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Abstract

We pose the direct and inverse problems in acoustic scattering, both informally and mathe-

matically, and detail a method for computing the solution to the direct problem. We present

the point source method of R. Potthast as a way to solve the inverse problem for a sound-

soft scatterer, which is shown to be ill-posed. A thorough account of the method is given,

as well as an error analysis, before detailing a method for its successful implementation in

two dimensions. We briefly describe the technique of Tikhonov regularisation as a means

of finding solutions to ill-posed problems, and its implementation in the solution of the in-

verse problem. We include numerical results for the solution of both the direct and inverse

problems in two dimensions.
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Chapter 1

Introduction

In the modern world there are many examples of wave scattering problems. In designing

a music hall, the architect will team up with engineers to model how acoustic waves are

scattered by the building’s architecture. To check on the progress of her unborn child, a

pregnant mother undergoes an ‘ultra sound’, a procedure whereby high frequency acoustic

waves are directed into the womb, and an image of the baby is reconstructed by analysing the

field of the scattered waves. Both of these are practical applications of scattering theory, and

illustrate the two categories that scattering problems fall into: the direct scattering problem

and the inverse scattering problem.

We model a wave by its field, which can be either a scalar or vector valued complex

function of time and space. The direct scattering problem is where we use knowledge about

the scatterer (the object we wish to scatter waves from) and the field due to the incident

waves, to determine the field corresponding to the scattered waves, and therefore the total

field (which is the sum of these two fields). The inverse problem is where we use knowledge of

the total field to determine properties of the scatterer (for instance, its shape and location).

However, we shall see that we must have some a priori information about the scatterer in

order to do this.

The aim of this dissertation is to use MATLAB to develop ‘black box’ software to solve

the inverse problem for acoustic scattering in two dimensions. Given discrete data on the

total field due to acoustic wave scattering from an unknown object, the software will locate

the edges of the object, and so construct an image of the scatterer.
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Chapter 2

Background

2.1 The Helmholtz Equation

Consider the complex scalar field Ψ(x, t) ∈ C2(Rm) ∩ C2(R) for m = 2, 3, for a wave propa-

gating with speed c > 0. Then Ψ satisfies the wave equation

∆Ψ =
1

c2
Ψtt (2.1)

We can look for time-harmonic solutions of (2.1), that is, solutions of the form

Ψ(x, t) = φ(x)e−iωt

with angular frequency ω > 0. Substituting this form into (2.1) we obtain for φ(x) the

Helmholtz equation

(∆ + κ2)φ(x) = 0 x ∈ Rm (2.2)

for wave number κ = ω/c > 0. From now on, the term field will refer only to the spatial part

φ(x) of the time-harmonic field.

We may choose to find solutions for φ(x) that model the field of radiating waves, by

definition, solutions for x ∈ Rm that satisfy the Sommerfeld radiation condition

lim
r→∞

r
m−1

2

(
∂φ

∂r
− iκφ

)
= 0 (2.3)

where r := |x|,m = 2, 3.
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Define the function Φ(x, z), x ∈ Rm\{z}, dependent upon m, by

Φ(x, z) :=
i

4
H

(1)
0 (κ|x− z|) for m = 2 (2.4)

Φ(x, z) :=
1

4π

eiκ|x−z|

|x− z| for m = 3 (2.5)

where H
(1)
0 is the Hankel function of the first kind, of order zero. Then in each case for m,

φ(x) = Φ(x, z) satisfies (2.3) and (2.2) (modulo a constant) except at x = z, and is called

the fundamental solution to the Helmholtz equation.

We can model the field corresponding to a plane wave moving in some direction d̂ (with

|d̂| = 1) by the function

φ(x) = eiκx·d̂ (2.6)

This is a solution of (2.2) (modulo a constant), but since the corresponding wave is plane

and not radiating, (2.3) is not satisfied.

2.2 Hankel Functions

The Hankel functions are a specific linear combination of Bessel and Neuman functions,

namely

H(1,2)
p = Jp(x)± iYp(x) p, x ∈ R (2.7)

respectively, for the Bessel function Jp(x) and Neuman function Yp(x). Jp(x) is a series

solution to Bessel’s equation

x2y′′ + xy′ + (x2 − p2)y = 0

obtainable using Frobenius’ method [2, pp.509-512], and can be written down as

J±p =
∞∑

n=0

(−1)n

Γ(n + 1)Γ(n± p + 1)

(x

2

)2n±p

(2.8)

which converges for all x ∈ R. The Neuman function Yp is a linear combination of Bessel

functions
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Yp(x) =
cos(πp)Jp(x)− J−p(x)

sin(πp)
(2.9)

and therefore Yp is also a solution to Bessel’s equation. Note that Yp(x) has the indeterminate

form 0/0 for p ∈ Z. So for integral p we define Yp(x) by

Yp := lim
q→p

Yq p ∈ Z

which leads us [1, p.97] to the result

Yp =
1

π

[
∂Jq(x)

∂q
− (−1)q ∂J−q(x)

∂q

]

q=p

p ∈ Z

and (i/4)H1
0 under this definition solves (2.2). Yp(x) with p ∈ Z has a logarithmic pole at

x = 0 (and so too the imaginary part of H
(1,2)
p p ∈ Z, see figures (2.1), (2.2)).

Since it will be needed later, we prove following relation between the Hankel functions.

Theorem 1 The Hankel functions satisfy the recursion relation

d

dx
{H(1,2)

p (x)} =
p

x
H(1,2)

p (x)−H
(1,2)
p+1 (x) (2.10)

Proof We first prove that the bessel function Jp satisfies the above relation. Since (2.8)

converges for all x, then

d

dx
{Jp(x)} =

∞∑
n=0

(−1)n

Γ(n + p + 1)Γ(n + 1)

d

dx

(x

2

)2n+p

=
∞∑

n=0

(p + 2n)(−1)nx2n+p−1

Γ(n + p + 1)Γ(n + 1)22n+p

=
p

x
Jp +

∞∑
n=0

n(−1)n

Γ(n + p + 1)Γ(n + 1)

(x

2

)2n+p−1

=
p

x
Jp +

∞∑
n=1

n(−1)n

Γ(n + p + 1)Γ(n + 1)

(x

2

)2n+p−1

since the first term is zero

=
p

x
Jp −

∞∑
ν=0

(ν + 1)(−1)ν

Γ(ν + (p + 1) + 1)Γ(ν + 2)

(x

2

)2ν+(p+1)

where ν := n− 1

=
p

x
Jp −

∞∑
ν=0

(ν + 1)(−1)ν

(ν + 1)Γ(ν + (p + 1) + 1)Γ(ν + 1)

(x

2

)2ν+(p+1)
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=
p

x
Jp − Jp+1

It follows that since Yp is a linear combination of Bessel functions and H
(1,2)
p is a linear

combination of Bessel and Neuman functions, then they too satisfy the relation. ¤

Consider the modified Bessel function of the second kind Kp(x) given by

Kp(x) =

√
π

Γ(p + 1
2
)

(x

2

)p
∫ ∞

−1

e−xt(t2 − 1)p− 1
2 dt p > −1

2
, x > 0

In [1] Bell shows that under the change of variables t = 1 + u/x, Kp(x) becomes

Kp(x) =

√
π

Γ(p + 1
2
)

(
2

x

)− 1
2 1

x
e−x

∫ ∞

0

e−uup− 1
2

(
1 +

u

2x

)p− 1
2
du

By Taylor’s Theorem (with the Lagrange form of the remainder), for all q ∈ R, and

|x| < 1 we have that

(1 + x)q = 1 + qx +
q(q − 1)

2!
x2 + . . . +

q(q − 1)(p− 2) . . . (q −N + 1)

N !
xN + RN+1(x) (2.11)

where

RN+1(x) =
q(q − 1)...(q −N)

(N + 1)!
(1 + ζ)q−N−1xN+1 = O(xN+1) (2.12)

for some ζ between 0 and x (i.e. ζ ∈ (0, x) for x > 0, and ζ ∈ (x, 0) for x < 0. Then, for |x|
sufficiently large (i.e |x| > |u/2|) we have that

(
1 +

u

2x

)p− 1
2

= 1 + R1(
u

2x
)

and so

Kp(x) =

√
π

Γ(p + 1
2
)

(
2

x

)− 1
2 1

x
e−x{

∫ ∞

0

e−uup− 1
2 du +

∫ ∞

0

R1(
u

2x
)e−uup− 1

2 du}

=

√
π

Γ(p + 1
2
)

(
2

x

)− 1
2 1

x
e−x{Γ(p +

1

2
) + O(

1

x
)}

=

√
π

2x
{1 + O(

1

x
)}

i.e. Kp(x) ∼
√

π/2x as |x| → ∞.
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It is possible [1, p.129] to express H
(1)
p (x) as

H(1)
p (x) =

2

π
e−i π

2
(p+1)Kp(−ix) (2.13)

and so using the above result we have that as |x| → ∞

H(1)
p (x) =

2

π
e−i π

2
(p+1)

√
π

−2ix
{1 + O(

1

x
)}

which upon rearranging gives (for p > −1/2)

H(1)
p (x) =

√
2

πx
ei{x−(p+ 1

2
)π
2
}{1 + O(

1

x
)} as |x| → ∞ (2.14)
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Figure 2.1: Real (solid) and imaginary (dashed) parts of H
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Figure 2.2: Real (solid) and imaginary (dashed) parts of H
(1)
1 (x)
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Chapter 3

Acoustic Scattering

3.1 The Direct Scattering Problem

We suppose that the interior of the scatterer occupies a region D ⊂ Rm, where D is an

open set bounded by ∂D, and Rm\D̄ is connected where D̄ denotes the closure of D (i.e.

D̄ := D ∪ ∂D). We require that ∂D is of class C2 (i.e. ∂D has continuous curvature).

Denote by v(x), x ∈ Rm\D̄ a solution to (2.2) on the exterior of the scatterer. Then we

can require that v(x) satisfies the exterior acoustic Dirichlet problem.

Exterior Acoustic Dirichlet Problem (EADP) Given Dirichlet data g ∈ C(∂D), find

v(x) ∈ C2(Rm\D̄) ∩ C(Rm\D) such that

(∆ + κ2)v(x) = 0 x ∈ Rm\D̄
v(x) = g(x) x ∈ ∂D

lim
r→∞

r
m−1

2

(
∂v

∂r
− iκv

)
= 0 for r = |x|

Theorem 2 The EADP has a unique solution.

Proof See [3, p.48] ¤

We turn our attention to the practical problem of acoustic wave scattering. On the

exterior of the scatterer there exists a field, which is the sum of the field corresponding to an

incident wave, and the field corresponding to the scattered wave. In particular, we consider

the case when the incident wave is plane.
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For time-harmonic incident plane waves with κ = ω/c > 0 travelling in direction d̂ ∈
Ω := {v ∈ Rm : |v| = 1} we denote

ui(x, d̂) := eiκx·d̂ x ∈ Rm\D̄ (3.1)

which models the corresponding field, and solves the Helmholtz equation.

We denote the total field (which one might observe with instrumentation) measured on

the exterior of the scatterer to be

ut(x, d̂) x ∈ Rm\D̄
and in this way we may define the field of the scattered wave to be

us(x, d̂) := ut(x, d̂)− ui(x, d̂) x ∈ Rm\D̄
Finally, we set the scatterer to be sound-soft. That is, the total field vanishes on the

surface of the scatterer

ut(x, d̂) = ui(x, d̂) + us(x, d̂) = 0 x ∈ ∂D (3.2)

Recall that the direct scattering problem is to use knowledge of the scatterer and the

field of the incident wave, to find the field of the scattered wave on the exterior of the object

(and therefore the total field). Armed with the above definitions, we can now formulate this

problem mathematically.

Direct Acoustic Scattering Problem (DASP) For D̄ and κ defined as above, find

us(x, d̂) ∈ C2(Rm\D̄) ∩ C(Rm\D) that satisfies

(∆ + κ2)us(x, d̂) = 0 x ∈ Rm\D̄
with the sound-soft boundary condition

us(x, d̂) = −ui(x, d̂) x ∈ ∂D

and which satisfies the Sommerfeld radiation condition

lim
r→∞r

m−1
2

(
∂us

∂r
− iκus

)
= 0

for r = |x|.

It is clear that the DASP is a special case of the EADP with g = −ui(x, d̂), and therefore

a unique solution exists.
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3.2 Solution

We present the solution to the direct problem in the form of an integral equation [3, p.42].

For continuous density function ϕ ∈ C(∂D) the solution to the direct acoustic scattering

problem is given by

us(x, d̂) =

∫

∂D

(
∂Φ(x, z)

∂n̂(z)
− iΦ(x, z)

)
ϕ(z)dS(z) x ∈ Rm\D̄ (3.3)

where ϕ is a solution to the boundary integral equation

(I +K − iS)ϕ = −2ui(x, d̂)|∂D (3.4)

for the single-layer operator S defined by

(Sϕ)(x) := 2

∫

∂D

Φ(x, z)ϕ(z)dS(z) x ∈ ∂D (3.5)

the double-layer operator K defined by

(Kϕ)(x) := 2

∫

∂D

∂Φ(x, z)

∂n̂(z)
ϕ(z)dS(z) x ∈ ∂D (3.6)

and where I is the identity operator and n̂(z) is the outward normal vector to the surface

at z ∈ ∂D.

3.3 2D Numerical Implementation

We solve the direct scattering problem by approximating the single-layer and double-layer

operators by matrix operators, and so reduce the problem to solving a linear system of

equations.

We consider the boundary ∂D of our scatterer to be parameterised by some 2π periodic

vector valued function z : R→ R2, such that

(i) ∂D = {z(θ) : θ ∈ R}
(ii) z(a) = z(b) ⇐⇒ a− b is a multiple of 2π

(iii) |a− b| ≤ ε =⇒ c(ε)|a− b| ≤ |z(b)− z(a)| ≤ C(ε)|a− b| for constants c(ε), C(ε) ∈ R
(iv) z ∈ C2(R)

By (iii) we can consider the line element dS along ∂D at z(θ) to be the limit
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dS = lim
dθ→0

|z(θ + dθ)− z(θ)|
Then we see that

dS = lim
dθ→0

|dθ
z(θ + dθ)− z(θ)

dθ
| = dθ|z′(θ)|

and so the single-layer operator is given by

(Sϕ)(x) = 2

∫

∂D

Φ(x, z)ϕ(z)dS(z) x ∈ ∂D

= 2

∫ 2π

0

Φ(x, z(θ))ϕ(z(θ))|z′(θ)|dθ

Since we are integrating over the period of the integrand, we will approximate this in-

tegral using the composite trapezoidal rule, which though only a first order method, can

be found to achieve higher orders of accuracy for periodic integrands. Consider a function

f ∈ C∞(0, 2π), and partition the interval (0, 2π) into N − 1 intervals of length h such

that (0, 2π) =
⋃N−1

n=0 (nh, (n + 1)h). Then for fj := f(jh) we have (by the Euler-Maclaurin

summation formula)
∫ 2π

0

f(x)dx = h
f0

2
+ h

fN

2
+ h

N−1∑
j=1

fj − B2

2!
h2(f ′N − f ′0)−

B4

4!
h4(f

(3)
N − f

(3)
0 )− ......

where Bi is the ith Bernoulli number. Then for f(0) = f(2π) we have that f
(i)
0 = f

(i)
N for

i = 0, 1, 2, ..., and so
∫ 2π

0

f(x)dx = h

N−1∑
j=0

fj + rem = h

N∑
j=1

fj + rem

where rem = o(hM) for all M .

Since z(θ) is 2π periodic in θ, then Φ(x, z(θ)) and ϕ(z(θ)) are both 2π periodic functions

in θ, and so for the partition (0, 2π) =
⋃N−1

n=0 (nδθ, (n + 1)δθ) and where θn = nδθ (with

δθ = 2π/N) we can approximate the single-layer potential by

(Sϕ)(x) = 2δθ
N∑

n=1

Φ(x, z(θn))ϕ(z(θn))|z′(θn)|+ remS(N)

where Φ(x, z(θn)) =
i

4
H

(1)
0 (κ|x− z(θn)|) x 6= z(θn)
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In this way we discretise the boundary ∂D by the ordered set of points Z = (z(θn))N−1
n=0 .

Clearly the integrand of (Sφ)(x) does not have the continuity properties required by the

Euler-Maclaurin formula, owing to the logarithmic pole at x = z, and so it is unclear as to

how remS(N) will converge as N →∞.

Here we use Theorem 1 to compute the outward normal derivative to Φ(x, z)

∂

∂n̂
Φ(x, z) =

i

4

∂

∂n̂
H1

0 (κ|x− z|)

= −iκ

4
H1

1 (κ|x− z|)n̂(z) · ∇z{|x− z|}

=
iκn̂(z) · (x− z)

4|x− z| H1
1 (κ|x− z|)

and so similarly we obtain an approximation to the double-layer potential in 2D

(Kϕ)(x) = 2δθ
N∑

n=1

∂Φ(x, z(θn))

∂n̂(z(θn))
ϕ(z(θn))|z′(θn)|+ remK(N)

where
∂Φ(x, z(θn))

∂n̂(z(θn))
=

iκn̂(z(θn)) · (x− z(θn))

4|x− z(θn)| H1
1 (κ|x− z(θn)|) x 6= z(θn)

We now introduce the notation ϕn := ϕ(z(θn)), and let Q := (qi)
M
i=1 ⊂ R2\D̄ be an

ordered set of points at which we wish to solve the direct scattering BVP. Define the M ×N

matrices

SQ(m,n) := δθ
i

4
H

(1)
0 (κ|qm − z(θn)|)|z′(θn)|

SZ(m,n) := 2δθ
i

4
H

(1)
0 (κ|z(θm)− z(θn)|)|z′(θn)| m 6= n

:= 2δθ
ic+

4
H

(1)
0 (κ|z(θm)− z(θn+1)|)|z′(θn+1)|

+2δθ
ic−
4

H
(1)
0 (κ|z(θm)− z(θn−1)|)|z′(θn−1)| m = n

and similarly
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KQ(m,n) := δθ
iκn̂(z(θn)) · (qm − z(θn))

4|qm − z(θn)| H
(1)
1 (κ|qm − z(θn)|)|z′(θn)|

KZ(m,n) := 2δθ
iκn̂(z(θn)) · (zm − z(θn))

4|zm − z(θn)| H
(1)
1 (κ|z(θm)− z(θn)|)|z′(θn)| m 6= n

:= 2δθc+
iκn̂(z(θn+1)) · (zm − z(θn+1))

4|zm − z(θn+1)| H
(1)
1 (κ|z(θm)− z(θn+1)|)|z′(θn+1)|

+2δθc−
iκn̂(z(θn−1)) · (zm − z(θn−1))

4|zm − z(θn−1)| H
(1)
1 (κ|z(θm)− z(θn−1)|)|z′(θn−1)|

m = n

for coefficients

c+ :=
|z(θn)− z(θn+1)|
|z(θn+1)− z(θn−1)|

c− :=
|z(θn)− z(θn−1)|
|z(θn+1)− z(θn−1)|

where θN+1 := θ1 and θ0 := θN . Let ws(x, d̂) be our numerical solution for us(x, d̂) for some

d̂ ∈ Ω. Then, upon defining the vectors

~ui
d̂

:= (ui(z(θ1), d̂), ..., ui(z(θN), d̂)T

~ws
d̂

:= (ws(z(θ1), d̂), ..., ws(z(θN), d̂)T

by (3.4) and (3.3) we can compute ws(x, d̂) as

~ws
d̂

= −2(KQ − iSQ)(I + KZ − iSZ)−1~ui
d̂

(3.7)
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3.4 Numerical Results

Here we consider ∂D to be ‘peanut shaped’ (see figure 3.1), a specific hippopede given by

r =
3

2
− sin2 θ

−1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: ‘Peanut’ defined by r = 3/2− sin2 θ

We can test the accuracy of our numerical method by applying it to the exterior acoustic

Dirichlet problem. We have already seen that the direct acoustic scattering problem is a

special case of the EADP, and so

v(x) =

∫

∂D

(
∂Φ(x, z)

∂n̂(z)
− iΦ(x, z)

)
ϕ(z)dS(z)

solves the EADP iff

(I +K − iS)ϕ = 2g

for integral operators K, and S as defined earlier, and boundary data g ∈ C(∂D).

If we set g = Φ(x, z∗) for some particular point z∗ ∈ D, then v = Φ(x, z∗) is clearly the

solution to the EADP. Then, if we define

~ui
z∗ := (Φ(z(θ1), z

∗), ..., Φ(z(θN), z∗))T

~ψz∗ := (ψ1, ..., ψM)T

17



(and so ψj is our approximation to Φ(xj,0)) and apply our approximation to calculating

~ψz∗ = −2(KQ − iSQ)(I + KZ − iSZ)−1~ui
z∗

we can look at how ψj → Φ(xj, z
∗) as N →∞ (for xj ∈ R2\D̄) (see table). Clearly, we only

achieve first order accuracy, though the exercise serves as a test to show that the numerical

method converges to the correct solution. Our numerical solution is illustrated in figure 8.1.

N |ψj − Φ(xj,0)|/|Φ(xj,0)| Estimated Order of Convergence

5 1.401259× 100

10 2.944734× 100 −1.071413× 100

20 4.952713× 10−1 2.5718464× 100

40 8.843449× 10−2 2.4855381× 100

80 6.669067× 10−2 4.0712421× 10−1

160 3.265709× 10−2 1.0300886× 100

320 1.598911× 10−2 1.0303071× 100

640 7.912897× 10−3 1.0148113× 100

1280 3.940064× 10−3 1.0059869× 100

Table 3.1: Convergence of numerical method for direct problem (at xj = (−3, 3)T )
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Chapter 4

The Point Source Method

4.1 Asymptotic Behaviour

If we set the boundary condition for the EADP to g = −Φ(x, z) where |z| is large (and

therefore we model scattering of waves due to a point source far away from the scatterer),

we expect the solution to resemble the field of waves scattered due to a plane wave incident

with direction −ẑ = −z/|z|. This is more clearly seen if we look at the asymptotic behaviour

of Φ(x, z) as |z| → ∞. From (2.14) we have that

Φ(x, z) =
i√

8πκ|x− z|e
i(κ|x−z|−π

4
){1 + O(

1

|x− z|)} as |x− z| → ∞

=
(1 + i)

4
√

πκ|x− z|e
iκ|x−z|{1 + O(

1

|x− z|)} as |x− z| → ∞

We can look at the case when |x− z| → ∞ for fixed x. By (2.11) and (2.12) we have

|x− z| =
√
|x|2 − 2x · z + |z|2

= |z|
√

1− 2
x · ẑ
|z| +

|x|2
|z|2

= |z|{1− x · ẑ
|z| +

1

2

|x|2
|z|2 + R2(x, z)} for |z| > ε for some ε > 0

for remainder term

R2(x, z) = −1

8

(
1− 2

x · ζ̂
|ζ| +

|x|2
|ζ|2

)− 3
2 (
−2

x · ẑ
|z| +

|x|2
|z|2

)2
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for some ζ such that

−2
x · ζ̂
|ζ| +

|x|2
|ζ|2 ∈

(
0,−2

x · ẑ
|z| +

|x|2
|z|2

)
if − 2

x · ẑ
|z| +

|x|2
|z|

2

> 0

∈
(
−2

x · ẑ
|z| +

|x|2
|z|2 , 0

)
if − 2

x · ẑ
|z| +

|x|2
|z|2 < 0

when |z| > ε. Then for |z| sufficiently large

Φ(x, z) =
(1 + i)

4
√

πκ|x− z| exp{iκ|z|} exp{−iκx · ẑ} exp{iκ1

2

|x|2
|z| + iκ|z|R2(x, z)}

×{1 + O(
1

|x− z|)}

=
(1 + i)eiκ|z|

4
√

πκ|x− z|e
−iκx·ẑ{1 + iκ(

1

2

|x|2
|z| + |z|R2(x, z))− κ2(

1

2

|x|2
|z| + |z|R2(x, z))2 + ...}

×{1 + O(
1

|x− z|)}

Clearly

1

2

|x|2
|z| + |z|R2(x, z) = O(

1

|z|)

and so

Φ(x, z) =
(1 + i)eiκ|z|

4
√

πκ|x− z|e
−iκx·ẑ{1 + O(

1

|z|)} as |z| → ∞

Similarly, from (2.11) and (2.12) we see that for |z| sufficiently large

|x− z|− 1
2 = |z|− 1

2{1 + O(
1

|z|)} (4.1)

from which

Φ(x, z) =
eiπ/4eiκ|z|
√

8πκ|z| e
−iκx·ẑ{1 + O(

1

|z|)} as |z| → ∞ (4.2)

and so

Φ(x, z) ∼
eiπ/4eiκ|z|
√

8πκ|z| e
−iκx·ẑ =: Λ(x, z)
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as |z| → ∞. This means that the field at fixed x corresponding to a point source at z tends

asymptotically to the field due to plane waves travelling from the direction of the point

source as |z| → ∞, but with a damping amplitude term, as seen illustrated in figures 8.2 to

8.4.

All radiating solutions v(x) to the Helmholtz equation (and therefore solutions of the

EADP) have asymptotic behaviour

v(x) =
eiκ|x|

|x|m−1
2

{v∞(x̂) + O(
1

|x|)} |x| → ∞

(see [3, p.21]) where v∞(x̂) is called the far-field pattern, defined for x̂ ∈ Ω. We see that the

far-field pattern determines how the field varies with the direction in which we observe it,

when observed for away.

In particular, Φ(x, z) is a solution of the EADP, and so has this behaviour.

Theorem 3 The fundamental solution to the Helmholtz equation for m = 2 has the asymp-

totic behaviour

Φ(x, z) =
eiκ|x|
√
|x|{Φ

∞
0 (x̂, z) + O(

1

|x|)} |x| → ∞

where the far-field pattern Φ∞
0 (x̂, z) is given by

Φ∞
0 (x̂, z) =

eiπ/4

√
8πκ

e−iκz·x̂ (4.3)

Proof This follows immediately from (4.2) by interchanging the roles of x and z ¤

Since the field of scattered waves is a solution to the special case of the EADP, then for

scattering of plane waves with direction d̂ we have

us(x, d̂) =
eiκ|x|

|x|m−1
2

{u∞(x̂, d̂) + O(
1

|x|)} |x| → ∞ (4.4)

for the far-field pattern u∞(x̂, d̂). Similarly, if we considered scattering of waves from a point

source, with incident field given by Φ(x, z), then the field of the scattered wave Φs(x, z) has

the behaviour

21



Φs(x, z) =
eiκ|x|

|x|m−1
2

{Φ∞(x̂, z) + O(
1

|x|)} |x| → ∞

with corresponding far-field pattern Φ∞(x, z).

We now turn our attention to finding the far-field pattern of (3.3). From (2.14) we have

H
(1)
1 (x) =

√
2

πx
ei{x− 3π

4
}{1 + O(

1

x
)} as |x| → ∞

and so similarly to our derivation of (4.2) we obtain for fixed z

H
(1)
1 (κ|x− z|) = e−i 3π

4

√
2

πκ

eiκ|x|
√
|x|e

−iκz·x̂{1 + O(
1

x
)} as |x| → ∞

and using (4.1) we can show that

n̂(z) · (x− z)

|x− z| = n̂(z) · x̂{1 + O(
1

|x|)} as |x| → ∞

Therefore

∂Φ(x, z)

∂n̂(z)
=

eiκ|x|
√
|x|{

e−i π
4
√

κ√
8π

n̂(z) · x̂e−iκz·x̂ + O(
1

|x|)} as |x| → ∞

Recall the integral form (3.3) of the solution us(x, d̂) to the direct scattering problem. Sub-

stituting our expressions for the asymptotic behaviour of Φ(x, z) and its normal derivative

as derived above, we obtain

us(x, d̂) = − eiκ|x|
√
|x|

ei 3π
4√

8πκ
{
∫

∂D

e−iκz·x̂ (κn̂(z) · x̂ + 1) ϕ(z)dS(z) + O(
1

|x|)} as |x| → ∞

The corresponding far-field pattern is obtained by comparison with (4.4). Defining the

operator F by

(Fϕ)(x̂) := − ei 3π
4√

8πκ

∫

∂D

e−iκz·x̂ (κn̂(z) · x̂ + 1) ϕ(z)dS(z)

we have that

u∞(x̂, d̂) = (Fϕ)(x̂) (4.5)

where ϕ is given by

ϕ = −2(I +K − iS)−1ui(x, d̂)|∂D
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4.2 Reciprocity Relations

The point source method makes use of two theorems concerning the far-field patterns of

scattered waves. The first concerns the far-field pattern for a scattered plane wave.

Theorem 4 For scattering of plane waves in Rm, m = 1, 2, the far-field pattern satisfies

the relation

u∞(x̂, d̂) = u∞(−d̂,−x̂) x̂, d̂ ∈ Ω (4.6)

Proof See [9, p.42]. ¤

Theorem 5 For scattering in Rm we have

Φ∞(x̂, z) = γmus(z,−x̂) (4.7)

where

γ2 =
eiπ/4

√
8πκ

; γ3 =
1

4π

Proof See [9, p.43]. ¤

4.3 Potthast’s Method

Potthast [7] uses the far-field pattern due to scattering of incident plane waves, to reconstruct

the field close to the surface ∂D.

To implement his method we must make an assumption (or obtain a priori information)

on the size and location of the domain D of the sound-soft scatterer. We denote BR(z) =

{v ∈ Rm : |v− z| ≤ R} the ball in Rm of radius R centred on the point z. We shall assume

that D̄ ⊂ BR(0) for some known R > 0 (this is not quite the approach of Potthast [7], but

serves the same purpose in that we have a bound on both the size and location of D̄). See

figure 4.1. This is not an unrealistic assumption in the practical application of solving the

inverse problem: in medical applications we can at worst choose R to be the height of the

patient.
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Figure 4.1: Assumptions on the location of the scatterer

For x ∈ S ⊂ Rm and some density function g ∈ L2(Ω), let Hi : L2(Ω) → L2(S) be the

injective linear Herglotz wave operator defined by

(Hig)(x) :=

∫

Ω

eiκx·d̂g(d̂)dS(d̂) x ∈ S (4.8)

We call (Hig) the Herglotz wave function, which satisfies the Helmholtz equation.

Let G0 ⊂ Rm\{0} be some open set bounded by ∂G0 ⊂ Rm\{0} (with closure Ḡ0 =

G0 ∪ ∂G0), for which there exist points z ∈ Rm\D̄ and corresponding rotations M(z) such

D̄ ⊂ G(z) = M(z)G0 + z, i.e. there exist points to which we can rotate and translate G0

such that it contains D̄ (hence the need for a priori information about the scatterer). G(z)

will be our domain of approximation.

We assume that G0 is such that Hi has dense range in L2(∂G0). By definition, this means

that given ε > 0 and f ∈ L2(∂G0), then there exists g ∈ L2(Ω) such that

‖f − (Hig)‖L2(∂G0) ≤ ε
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and in particular since Φ(x,0) ∈ L2(∂G0), for a given ε > 0 we can find g0 ∈ L2(∂G0) such

that

‖Φ(·,0)− (Hig0)‖L2(∂G0) ≤ ε

Interior Dirichlet Problem (IDP) Find v ∈ C2(Π) ∩ C(Π̄) such that for h ∈ C(∂Π)

(∆ + κ2)v(x) = 0 x ∈ Π

v(x) = h(x) x ∈ ∂Π

Clearly, for Π = G0 then both Φ(·,0) and (Hig0) satisfy the IDP for h = Φ(·,0)|∂G0

and h = (Hig0)|∂G0 respectively, and therefore so does Φ(·,0) − (Hig0) with h = (Φ(·,0) −
Hig0)|∂G0 . Potthast [9, p.125] claims that on all compact subsets of Π solutions to this

problem depend continuously on the boundary values in L2(∂Π), therefore for some Ḡsub ⊂
G0 where Ḡsub is closed, then

‖Φ(.,0)−Hig0‖C(Ḡsub) ≤ τ‖Φ(.,0)−Hig0‖L2(∂G0) ≤ τε (4.9)

for some τ = τ(G0, κ) > 0 (i.e. the constant depends on Π and κ in the IDP).

Now, we perform a translation by vector z and rotation by orthogonal matrix M(z) of

both the domain of approximation and the wave function. So G0 7→ G(z) = M(z)G0 + z,

and similarly Gsub 7→ Ḡsub(z) := M(z)Ḡsub + z. (Hig0)(x) maps to

(Hig0)(M
−1(x− z)) =

∫

Ω

eiκM−1(x−z)·d̂g0(d̂)dS(d̂)

=

∫

Ω

eiκM−1x·d̂e−iκM−1z·d̂g0(d̂)dS(d̂)

=

∫

Ω

eiκ(MT x)·d̂e−iκ(MT z)·d̂g0(d̂)dS(d̂) since M is orthogonal

=

∫

Ω

eiκx·M d̂e−iκz·M d̂g0(d̂)dS(d̂)

=

∫

Ω

eiκx·̂te−iκz·̂tg0(M
−1t̂)dS (̂t) for t̂ := M d̂ ∈ Ω

=

∫

Ω

ui(x, t̂)gz(̂t)dS (̂t)
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=: (Higz)(x)

where gz(̂t) := e−iκz·̂tg0(M
−1t̂). Then, under this mapping we have that

‖Φ(x, z)−Higz‖C(Ḡsub(z)) ≤ τε

and so provided that Ḡsub is large enough that D ⊂ Ḡsub(z)

‖Φ(x, z)−Higz‖C(D) ≤ τε

The operator F mapping the incident field to its corresponding far-field pattern is

bounded [9, p.173], and so there exists c > 0 such that

‖Φ∞(x̂, z)− (H∞gz)(x̂)‖C(Ω) ≤ c‖Φ(x, z)− (Higz)(x)‖C(D)

≤ cτε

where

(H∞gz)(x̂) :=

∫

Ω

u∞(x̂, d̂)gz(d̂)dS(d̂)

So, using Theorem 4 we have that, for a given t̂ ∈ Ω

‖Φ∞(−t̂, z)−
∫

Ω

u∞(−d̂, t̂)gz(d̂)dS(d̂))‖C(Ω) ≤ cτε

Then by application of Theorem 5

‖us(z, t̂)− 1

γm

∫

Ω

u∞(−d̂, t̂)gz(d̂)dS(d̂))‖C(Ω) ≤ cτε

|γm| (4.10)

To summarise, the point source method offers a way to approximate the scattered field

at a point z ∈ Rm\D̄ by way of obtaining the far-field pattern. It breaks down the inverse

problem into two parts: the first is to obtain our function g0 (given a suitable domain of

approximation G0); the second is to successfully implement (4.10) to reconstruct the field

around the scatterer. The smaller we can make ε in the first part, the more accurate our

approximation will be in the second.
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Chapter 5

Obtaining a Suitable g0

So far we have had to assume that we can find some G0 ⊂ Rm\{0} such that Hi has dense

range in L2(∂G0). This is shown to be possible in the following theorem.

Theorem 6 It is possible to choose a domain G0 ⊂ Rm\{0} with boundary ∂G0 of class C2

such that the homogeneous interior Dirichlet problem

(∆ + κ2)v(x) = 0 x ∈ G0

v(x) = 0 x ∈ ∂G0

has only the trivial solution v ≡ 0. In this case the operator Hi has dense range in L2(∂G0)

Proof See [9, p.123] ¤

Let v(x) := Φ(x,0)− (Hig)(x) defined for all x ∈ Rm\{0}, and G0 be such that theorem

6 holds. If we arrange for v to be zero on the boundary ∂G0 (through our choice of g), then

by the theorem v = 0 on G0 also. However, referring to Colton and Kress [4, p.72] we see

that if for any twice continuously differentiable function w solving the Helmholtz equation on

some domain Π, we have that w(x) = 0 on any neighbourhood of some x0 ∈ Π, then w ≡ 0

everywhere in Π (which we refer to as unique continuation for the Helmholtz equation). As

a consequence of this, v = 0 on G0 implies that v ≡ 0 on the whole of Rm\{0}.
However, this leads us to a contradiction since Φ(x,0) →∞ as x → 0 (and so v cannot

be zero at all points except 0). Therefore, we conclude that there is no function g that solves

the first kind integral equation

Φ(x,0) =

∫

Ω

eiκx·d̂g(d̂)dS(d̂) x ∈ ∂G0 (5.1)
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Hence Potthast’s approach, in which we show that we can find some g0 for which the integral

equation is satisfied approximately to arbitrary accuracy. However, we are still left with the

problem of how to obtain this function.

5.1 Tikhonov Regularisation

The problem Ax = y is said to be well-posed if

• There exists a solution

• The solution x is unique

• x depends continuously upon y (and so is stable with respect to perturbations in y)

If at least one of these criteria are not met, then the problem is said to be ill-posed.

Clearly (5.1) is ill-posed, since we do not have existence of a solution. Traditionally

ill-posed problems have been ignored, though techniques have been developed to deal with

such problems, in particular that of Tikhonov regularisation.

Let X and Y be Hilbert spaces with norm ‖.‖, and A : X → Y be an injective bounded

linear operator. Then a regularisation scheme for A is a family of bounded linear operators

Rα : Y → X, α > 0 such that

lim
α→0

Rαy = x for all x ∈ X

We define the Tikhonov functional by

Jα(x) := ‖Ax− y‖2 + α‖x‖2

For α > 0, Jα has a unique minimum at xα which uniquely solves the perturbed normal

equation

αxα + A∗Axα = A∗y

i.e. (αI + A∗A)xα = A∗y

where I is the identity operator and A∗ is the adjoint of A. Furthermore, xα depends

continuously on y [3, p.98], and so the method is stable. Then, for α > 0 we can choose as

our regularisation scheme
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Rα := (αI + A∗A)−1A∗ : Y → X

since for α > 0, (αI + A∗A) is bijective [3, p.97], and so we can compute

xα = (αI + A∗A)−1A∗y

which is the unique solution of the perturbed normal equation.

5.2 Application of Tikhonov Regularisation

We approach the problem of finding a suitable g0 by employing Tikhonov regularisation to

solve (5.1). The adjoint of (Hig) is given by

(Hi∗g)(x) =

∫

Ω

e−iκx·d̂g(d̂)dS(d̂)

Then, since L2 is a Hilbert space, we can apply the technique of Tikhonov regularisation to

Hi and Φ(x,0). Letting Rα (α > 0) be given by

Rα = (αI +Hi∗Hi)−1Hi∗

we can then calculate gα
0 = RαΦ(x,0).
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Chapter 6

Implementation of Point Source

Method

We can say something about the success of Potthast’s method by applying it to our peanut

shaped sound-soft scatterer, with known location, for scattering of a plane wave with known

direction of incidence t̂. We aim to reconstruct the the total field on B3(0), which is known

to contain our D̄.

We discretise the boundary ∂G0 by the set of points {xr}R
r=1, and B3(0) by the set {zt}T

t=1.

We suppose that ∂D can be parameterised by some 2π periodic function q(φ) for φ ∈ [0, 2π)

(as in section 3.3), and so discretise ∂D by the set (q(φj))
J
j=1 for φj = j2π/J .

Discretise Ω by the ordered set
(
d̂n = (cos((n− 1)∆θ), sin((n− 1)∆θ))T

)N

n=1
where ∆θ =

2π/N and N is even, and let hα(d̂i) be our numerical solution for gα
0 (d̂i). To implement

the point source method we must be able to use the set
(
hα(d̂n)

)N

n=1
to obtain the set

(
hα(M−1(zt)d̂n)

)N

n=1
for each zt where M(zt) is as before (i.e. a rotation such that D̄ is

contained in the rotated and translated domain of approximation).

Now let us use the rule that each rotation M(zt) which rotates G0 by an angle θt will be

such that θt = τt∆θ, for integral τt ≥ 0, i.e.

M(zt) =

(
cos(τt∆θ) sin(τt∆θ)

− sin(τt∆θ) cos(τt∆θ)

)
τt ∈ N\{0}

Then the mapping from
(
hα(d̂n)

)N

n=1
to

(
hα(M−1(zt)d̂n)

)N

n=1
is a simple permutation ℘(τt)
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where for τt > 0

℘(τt)(h
α(d̂1), ..., h

α(d̂N)) 7→ (hα(d̂τt+1), ..., h
α(d̂N), hα(d̂1), ..., h

α(d̂τt))

=: (fα
t,1, ..., f

α
t,N)

and ℘(τt) is the identity permutation for τt = 0.

We must obtain the far-field pattern in each direction −d̂n. Let w∞(−d̂n, t̂) be our

numerical solution to u∞(−d̂n, t̂). Then by applying the trapezium rule to our expression

for F we have

w∞(−d̂n, t̂) = − ei 3π
4√

8πκ

2π

J

J∑
j=1

eiκq(φj)·d̂n(1− κq(φj) · d̂n)ϕ(q(φj)|q′(φj)|

where ϕ(q(φj)) is obtained as in section (3.3).

To obtain our numerical solution hα(d̂i), let ~hα = (hα(d̂1), ..., h
α(d̂N))T , and define the

R×N matrix H by

H(r, n) = ∆θeiκxr·d̂n

We then calculate

~hα = (αI + H∗H)−1H∗ ~Φ0 (6.1)

where α is small, I is the N × N identity matrix, H∗ is the conjugate transpose of H, and

~Φ0 := (Φ(x1,0), ...., Φ(xR,0))T

We wish to reconstruct the field at each zt using the point source method. By applying

the trapezium rule to (4.10) we have

ws(zt) =
1

γ2

∆θ

N∑
n=1

w∞(−d̂n, t̂)e−iκzt·d̂nfα
t,n
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6.1 Choice of G0

We must make a choice as to the geometry of G0. In [7] Potthast assumes an exterior cone

condition. Let Cx,p̂,β denote the set {y ∈ Rm : (y − x) · p̂ ≥ cos β}, which is a cone with

vertex x, direction p̂ and opening angle β (see figure 6.1). The exterior cone condition is

that, for a known β > 0, then for all x ∈ Rm\D there exists a cone Cx,p̂,β for some direction

p̂ = p̂(x) ∈ Ω such that D ∩ Cx,p̂,β = ∅.
We make use of this assumption, by defining G0 by

G0 := BR(−εi)\C−εi,i,β ⊂ Rm

where β is as above, ε is small, and R sufficiently large enough for our requirements (see

figure 6.2). For our particular hippopede scatterer, D̄ can be bounded by the ball B3/2(0),

and we can find some β to give us our exterior cone condition. To reconstruct the field about

the scatterer on the disc B3(0)\D̄, we can choose G0 to be

G0 = B9/2(−εi)\C−εi,i,β

p 

β 
β 

x 

interior of cone 

 

 

Figure 6.1: The cone Cx,p̂,β

The benefits of this shape for G0 are that, provided Hi has dense range in L2(∂G0) then

we can hope to reconstruct the field reliably at points very close to the surface of the scatterer

(provided we have the exterior cone condition).
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Figure 6.2: The domain of approximation G0 given by BR(−εi)\C−εi,i,β

Since it is not of class C2 we know that Theorem 6 cannot apply. However, the theorem

does not rule out the range of Hi being dense in L2(∂G0) for this G0. Nor does it suggest

how we might construct such a domain. Nevertheless, we will illustrate that G0 as defined

above can successfully be used as the domain of approximation.

Theorem 7 Consider the problem Ax = y for the operator A : X → Y where X and Y

are Hilbert spaces, and A is injective with dense range. If y ∈ Y , y 6= 0, α > 0, and xα is

the unique solution of the perturbed normal equation, then xα depends continuously on α.

Furthermore

• The mapping α → ‖xα‖ is strictly monotonically decreasing and limα→∞ = 0

• The mapping α → ‖Axα − y‖ is strictly monotonically increasing and limα→0 ‖Axα −
y‖ = 0

Proof See [5, p.22] ¤
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In our case H : CN → CR, where N is the number of directions discretising Ω and R is

the number of points discretising G0, and the appropriate norm to look for convergence in

is the `2-norm, ‖ · ‖2 where

‖v‖2 =

√√√√
R∑

r=1

|vi|2 v = (v1, ..., vR)T ∈ CR

Clearly, since ~Φ0 6= 0 then theorem 7 should apply if our particular G0 is such that

the range of H is dense in `2(∂G0). Figure 6.3 illustrates the required relationship (‖~hα‖2

is strictly monotonically decreasing with increasing α), as well as convergence of ‖~hα‖2 as

α →∞.

Similarly ‖~Φ0−H~hα‖2 can be shown to be strictly monotonically increasing with increas-

ing α, and it can be seen in figure 6.4 that the greatest rate of increase occurs at α = 1,

whilst ‖~Φ0 −H~hα‖2 tends to zero as α → 0, as expected.
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Figure 6.3: Convergence of ‖~hα‖2 as α →∞ (log10 vs. log10 scale)
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Figure 6.4: Convergence of ‖~Φ0 −H~hα‖2 as α → 0 (log10 vs. log10 scale)

Theorem 8 Consider the operator A : X → Y where X and Y are Hilbert spaces, and A is

injective with dense range. Then for xα our result from applying the technique of Tikhonov

regularisation to the problem Ax = y for x ∈ X and y ∈ Y

• y is in the range of A =⇒ limα→0 exists, and xα → x

• y is not in the range of A =⇒ ‖xα‖ → ∞ as α → 0

Proof See [5, p.24]. ¤

We have proved that if ∂G0 is such that the Helmholtz equation with zero Dirichlet

boundary conditions has only the trivial solution, then there is no solution to (5.1) and

therefore we expect ‖~hα‖2 to grow unboundedly as α → 0. However, instability occurs as α

approaches 10−15, and so it is not possible to illustrate unbounded growth or convergence as

α becomes very small, in either case. This is because as α approaches the machine accuracy,

the perturbed normal equation is lost as αI ≈ 0, and so MATLAB attempts to solve

H∗H~hα = H∗~Φ0
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which is ill-posed if H~hα = ~Φ0 is ill-posed. Therefore as α → 0 the condition number of

(αI +H∗H) tends to zero and we approach a singular system. Though accuracy is increased

by decreasing α, we are restricted by practical computing limitations.

Of interest to us, is how the choice of opening angle β affects the accuracy of our solution

for a given α, as we have already observed in (4.9) that τ (a constant involved in the error

estimate of our approximation) depends upon the geometry of G0. Clearly (see figure 6.2)

the limiting case for ∂G0 as β → 0 is a set of points including the origin, and therefore

we cannot arrange for Φ(x,0) and (Hig0)(x) to agree everywhere on ∂G0. Therefore, since

β ∈ (0, π/2) we would expect closest agreement in our approximation for a G0 with β = π/2.

Figure 6.5 is a graph of relative error ‖~Φ0 − H~hα‖/‖~Φ0‖ for α = 10−10, and all such

graphs for α < 1 have the characteristics shown: namely, a global minimum at β = π/2

which rapidly increases before levelling off, suggesting that where possible we should use

large cone opening angles. In the presence of an exterior cone condition, the success of the

point source method is dependent upon this condition not being violated, and therefore there

must be some compromise in the choice of β.
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Figure 6.5: ‖~Φ0 −H~hα‖2/‖~Φ0‖2 vs β (degrees) (with α = 10−10)
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6.2 Object Location

So far we have discussed how to reconstruct the scattered field close to a scatterer, from

measurements of its far-field pattern, in order to demonstrate the use of the reciprocity

theorems and the effectiveness of Potthast’s method. Of course, we would like to be able

apply this method to locating an unknown sound-soft scatterer.

Theorem 9 Recall the definitions of Φ∞(x̂, z) and Φ∞
0 (x̂, z). Then for D ⊂ R3 the interior

of a sound-soft scatterer, we have

z ∈ D =⇒ Φ∞(., z) + Φ∞
0 (., z) = 0

z /∈ D̄ =⇒ Φ∞(., z) + Φ∞
0 (., z) 6= 0

Furthermore, Φ∞(., z) ∈ C(Ω) depends continuously on z ∈ Rm.

Proof See [7] ¤

Given that

Φ∞(−t̂, z) + Φ∞
0 (−t̂, z) = γ2u

s(z, t̂) + γ2u
i(z, t̂) using theorem 3 and theorem 4

= γ2u
t(z, t̂)

then by the theorem the total field at z will tend smoothly to zero as z approaches the

scatterer. Therefore, defining the function

δ(z) := |ut(z, t̂)|

we can locate the boundary ∂D by searching for the zeros of δ(z). Of course, we only have

an approximation to the total field, which we denote as

δα(z) := |eiκz·̂t + e−iπ/4
√

8πκ

∫

Ω

u∞(−d̂, t)gz(d̂)dS(d̂)|

for Tikhonov regularisation parameter α > 0, and so we can attempt to locate ∂D by finding

where the minima of δα(z) occur. Of course, only having an approximation available we lose
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the property of uniqueness, in that there may be points for which δα is small, which are not

in ∂D.

Algorithm for the point source method

• Identify BR(0) known to contain D̄ (in our case we will use R = 3)

• Decompose BR(0) into disjoint domains B1
R(0),...,BN

R (0) such that BR(0) =
⋃N

i=1 Bi
R(0)

• Choose an opening angle for G0

• Choose a direction p̂i for each Bi
R(0) giving the orientation (i.e. cone direction/rotation

matrix) for G(M, z) when z ∈ Bi
R(0)

• In this way compute δα(z) for each z ∈ BR(0)

• Plot the points for which δ(z) is small

With our particular shaped scatterer, and for the unit vectors i = (1, 0)T and j = (0, 1)T ,

we can choose rotation angles θt by

z · i > 1/
√

2 =⇒ θt = 0

z · i < −1/
√

2 =⇒ θt = π

|z · i| ≤ 1/
√

2 and z · j > 0 =⇒ θt = π/2

|z · i| ≤ 1/
√

2 and z · j ≤ 0 =⇒ θt = 3π/2

In figure 8.5 we plot exp{−10δα(z)} for z ∈ B3(0) (and so δα(z) is smallest in red regions,

and largest in blue regions) for scattering of plane waves incident with direction (1, 0)T and

(0, 1)T , and ∂D is plotted over this for comparison. We see that that the smallest values of δα

occur on ∂D. However, the problem of non-uniqueness for our approximation is illustrated

in that some parts of ∂D are ‘picked out’ in the same detail as points not on the boundary,

whilst some parts of ∂D are not identified at all.

In figures 8.6 and 8.7 we illustrate our total field reconstructions alongside the field as

calculated using our numerical method for the direct problem, for comparison. Rather than

α or β we give the relative error in solving (5.1). We see that some features of the field such

as (especially symmetry) are present in the reconstructions, and that the range of values

that the real part of the ‘actual’ and reconstructed field attains are similar.
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Chapter 7

Conclusions and Further Work

We have presented and implemented the method of R. Potthast for reconstructing the total

field about a sound-soft scatterer, using a finite number of measurements of the corresponding

far-field pattern, and shown that it is possible to use this method to locate the boundary of

the scatterer. However, we must question the practicability of this method.

It is conceivable that we can bound the location of the scatterer, and so find some

direction t̂ in which to direct our incident plane wave, and some point x ∈ Rm\D̄ at which

to measure the total field. From this we subtract the known incident field at x to obtain

the scattered field at x. Then, it is simply a matter of using the asymptotic behaviour of

all radiating solutions to the Helmholtz equation to obtain a O(1/|x|) approximation to the

corresponding far-field pattern in direction x̂

u∞(x̂, t̂) = |x|m−1
2 e−iκ|x|us(x, t̂) + O(

1

|x|)

and therefore the success of the method in practice depends very much on the distance

between the scatterer and the observer (relative to the wavelength).

We have seen that in locating the boundary of our scatterer from the reconstructed

field, we also identify points that are not on the boundary, owing to the error in the field

reconstruction. Therefore, it is likely that any practical attempt to use the method for an

unknown sound-soft object will have to employ image processing software, using the data

from the scattering of plane waves with differing directions and wave numbers.

Of course, the main impediment to the method of Potthast is that the error bounds

on the field reconstruction only hold at points on the exterior of the scatter, for a suitable

exterior cone condition and domain of approximation. We have applied the method for a

known ∂D, but of course in practical applications this information is not available, and so
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it is unclear as to how we might apply the method in general. An algorithmic approach

might be successful, where, starting with some initial conditions the exterior cone condition

and cone directions for our rotated G0 are successively improved upon. However, again this

would most likely require some sort of image processing stage at each update.

It remains a problem as to how to verify the accuracy of our field reconstructions. We can

visually verify that certain characteristics of the total field are present in the reconstructions

(figures 8.6 and 8.7) and even see that the range of values of the reconstructed field is

similar to that of the actual field. However, it is not clear as to how we might test for

convergence of the reconstruction in any mathematical sense. Clearly the field at some

points is reconstructed more accurately than at others, making it hard to quantify the

success of the reconstruction overall, and any approach to this problem is likely to disregard

the reconstruction of field characteristics in favour of field values.

Inverse scattering is a modern and relevant area of mathematical physics, with many

areas of application, and so there is much scope for further work. It would be interesting for

instance, to apply the method to three dimensional scattering, as the theory holds in either

of R2 or R3.

One area to look at is alternative choices for the geometry of G0. In [8] Potthast presents

a method for field reconstruction where G0 is a disc, while Luke [6] uses a subtle variation

on our G0, specifically

G0 = BR1(−εi)\{C−εi,i,β ∪BR2(−εi)}

for some 0 < R2 < R1 (whereas we have used R2 = 0).

Of practical importance is the problem of ‘noise’: that is, an error in measuring the

far-field pattern due to the system not being closed (for instance in practice it is likely that

there will be other sources of acoustic waves not accounted for in the model, especially in

outdoor applications) or due to the accuracy of the equipment used to measure the field. For

instance, let ws(z, t̂) be our approximation to us(z, t̂), which we remind the reader is given

by

ws(z, t̂) =
1

γm

∫

Ω

u∞(−d̂, t̂)gz(d̂)dS(d̂)

and for ρ ≥ 0 let u∞ρ (., t̂) be the far-field pattern obtained from our erroneous measurements,

such that

|u∞(., t̂)− u∞ρ (., t̂)| ≤ ρ

41



Then for

ws
ρ(z, t̂) =

1

γm

∫

Ω

u∞ρ (−d̂, t̂)gz(d̂)dS(d̂)

we have by the triangle inequality

|us(., t̂)− ws
ρ(., t̂)| ≤ |us(., t̂)− ws(., t̂)|+ |ws(., t̂)− ws

ρ(., t̂)|

In section 4.3 we showed that we could bound |us(., t̂) − ws(., t̂)| through our choice of

G0. As for the second term on the right hand side, we note that (by the Cauchy - Schwarz

inequality)

|ws(., t̂)− ws
ρ(., t̂)| = | 1

γm

∫

Ω

{u∞(−d̂, t̂)− u∞ρ (−d̂, t̂)}gz(d̂)dS(d̂)|

≤ 1

|γm|‖u
∞(−d̂, t̂)− u∞ρ (−d̂, t̂)‖L2(Ω)‖gz‖L2(Ω)

≤ ρ

|γm|‖gz‖L2(Ω)

Therefore, if ‖~hα‖2 grows unboundedly as α → 0 in our numerical solution to the inverse

problem, then any error in our far-field pattern measurement is amplified.

Finally, parallel to the work in acoustic scattering there is the problem of inverse electro-

magnetic scattering (radar scattering). We model the electromagnetic wave by its complex

vector fields E (the electric field) and H (the magnetic field), and the in [7] Potthast ap-

proaches the inverse scattering problem in the same way as for the acoustic case. However,

though sharing much with acoustic inverse scattering, this area of research has its own prob-

lems. For instance, the theorem in electromagnetic scattering that is the analogue of theorem

9 is not as strong, and so implementing a successful algorithm for edge location is even more

of a problem than for the acoustic case.
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Chapter 8

Figures

Figure 8.1: Real part of numerical solution to EADP for g = Φ(x,0), κ = 10, on a 100×100

mesh, ∂D discretised by 100 points
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Figure 8.2: Real part of numerical solution to EADP for g = −Φ(x, z) for z = (0,−2)T ,

κ = 10, on a 100× 100 mesh, ∂D discretised by 100 points

Figure 8.3: Real part of numerical solution to EADP for g = −Φ(x, z) for z = (0,−100)T ,

κ = 10, on a 100× 100 mesh, ∂D discretised by 100 points
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Figure 8.4: Real part of numerical solution to EADP for g = −Λ(x, z) for z = (0,−100)T ,

κ = 10, on a 100× 100 mesh, ∂D discretised by 100 points
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Figure 8.5: Edge location using an incident plane wave with direction (1, 0)T (top) and

direction (0, 1)T (bottom), κ = 10, on a 100 × 100 mesh, ∂D discretised by 100 points,

relative error in Tikhonov regularisation = 0.3997
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Figure 8.6: Real part of total field about D̄ using direct method (top) and point source

reconstruction (bottom) for scattering of an incident plane wave with direction (1, 0)T , κ =

10, on a 100 × 100 mesh. ∂D discretised by 100 points (top) and 200 points (bottom).

Relative error in Tikhonov regularisation = 0.3997.
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Figure 8.7: Real part of total field about D̄ using direct method (top) and point source

reconstruction (bottom) for scattering of an incident plane wave with direction (0, 1)T , κ =

10, on a 100 × 100 mesh. ∂D discretised by 100 points (top) and 200 points (bottom).

Relative error in Tikhonov regularisation = 0.3997.
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