

2π
+

ε(ε+ β sin θ)
2π(ε2 + 2βε sin θ + β2)

]dθ

= −v(p). (32)

Now in the case where p ∈ Γa, the region Dε is only a segment of a circle depending on ε, since Dε must
not intersect Da. As ε→ 0, this segment tends towards a semi-circle. Therefore we can repeat the proof
as above except we are integrating θ over the range [0,π] instead (see Figure 4).
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Figure 4: Showing load point p in D, and on Γa

It follows immediately that:

lim
ε→0

∫
Γε

v(q)
∂G̃(p,q)
∂nq

dsq = − lim
ε→0

∫ π

0

v(q)[
1

2π
+

ε(ε+ β sin θ)
2π(ε2 + 2βε sin θ + β2)

]dθ

= −v(p)
2

. (33)

Theorem 3. If p,q, G̃ and Γ1 are as defined in §2.1–§2.3, then for any g̃ ∈ C, v satisfies:

lim
R→∞

∫
Γ1

[v(q)
∂G̃(p,q)
∂nq

− G̃(p,q)
∂v(q)
∂nq

]dsq = −2
∫ ∞
−∞

G(p,q)|yq=Y g̃(xq)dxq. (34)

Proof. By definition, on Γ1, yq = Y,
∂G̃

∂nq
= 0,

∂v

∂nq
= g̃, and G̃

∣∣∣
yq=Y

= 2 G|yq=Y .

Finally dsq = dxq since yq is constant, hence our result.

Theorem 4. If p,q, G̃ and Γ2,Γ3,Γ4 are as defined in §2.1–§2.3, then v satisfies:

lim
R→∞

∫
Γi

[
v(q)

∂G̃(p,q)
∂nq

− G̃(p,q)
∂v(q)
∂nq

]
dsq = 0 for i = 2, 3, 4. (35)

Proof. First consider the boundary Γ4 where xq = +R.

Since
∂v

∂nq
=

∂v

∂xq
= O(|xq|−(1+α)) as |xq| → ∞, by definition there exist x0,M ∈ R such that

∂v

∂xq
≤

Mx−(1+α)
q for all xq ≥ x0.
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Also since v → 0 as |x| → ∞, there exists x1 ∈ R such that for any ε > 0, |v| ≤ ε for all x ≥ x1.
Therefore for R ≥ max(x0, x1) we can rewrite LHS of (35) as:∣∣∣∣∣∣
∫ R

−R
(v
∂G̃

∂xq
)

∣∣∣∣∣
xq=R

− (G̃
∂v

∂xq
)
∣∣∣∣
xq=R

dyq

∣∣∣∣∣∣ ≤
∫ R

−R

∣∣∣∣∣v(R, yq)
∂G̃

∂xq
(xp, yp|R, yq)

∣∣∣∣∣ dyq +
∫ R

−R

∣∣∣∣G̃(xp, yp|R, yq)
∂v

∂xq
(R, yq)

∣∣∣∣ dyq
≤ ε

∫ R

−R

∣∣∣∣∣ ∂G̃∂xq (xp, yp|R, yq)

∣∣∣∣∣ dyq +MR−(1+α)

∫ R

−R

∣∣∣G̃(xp, yp|R, yq)
∣∣∣ dyq

=
ε

2π

∫ R

−R

∣∣∣∣ (R− xp)
(R− xp)2 + (yp − yq)2

∣∣∣∣ dyq
+
MR−(1+α)

4π

∫ R

−R

∣∣ln[(R− xp)2 + (yq − yp)2]
∣∣ dyq

≤ ε

2π

∣∣∣∣ 2R
(R− xp)

∣∣∣∣+
MR−(1+α)

4π
.2R ln(8R2)

=
ε

π(1− xp
R )

+
(ln 8 + 2 lnR)MR−α

2π
. (36)

As R → ∞ and ε → 0, the first term clearly tends to 0. To prove that lim
R→∞

lnR
Rα

= 0 use L’Hôpital’s

Rule giving lim
R→∞

lnR
Rα

=
1

αRα
= 0.

Hence we have proved that:

lim
R→∞

∫
Γ4

(
v(q)

∂G̃(p,q)
∂nq

− G̃(p,q)
∂v(q)
∂nq

)
dsq = 0. (37)

It follows trivially that the same result holds for Γ2 where we effectively make the substitution x
′

= −x.

We can use the same proof for Γ3 since we are replacating it using
∂v

∂yq
as yq → −∞ instead of

∂v

∂xq
as

|xq| → ∞. Although the range of integration [-R,Y] is different, this does not affect the end result.

We have now proved (35) and are in a position to formulate the BIE to solve this problem.

2.5 The Boundary Integral Equation

2.5.1 Operator Notation

In general, when analysing BIEs, it is convenient to use operator notation to represent integral operators
as it is a more compact and convenient notation. It can also be useful when applying rigorous functional
analysis techniques to prove existence, uniqueness and to perform error analysis. From a conceptual
basis, it is also simple to understand that if the BIE is solved on a particular boundary, we can apply the
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same operators (referencing any point in the domain) using those boundary values to solve the equation
for that point in the domain.

In this example, we have the following operator representation:

v(p)− (Av)(p) = (Bf̃)(p) + (Cg̃)(p) for p ∈ D (38)

v(p∗)
2
− (Av)(p∗) = (Bf̃)(p∗) + (Cg̃)(p∗) for p∗ ∈ Γa (39)

where:

Az(p) =
∫

Γa

z(q)
∂G̃

∂nq
(p,q)dsq

Bz(p) = −
∫

Γa

G̃(p,q)z(q)dsq

Cz(p) = −
∫

Γ1

G̃(p,q)z(q)dsq.

2.5.2 Operators on the Boundary

In order to obtain a solution v at any point p ∈ D, we first need to solve (39) which is a BIE of the
Second Kind. Whilst we would use the above definitions of our operators in (38) for a general point
p ∈ D, it is important that we make use of the expressions derived in §2.4 when using the operators in
(39). Using these expressions has a significant impact on accuracy and speed when solving the BIE.

The expressions for each operator when p∗ ∈ Γa are as follows:

Az(p∗) = −
∫ 2π

0

z(θ)
[

1
4π

+ a
∂G

∂xq
(p
′
,q) cos θ + a

∂G

∂yq
(p
′
,q) sin θ

]
dθ (40)

Bz(p∗) = −
∫ 2π

0

az(θ)
[

1
4π

ln(4a2 sin2 θ
∗ − θ

2
) +G(p

′
,q)
]
dθ (41)

Cz(p∗) = −2
∫ ∞
−∞

G(p∗,q)|yq=Y z(xq)dxq. (42)

Since the operators B and C do not act on v in our BIE (39) it is convenient to define a function h such
that:

h(p∗) = Bf̃(p∗) + Cg̃(p∗). (43)

The BIE then becomes:
v(p∗)

2
− (Av)(p∗) = h(p∗) for p∗ ∈ Γa. (44)

Having solved for v on the boundary we can then use (38) to determine v at any point p ∈ D.
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3 Numerical Methods for solving Boundary Integral Equations

3.1 Background

In the previous section, we formulated the BIE which we need to solve on Γa. In general, this equation
cannot be solved analytically, so we need to develop some numerical techniques to provide the solution.
The goal here is to approximate the continuous operators using discrete operators on v so that a linear
system of equations on v can then be solved using matrix inversion.

There are several techniques for discretising the BIE; the ones we will look at in this dissertation are
known as Nyström’s Method and the Collocation Method. Although Galerkin’s Method is popular
amongst mathematicians due to some of its elegant analytical properties, we will not be discussing it
further.

Accuracy in our numerical integration techniques is also critical as this will allow us to use fewer sample
points and hence decrease calculation times. Therefore we will be examining different numerical inte-
gration rules (known as quadrature), namely the trapezium rule and Gauss-Legendre quadrature, with a
view to how precision can be optimised whilst not impacting calculation speeds too adversely.

Finally we will look at some simple examples where the analytic solution is known so we can com-
pare accuracy for the various methods and present some numerical results. This will include examples
where the pipe is buried deep underground, and a sequence of results as the pipe approaches ground level.

3.2 Quadrature

Throughout the following discussion, there are numerous references to the term quadrature and the rules
used to perform numerical integration. Therefore it would be helpful to set out some definitions here to
make the subsequent material clearer.

3.2.1 Definition

A quadrature rule is a numerical approximation for a definite integral, I =
∫ b

a

f(x)dx. In general, an

N-point quadrature rule would approximate the integral as:

I ≈
N∑
i=1

wif(xi)

where wi are called the weights and xi are called the abscissas.
As a simple example, the trapezium rule would approximate the integral as follows:

I ≈ (b− a)
2

(f(a) + f(b))

and would therefore be termed a 2-point quadrature rule. Here we have specified the abscissas x1 =
a, x2 = b and solved for the weights w1, w2 to ensure that I is exact when f is any polynomial of order 1
since this gives us two equations in two unknowns.
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If the range of integration is subdivided into N equal partitions [xi, xi+1] where i = 1, . . . , N , we get
the composite version of the trapezium rule:

N∑
n=1

∫ xn

xn−1

f(x)dx ≈
N∑
n=1

(b− a)
2N

(f(xn−1) + f(xn)) =
(b− a)

2N

[
f(x0) + f(xN ) + 2

N−1∑
n=1

f(xn)

]
. (45)

We will see later in §3.7.2 that when the composite trapezium rule is used for smooth periodic func-
tions, we get rapid convergence.

More generally, for an N-point quadrature rule, we can specify N abscissas x1, . . . , xN and calculate
the weights w1, . . . , wN accordingly by making sure I is exact when f is any polynomial of order (N-1).

3.2.2 Gauss-Legendre Quadrature

In the above, the abscissas are specified and the weights can be calculated. Gaussian quadrature aims to
improve the accuracy by solving simultaneously for both the abscissas and the weights, thereby guaran-
teeing I is exact for all polynomials of order (2N-1). One of the most popular Gaussian quadrature rules
is the Gaussian-Legendre formula, of which we will make widespread use [16, pp. 136–145].

This formula works well when the definite integral is over a finite range [a,b] and the function, f ∈ C∞.
If there is a singularity in the range, then the quadrature rule can be enhanced to minimise the effect of
the singularity and we will examine this later on.

It is customary to use a normalised integration range [-1,1] to calculate the abscissas and weights. They
can then be used for any definite integral of any smooth function g. If we can calculate {wi}, {xi} such
that: ∫ 1

−1

f(x)dx ≈
N∑
i=1

wif(xi), for any f ∈ C∞

then
∫ b

a

g(x)dx ≈ (b− a)
2

N∑
i=1

wig

(
b− a

2
xi +

b+ a

2

)
(46)

by making the substitution, x =
b− a

2
x
′
+
b+ a

2
.

It can be shown that the abscissas are the N roots of the Legendre polynomials:

PN (x) =
1

2NN !
dN

dxN
(x2 − 1)N

where P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1), ....
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The weights are then defined as:

wi =
2(1− x2

i )
N2[PN−1(xi)]2

.

The proof of these results is outside the scope of this document (see [16, pp. 136–145]). However,
we will refer to this proof to obtain some properties of the Legendre polynomials needed to calculate the
abscissas and weights for any number N.

3.2.3 Calculation of abscissas and weights

The relevant properties we will make use of are:

PN (xi) = 0 for i = 1, 2, ..., N

PN (x) =
(2N − 1)

N
xPN−1(x)− (N − 1)

N
PN−2(x) for all x ∈ R, N ≥ 2 (47)

P
′

N (x) =
NPN−1(x)−NxPN (x)

(1− x2)
for all x ∈ R, N ≥ 1.

Using a judicious starting value for x0
i , we will use the recurrence relation in (47) to generate a value

for PN (x0
i ). This value should converge to 0 for xi to be a root. Therefore we iterate xi by using the

Newton-Raphson method, thereby giving a new start value:

x1
i = x0

i −
PN (x0

i )
P
′
N (x0

i )
.

We continue iterating xji in this fashion until PN (xji ) converges towards a given tolerance� 1. Once this
has been achieved, we can then calculate the weight wi.

The judicious initial guess for xi can be achieved by using the formula [1, p.787]:

xi = − cos
(4i+ 3)π
4N + 2

which ensures that there are no repeated roots and that xi converges to a real root in [-1,1].

We can also save time during the calculation by observing that PN (−x) = (−1)NPN (x) and hence if

xi is a root of PN (x) then so is −xi. Therefore, for an even number N, we only have to calculate
N

2
roots

and then set xi = −xN+1−i and wi = wN+1−i for all
N

2
< i ≤ N .

3.2.4 Gaussian quadrature over infinite ranges

As stated previously, Gauss-Legendre is intended for definite integrals over finite ranges with no singu-
larities. In our problem, however, we need to integrate over Γ1 in which xq ∈ [−∞,∞]. We could employ
a different Gaussian quadrature rule such as Gauss-Hermite, but this really needs the integrand f to
exhibit exponential decay as x → ±∞ for good convergence. There is also the possibility that we need
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to split the integral into two semi-infinite ranges to isolate any singularities which would require us to
use Gauss-Laguerre quadrature instead. A simpler solution is to transform the infinite (or semi-infinite)
range to a finite one by using the substitution:

x = tan
(π

2
λ
)
.

Therefore, the integral is now transformed from:∫ ∞
−∞

f(x)dx→ π

2

∫ 1

−1

f
(

tan(
π

2
λ)
)

sec2
(π

2
λ
)
dλ.

It can be seen here that we require f to be O(x−(2+p)) as x → ∞ (for some p > 0) to ensure good
convergence, since sec2

(
π
2λ
)

blows up as λ → ±1. However, this is less onerous than exponential decay
and we will explain later how to improve accuracy when the location of a singularity is known. This
integral can now be approximated using the standard Gauss-Legendre abscissas and weights.

3.2.5 Gaussian quadrature across a singularity

Using standard Gaussian quadrature where f or its derivatives are singular within the bounds of inte-
gration can lead to significant errors being introduced. Sometimes it is possible to make a substitution
to get rid of the singularity.

For example, ∫ b

a

f(x)√
x
dx→

∫ √b
√
a

f(y2)
y

2ydy

by making the substitution, x = y2.

Another technique is to subtract out the singularity by setting f(x) = f1(x) + f2(x) where f1 is rel-
atively smooth and can be numerically integrated more accurately, and f2 contains the singularity but
can be integrated analytically.

For example, ∫ 1

0

sin
√
xdx =

∫ 1

0

(
sin
√
x− x 1

2 +
x

3
2

6

)
dx+

∫ 1

0

x
1
2 − x

3
2

6
dx.

The first part of the integral now has first and second derivatives that vanishes at x = 0, so can therefore
be integrated more accurately. The second part integrates analytically.

Where these two techniques do not help, then we need to refine our Gaussian quadrature to obtain
more accuracy. For our problem we shall use a graded one-dimensional mesh.

Suppose the integral is given by:

I =
∫ 1

0

f(x)dx
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where the singularity is at 0. We then split the integrals into (N+1) ranges such that:

I =
∫ σN

0

f(x)dx+
∫ σN−1

σN
f(x)dx+

∫ σN−2

σN−1
f(x)dx+ ...+

∫ 1

σ

f(x)dx

where 0 < σ < 1. Each of the (N+1) integrals is then approximated numerically using Gauss-Legendre
quadrature using N abscissas and weights. The number of calculations is then of order N2. When using
grading in this way it is usual to use a number of weights close to the square root of that used without
grading so as to improve accuracy without impairing calculation time.

More generally when integrating over x ∈ [a, b] with a singularity at a,

I =
∫ a+(b−a)σN

a

f(x)dx+
∫ a+(b−a)σN−1

a+(b−a)σN
f(x)dx+

∫ a+(b−a)σN−2

a+(b−a)σN−1
f(x)dx+ ...+

∫ b

a+(b−a)σ

f(x)dx.

Similarly, when integrating over x ∈ [a, b] with a singularity at b,

I =
∫ b

b+(a−b)σN
f(x)dx+

∫ a+(b−a)σN

b+(a−b)σN−1
f(x)dx+

∫ b+(a−b)σN−1

b+(a−b)σN−2
f(x)dx+ ...+

∫ b+(a−b)σ

a

f(x)dx.

Clearly we don’t want σ to be too close to 1 otherwise our weighting of the singularity will still produce
significant errors. If σ is too close to 0, we will not really have graded the mesh sufficiently since the
final integral will dominate. To find the approximate optimal value of σ to be used, we illustrate with an
example in Table 1.

Setting I = −
∫ π

2

0

ln(sin2 x)dx, we tabulate the numerical approximations of I using different values

of σ below. In this example, 4 weights were used for each partition. The analytic solution is I = π ln 2 =
2.177586 to 6 decimal places, which can be evaluated by comparing the Taylor’s expansion of ln(1−cos2 x)
and ln

(
1
2 (1− cos 2x)

)
.

σ I % error

0.10 2.175232 0.108
0.12 2.176147 0.066
0.14 2.176669 0.042
0.16 2.176967 0.028
0.18 2.177127 0.021
0.20 2.177198 0.018
0.22 2.177205 0.018
0.24 2.177160 0.020
0.26 2.177069 0.024
0.28 2.176936 0.030
0.30 2.176757 0.038

Table 1: Values of I as σ varies from 0.10 to 0.30
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This suggests that the optimal value for σ in this scenario would be around 0.20. In practice, when
more weights are used an optimal σ of 0.15 is commonly used [12], and this is the value we have used in
our examples later on. As a further comparison, when we use 16 weights with no grading, I = 2.170295
which gives an error of 0.335%.

3.3 Discretisation Methods

3.3.1 Nyström’s Method

Perhaps the simplest discretisation method to understand is Nyström’s Method [2, pp. 100–103] which
gives a quick and efficient way to discretise BIEs of the Second Kind, using the quadrature rule of our
choice to approximate the integral.

In general, suppose we have a BIE such as:

v(p)−Av(p) = h(p)

where A =
∫

Γ

K(p,q)v(q)dsq and K is a continuous kernel.

We can use a quadrature rule on the operator A such that:

(Av)(p) ≈
N∑
j=1

wjK(p,qj)v(qj)

Now suppose that our approximation for v using N node points is vN , then we can define vN as follows:

vN (p)−
N∑
j=1

wjK(p,qj)vN (qj) = h(p) (48)

At each node point, pi where i = 1, . . . , N :

vN (pi)−
N∑
j=1

wjK(pi,qj)vN (qj) = h(pi) (49)

which is a linear system for vN of order N which can be solved by matrix inversion.

For other points p ∈ D, we can then write:

vN (p) =
N∑
j=1

wjK(p,qj)vN (qj) + h(p) (50)

Equation (50) is known as Nyström’s interpolation formula and is the key to maintaining the accuracy of
the solution. This method works well when the kernel K is continuous everywhere and does not contain
singularities. In the problem we are looking at however, the kernel of the operator A is the derivative of
the Green’s function which will become singular for any point p approaching the boundary Γa. In this
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instance, to gain greater accuracy we would need to use more points, either by using a larger number
of sample points which would be relatively expensive computationally, or by interpolating our solution
around the boundary across a larger number of points.

For this reason in our search for greater accuracy close to the pipe boundary, we prefer to use the
Collocation Method instead.

3.3.2 Collocation Method

For the collocation method, we first define a finite N-dimensional space of candidate solutions {φi}Ni=1.
The solution for any point p ∈ D ∪ Γa ∪ Γ1 can then be expressed as:

v(p) ≈
N∑
j=1

cjφj(p) (51)

and we substitute this into our BIE (44).

Therefore,

N∑
j=1

cj
φj(p)

2
−A

N∑
j=1

cjφj(p) ≈ h(p)

N∑
j=1

cj
φj(p)

2
−

N∑
j=1

cjAφj(p) ≈ h(p), since A is a linear operator

N∑
j=1

cj

(
φj(p)

2
−Aφj(p)

)
≈ h(p). (52)

We then chose N collocation points, {pi}Ni=1, on the boundary Γa where this equation holds exactly. As
there are N collocation points {pi} and N unknown coefficients {cj}, this gives us a system of N linear
equations in {cj} which can be solved using matrix inversion.

The matrix representation becomes:

Mc = h

c = M−1h (53)

where:

• M is N×N matrix with elements Mij =
(
φj(pi)

2
−Aφj(pi)

)
• c is N×1 vector with elements {cj}

• h is N×1 vector with elements h(pi).
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3.4 Basis functions

The next step in implementing the numerical method is to choose suitable basis functions that we can
use in (51). This often depends on factors such as nature of boundary conditions, accuracy required, ease
of implementation, speed of computation. Common basis functions include:

• Piecewise constant e.g.

φj(x) =

1 if x ∈ Xj

0 if x /∈ Xj .
(54)

Alternative definitions for Xj are [xj−1, xj ], [xj , xj+1] or for regularly spaced nodes [xj −
∆x
2
, xj +

∆x
2

].

• Piecewise linear e.g.

φj(x) =


x− xj−1

xj − xj−1
if x ∈ [xj−1, xj ]

xj+1 − x
xj+1 − xj

if x ∈ [xj , xj+1]

0 otherwise.

(55)

• Piecewise polynomial e.g. Lagrange polynomial basis

φN1 (x) =
(x− x0)(x− x2)(x− x3)....(x− xN )

(x1 − x0)(x1 − x2)(x1 − x3)....(x1 − xN )

φNj (x) =
(x− x0)(x− x1)....(x− xj−1)(x− xj+1)....(x− xN )

(xj − x0)(xj − x1)....(xj − xj−1)(xj − xj+1)....(xj − xN )
.

Hence φNj (xk) = δjk. (56)

• Trigonometric basis e.g. Lagrange basis functions where 2N points are evenly spaced around a
circular boundary [11, p. 182]

φNj (x) =
1

2N

[
1 + cosN(x− xj) + 2

N−1∑
n=1

cosn(x− xj)

]
. (57)

Lemma 1. The basis function given in (57) has the property that φNj (xk) = δjk.

Proof. Consider the case where j = k, then trivially φNj (xj) =
1

2N

[
1 + 1 + 2

N−1∑
n=1

1

]
= 1.

For j 6= k, first observe that:

cosN(xk − xj) = cos(N(k − j)2π
N

) = cos 2π(k − j) = 1.
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Next consider the geometric series:

N−1∑
n=1

ein(xk−xj) =
(

1− ei(k−j)2π

1− e
i(k−j)2π

N

)
− 1

= −1. (58)

Therefore,
1

2N

[
1 + cosN(xk − xj) + 2

N−1∑
n=1

cosn(xk − xj)

]
= 0 for j 6= k.

Hence, φNj (xk) = δjk.

If we express v in terms of basis functions {φj}Mj=1 as defined in (57) so that v(θ) ≈
M∑
j=1

φj(θ)v(θj)

where M = 2N is an even number, then:

Av ≈
∫

Γa

∂G

∂n
(θ)

M∑
j=1

φj(θ)v(θj)dθ (59)

≈
M∑
j=1

v(θj)
(∫

Γa

∂G

∂n
(θ)φj(θ)dθ

)
(60)

If we now use the composite trapezium rule as described in (45) to numerically integrate, we get the
following expression:

Av ≈
M∑
j=1

v(θj)
∂G

∂n
(θj)∆θ (61)

where ∆θ =
2π
M

.

This result shows that if our quadrature rule is the composite trapezium rule, and the collocation points
are the same as the sample points, then Nyström’s Method and the Collocation Method are in fact equiv-
alent.

We shall see in the §3.7.2 that because
∂G

∂n
(θ), φj(θ) and every derivative of these functions are all

2π-periodic, then the substitution

∫
Γa

∂G

∂n
(θ)φj(θ)dθ =

M∑
j=1

∂G

∂n
(θj)∆θ

has arbitrarily small error for sufficiently large M.

3.5 Singular Kernels

When calculating Bf̃ , a problem arises since G̃ has a singularity on Γa. Therefore if we were simply
to apply the composite Trapezium Rule to numerically integrate we may generate significant errors.
However, since the singular kernel in this case is logarithmic, we express f̃ in terms of the Lagrangian
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trigonometric basis functions {Lj}, defined below, to resolve this problem. We can then integrate the
resulting interpolation by parts to give us a much more accurate estimate of the integral.

Express Lj(θ) as a sum of cos terms [11, p.182]:

Lj(θ) =
1

2N

(
1 + cosN(θ − θj) + 2

N−1∑
k=1

cos k(θ − θj)

)
.

Let f̃(θ) =
2N−1∑
j=0

f̃(θj)Lj(θ) so that Bf̃(θ) =
2N−1∑
j=0

f̃(θj)BLj(θ).

The problem arises in trying to calculate

wj(θ∗) =
∫ 2π

0

Lj(θ) ln
[
4a2 sin2 (θ∗ − θ)

2

]
dθ. (62)

The integral (62) is a linear sum of integrals where the integrands are all 2π-periodic. Without loss of
generality, we can therefore integrate each one over a shifted interval:∫ 2π+θ∗

θ∗
cos k(θ − θj) ln

[
4 sin2 (θ∗ − θ)

2

]
dθ =

∫ 2π

0

cos k(θ − [θj − θ∗]) ln
(

4 sin2 θ

2

)
dθ.

We now need to prove the following result outlined in [11, p.146], but expanded here for clarity.

Theorem 5.

Ik =
∫ 2π

0

ln
(

4 sin2 θ

2

)
eikθdθ =

0 k = 0

− 2π
|k| |k| ≥ 1

(63)

Proof. When k = 0, we observe that:

I0 =
∫ 2π

0

ln
(

4 sin2 θ

2

)
dθ

=
∫ π

0

ln
(

4 sin2 θ

2

)
dθ +

∫ 2π

π

ln
(

4 sin2 θ

2

)
dθ

=
∫ π

0

ln
(

4 sin2 θ

2

)
dθ +

∫ π

0

ln
(

4 sin2 φ+ π

2

)
dφ

=
∫ π

0

ln
(

4 sin2 θ

2

)
dθ +

∫ π

0

ln
(

4 cos2 φ

2

)
dφ

(64)

making the substitution θ = φ+ π. Similarly,∫ 2π

0

ln
(

4 cos2 θ

2

)
dθ =

∫ π

0

ln
(

4 cos2 θ

2

)
dθ +

∫ π

0

ln
(

4 sin2 φ

2

)
dφ

(65)

implying that I0 =
∫ 2π

0

ln
(

4 sin2 θ

2

)
dθ =

∫ 2π

0

ln
(

4 cos2 θ

2

)
dθ.
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Therefore,

2I0 =
∫ 2π

0

ln
(

4 sin2 θ

2

)
+
∫ 2π

0

ln
(

4 cos2 θ

2

)
dθ

=
∫ 2π

0

ln
(

16 sin2 θ

2
cos2 θ

2

)
dθ

=
∫ 2π

0

ln
(
4 sin2 θ

)
dθ

=
1
2

∫ 4π

0

ln
(

4 sin2 θ

2

)
dθ

= I0. (66)

Hence I0 = 0.

For the case where k ≥ 1, we need to make use of the geometric sum:

1 + eikθ + 2
k−1∑
j=1

eijθ = 1 + eikθ + 2
(
eikθ − 1
eiθ − 1

− 1
)

= (eikθ − 1)
{

1 +
2

eiθ − 1

}
= i(1− eikθ) cot

θ

2
. (67)

Now if we integrate both sides of (67) over [0,2π], we get:

2π = i

∫ 2π

0

cot
θ

2
dθ − i

∫ 2π

0

eikθ cot
θ

2
dθ. (68)

Using the two identities: ∫ π
2

0

cot θdθ =
∫ π

2

0

tan θdθ∫ π

π
2

cot θdθ = −
∫ π

2

0

tan θdθ

we can easily show that i
∫ 2π

0

cot
θ

2
dθ = 0.

Therefore (68) now gives us: ∫ 2π

0

eikθ cot
θ

2
dθ = 2πi.
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Comparing real and imaginary parts, this yields:∫ 2π

0

cos kθ cot
θ

2
dθ = 0∫ 2π

0

sin kθ cot
θ

2
dθ = 2π. (69)

If we integrate the real part of (63) by parts we obtain:

∫ 2π

0

ln
(

4 sin2 θ

2

)
cos kθdθ =

[
ln
(

4 sin2 θ

2

)
sin kθ
k

]2π

0

− 1
k

∫ 2π

0

4 sin θ
2 cos θ2 sin kθ
4 sin2 θ

2

dθ

= 0− 1
k

∫ 2π

0

sin kθ cot
θ

2
dθ

= −2π
k

(70)

using the result (69).

Since Ik is real, then it follows that I−k = Ik. Hence for integer values of k ≤ −1, the value of our

integral is
−2π
|k|

, and our proof is complete.

Substituting this into (62) we now get:

wj(θ∗) =
∫ 2π

0

Lj(θ + θ∗) ln
[
4a2 sin2 θ

2

]
dθ

=
1

2N

∫ 2π

0

[
ln a2 + ln

(
4 sin2 θ

2

)][
1 + cosN(θ − θj + θ∗) + 2

N−1∑
k=1

cos k(θ − θj + θ∗)

]
dθ

=
2π
N

(
ln a−

[
N−1∑
k=1

1
k

cos k(θj − θ∗) +
1

2N
cosN(θj − θ∗)

])
(71)

by noting that: ∫ 2π

0

ln
(

4 sin2 θ

2

)
cos k(θ − θj + θ∗)dθ = Re(eik(θ∗−θj)Ik)

= −2π
k

cos k(θj − θ∗). (72)

Therefore if operator B = BS +BNS , where BS is singular and BNS is non-singular, then:

(Bf̃)(θ∗) = (BNS f̃)(θ∗) +
2N−1∑
j=0

wj(θ∗)f̃(θj).

3.6 Numerical integration over an infinite range

When we numerically integrate operator C, we need to integrate across the real line (−∞,∞). This
integral has no dependency on the integral over the pipe boundary so we can independently choose the
optimal way to integrate over Γ1. The most obvious way is to use the trapezium rule but this produces

28



poor convergence rates of O(h2) where h = R/N with R arbitrarily large.

As explained in §3.2, an improvement to this approach would be to use Gaussian quadrature, which
for a smooth kernel would be extremely accurate for relatively few points (N ≈ 32) - Gauss-Hermite
would probably give rapid convergence here. However, the kernel becomes singular as the load point
approaches the line y = Y , which is a problem when we want to solve for all points in the domain D.
Gauss-Hermite quadrature also performs best when the integrand decays exponentially as |x| → ∞ which
may not be the case in this problem.

An alternative approach is to make a substitution in the integral to give us finite limits so we can
then use Gauss-Legendre quadrature. For example, we can choose x = tan(φ). Thus the range for φ is
(−π2 ,

π
2 ). This substitution effectively gives us a large ∆x as x approaches ±∞ where we know the solu-

tion decays to 0, and a much smaller ∆x near x = 0 where we need a much more granular discretisation.
There are some limitations to using this quadrature which we have stated previously, but in the examples
we have used this produces the best convergence.

The equation for operator C now becomes:

Cz(p∗) = −2
∫ π

2

−π2
G(p∗,q(φ))|yq=Y z(φ) sec2 φdφ. (73)

This kernel is not singular for p∗ ∈ Γa if Y > a. However, we still have the problem of near singularity
for those points p ∈ D as p approaches Γ1. An improvement is achieved by splitting the integral into
two domains (-∞, xp) and (xp,∞), and using the substitutions x = xp − tanφ on the first domain, and
use x = xp + tanφ on the second domain. This ensures that the point of singularity (i.e. x = xp) is the
upper boundary on the first integral and the lower boundary on the second integral.

We can then use Gauss-Legendre quadrature as described above on both integrals with grading if neces-
sary. The operator C is then transformed to:

Cz(p∗) = − 1
2π

∫ π
2

0

ln
[
tan2(θ) + (Y − yp)2

]
[z(xp + tanφ) + z(xp − tanφ)] sec2 φdφ (74)

Given that we have a finite range, we generally use Gauss-Legendre integration with 64 points or with
grading we use 8 points on 8 graded domains. This approach shows distinctly better convergence when p

approaches the line y = Y over other traditional approximations such as trapezium rule with x = tanφ
substitution.

3.7 Error Analysis

We now examine the error for these composite rules to see what order of magnitude we should expect
for a given discretisation. This will then give us some basis on which rule to choose for our numerical
integration given other considerations such as speed and memory constraints.
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3.7.1 Trapezium Rule

We expand the derivation given in Kress for clarity [11, p.198].

Theorem 6. Let the remainder R(f) be defined as:

R(f) =
∫ b

a

f(x)dx− h
[
f(x0)

2
+ f(x1) + ....+ f(xN−1) +

f(xN )
2

]
. (75)

Then |R(f)| ≤ h2

12
(b− a)

∥∥∥f ′′∥∥∥
∞

.

Proof. Define K(x) for each partition of the interval [a,b].

K(x) =



1
2 (x− x0)(x− x1) x0 ≤ x ≤ x1

....

1
2 (x− xj−1)(x− xj) xj−1 ≤ x ≤ xj
....

1
2 (x− xN−1)(x− xN ) xN−1 ≤ x ≤ xN

(76)

We integrate by parts twice to obtain:

∫ xj

xj−1

K(x)f
′′
(x)dx =

[
y(y − h)

2
f
′
(y + xj−1)

]h
0

−
∫ h

0

(y − h

2
)f
′
(y + xj−1)

= 0−
[
(y − h

2
)f(y + xj−1)

]h
0

+
∫ h

0

f(y + xj−1)dy

= −h
2

[f(xj−1) + f(xj)] +
∫ h

0

f(y + xj−1)dy

=
∫ xj

xj−1

f(x)dx− h

2
[f(xj−1) + f(xj)] . (77)

Summing over j = 1, . . . , N we get:

|R(f)| ≤
N∑
j=1

∫ xj

xj−1

∣∣∣K(x)f
′′
(x)
∣∣∣ dx

≤
∥∥∥f ′′∥∥∥

∞

N∑
j=1

∫ h

0

|y(y − h)
2

|dy

=
∥∥∥f ′′∥∥∥

∞

N∑
j=1

[
hy2

4
− y3

6

]h
0

=
∥∥∥f ′′∥∥∥

∞

Nh3

12

=
h2

12
(b− a)

∥∥∥f ′′∥∥∥
∞
. (78)
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3.7.2 Trapezium Rule on Periodic Functions

In the problem we are looking at, we know that our integrand is 2π-periodic around the pipe boundary.
Therefore we can use a special feature of the trapezium rule which improves our accuracy from O(h2)
considerably [10].
The most convenient way to analyse the periodicity is to look at the discrete Fourier transform of the
integrand f .

f(x) =
1

2π

∞∑
m=−∞

cme
imx

where

cm =
∫ 2π

0

f(x)e−imxdx.

Define the exact integral I =
∫ 2π

0

f(x)dx. It follows immediately that I = c0.

Also define the numerical integral :

IN =
N∑
n=1

f(n∆x)∆x

=
N∑
n=1

(
∞∑

m=−∞

1
2π
cme

imn∆x)∆x

=
∞∑

m=−∞
cm(

N∑
n=1

e
2πimn
N )

1
N
.

(79)

But
N∑
n=1

e
2πimn
N = 0 unless m is an integer multiple of N. So we can simplify the above to:

IN =
∞∑

k=−∞

ckN .

Therefore the error in the trapezium rule is:

E = |I − IN |

=

∣∣∣∣∣c0 −
∞∑

k=−∞

ckN

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

(ckN + c−kN )

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

2
∫ 2π

0

f(x) cos(kNx)dx

∣∣∣∣∣ . (80)

Thus we can see that the error in our trapezium rule approximation is dependent on the discrete Fourier
transform of f . In fact there exists N such that the error in the trapezium rule approximation is arbi-
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trarily small, since standard Fourier analysis tells us that the coefficients cm are of order O( 1
mp+1 ) for a

p-times differentiable function. However, for a function f whose derivatives are all periodic, there may
exist values of N where the error is significant.

For example, f(x) = cos5 x, has a discrete Fourier transform:

f(x) =
1

2π

5∑
m=−5

cme
imx

where c±5 =
π

16
, c±3 =

5π
16
, c±1 =

5π
8
, cm = 0 otherwise. Since c0 = 0 the exact value of the integral

should be 0. From (80) we can see that if we use N = 1, 3, 5 we will get errors 2π, 5π
8 ,

π
8 respectively and

zero error for other values of N. Thus predicting a value for N which will give an arbitrarily small error
for a general function f , is difficult to do analytically and will in all likelihood involve some trial and error.

Alternatively, by using repeated integration by parts on (80), we get the result that:∫ 2π

0

f(x) cos(kNx)dx =
1

(kN)2

[
f
′
(2π)− f

′
(0)
]
− 1

(kN)4

[
f
′′′

(2π)− f
′′′

(0)
]

+ ....

+
(−1)p−1

(kN)2p

[
f2p−1(2π)− f2p−1(0)

]
+ ....

This result is formalised in the Euler Maclaurin Summation Formula [5]. This states that if f ∈

C2p+2[0, 2π] for p ≥ 1, and IN is the trapezoidal rule approximation to
∫ 2π

0

f(x)dx with N uniform

subintervals, then:

EN = IN − I

=
p∑

m=1

(
2π
N

)2m
B2m

(2m)!
[
f2m−1(2π)− f2m−1(0)

]
+ 2π

(
2π
N

)2p+2
B2p+2

(2p+ 2)!
f2p+2(ξ). (81)

where 0 ≤ ξ ≤ 2π and Bn is the nth Bernoulli number. This suggests that if f is (2p+2)-times differ-
entiable, and all derivatives are periodic then the error is of order O(1/N2p+2) i.e. if f ∈ C∞ then the
error is exponentially small with respect to N .
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4 Numerical Examples for a buried pipe

4.1 Exterior Neumann problem on an unbounded domain

4.1.1 Analytic Solution

In order to test our methodology outlined above, and to examine the accuracy of our numerical imple-
mentation, it is usual to benchmark using a simple example where the anaytical result is known. Since
we know with 100% confidence the true result we can therefore draw conclusions from our numerical
approach.

The first example we will look at is solving Laplace’s equation with Neumann boundary conditions
on an unbounded exterior domain, where the boundary is the rim of the pipe of unit radius. In physical
terms, this means that the pipe is deep underground (we set Y = 100,000) and we set a = 1, c = 0, g̃ = 0.

In order to satisfy the compatability condition, from (14), we must ensure that
∫

Γa

f̃ = 0. Choosing

f̃ =
x√

x2 + y2
in Cartesian terms, satisfies this condition and makes the problem solvable analytically.

We have also stipulated earlier that v → 0 as |x|, |y| → ∞.
If we now transform this problem into polar coordinates (r, θ) then:

r2vrr + rvr + vθθ = 0

∂v

∂r
(a, θ) = − cos θ

lim
r→∞

v(r, θ) = 0. (82)

Using separation of variables v(r, θ) = R(r)Θ(θ), we obtain:

r2R
′′

+ rR′

R
= λ

Θ
′′

Θ
= −λ (83)

where λ is a real constant.
Since v is 2π periodic, so is Θ, and therefore λ must be a positive constant to give a solution of the

form A cos
√
λθ +B sin

√
λθ. Moreover to satisfy periodicity, λ = n2 where n is an integer.

To solve for R in the form Crm +Dr−m, we must first solve the resulting characteristic equation:

m(m− 1) +m− n2 = 0

m = ±n. (84)

Given (82), m cannot be positive since the solution would blow up as r → ∞. This gives us a general
solution of:

v(r, θ) = r−n(An cosnθ +Bn sinnθ), where n is a positive integer. (85)

Applying boundary conditions from (82), we finally we obtain the solution:

v(r, θ) =
a2 cos θ

r
. (86)
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Figure 5: Analytic solution over a square subset of the domain D [-5,5]×[-5,5]

4.1.2 Numerical Solution

We now need to compare this analytic solution to that obtained when we solve using the BIE (44).

Figure 6: Numerical solution over a square subset of the domain D [-5,5]×[-5,5]

We have used the Lagrange trigonometric basis functions as defined in (57) for v and f̃ and numerically
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integrated using the composite trapezium rule. As demonstrated above, since the integrands are 2π-
periodic, this should give us extremely fast convergence for relatively small M; in this example we are
using M = 64. We notice that the analytic and numeric solutions in Figures 5 and 6 look very similar.

4.1.3 Global Error Observations

Although the two graphs at first glance look very alike, there are some significant errors near the pipe
boundary which the graph below highlights. This is to be expected since there is a discontinuity in the
solution when p ∈ Γa. This is a feature of the Green’s function only being integrated over a semi-circle
to keep within the domain D, rather than over a full circle when the point is inside D.

Figure 7: Graph of absolute errors - difference between analytic and numerical solutions

There are several ways we can try to minimise this error:

• Sample Points

Increase the number of sample points on the boundary Γa. This is a sledgehammer approach since
we only need to increase granularity when p is approaching the boundary. When p is sufficiently
far away a small number of sample points is perfectly adequate as the graph shows.

• Collocation Points

Increase the number of collocation points used in the numerical integration when p is sufficiently
close to Γa. This is possible because we have expressed the solution in terms of Lagrange trigono-
metric basis functions. These allow us to interpolate any value of v around the boundary Γa even
though we have only explicitly calculated N values from the BIE. However, each basis function

is usually expressed as a sum of
M

2
trigonometric terms which would require

M2

2
calculations to

interpolate v. Happily we can reduce the summation of each basis function to one term, meaning
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each interpolation only requires M calculations.

From (57) using M = 2N ,

φNj (x) =
1

2N

[
1 + cosN(x− xj) + 2

N−1∑
n=1

cosn(x− xj)

]

= Re

{
1

2N

[
1 + eiN(x−xj) + 2

N−1∑
n=1

ein(x−xj)

]}

= Re

{
1

2N

[
2

(eiN(x−xj) − 1)
(ei(x−xj) − 1)

+ (eiN(x−xj) − 1)
]}

= Re

{
1

2N

[
(eiN(x−xj) − 1)

(ei(x−xj) + 1)
(ei(x−xj) − 1)

]}
=

1
2N

sinN(x− xj) cot
(
x− xj

2

)
. (87)

So if M is the number of sample points {xj} and v(xj) is the solution we have solved for numerically
at these points, then:

v(x) =
1
M

M∑
j=1

v(xj) sin
M(x− xj)

2
cot
(
x− xj

2

)
. (88)

We can therefore interpolate as much as we want to get better resolution near the boundary, however
the disadvantage is slow calculation speeds. For points extremely close to the boundary we can use
a quicker, equally accurate approach.

• Taylor’s expansion

In this Neumann problem, since we know the normal derivative on the boundary we can use this
in the Taylor’s expansion of v(θ + ∆θ) to estimate our solution. Suppose ε is the radial distance
between p and Γa. In this problem:

ε =
√
x2
p + y2

p − a.

Therefore expanding we get:

v(r + ε, θ) ≈ v(a, θ) + ε
∂v

∂r

∣∣∣∣
r=a

= v(a, θ)− εf̃(θ). (89)

Obviously the error term in the approximation here is of O(ε2) so we need to choose ε to give us
the precision that we require. However we can improve accuracy by another order by using the fact
that Laplace’s Equation holds for the point p near the boundary.
From (82), in polar coordinates we get:

vrr = −1
r

∂v

∂r
− 1
r2
vθθ.
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We can therefore estimate vrr at r = a by using boundary data and estimating vθθ with the three
point approximation,

vθθ =
v(θ + ∆θ) + v(θ −∆θ)− 2v(θ)

∆θ2

where ∆θ can be arbitrarily small and the values of v found by Lagrangian interpolation. This now
gives us:

vrr|r=a =
1
a
f̃(θ)− v(a, θ + ∆θ) + v(a, θ −∆θ)− 2v(a, θ)

a2∆θ2
.

Our new estimate for v becomes:

v(r, θ) = v(a, θ)− εf̃(θ) +
ε2

2

(
1
a
f̃(θ)− v(a, θ + ∆θ) + v(a, θ −∆θ)− 2v(a, θ)

a2∆θ2

)
.

The error in the approximation is now O(ε3).

The graph below shows the global error versus the analytic solution from the first example with these
refinements to the solution near the boundary.
In this run, we have used:

• Number of sample points on the boundary, M = 64

• 320 collocation points when
a

20
≤ ε ≤ a

10

• Taylor’s expansion to second order when 0 ≤ ε ≤ a

20
.

We can see that the maximum error has reduced by a factor of around 500 in the vicinity of the boundary
so that although the calculation time is considerably longer, the improved accuracy makes this worthwhile.

Figure 8: Graph of absolute errors - difference between analytic and refined numerical solution
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4.1.4 L2 norm error

When measuring the average global error of the numerical solution vM on the boundary, we will use the
L2 norm on v(θi) − v2N (θi) for 10,000 points on Γa. This should give us an indication of the speed of
convergence of the solution as we increase N.

The formulation for the L2 error is:

E2N =
1√

10000
‖v(θ)− v2N (θ)‖2

=
1√

10000

{
[v(θ1)− v2N (θ1)]2 + [v(θ2)− v2N (θ2)]2 + ....+ [v(θ10000)− v2N (θ10000)]2

} 1
2 . (90)

Table 2 shows the average global error for values of v on the boundary Γa using different number of
sample points, M.

M L2 error

4 1.836 x 10−9

8 2.210 x 10−9

16 2.355 x 10−9

32 2.473 x 10−9

64 2.643 x 10−9

128 2.932 x 10−9

Table 2: L2 error for v on the boundary Γa

Table 3 shows the average global error for values of v in the domain D, and is the absolute difference
between the analytic and numerical solutions. A square grid of points is generated in this case using
100×100 points in the (x, y)-region [-5,5]×[-5,5], and the average L2 norm is calculated on these 10,000
points using different values of M. The outlying error values in the vicinity of the pipe boundary are ex-
cluded (we ignore values of v when ε ≤ a

10
). It can be seen from these results that the rate of convergence

is exponential up to 64 points at which point the error is most likely due to computer precision errors
and is of the same order of magnitude as the error in the values on the boundary itself.

M L2 error

4 3.553 x 10−2

8 5.671 x 10−3

16 4.402 x 10−4

32 5.257 x 10−6

64 2.752 x 10−9

128 2.588 x 10−9

Table 3: L2 error for grid of values v in D
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4.2 Exterior Neumann problem on a semi-infinite domain

In example §4.1, as the pipe was deep underground, we ignored the boundary condition at ground level
since this had negligible effect on the solution. In this example we still want to compare our numerical
results with the analytic solution, so we set Y = 2 and set the boundary values on the line y = Y to be:

v =
a2 cos θ(x, Y )

r(x, Y )
.

We can easily re-express this in Cartesian terms so that:

v(x, Y ) =
a2x

(x2 + Y 2)
∂v

∂y

∣∣∣∣
y=Y

=
−2a2xY

(x2 + Y 2)2
. (91)

We do not expect discontinuous solutions on the boundary y = Y , since integrating both the Green’s
function at the load point and at the reflected point ensure there is no jump discontinuity when p ∈ Γ1.
We should also note that this is a well-posed problem since the compatability condition is satisfied. In
fact, g̃ is an odd function so will always integrate to 0 over the real line.

This example will therefore test that our formulation for all operators A,B and C is correct and give
confidence that we can solve any exterior problem with good accuracy (away from the vicinity of the pipe
boundary).

4.2.1 Numerical Solution

The following graph is a surface plot of the solution v in the box [-2,2]×[-2,2] so that the upper boundary
is ground level. Note that the plot looks extremely similar to the previous example which is as we
would expect given the contrived boundary condition at y=Y. We will also initially run this without the
refinements around the boundary to see if we get similar results.

39



.

Figure 9: Graph of numerical solution with Y=2.0

4.2.2 Global Error Observations

Next we plot the global error between the analytic solution from the example §4.1 and the numerical
solution. The first graph shows errors without refinement near the boundary, the second includes the
refinement. As with the previous example, a considerable error reduction is observed.

.

Figure 10: Absolute errors between analytic and numerical solution with Y=2.0
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Figure 11: Absolute errors between analytic and refined numerical solution with Y=2.0

4.2.3 L2 norm error

Table 4 shows the average global error for values of v on Γa using different numbers of sample points.
Again this shows better than exponential convergence in the solution to 32 points at which point numer-
ical precision dominates the error term.

M L2 error

4 8.829 x 10−3

8 1.172 x 10−4

16 1.420 x 10−8

32 9.316 x 10−10

64 1.310 x 10−9

128 1.823 x 10−9

Table 4: L2 error for v on the boundary Γa

Table 5 shows the average global error for values of v in the domain D. A square grid of points is
generated in this case using 100×100 in the (x, y)-region [-2,2]×[-2,2] and the average L2 norm is again cal-
culated on these 10,000 points using different values of N. The outlying error values on the pipe boundary
are excluded in order to ascertain the rate of convergence in the region where the solution is well-behaved.
In addition, we have also excluded the points that lie on the line y = Y since these values are subject
to small errors caused by the integration over Γ1 where there is a singularity in G̃. These errors tend
to dominate the L2 norm error and hence cloud any trend in the convergence rate elsewhere in the domain.

We can see that rate of convergence is nearly exponential up to M = 64 but at which point, errors
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in the integration across Γ1 dominate since this is dependent on how many sample points we use on the
top boundary and is independent of M.

M L2 error

4 8.433 x 10−2

8 1.375 x 10−2

16 1.074 x 10−3

32 1.407 x 10−5

64 1.949 x 10−6

128 1.949 x 10−6

Table 5: L2 errors for a grid of values v in D

4.3 Exterior Neumann problem on semi-infinite region with non-zero c

In this example, we introduce a non-zero c term which has an interesting effect on the solution v near
the pipe boundary. As described in §1, u → cy + T0 far away from the pipe. As temperature increases
for large negative y, c must have a negative value. The variable v is independent of c, but it does affect

the boundary condition f̃ = f + c sin θ. g̃ is also independent of c, since
∂u

∂y
and hence g → c as |x| → ∞.

For this example, we are considering f = cos θ. (A trigonometric condition is sensible since it has to
be 2π-periodic). Therefore in this case:

f̃ = f + c sin θ

=
√

1 + c2
(

cos θ√
1 + c2

+ c
sin θ√
1 + c2

)
=
√

1 + c2 cos(θ + cos−1 1√
1 + c2

). (92)

Hence the normal derivative has undergone a rotation of cos−1 1√
1+c2

, and has been scaled up by
√

1 + c2.

4.3.1 Numerical Solutions

We illustrate this rotation and scaling in Figures 12–14 and also demonstrate convergence for a different
number of sample points, M. We have used the same parameters as example §4.2, except that c < 0 and the
boundary condition g̃ = xe−x

2
. Again, this function is odd and therefore integrates to 0 over the real line.

Firstly, we show a plot using c = −0.5 and M = 16. For this number of sample points, we can ob-
serve a lack of convergence particularly around the pipe boundary. There is already a discernible rotation
of the solution compared to example §4.2 at this point.
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Figure 12: Graph of numerical solution - Y = 2.0, c = −0.5,M = 16

Next, we show the solution using M = 64. Here convergence has already taken place away from the
pipe boundary and we can start to see that the solution has a similar pattern to example §4.2.

Figure 13: Graph of numerical solution - Y = 2.0, c = −0.5,M = 64

In Figure14, we are using M = 256. Given that convergence is established we will use this to be
our “true” solution. Here we can see clearly that the solution, particularly around the pipe boundary,
has been rotated by approximately

π

6
compared to the solution in example §4.2. The magnitude of the

solution near the boundary is also larger - we would intuitively expect this since the solution still has to
decay to zero for large values of x, y but we start with a larger normal derivative on the boundary.
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Figure 14: Graph of true numerical solution - Y = 2.0, c = −0.5,M = 256

Finally, we illustrate in Figure 15 the feature of rotation for a different value c = −1. Here we would
expect a rotation of

π

4
and a scaling factor of

√
2 on the normal derivative versus the solution in example

4.2.

Figure 15: Graph of “true” numerical solution - Y = 2.0, c = −1.0,M = 256

Even though we have no analytic solution to compare to, we can still sense check some of the results.
Clearly we can laboriously check that ∇2v = 0 by using the five point formula that we used for Finite
Differences Method in §1. Additionally we can check that the numerical solution satisfies the boundary

conditions. Using the last example, we can evaluate
∂v

∂n
,
∂2v

∂n2
,
∂3v

∂n3
using the nearest five points to the

boundary y = Y . Using Taylor’s theorem, we can then get a numerical approximation for
∂v

∂n
on the
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boundary and compare it to the value given by the boundary condition. For the last example, the largest
discrepancy using such a method was 2.0042×10−4. This gives us confidence that the model is converging
to the correct values.

4.3.2 Global Error Observations

Figure 16 shows us the error between the two runs with 64 and 256 sample points. Again it clearly
demonstrates convergence away from the pipe boundary and implies that relatively few sample points
are needed for a convergent solution for a sparse grid of points in the domain, whilst if the focus is on
accuracy around the pipe boundary then we need a larger number of sample points.

Figure 16: Absolute error - difference between numerical solutions with 64 and 256 sample points

4.3.3 L2 norm error

Table 6 shows the average global error for values of v on the boundary Γa using different numbers of
sample points. Again this shows exponential convergence in the solution to 32 points at which point
numerical precision dominates the error term.

M L2 error

4 5.852 x 10−2

8 4.793 x 10−3

16 2.223 x 10−5

32 2.716 x 10−9

64 2.630 x 10−9

128 2.318 x 10−9

Table 6: L2 error of v on boundary Γa
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Table 7 shows the average global error for values of v in the domain D. A square grid is generated in
this case using 100×100 points in the (x, y)-region [-2,2]×[-2,2] and the average L2 norm is again calcu-
lated on these 10,000 points using different values of M. The outlying error values on the pipe boundary
are again excluded as described above. If we include the discontinuity errors then the global error appears
fairly constant for all M. We can see that rate of convergence is nearly exponential upto M = 64 but at
which point, errors in the integration across Γ1 dominate since this is dependent on how many sample
points we use on the top boundary and is independent of M.

M L2 error

4 1.328 x 10−1

8 2.023 x 10−2

16 1.586 x 10−3

32 2.067 x 10−5

64 5.896 x 10−9

128 2.800 x 10−12

Table 7: L2 errors for a grid of values v in D

4.4 Successive Examples as pipe approaches ground level

Here we look to see what happens to our solution as the pipe moves from being deep underground to
near ground level. In mathematical terms, we will run the simuluation from Y = 1.5, 1.25, 1.04 and 1.0
to examine if there is any breakdown in the convergence of the solution (at Y = 1.0, the top of the pipe
is at ground surface level). This might be expected since, unlike before, the derivative of the reflected
Green’s function integrated round the pipe boundary becomes singular for load points p ∈ Γ1. In order
to get a good comparison with the previous convergent results, we will again use:

• c = 0

• f̃ = cos θ =
x

a

• g̃ =
−2xY

(x2 + Y 2)2

• M = 64.

We will also use the refinements to the solution around the pipe boundary to optimise accuracy, along
with the observation that if p is the point (0, Y ) then any integrals involving the reflected Green’s func-
tion/Fundamental Solution (or its derivative) are the same as those using the Fundamental Solution itself.
Whilst this prevents blow up at the exact singularity point, we would still expect increasing error as the
load point p approaches the line y = Y .

The next page displays graphically how the solution behaves, but it is also useful to analyse the L2
error for numerical solutions derived on the line y = Y versus the analytic solution. In this example
we have solved for a grid of solutions in the box [-2,2]×[Y-4,Y] with ∆x = ∆y = 0.04. This gives us

46



101×101 grid of solutions. The reason for including Y = 1.04 as one of our simulations is that solutions
on y = 1.00 give us the closest comparison (one grid spacing difference) to our solution for Y = 1.00
without the solution being singular on that line.

The results of the L2 errors are shown in Table 8:

Y L2 error

1.50 1.3907 x 10−6

1.25 1.8891 x 10−6

1.04 4.9068 x 10−5

1.00 4.8857 x 10−3

Table 8: L2 errors for differing values of Y

On closer inspection of the raw data, the solution appears to break down on the final simulation, in
the region where x ∈[-0.25,+0.25]. This does imply that it is not only at the singularity point where
there is significant error but in the region close to it also. However, looking at the results in Table 8, we
still get relatively good convergence for the case where Y = 1.04. Therefore, one approach to reduce the
error when Y = 1.00 might be to run simulations with Y = 1.08 and 1.04 and then linearly extrapolate
a solution for Y = 1.00.
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Figure 17: Evolution of numerical solution for Y = 1.5, 1.25, 1.04, 1.0
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5 Partially Buried Pipe

In this section, we now look to reformulate our equations to deal with the situation where the pipe is
only partially submerged underground. Firstly, we will need to redefine our domains and boundaries and
then also make sure that we can reapply Green’s Second Identity on these new domains. Once this has
been established, we will then revisit our previous examples to see what effect the emergence of the pipe
has on the solution in the domain.

5.1 Background

For the pipe to be only partially submerged underground, the condition −a < Y < a must hold. If
Y ≥ a, then the pipe is fully submerged and we can use our previous method. If Y ≤ −a, then the pipe
is wholly above ground, and the problem reduces to one over a semi-infinite region where the pipe has
no relation to the problem.

In terms of our definitions, the main differences are:

• Da is the interior of the circle centred at the origin with radius a. This bottom part of this region
is underground, the top part above ground.

• Γa is the circular arc that connects the two points of the circle Da that intersect with the line
y = Y . These two points are p1,p2.

• p1 = (−
√
a2 − Y 2, Y ) and p2 = (+

√
a2 − Y 2, Y ).

• Γ1 is now defined on the line y = Y but is split into two parts. The first part runs from (−∞, Y )
to p1, the second runs from p2 to (+∞, Y ).

• Our domain D, contains all points p where y < Y and p /∈ Da.

These definitions are illustrated in Figure 18.

Figure 18: Layout for the partially buried pipe
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5.2 Formulating the BIE

For the existence of a convergent solution we still need to stipulate that:

• v → 0 as x→ ±∞.

• ∂v

∂n
must be O(x−1−α) for some α > 0.

• The compatability condition (14) must still hold for f̃ and g̃.

• We are still solving for v over Γa, and using this boundary solution to solve for all points in the
domain D.

There immediately appears to be a problem in defining the normal derivative
∂v

∂n
at points p1 and p2,

since at this intersection point the boundary has a discontinuous derivative. Given that there is also a
discontinuity in the solution at the pipe boundary we may have to consider how we discretise the problem
as we approach both Γa and Γ1.

Using the new definitions, we can apply Green’s Identity as before on the domain D.

For p ∈ D:

v(p) =
∫

Γa

(
∂G̃

∂nq
(p,q)v(q)− G̃(p,q)f̃(q)

)
dsq −

∫
Γ1

G̃(p,q)g̃(q)dsq. (93)

For p∗ ∈ Γa:

v(p∗)
2
−
∫

Γa

∂G̃

∂nq
(p∗,q)v(q) = −

∫
Γa

G̃(p∗,q)f̃(q)dsq −
∫

Γ1

G̃(p∗,q)g̃(q)dsq. (94)

Thus to solve (94), we must integrate round Γa from points p1 to p2, and similarly for Γ1 we must
use quadrature along the line y = Y , omitting the interval [−

√
a2 − Y 2,+

√
a2 − Y 2].

5.2.1 Numerical integration using mollifiers

Turning our attention initially to the right hand side (RHS) of (94), numerically this is equivalent to
integrating around the whole pipe boundary and along the whole real line, and setting the functions f̃ , g̃
to zero where the range of integration needs to be omitted. The only extra stipulation for the composite
trapezium rule to work is that the function f̃ ∈ C∞, so that the discontinuities across points p1 and p2

are smoothed out. Since we are using Gaussian quadrature to integrate across the real line, this condition
need not apply to g̃.

Let the modified function be f∗, so that f∗(θ) = f̃(θ)η(θ). We choose η(θ) in such a way that:

• f∗ = f̃ for all collocation points on the pipe boundary where yq ≤ Y
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• f∗ = 0 for all collocation points where yq > Y .

We also need to ensure that η ∈ C∞, and that all derivatives of f∗ and f̃ are equal at points p1,p2. This
is equivalent to stipulating that all derivatives of η are zero at points p1,p2.

In obtaining our function η we can borrow an idea from Probability theory which makes use of the
Cumulative Normal Distribution Function, N(x), where:

N(x) =
∫ x

−∞

1√
2π
e−

1
2 z

2
dz.

We see immediately that N(−∞) = 0 and N(∞) = 1.
The derivatives of N are:

N
′
(x) =

1√
2π
e−

1
2x

2

N
′′
(x) =

−x√
2π
e−

1
2x

2

N
′′′

(x) =
x2 − 1√

2π
e−

1
2x

2
(95)

and so on, so that Nm(x) = P (x)e−
1
2x

2
, where P(x) is an (m− 1)th order polynomial; this ensures that

as x→ ±∞, Nm(x)→ 0.

If θ1 and θ2 correspond to the points p1,p2, and ∆θ is some arbitrarily small interval, we need to
construct η such that:

η(θ1) = 1

η(θ1 + ∆θ) = 0

η(θ2 −∆θ) = 0

η(θ2) = 1. (96)

One function that satisfies these conditions is:

η(θ) =



1 θ ≤ θ1

N
[
tan

(
π
2 −

π
∆θ (θ − θ1)

)]
θ1 ≤ θ ≤ θ1 + ∆θ

0 θ1 + ∆θ ≤ θ ≤ θ2 −∆θ

N
[
tan

(
π
2 + π

∆θ (θ − θ2)
)]

θ2 −∆θ ≤ θ ≤ θ2

1 θ ≥ θ2.

This function can be termed a mollifying function as it smoothes out the discontinuities at θ1, θ2.
Making the substitution x = tan

(π
2
− π

∆θ
(θ − θ1)

)
and using results from (95), we can quickly see using

the chain rule that all derivatives ηm(θ) are zero at the points θ1 and θ1 + ∆θ. We can make a similar
substitution to get the same result at θ2 −∆θ and θ2. This ensures that η(θ) is infinitely differentiable
around the pipe boundary and so we can now apply the composite trapezium rule.
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Tests show that this approximation does give reasonable accuracy for N = 64. However as N is in-
creased the approximation oscillates around the convergent value. This is probably because the Fourier
series required to fit the function requires many terms given the discontinuity, and as we observed before
N must be greater than the order of the Fourier series to obtain super-algebraic convergence.

5.2.2 Numerical integration using grading

• Operators A,B

Another more obvious approach is to integrate around the circle from θ1 to θ2 using Gaussian
quadrature with grading. When we were integrating round a full circle we were able to isolate the
singularity using the properties of the Lagrangian basis functions. However, we now know that for
p∗ ∈ Γa there will be a singularity in the integrand.

Supposing this singularity occurs when θ = θ∗, then we should perform Gaussian quadrature with
grading from θ1 to θ∗ and also from θ∗ to θ2. Using 8 points for each graded domain should ensure
better convergence than for 64 points with no grading.

• Operator C

When integrating operator C, we may also need to refine our methodology since if we simply

make ˜g(x) = 0 in the range [x1, x2] = [a cos θ1, a cos θ2], then
∂g

∂x
becomes infinite across the dis-

continuity which will effect convergence of the integral. An alternative approach follows.

Suppose p ∈ D is sufficiently far away from Γ1. Therefore the kernel of operator C will not
be singular. We only need to split the integral into two parts:

(Cg̃)(p) =
∫ −x2

−∞
G̃(xq)g̃(xq)dxq +

∫ ∞
x2

G̃(xq)g̃(xq)dxq =
∫ ∞
x2

(
G̃(xq)g̃(xq) + G̃(−xq)g̃(−xq)

)
dxq.

(97)

As the integrand is not singular, this can be integrated without grading using 64 points and the
tan2 φ substitution.

Now suppose p∗ ∈ Γa given by (xp, Y ). The integral will certainly be singular at x = xp. This time
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we can split the integral into several regions resulting in the following integrals:

(Cg̃)(p) =
∫ −|xp|
−∞

G̃(xq)g̃(xq)dxq +
∫ −x2

−|xp|
G̃(xq)g̃(xq)dxq+∫ |xp|

x2

G̃(xq)g̃(xq)dxq +
∫ ∞
|xp|

G̃(xq)g̃(xq)dxq

=
∫ |xp|
x2

(
G̃(xq)g̃(xq) + G̃(−xq)g̃(−xq)

)
dxq +

∫ ∞
|xp|

(
G̃(xq)g̃(xq) + G̃(−xq)g̃(−xq)

)
dxq.

(98)

These two integrals each have a singularity at |xp| so we can use grading with 8 points on 8 domains
using the tan2 φ substitution where necessary to obtain optimal accuracy.

5.3 Examples with partially buried pipe

5.3.1 Benchmark example - half buried pipe

We now illustrate the two methods described previously with an example. In order to compare against
an exact analytic solution we will examine a half buried pipe where Y = 0. The boundary conditions are:

f̃(θ) = cos θ

g̃(x) = 0.

This again yields the closed-form solution v =
cos θ
r

.

The numerical solution evaluated by Gaussian quadrature with grading does take longer to calculate
than for the fully buried pipe, so we will look at a coarser grid of 41×41 solutions over the region [-
2,2]×[-4,0]. To benchmark the solution, we will show in Table 9 the L2 error (the difference between
the numerical and analytic solution) over all points, and the time taken to calculate solutions for both
methods using different values of M.

M Mollifier used L2 error Calculation time (secs)

64 YES 2.2220 x 10−4 4
256 YES 5.2505 x 10−5 32
64 NO 3.8528 x 10−5 100
256 NO 2.4748 x 10−6 460

Table 9: L2 error using mollifiers and graded Gaussian quadrature

On the face of it, we appear to achieve almost the same accuracy using mollifiers with 256 sample
points as using graded quadrature with 64 sample points. The mollifier approach takes significantly less
time to compute even with 256 points. However, this does not tell the whole story. In fact, the solution
on the entire circle (i.e. the numerical solution to the BIE) is not particularly accurate using mollifiers.
As an illustration, Figure 19 shows the pointwise error at each collocation point as θ goes from 0 to 2π
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(here we used M=64).

Note: because we use mollifiers, we still need to collocate round the entire circle even though our solution
domain does not include the top half of the circle.

Figure 19: Difference between numerical values on pipe boundary and analytic solution

Perhaps the result is unsurprising as we are trying to use Lagrangian trigonometric functions to fit
the function f̃ = 0 for 0 ≤ θ ≤ π and f̃ = cos θ for π ≤ θ ≤ 2π.

By contrast, the pointwise error on Γa when using graded quadrature is of the order 10−10 for each
collocation point. The major contributor to the L2 error on our grid of solutions is in the case where we
use the Taylor’s expansion. We can only get O(ε) accuracy here because vθθ = 0 using piecewise constant
interpolation. The implication here is that for points far away from the pipe boundary, the mollifier
method will give quick and reasonably accurate solutions. For more precision close to the pipe boundary
we should use graded quadrature.

5.3.2 Successive examples as pipe emerges above ground

Our benchmark example above used a particular boundary condition g̃ = 0 to allow us to compare with
the analytic solution. We now examine a series of solutions using Y = 0.50, 0.00,−0.50,−0.90 where g̃(x)
does not depend on Y. To satisfy the compatability condition and keep some continuity with previous
examples we will use f̃(θ) = cos θ, g̃(x) = xe−x

2
.

This does not have a simple analytic solution, so our “true” solution will be that using graded quadrature
and M=256. Since the most interesting region to look at is near to the boundary of the pipe we have
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solved for a grid 41×41 points in the region [-1,1]×[Y-2,Y]. For each value of Y = 0.50, 0.00,−0.50,−0.90,
we run the simulation using M = 64 with graded quadrature. For the case Y = 0, we compute the L2
error against the “true” solution (i.e. with M = 256) which turns out to be 2.9439 × 10−5. This gives
us confidence that our solutions using M = 64 will be sufficiently accurate using other values of Y. The
reason for using M = 64 is the time saving it gives us (100 secs per run rather than 460 secs).

The results of the simulations are shown in Figure 20. We can see immediately that away from the
pipe boundary, we have a convergent solution; close to the boundary it is harder to discern due to the
coarseness of the grid whether the solution has converged sufficiently. Drilling down into the raw data, we
can see that the numerical solution does indeed satisfy Laplace’s Equation and the boundary conditions
to within an acceptable tolerance which suggests that the method is robust and convergent.
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Figure 20: Evolution of solution as Y goes from +0.5 to -0.9
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6 Conclusions

In this dissertation, we have demonstrated that the BEM is a very powerful technique to solve Laplace’s
Equation, particularly in the situation where we have an infinite or semi-infinite exterior domain and
Neumann boundary conditions. By comparing our solutions to known analytic solutions with certain
boundary conditions we have been able to show that away from the boundary, the numerical solution us-
ing BEM converges rapidly with a relatively small number of sample points. We have also illustrated two
numerical methods, Nyström’s Method and the collocation method, where a linear system of equations
can easily be solved to give us our solution. In the case of the collocation method, we have highlighted the
use of Lagrangian trigonometric basis functions, which lend themselves very well to circular boundaries.
Not only is the interpolation of solutions on the boundary smooth, but so are all their derivatives which
means that for 2π-periodic boundary functions, we can use the composite trapezium rule to numerically
integrate and expect rapid (super-algebraic) convergence. These basis functions can also be of use when
confronted with some singular integrals (e.g. logarithmic kernels), since we can evaluate these analytically
in certain cases.

Whilst we can use these techniques to get very accurate solutions on the boundary itself, when we
approach the pipe boundary, we find that the solution converges slowly. Therefore we have developed
some alternative approaches. One simple approach is to increase the number of collocation points as we
approach the boundary. When we are extremely close to the boundary, we can use a Taylor’s expansion
to get a good approximation, since we know that our solution on the boundary is accurate. We also know
the first derivative of the solution since that is our Neumann condition, and we can derive an approximate
second derivative from Laplace’s Equation. Both these techniques improve accuracy considerably and we
demonstrate this in §4.

Our original aim was to develop a model that could also handle a partially buried pipe. This requires
different treatment to the entirely buried pipe because our boundary is not a full circle any more and thus
many of the elegant properties of the Lagrangian basis functions do not necessarily hold. We examine two
different approaches to try and circumvent these issues. The first approach is to evaluate the integrals
over the buried part of the pipe, by integrating over the full circle and setting the boundary function to
0 where the pipe is above ground. To maintain infinite differentiability we need to use mollifying func-
tions. The second approach uses a more obvious method where we use piecewise constant basis functions
and Gauss-Legendre quadrature to numerically integrate over the part of the circle that is underground.
Where there are singularities, we have numerically integrated using grading to minimise its effect. Both
approaches are outlined in §5. Finally we run some simulations as the pipe emerges from the ground to
demonstrate that the numerical method behaves as expected and does not “blow up”.

We have not attempted to run any real physical simulations on this model, but have demonstrated that
the model we have implemented converges well to known analytic solutions and to simulations with large
number of sample points and therefore should be fit for purpose when used in an industrial environment.
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