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Abstract 

 
Fractional dynamics is a well documented subject, which has applications in a very diverse 

range of areas. Some of the aims of the report are to produce a brief overview of the theory 

and applications of fractional dynamics, create a physical picture of what is causing fractional 

dynamics and explain the link between fractional diffusion and Levy dynamics. The core of 

the report focuses on the fractional diffusion equation in 1 and 2 dimensions whereby a  

description of sub-diffusion and super-diffusion is described, aided by computed simulations. 

Reproductions of results from significant papers in the subject of fractional diffusion are also 

produced. The phenomenon of anomalous plume diffusion is also simulated using the 2D 

fractional advection-diffusion equation. In the later part of the report the derivation, 

description and examples of functional order fractional diffusion is presented, which as far as 

the author is concerned is original. 
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Glossary 

 
Brownian Motion :  The random movement of particles whose probability density function is 

a Gaussian distribution. 

 

Diffusion :  The phenomena of random movements causing an imbalance of some system to 

change until the system is in equilibrium.  

 

Anomalous Diffusion :  A form of diffusion whereby the rate at which the system 

equilibrium is reached is unlike that of standard diffusion. 

 

Random Walk : A random motion that assigns each jump with a length x which occurs at 

regular intervals. The size of the jump x is specified by a probability distribution.  

 

Levy Flight : A particular type of random walk whereby the the waiting times between jumps 

if dependant on the size of the jump. The probability density function is long tailed when 

compared to the Gaussian. 

 

Langevin Equations :  A stochastic differential equation that describes the random 

movements of particles using Newtonian physics with an addition fluctuation.  

 

Advection : The transport of a scalar quantity by a vector field.  

 

Probability Density Function(PDF) : A function that describes the probability of finding a 

particles in a particular position in space. 

 

 

 

 

 

 

 

 

 3



1  Introduction 

 
All students/researchers whose subject area falls under the umbrella of mathematical physics 

will have at some point either implemented and/or studied the standard diffusion equation(1). 

 

),(),(),( 2 trStrU
t

trU
+∇=

∂
∂  (1) 

  

Where U is the density of the diffusing material and S is a forcing term (sometimes called a 

sink/source). 

Superdiffusion is a form of anomalous diffusion that occurs faster than the standard diffusion 

equation (1) would predict. A more generalized diffusion equation that encompasses 

superdiffusion (and its antonym, subdiffusion) is called the fractional diffusion equation. 

There are two types of fractional diffusion equation. The first(2) has a fractional derivative in 

the spatial part[1] and the second(3) has a fractional derivative in time[10]. 
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The fractional equation stems from subject area of fractional calculus. Differential and 

integral operators within fractional calculus are not confined to integer orders (d/dx, d2/dx2, 

d3/dx3 etc) and can be of fractional orders (i.e. d0.7/dx0.7,d2.6/ dx2.6, d-1/dx-1 etc). The difference 

between the spatially fractional diffusion equation and the standard equation is the exponent 

of the Laplacian operator is no longer 2 and can in fact be any real number.  

The standard method of measuring the spread of time fractional diffusion is the mean square 

deviation (MSD). The evolution of the distribution of the diffusive material can be defined 

using a simple MSD equation 

 
θδ Mttx =)(2

(4) 

where )()()( txtxtx −=δ . The value of the exponent, theta, determines the class of 

diffusion of the system. 

The derivative exponent in the tim

(5) 

 

he MSD cannot be expressed in a simple equation for spatially fractional diffusion. Instead, 

the diffusion is measured more proficiently by the Full Width at Half Maximum(FWHM).  

e fractional diffusion equation has the relation 

213 ≤≤−= ββθ

T

 4



(6) 

Where  θ=α/2  (proof provided in section 2.4) 
 

         

 

ne point that may omalous diffusion that 

eeds to be described using the fractional equation is not caused by the breakdown of 

 fluids or 

lasmas can be approached from many different levels, which include 

. This method has the 

• 

ations. A short description of 

• 

se transport equations, and semi-stochastic in the 

 

Diffusion class 

θtFWHM ∝

 
Diffusion exponent 

 

                           
θ =1 No diffusion( advection) 

1<  θ ≤2 Sub-diffusion 

θ =2 Normal diffusion 

Table 1 –

 

 Classification of xponent  diffusion by e
 

O  be slightly ambiguous if not addressed is that the an

n

classical diffusion. Instead,  it is caused by external effects which either have been purposely 

neglected due to either lack of knowledge of the system or because there are far too many 

variables to compute. For example, the anomalous diffusion of plasmas is caused by 

neglecting Maxwell’s equations and quantum mechanics in the simulation, the anomalous 

flow of water in the water table is due to geological structure and complex macroscopic 

behavior being neglected. The anomalous transport of monkeys(Metzler et al.) is not 

anomalous at all because it is ludicrous that such a simple equation such as equation 3 could 

describe the movement of such an incredibly complicated system that is a monkey. 

 

Anomalous diffusion is closely linked with transport theories. The simulation of

p

• A totally mechanical theory that encompasses Newton’s laws of motion, relativistic 

mechanics, Maxwell’s equations, Navier-Stokes equation etc

potential to be most accurate and reliable, however implementing this is incredibly 

computationally expensive and in many cases the required resolution cannot be 

achieved without some simplifications or assumptions. 

A stochastic-mechanical description that combines Newton’s laws with an added 

fluctuating field. Examples of this are V-Langevin equ

on method is given in section 1.4. 

Fractional diffusion and continuous time random walks (CTRW) are semi-mechanical 

in the way that they commonly u

way that they use statistical theories to create CTRW’s but on the other hand they are 

neither mechanical nor statistical due to the fact that the equations that describe the 

anomalous transport use empirical fitting and cannot be derived deterministically. 

This is the approach that will be focused upon for the rest of the report. 
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1.1 
 

The standard diffusion equation is a partial differential equation that describes the density of a 

diffusing material as a function of space and time. It has a relatively simple derivation that 

w(8).  If U(x,t) is the density of the diffusing 

aterial at any point in time and space and j

Fractional Diffusion Equation 

merges the continuity equation(7) with Fick’s La

m  is the flux of the diffusive material entering an 

infinitesimal volume at the position (x,t) then the following equations apply.  

 

               (7) 

 

( Flux is proportional to concentration gradient)                              (8) 

ated with the Einstein-Stokes equation(9) 

(9) 

k  is Boltzmann’s constant, T is temperature,  η is friction/viscosity coefficient, μ is mobi

Law (8) is substituted into the continuity equation(7) the standard diffusion(with

no forcing term) equation emerges. 

 

If an outside force is applied which has the effect of altering the natural diffusion then an 

additional flux term is included in Fick’s Law. When Fick’s law is substituted into the 

continuity equation the gradient of the additional flux terms appears which is normally stated 

as simple function. 

ion equation(10) ,with no forcing term, governs Brownian motion and 

enerates an exponent equal to unity in equation 4&6 and results in the MSD being linearly 

 in section 2.5). 
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(11) 
 

Aside: An interesting fact is that equation 11 was first published in 1905[20] by Albert 

Einstein in the third of his seminal papers which

Mttx =)(2δ

 he published while doing his PhD in 

tatistical mechanics ( The first and second were based on the photoelectric effect and special 

relativity respectively). It is this paper on statistical mechanics which is Einstein’s most 

 

Fick’s Law, although, 

arguably it could stem from a hypothetical fractional continuity equation. A fractional form of 

fractional continuity equation as Fick’s la

ore empirical in nature. 

hat control the diffusion is non-Brownian in nature and produces a 

 that is quasi-Gaussian that has heavier tails that

standard Gaussian(for S=0). 

 

ow has a subscript to imply that the value of Dα for the fractional 

diffusion equation is dependant on the value of alpha. This is due to dimensionality of the 
-1, whereas the SI units for Dα is mα s-1.  

s

cited 

article despite the fact that he received the Nobel Prize for his work on the photoelectric effect 

and he is best known for his work in relativity. This paper helped cement the idea that 

atoms/molecules existed and along with his other papers became the foundations of quantum 

mechanics.  

The probability density function U(x,t) describing the probability, U(x,t)dx, of finding of 

finding a particle between x and x+dx given an initial condition U(x0)=δ(0) the solution 

becomes the well known Gaussian[12](proof provided in section 2.4). 

(12) 

 

The fractional diffusion equation arises from the fractional form of 

)4/exp()4(),( 22/1 DtxDttxU −= π

w is Fick’s Law is more physically plausible than a 

m

(13) 

(14) 

 

The governing dynamics t
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 the probability density function(12)[5]

(15) 

 

Note that the diffusivity, D, n

)4/exp()4(),( 22/1 α
α

α
απ tDxtDtxU −=

fractional derivative. The SI units of D is m2s
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1.2 Examples of Anomalous Transport 

here is an enormous amount of papers published on the subject so called anomalous 

transport and anomalous diffusion. The word anomalous is slightly ambiguous as it suggests 

nderstood, yet in almost all scenarios the 

rocess is well understood. The word anomalous refers to the non-Gaussian nature of the 

ns 

,7]. A nucleotide (aka base. A rung of the 

ws that the entropy follows a power law 

qn 3. This super- 

 

T

that the processes/events taking place are not u

p

governing statistics and can be explained using Levy statistics. The following pages describe 

a number of scenarios where Levy statistics are present and the may be labeled with the terms 

anomalous transport or anomalous diffusion. 

 

DNA – In the coding and non-coding of 

nucleotide sequences long range correlations 

have been found that obey Levy distributio

[6

helical ladder) is a chemical compound that 

consists of 3 portions: a heterocyclic base, a 

sugar, and one or more phosphate groups[5]. A 

method presented in ref [7] describes an 

artificial sequencing technique that shows that 

power law correlations are present in both 

coding and non-coding sequences. i.e. DNA 

bases that code proteins are not only correlated to th

range correlations with other bases. Figure 4 sho

similar to that of equation 3. 

Microbiology [24] – The transport behavior of 

microspheres within cells have been found to 

have supper diffusive behavior with an exponent 

α = 3/2 when applied to e

Fig 4 - The diffusion entropy 
analysis for a DNA sequence result 
in a scaling changing with time. 

eir neighbouring bases but also have long 

Fig 5 – The mean square displacement of 
microspheres w.r.t time showing fractal 
behavior 

diffusive behavior is often followed by either 

normal diffusion or sub diffusion. The exponent 

of 3/2 generates suspicion as this is very close to 

the exponent of a random velocity field. Note 

that the MSD starts to plateau at long times. This 

is likely to be caused by boundary effects that 

cause the microspheres move back towards the 

origin.  
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Paleomagnetism – Local measurements of the 

geomagnetic field show that the polarity of the 

Fig 6 – Upper: probability density 
function of persistence times. 
Lower: Polarity of the earths magnetic 
field (Solid bar = present) 

geomagnetic field has occasionally flipped. The 

earth’s magnetic field is generated by electric 

currents in the liquid outer core. The movement 

of the electric current is complex and is 

governed by the same magnetohydrodynamic 

theory of nuclear plasma physics. The pole is not 

stationary and in fact it roams up to 40km per 

year[39] around the cartographical North Pole. 

Occasionally, the north-south dipoles rotate 180 

degrees and what was the North Pole is now the 

South Pole and visa-versa. The persistence times 

of the meta-stable states of geomagnetic dynamo 

have been found to obey Levy statistics [8]. 

 

 

 

Astrophysics[25] – The anomalous 

caling relations of signals being 

ceived from pulsars have recently 

s

re

been made clear due the theory that 

electron density fluctuations in the 

interstellar medium obey Levy 

statistics. Previous analyses of 

interstellar scintillations of signals 

were believed to be of a Gaussian 

nature. Theory that explains the 

previously anomalous behavior 

suggests that the probability 

distribution of density gradients has 

power-law decay. It suggests that the ray angle perfor

as previously assumed.    

 

 

 

Fig 7 – The fractal behavior of Electromagnetic 
signal angle distribution. 

ms a Levy flight and not a random walk 
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Quantum Dots[26] - Arrays of semiconductor nanocrystals (quantum dot arrays, or QDAs) 

an be designed in order to control the Hamiltonian and therefore create materials with 

esirable transport properties. The transport properties of QDA’s are not well understood and 

Applications of Fractional Derivatives 

Fractional Schrödinger Equation[28]  – The Schrödinger equation is a quantum mechanical 

o describe the behavior of 

atter at very small scales. The fractional equation has predicted the energy levels of a 

e used to describe the current and voltage behavior in a 

ssy wire. The fractional derivative compliments the standard equation by incorporating 

e in real media is extremely complex 

nd irregular geometry and as such their contribution to hydrodynamic flow doesn’t fit 

section 2.10). 

c

d

several theories exist that explain anomalous electron transport. One theory that explains a 

recently observed transient power–law decay(15) of current uses Levy statistics applied to 

waiting on/off times to describe the behaviour of the current(I) as a response to large bias 

voltage being applied across the array. 

 

 

 
10)( 0 <<= − ααtItI

1.3 Theoretical 
 

equation that uses the wave picture (and notably the first to do so) t

m

hypothetical fractional Bohr atom. 

 

Fractional Telegraph Equations[29,30]  – These equations can be thought of as a simplified 

version of Maxwell’s equations ar

lo

anomalous wave and diffusive behavior into the model. 

 

Fractal Hydrodynamic Equations [31] – These equations are often used to describe the 

hydrodynamic behavior in porous media. The pore spac

a

standard Euclidian hydrodynamics equations. A set of fractional Euler and Navier-Stokes 

equations can match the fractal geometry of the porous media, hence, it can successfully 

model complex hydrodynamic behavior.  

 

The fractional Fokker-Planck equation is a well studied fractional equation which will be 

discussed in more detail later in the report(
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1.4 Underlying Physics of Superdiffusion 
 

tion of the standard diffusion equation is 

ased upon is that the medium the diffusive material is traveling in is isotropic and 

ields etc. These potentials cause the diffusive particles to get 

he principle of particles moving along contour lines or potential wells is some times referred 

 as particle “roads”[3]. The roads lead the particles in particular directions and influence 

One of the underlying principles in which the deriva

b

homogeneous and that the diffusive material is stationary. The conditions under which 

anomalous diffusion occurs do not match the underlying principles of the diffusion equation 

derivation and so there is no surprise that the standard equation will not accurately describe 

anomalous diffusive behavior. 

Physical entities that cause superdiffusion include energy potentials such as electric fields, 

magnetic fields, gravitational f

trapped in potential wells and when the trapped particles have energies below that of the 

potential barrier then it will be trapped until either it can either gain enough energy to escape 

or until the potential well has decayed/changed. The large spatial jump that characterizes 

Levy walks and anomalous diffusion can be caused by the rapidly changing potentials 

combined with trapped particles gaining momentum while in the force field. The particle gets 

trapped and is pulled towards the potential minimum and while it is traveling it gains kinetic 

energy from the work done by the field on the particle. When it is near the potential minimum 

it will have a high kinetic energy. Now, if the field was to rapidly change the particle will 

have excess kinetic energy and when it tries to escape it will overshoot and will travel a large 

distance. This can be easily visualized with a seed floating in a moving bucket of water (fig. 

1). 

 

 

  

 

 

 

 

 

 

 

Fig 1 – A visual-
ization of a seed 
traveling in turbulent 
water. The seed 
travels locally within 
vorticity potentials 
until the potential 
changes and then the 
seed undergoes a 
sling shot action and 
travels a large 
distance until it next 
gets trapped in a 
vorticity potential. 

T

to

their speed while on these roads. Classical Brownian motion, which leads to the description of 

classical diffusion has no roads and has a Gaussian spatial correlation function. The motion 

illustrated in fig 1, which can be described with fractional diffusion provides roads for the 
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particles to travel along. This movement, known as a Levy walk, leads to a non-Gaussian 

spatial correlation function that is described by Levy statistics. 

The phenomena of Levy walks is demonstrated in Lacasta et al

FIG 2 [4] – A finite portion of the much larger 
two dimensional periodic potential in which a 
particles diffuse.

.[4] where Langevin equations 

 

(16) 

 

 

here m is the mass, V is potential, μ is the 

leasing an 

on the potential, the friction coefficient and also 

igure 3 shows the effect that the friction has on the transport of the particles within the 

are implemented in order to simulate the movement/diffusion of particles in periodic and 

random potentials. The model is based on the equations of motion 

 

)(,

)

W

coefficient of friction, λ is a scaling 

coefficient and ξ is white noise. 

The simulation involves re

ensemble of thousands of particles within a 

specified potential and moving these 

particles using the Langevin equations (16) 

that replicate the processes involved in 

thermal fluctuations. The position of the 

particles and the collective mean square 

deviation is recorded at every time step. The 

development of the MSD is highly dependant 

the initial velocity distribution of the particles. 

 

 

 

 

 

 

 

 

 

 

 

F

potential. As expected, the movement of particles which are acted upon by relatively high 

friction have significantly reduced freedom. This is due to the particles having to overcome 

FIG 3 [4] – Left: A trajectory for μ=1 over 20,000 time units. Right: A trajectory 
for μ=0.04 over 15,000 time units 
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the forces from potential wells and friction 

and so they become trapped in the cells 

more often than in the case where is friction 

is present. This is evident from the larger 

globules found in potential wells in figure 3. 

Figures 4 & 5 show that the initial velocity 

distribution of particles affects the 

movement 

FIG 4 – [4] Mean square displacement 
vs. time for an ensemble of 5000 
particles in the periodic potential with 
a Maxwell-Boltzmann initial velocity 
distribution for a range of friction 
coefficients. (solid=0.0004, dotted = 
0.004, dashed=0.04 and dot-dash=0.4) 

on the short time scale but 

s standard diffusion. Note that the 

 

eventually the particles are all slowed down 

to roughly the same speed and at very long 

times the memory of the initial conditions is 

lost.  

The diffusion is clearly of a fractional nature 

at small times, and gradually converges 

toward

change in gradient is caused by a 

change(decay)  of a driving force in  the 

system  whereby another driving force takes 

preference over the last. This topic will be 

discussed and resolved later in the section 

named Functional Order Derivatives. 

 

FIG 5 – [4]Mean square displacement 
vs. time for an ensemble of 5000 
particles in the periodic potential with 
zero velocity for a range of friction 
coefficients. 
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1.5 Random Walks and Levy Flights 
 
A continuous time random walk describes the random motion of a particle that jumps a 

specified distance x, determined by a probability density λ(x), at time intervals determined by 

ψ(t). The standard Brownian motion is created by a Gaussian probability density. The most 

basic random walks have constant jump length, each jump is performed at regular intervals 

and there is no preferred direction for each jump, hence the process is Markovian. The 

applications of random walks are plentiful and to name just a few:  

• Economics- Modeling share prices  [10,17,18] 

• Linguistics – Modeling the distribution of languages[11] 

• Human movement – Several versions of this theory exist which range from the 

modeling of escaped prisoners during war times to the modeling of what pub a drunk 

sailor is most likely to be found.  

• The first random walk was recognized by Robert Brown, a botanist. He noticed that 

grains of pollen and dust were randomly moving in water with no correlation. 

(Another claim to fame of his was that he named the cell nucleus[19,21]) . 

Levy Flights(LF) are a special type of random walk whereby the probability density λ(x) is 

characterized by broader tails than the Gaussian (as associated with standard random walk) 

that allows a broader jump length distribution. This causes the mean square displacement of a 

levy flight to diverge.  

( ){ } 20/exp),( 11 ≤<≈−ℑ= +− ααααα xtKxtKtxP  

Random walks are equivalent to standard diffusion and LF’s are equivalent to fractional 

diffusion. 

 

A particular type of LF that possesses a finite mean square displacement is a Levy walk. The 

finite MSD is formed by coupling the time and spatial probability distributions such that long 

jumps are penalized by long waiting times. 

[ ]
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1.6 Probability Distributions 
 

The probability of finding a particle in the region x to x+dx in the Brownian diffusion 

scheme, given a Delta wave initial condition, always has a Gaussian density distribution. 

However, in the fractional case the probability density function is a Levy distribution.  The 

Levy distribution is characterized by the broader tails when compared to the Gaussian 

distribution. 

 

Fig 6 – Symmetric stable distributions with α = 1, 1.5 and 2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows four 1D random walks of 1000 steps whose step length is dependant on the 

Levy distribution. The Levy distributions with α=1 and α =2 are the well known Cauchy and 

Gaussian distributions.  

The figures clearly show that the Levy walks with low α values are characterized by large 

jumps due to the thicker tails of the distribution that increase the probability of producing 

large values. Observe the difference in scales on the three graphs. The lower α values 

significantly increase the range of position values. 

Comparing fig 8 with fig 1 makes the link between turbulent/anomalous transport with Levy 

distributions. Figure 1 shows an idealized map of the movement of a particle in turbulent 

medium that causes many small steps along with some sporadic large jumps. The random 

walk can be thought of as a particles trying to search(or travel to) every part of the domain. 

The Levy walk with low alpha value will visit every part of the domain in a far quicker time 

than a levy Walk with a high alpha, albeit a very fleeting visit for the low alpha particle in 

many cases. 
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Fig 7 – Scaled and non-scaled 1D levy random walk for  α =1, 1.33,1.67 and 2.0. 
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1.7 2D Levy Walk 
 

The purpose of this next section is to use 2D Levy walks to create a model solution to 

compare with the fractional diffusion equation. One thousand particles will be released and at 

set intervals their mean square deviation and average displacement will be calculated. These 

results can then be compared to both the analytic solutions and solutions of the fractional 

diffusion equation.  
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TimeFig 9 – Figure showing the evolution of the mean square deviation 
with time for Brownian motion(i.e. β=2).  Note that the linear 
behaviour of the MSD agrees with the theory in equation 6. 

 
 
 
 

 Fig 8[27] – Levy Walk for various values of α. The Levy distribution used here is 
symmetric. i.e. β=0. 

 

1.8 Levy Flights 
 
The linear time dependence of the MSD characterizes standard diffusion. To produce non 

linear time dependence, i.e. anomalous diffusion, Levy flights must be used. Levy flights are 

similar in nature to Levy walks except that movements are not equally spaced in  time. 

Producing a levy flight using computer code is difficult, but an approximated Levy flight is 

relatively simple using eqn (17). Allowing the random walker to make steps of length l 

distributed as[15] 

 

( ) β++
= 11

)(
l

l
CP (17) 

Where C is a normalization constant, the MSD can be shown to behave 
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in the following manner [15] 
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1.9 Theory of Fractional Calculus 
 
The concept of fractional calculus is nearly as old as the concept as calculus itself. Leibniz 

mentioned the concepts of fractional calculus in a letter to L’Hospital in 1695[2]. Later, more 

comprehensive studies of the concept were made by Euler(1730), Lagrange(1772), 

Liouville(1832), Holmgren(1864),   Riesz(1949), Riemann (1953). Duff(1956), Courant and 

Hilbert(1962)[2]. There are almost as many definitions of a fractional derivative as there are 

mathematicians that studied them, but only two definitions(and their derivations) will be 

shown here. The first (i) definition is in terms of nth order integrals and the second (ii) in 

terms of limits of difference quotients. 

(i) The standard notation of an nth derivative of a function F with respect to x for a 

positive integer is[14] 

 

n

n
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fd

 

Due to integration and differentiation being inverse operations it is logical to assume that a 

differential operator with negative exponent implies integration.  

 

∫≡−

− x

dyyf
dx

fd

0
1

1

)(
][

 

 

Differential operators are additive in nature and so the following can be deduced 
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Another identity of integral operators is called upon in order to enable the lower limit of the 

integral to be non-zero. 
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Thus, the following can be defined: 
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Again, using the additive property of differential operators gives: 
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(ii) The second definition stems from backward differencing scheme[15] 
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The second derivative is 
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And the nth derivative can be deduced using the observation that the coefficients are binomial 

coefficients of alternating sign. Hence 
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In order to define the derivative in terms of a restricted limit and restrict the derivative to 

discrete values only, a redefinition of dx is needed. The redefinition that allows this is 

 

N
axx −

=Δ 

 

Where N =1,2,3… and a<x and is similar to a lower limit in an integral sense. The nth 

derivative can now be written as 
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The binomial coefficients can be evaluated in terms of factorials for integers or gamma 

functions in terms of real numbers 
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Note that the binomial coefficients are now written in terms of gamma functions, therefore n 

can now be a real number. The nth derivative is now written as  
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2 1D Fractional Diffusion 

2.1 A Numerical Approximation for the 1D Fractional Diffusion Equation 
 

The following section is a description of a numerical scheme devised by Tadjeran [1] et al. It 

is a first order fractional scheme that aliases under the name of a second order scheme due to 

the implementation of Richardson extrapolation  

The original code was written in FORTRAN, where the matrices and vectors start at position 

1. The authors version was written in C++ where matrices and vectors start at position 0. 

Instead of shifting all indexes left in the algorithm, a decision was made to include the 

boundary conditions in the solution vector, hence the published indexes are left unchanged. 

The equation that is numerically approximated in ref[1] is the following; 
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With   xL < x <xR  1< α ≤ 2 ,d(x) >0  u(x,t=0)=s(x)   

u(xL,t)=0 u(xR,t)=bR (t) 

 

The fractional operator used is the Right-shifted Grűnwald formula and is used to estimate a 

spatial α-order fractional derivative[16] 
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Or, in the same notation as equation 17, equation 19 becomes 
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Where N is a positive integer, h = (x- xL)/N and ( )∗Γ is the gamma function. 

The devised scheme applies the fractional derivative to the well known Crank-Nicholson 

scheme whereby the implicit and explicit schemes are averaged. Some definitions used here 

are tn = nΔt for 0≤tn≤T, Δx=h>0 . Δx = (xR-xL)/Nx with xi = xL +iΔx for i = 0 to Nx,     di = 

d(xi) and qi
n+1/2=q(xi,tn+1/2) . 

The normalized Grűnwald weights[12] are defined as 
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The first four terms in the sequence are given by  
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When the approximate fractional derivative operator(21) is substituted into the Crank- 

Nicholson scheme the following is obtained. 
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Equation (23) can be written in matrix form 
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Equation (23) can be written in matrix form and solved in order to compute the vector . 1+n
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2.2 A 1D Numerical Example 
 
The following problem is solved in Ref[1] and their results will be reproduced using the 

method described in Ref[1]. 
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substitution in the fractional diffusion equation using the formula 
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 Comparison of numerical and analytic solution of problem described in Tadjeran et al.
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Fig 9 – Comparison of numerical and analytical solution. N=150, dt = 0.01. 
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dx Max CN Error 
Max 

Extrapolated 
Error 

1/3 0.00545535 1.12E-05 

1/6 0.00273296 2.82E-05 

1/12 0.00136143 5.30E-06 

1/24 0.00067994 1.72E-06 

1/48 0.000340904 1.18E-06 

Table 2 – Maximum Crank-Nicholson Error and 

Maxi-mum Richardson Extrapolated Error 

 

 

 

 

 

 

 

 

 

 

  
 

Log plot of max error vs step size 
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Fig 10 – log-log plot of maximum error of Crank-Nicholson 
and Extrapolated schemes vs step size. The gradient of the 
plots represents the order of accuracy of the scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tadjeran et al describe their scheme as first order in space for the Crank-Nicholson scheme 

and second order in space when the Richardson extrapolation is used. Figure 2 clearly shows 

that the order of accuracy for C-N is correct, however the statement that the extrapolated 

scheme is second order in space is not entirely correct as Tadjeran et al. base their error 

analysis on only four step sizes within the range 1/10≤h≤1/25. The order of accuracy obtained 

with a step size with the range 1/3≤h≤1/50 averages at about 1.5 and the order is clearly 

decreasing as the step size decreases. The order of accuracy is correct for the step sizes tested 

in Tadjeran et al, however, their analysis is flawed, as the Richardson extrapolation only 

works for relatively large step sizes.   
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2.3 Qualitative Behavior of Fractional Diffusive Systems 
 
There are 3 basic definitions of fractional derivatives. The first two are left and right sided 

derivatives, which are based on the forward and backward Euler method respectively. The left 

and right sided definitions coincide with the standard integer derivatives. i.e. the method 

converges to the standard advection equation for α=1 and the standard diffusion equation for 

α =2. The symmetric definition is more artificial in a derivative sense as it does not coincide 

with the standard definition of a derivative and as its name suggests, the solution produced is 

symmetric and will not advect the solution for α <2 .   
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Where H is defined as the Gilbert transform operator[27] and the left and right operators are 

the Riemann-Liouville derivatives. 
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It must be noted that the left and right derivative definitions (Eqn 26&27) when discretized, 

produce unstable methods for both implicit and explicit schemes [9]. It is for this reason that 

the right and left shifted Grunwald formulas are used to rectify this problem (c.f. Eqn 21).  

 

The following few pages illustrate the differences in the solutions obtained from symmetric 

and non-symmetric derivatives. The iteration matrices( Matrix A in equation 24) are also 

shown. 
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Table 3 – Solution of fractional diffusion equation using right sided derivative with  

a: α=1.2,  b: α=1.4,  c: α=1.8,  d: α=2.0  
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2.
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2.
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2.
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2.
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00

X

U

b.  

c.  d.  

Table 4 – Solution of fractional diffusion equation using symmetric derivative with  

a: α=1.2,  b: α=1.4,  c: α=1.8,  d: α=2.0  
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2.4 Full Width at Half Maximum 
One method used to quantify the dispersive behavior of bell-like distributions is the Full 

Width at Half Maximum (FWHM).  

This measurement can be used to quantify the 

speed of diffusion of the Gaussian wave with 

respect to different diffusive properties. 

The following calculation predicts/verifies the 

evolution of the FWHM. 

Starting with the fractional diffusion equation 

 

(29) 
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This solution is a quasi-Gaussian and becomes a Gaussian when α=2. To calculate the FWHM 

the maximum value must be found. This occurs when exp(*) = 1.  
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α=1 is the advection equation which does not change the shape of the solution. Hence, for 

α=1, FWHM=0. 

 

The figure below proves the relation  and FWHM=0 to be correct 2/αtFWHM ∝
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Fig 11 – A log-log plot of FWHM vs time. The gradient represents α/2.  
α =1, gradient =0.0065   α =1.33, gradient =0.62 
α =1.67, gradient =1.67   α =2.0, gradient =1.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Mean Square Deviation 
Another method that can be used to quantify the rate of diffusion is the Mean Square 

Deviation(MSD). The following calculation derives equation (3) and its result can be used to 

predict/verify results. 

The variance of c(x,t) is a readily obtained by applying the operator (the expectation 

value operator) to equation (29) 

∫
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Integrating the RHS by parts twice and utilizing the normalization definition  

gives the MSD relation for standard Brownian motion. 

∫
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= 1),( dxtxc
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Note that for non-integer values of alpha the linear dependence of MSD on time is no longer 

holds.  Proof: 
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Integrating by parts twice gives 
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For alpha=2 the first two terms cancel. For alpha=1 there are three terms for which the first 

term is zero and the 2nd and 3rd cancel to give a MSD of zero. The last term for alpha=1 and 

alpha=2 is 
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Evaluating the integral then leaves equation 31. 

For 21 ≤< α   the first terms do not cancel. To get the general idea of how the MSD will 

behave for 21 << α  a particular solution of the diffusion equation is substituted into 

equation 32 and then integrating both sides w.r.t. time gives 
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For alpha=1.5, the MSD becomes 
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Hence the MSD is now a combination of semi-derivatives, semi-integrals and a 3/2 ordered 

integral. Producing an analytic solution of this equation a fairly tricky, but intuition tells me 

that the solution to this equation will reduce to a fairly simple equation  

 

 

Fig 12 – The MSD symmetric fractional diffusion for α = 1, 1.33, 1.67 
and 2.0. The blue line (α =2) shows linear depenance on time. The yellow 
line(α =1.67) shows a gradient of 0.97(slightly sub diffusive). The pink 
line(α =1.33)  shows a gradient of 0.91(still only slight subdiffusion) 
while the dark blue line(α =1) shows non linear behaviour. 

y = 1.0186x - 1.9225

y = 0.9736x - 2.3562

y = 0.9152x - 3.1735

-10

-9

-8

-7

-6

-5

-4

-3

-2
-7 -6 -5 -4 -3 -2 -1

alpha=1
alpha=1.33
alpha=1.67
alph=2.0
Linear (alph=2.0)
Linear (alpha=1.67)
Linear (alpha=1.33)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 30



2.6 Iteration Matrices 
 
The iteration matrix, A, in equation 24 is based on the right sided fractional derivative and is 
defined as 
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The link between super diffusion and fractional derivatives is the wide stencil of the fractional 

scheme that allows enhanced mixing. The standard diffusion stencil takes into account only 

three points, whereas the right sided stencil can be composed of upto N/2+1 points(N is total 

number of points) .    

The iteration matrix needed to describe the symmetric derivative as described in equation 26 

is defined as 
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The symmetric stencil is as large as a stencil can be, as its width is the size of the domain. The 

right-sided derivative operator only diffused to the left. Whereas the symmetric operator 

diffuses equally in both directions. The width of the stencil determines the speed at which the 

initial conditions will diffuse/mix. A large stencil will allow a large peak to interact with a 

negligible value that is far away from the peak and the opposite also occurs whereby a 

negligible value will mix with a high peak which would not occur in the standard stencil.  

When the derivative order is an integer value the stencil reduces to 3 points, hence the 

diffusion for integer alpha is standard diffusion. As the value of alpha moves away from an 

integer value the stencil increases and the diffusion becomes more/less diffusive. Table 4 

proves non-integer α to be less diffusive. 

The following pages show the iteration matrices for alpha= 1, 1.5 and 2 for both right sided 

and symmetric cases. 

 

 

 31



 

α =1

A2Right Grunwald Weights         
0 0 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0
0 0 -1 1 0 0 0 0 0
0 0 0 -1 1 0 0 0 0
0 0 0 0 -1 1 0 0 0
0 0 0 0 0 -1 1 0 0
0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 -1 1
0 0 0 0 0 0 0 0 0

         
A2symmetric Grunwald Weights       

0 0 0 0 0 0 0 0 0
0 -1 2 -1 0 0 0 0 0
0 0 -1 2 -1 0 0 0 0
0 0 0 -1 2 -1 0 0 0
0 0 0 0 -1 2 -1 0 0
0 0 0 0 0 -1 2 -1 0
0 0 0 0 0 0 -1 2 -1
0 0 0 0 0 0 0 -1 2
0 0 0 0 0 0 0 0 0

 

 

α =1.5 

A2Right Grunwald Weights        
0 0 0 0 0 0 0 0 0

0.375 -1.5 1 0 0 0 0 0 0
0.0625 0.375 -1.5 1 0 0 0 0 0

0.023438 0.0625 0.375 -1.5 1 0 0 0 0
0.011719 0.023438 0.0625 0.375 -1.5 1 0 0 0
0.006836 0.011719 0.023438 0.0625 0.375 -1.5 1 0 0
0.004395 0.006836 0.011719 0.023438 0.0625 0.375 -1.5 1 0
0.003021 0.004395 0.006836 0.011719 0.023438 0.0625 0.375 -1.5 1

0 0 0 0 0 0 0 0 0
         
A2symmetric Grunwald Weights        

0 0 0 0 0 0 0 0 0
0.972272 -2.12132 0.972272 0.044194 0.016573 0.008286 0.004834 0.003107 0.002136
0.044194 0.972272 -2.12132 0.972272 0.044194 0.016573 0.008286 0.004834 0.003107
0.016573 0.044194 0.972272 -2.12132 0.972272 0.044194 0.016573 0.008286 0.004834
0.008286 0.016573 0.044194 0.972272 -2.12132 0.972272 0.044194 0.016573 0.008286
0.004834 0.008286 0.016573 0.044194 0.972272 -2.12132 0.972272 0.044194 0.016573
0.003107 0.004834 0.008286 0.016573 0.044194 0.972272 -2.12132 0.972272 0.044194
0.002136 0.003107 0.004834 0.008286 0.016573 0.044194 0.972272 -2.12132 0.972272

0 0 0 0 0 0 0 0 0
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α =2 

 

A2Right Grunwald Weights         
0 0 0 0 0 0 0 0 0
1 -2 1 0 0 0 0 0 0
0 1 -2 1 0 0 0 0 0
0 0 1 -2 1 0 0 0 0
0 0 0 1 -2 1 0 0 0
0 0 0 0 1 -2 1 0 0
0 0 0 0 0 1 -2 1 0
0 0 0 0 0 0 1 -2 1
0 0 0 0 0 0 0 0 0

         
A2symmetric Grunwald Weights        

0 0 0 0 0 0 0 0 0
1 -2 1 0 0 0 0 0 0
0 1 -2 1 0 0 0 0 0
0 0 1 -2 1 0 0 0 0
0 0 0 1 -2 1 0 0 0
0 0 0 0 1 -2 1 0 0
0 0 0 0 0 1 -2 1 0
0 0 0 0 0 0 1 -2 1
0 0 0 0 0 0 0 0 0
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2.7 Fractional Fokker-Plank Equation 
 
The standard Fokker-Planck{named after Adriaan Fokker and Max Planck[13]} equation(33) 

is a dynamic equation that describes the evolution of a probability density distribution, P(x,t), 

of a continuous time random walk(Brownian) in the presence of an external force field.  
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Where F=-dV/dx, m is the mass of the diffusing material and η is viscosity/friction 

coefficient. 

The fractional Fokker-Planck equation(34)[12] is a variation of the standard equation 

whereby the order of the derivative associated with diffusion in the standard equation can now 

take a non-integer value. The fFPE describes the behavior of Levy flights in potentials. 
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Note that the symmetric derivative operator is now employed in the diffusive term to ensure 

that 1≤α<2 contributes only to diffusive behavior, whereas a right or left sided derivate for 

this range of α would cause a combination of advection and diffusion. 

The exact solution solution of (asd) with no forcing term can be solved easily in Fourier space 

as the Levy stable density )exp(),( )( tkKtkP αα−= . However, when this solution is 

transformed back into position space the solution is given in terms of Fox H functions[12]. 
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The notation of (34) is somewhat misleading, as one would assume that the differential 

operator would act upon the F(x) term and the P(x) and would result in chain rule 

differentiation. However, the results shown in references 10 and 12 prove otherwise, as their 

results are symmetric. If the differential operator was to act on P(x,t) as well as F(x), the 

solution would advect and the line of symmetry associated with the force field will no longer 

coincide with that of the solution, resulting in the solution becoming non-symmetric. 
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2.5.1 Presence of Quartic Potential  

 

The quartic potential(37) is a high order harmonic potential, which in this case is used to 

investigate the behavior of levy flights in the presence of steep potentials[10,12].  

 
42

42
)( xbxaxV += (35) 

 

Figures 13 & 14 below compare the authors result with the result from Metzler et al where the 

problem was initially discussed.  
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Fig 13 – Solution of eqn 35 with quartic potential(37). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 14 [12]- Stationary solution of equation 35 in 
Tadjeran et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 35



2.5.2 Fractional Fokker-Planck with Superharmonic potential 

 

The superharmonic potential is defined as[10,12] 

 
cx

c
axV =)( (36) 

 

Figures 10 & 11 below show the comparison of the authors solution with that of Metzler et al. 

 

 

Fig 15 – Solution of the eqn 35 with superharmonic potential(eqn 36). 
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Fig 16 [10] – The solution of the Fractional Fokker-
Planck equation with superharmonic potential 
presented in Metzler et al. 
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3 2D Fractional Diffusion 

3.1 A Numerical Approximation for the 2D Fractional Diffusion Equation 
 
This next section is a succinct version of ref[11] that will describe an algorithm for solving 

the 2D fractional diffusion equation.  
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As with the 1D example, the 2D case is based on a paper by Tadjeran and Meerschart[11]  

which uses a Crank-Nicholson theory applied to the right shifted Grunwald formula( eqn 21). 

The use of Richardson extrapolation is also used to enable the primarily first order accurate 

scheme to become second order accurate in time and space. Equation 14 in the 1D example 

when extended to 2D becomes 
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The above fractional partial differential operators are slightly different in 2D and are defined 

as 
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Equation (38) can be written in matrix form 
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Or in matrix form, 

 

( ) ( ) tQUBAIUBAI nnn Δ+++=−− ++ 2/11 (40) 

 

Equation (40) can be solved in the same way as 1D case by multiplying both sides 

by , although this method is very computationally expensive and inefficient due 

to the sparse nature of the matrix to be inverted. One way around this is to use the alternating 

directions implicit (ADI) method to reduce the computational work. This method works by 

introducing a perturbation of Eqn (40) and solving the equation explicitly in one direction and 

implicitly in the other. This method creates a system of matrix equations whereby an 

( 1−−− BAI )
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intermediate solution is defined and is to be solved and then substituted into the second 

equation to define the final solution. 
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The algorithm for implemented in the following way: 

 
1. Solve on each horizontal slice y=yk (k=1..Ny-1), a set of Nx-1 

equations defined by (22) to obtain the intermediate solution 
U*. 

 
2. Next, solve on each vertical slice x=xk(k=1..Ny-1), a set of 

Ny-1 equations defined by (23) to obtain the solution slice 
Un+1 

 
The boundary conditions needed to maintain consistency of equation 
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(40) are  
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This (24) can be derived by subtracting eqn (42) from equation (41) 
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3.2 A 2D Numerical Example 
 

The following problem is solved in [11] and their results are reproduced here. 
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The exact solution is  and can be verified by direct differentiation and 

substitution in the fractional diffusion equation using the formula 
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 dt dx Max CN Error 

1/100  1/5 3.21E-03 
1/100 1/10 1.67E-03 

 1/100 1/20 8.03E-04
 

1/100 1/40 4.01E-04 
 Table 2 – Maximum Crank-Nicholson 

Error and Maximum Richardson 
Extrapolated Error. 
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Fig 17 – The computed solution to eqn 44 using the first 
order accurate method described above.  

 

 
Table 2 clearly shows linear error convergence, as the halving a step size halves the maximum 
absolute error. 
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3.3 2D Diffusion 
 
The fractional diffusion equation in the previous example is based on the right sided 

derivative which is derived from the same theory as the backwards Euler method. The 

problem with this derivative, when applied to diffusion, is that it only diffuses in one direction 

for 21 <≤ α , or to be more pedantic it advects to the left and diffuses at the same time. This 

is not realistic as standard diffusion causes the prognostic variable to spread equally in all 

directions. As a result the standard method to simulate diffusion makes use of the symmetric 

derivative(eqn asdfgh).The fractional diffusion equation in 2D is defined as 
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The following pages show the behaviour 

of a 2D Gaussian function undergoing 

symmetric fractional diffusion on a 

domain x,y[-1,1] in the interval t[0,1]. 

The simulation is based on initial 

conditions of  

Fig 18 – Initial condition for 2D symmetric 
diffusion. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−==

1.0
exp5.0)0,,(

22 yxtyxU    

with dx=dy = 1/60 and dt=0.01. 

 

and boundary conditions of 

 

0),1,(),,1(
0),1,(),,1(

==
=−=−

txUtyU
txUtyU

 

 
 
 
 
 
 
 
 
 
 
 
 

 41



α = β 3D Surface 

1 

 

1.5 

 

2 

 
Fig 19 – The 3D Gaussian profiles after undergoing fractional diffusion for 1 
second. Pay attention to the scales on the graphs as there is a significant 
difference between α=1 and α=2. Also note the shape of the Gaussian shape is 
slightly different (steeper at edges) for each of them due to the Gaussian wanting 
to spread but not being able to due to the Dirichlet b.c’s. 
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3.4 Skewed Diffusion 
 

Skewed diffusion occurs when diffusion is more prominent on one direction. One real life 

example of this is the percolation of water in the water table where the rocks are formed in 

layers and the diffusion is more prevalent in the direction that is parallel to these layers.  The 

simulations below compare skewed and non-skewed diffusion. 

 

α β 3D Surface 2D Contour 

2 2 

1 2 

 

Fig 20 - For α=β=2 standard diffusion occurs. For  α=1, β=2 stand diffusion occurs in the y direction 

while subdiffusion occurs in the left direction. 
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4 2D Plume Diffusion 

Anomalous diffusion of tracers(contaminants) has been observed  whereby turbulence causes 

the tracers to diffuse with non-Gaussian behaviour. The aim of this section is to reproduce the 

empirical phenomena using 2D fractional diffusion. 

 
 

Fig 17 – The plume diffusion 
shows a nonlinear spread that 
is characteristic of super 
diffusion. The variance of the 
plume has a linear relation 
with time for standard 
diffusion.    

The model needed to reproduce the anomalous plume diffusion is the fractional advection 

diffusion equation. 
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Where U is the density of the tracer, v is its velocity in the x direction and  is the 

diffusivity in the y direction. 

yKβ

 
Results  
 

The following contour plots illustrate the effect that differential exponent has on the 

dispersion of a tracer. A Gaussian shaped tracer is introduced to the domain on the left hand 

side. The tracer is then 

advected in the x direction 

while being fractionally 

diffused in the y direction. 

The aim of this simulation 

is to produce contour 

plots that resemble the 

plume diffusion shown 

above.  
Fig 18 – Idealised tracer dispersion in the case of sub, normal 
and super diffusion. 
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b. a. 

  

  

c. d. 

  

 

 

 

Fig 19 – Figur showing the the spread of as tracer which is under the influence of advection and 
fractional diffusion. a: α=1,  b: α=1.33 ,  c: α=1.67 ,  d:  α=2.0.   a & d show a linear spread which 
characterises normal diffuson. b & c show non linear(similar to square root ) behaviour that is of 
a sub diffusive nature. 
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5 Functional Order Derivatives  

5.1 An Extension of Fractional Derivatives  
 

The concept of functional derivatives is well known [33,34,35]and forms a branch of 

variational calculus. The functional derivative differs from a standard derivative as it does not 

differentiate w.r.t a variable as in the standard case, instead it differentiates w.r.t. a function. 

In physics the function with which the subject function is differentiated with respect to is 

often a vector. The definition is[36] 
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One variation of a functional derivative which is has not yet been explored is the concept of 

functional order derivatives(FOD). Descriptively, this is the differentiation of order f(x) of a 

function F(x). Using the (left)Riemann definition of a fractional derivative, the functional 

order derivative is defined as 
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Derivation: 

Starting with the theory set out on page 19 
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The second derivative is 
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And the nth derivative can be deduced using the observation that the coefficients are binomial 

coefficients of alternating sign. Hence 
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In order to define the derivative in terms of a restricted limit and restrict the derivative to 

discrete values only, a redefinition of dx is needed. The redefinition that allows this is 
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Where N =1,2,3… and a<x and is similar to a lower limit in an integral sense. The nth 

derivative can now be written as 
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The FOD adds an extra degree of freedom to the standard and fractional derivatives. The 

function f(x) may well be a function of F(x), in which case the computation of the FOD is 

akin to solving two simultaneous equations.  

The intended application of the FOD is to construct a functional order diffusion equation that 

will emulate nonlinear mean square deviations w.r.t time.  
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The functional order diffusion equation is superior to the fractional diffusion equation when 

applied to the transport behavior of micro-spheres in cells, as in fig 5. The behavior of the 

mean square deviation is linear at small times, becomes nonlinear at intermediate times and 

plateaus at long times. The standard fractional diffusion equation only allows for the linear 

MSD behavior which breaks down at time become large, whereas the functional order 

diffusion equation has the ability to describe the MSD for all time. 
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One of the drawbacks of the added functionality of functional order diffusion is that the 

iteration matrix, A(Eqn 16), depending on the function, may need to be updated at every time 

step. 

Another application of functional order derivatives is that of turbulence and hydrodynamics. 

The order of fractional diffusion has the ability to define laminar and turbulent behavior in 

separate spatial and time regions. An interesting concept that could be employed to simulate 

hydrodynamic flow is that the order could be a function of the Reynolds number. 

The Reynolds number[37] is the ratio of inertial forces to viscous forces which is defined 

as[32] 

 

υ
duRe = (47) 

 

Where u is the mean velocity, d is the characteristic length and υ is the kinematic fluid 

viscosity.  

When viscosity is high(i.e.low Reynolds number) the flow is Laminar, which is characterised 

by smooth flow and fairly constant fluid velocity. The high viscosity prevents mixing, 

therefore it can be compare with sub diffusion.  

When viscosity is low(i.e. high Reynolds number) the flow is turbulent, the inertial forces 

take charge and the flow is characterised by eddy currents and vortices. These energetic flow 

patterns increase mixing in the fluid and can be compared to superdiffusion.  

 

Algorithm to Solve the 1D Functional Order Diffusion Equation.

The following simple algorithm describes the procedure for solving the functional order 

fractional diffusion(FOFD) equation.  

 

(48) 

 

The method used is a Crank-Nicholson type finite difference that is an extension of the 

method described in Tadjeran et al[1]. 
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To reduce computational expense in scheme[1] the Grunwald weights for each value of k (eqn   

)are pre-calculated and are stored in an array. This pre-calculation of weights cannot be done 

with FOFD as α is no longer a single value and is in fact a continuum of values. As such, the 

only way to reduce the computational expense in this case is to only allow for a discretized set 

of α. The Grunwald weights will now be stored in a 2D array. If non-discretized values of α 

are to be used then the Grunwald weights must be calculated for each grid point, and in 

relation to other grid points(if spatially dependant) and at every time step(if time dependant). 

The method used in the example is the computationally expensive, non-discretized method, 
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which requires the least modification of the standard 1D example, which is to call the 

Grunwald weight setting procedure at the same level as the setting of ηi (using the same 

definitions as in equation 16)(Refer to code in appendix for details). The Richardson 

extrapolation as used in Tadjeran et al. can also be implemented in order to create a second 

order accurate method.  

In the following pages, the description and theoretical behaviour of two FOFD examples will 

be presented, both of which, as far as the author is aware is original. Unfortunately, the 

computational results have not been produced due to time constraints, although 

predicted/expected solutions will be presented. 

 

FOFD- Time Dependant 

 

Many of the examples of fractional dynamics mentioned in the introduction have a linear 

MSD(w.r.t time) for a section of the graph but are non linear in other parts. The standard 

fractional diffusion equation cannot deal with nonlinear time dependant alpha. The functional 

order diffusion equation has the ability to do this providing the correct function is used to 

define the evolution of alpha with time.    

A step function would have the ability to produce a MSD with two different linear 

portions(fig 20.A). An sgn(t) could be used to make a more realistic merging effect between 

linear and nonlinear portions of the MSD(fig 20.B). 
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Fig 20– Figures showing the predicted MSD of which the functional order diffusion 

equation is capable of. 
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FOFD- Spatial Dependence  

In the majority of real life examples of fluid dynamics the Reynolds number is spatially 

dependant. One simple example that could be used to model this principle is the diffusion of a 

contaminant in a 2D lake of which a portion of the lake has a smooth sand bed and the other 

portion has a rough rock bed. The sand and rocks would cause laminar(low Reynolds number) 

and turbulent flow (high Reynolds number)  respectively.  

The results would look similar to the α = 1 plume diffusion on the sand bed and α=2 plume 

diffusion on the rock bed. 

 

Fig 21 – The expected solution for spatially functional order 
fractional diffusion.  
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6 Summary 

The subject of fractional dynamics has been studied extensively in the last ten years both 

empirically and theoretically. The purpose of this report was to summarize some of the key 

concepts with fractional dynamics (but focusing on fractional diffusion), make a brief account 

of some its applications and reproduce a few results from influential papers. 

The introduction sets out the foundations of diffusion, the measures of it and the methods 

used to simulate it computationally. The derivation of both the standard and the fractional 

diffusion equation is then provided along with their solutions. The underlying physics and the 

link between random walks and diffusion are then discussed and a summary of paper which is 

illustrative of these ideas is presented. Some simulations of random walks are presented along 

with applications of random walks, Levy flights, fractional dynamics and fractional diffusion. 

The core elements of the report focus of the spatially fractional diffusion equation. The theory 

of fractional calculus and its application to diffusion is report and then juxtaposed with a 1D 

simulation of the spatially fractional diffusion equation which is compared to results from 

Tadjeran et al[1]. This example is based on comparing a computed solution to an exact 

solution. The order of accuracy for the scheme was found to be the same as Tadjeran et al, 

however, an extrapolation method which was reported in Tadjeran to increase the order of 

accuracy to 2nd order was proved Tadjeran analysis to be incorrect. For large step sizes their 

analysis is correct but as the step size decreases, so does the order of accuracy.  

The key breakthrough (for the author at least) is that the spatially fractional, nonsymmetric 

diffusion equation produces subdiffusion for 21 <≤ α and not superdiffusion as originally 

expected. The subdiffusion for 21 <≤ α  was then proved theoretically(page 26) using the 

expectation value operator. α=1 is just the advection equation, hence the MSD will not change 

as the solution of the equation is only shifted right or left, depending on what side operator is 

used, resulting in no diffusion. α=0 results in zero MSD as the solution proportionally shrinks 

in size with time. As expected, α=2 produces standard diffusion which has a linear MSD 

correlation with time.  

Figure 11 proves the theory drawn out on page 24, that , to be correct. 

Theoretical results for MSD and FWHM for the symmetric diffusion is difficult and is not 

provided in this report for two reasons. The first being that the FWHM and MSD relations 

have not been published for the spatially fractional diffusion equation and the second being 

time restraints have prevented the research needed to make these calculations.  

2/αtFWHM ∝

One of the key concepts of fractional diffusion (and fractional dynamics in general) is that the 

solution is very different for the symmetric and non-symmetric differential operators. The 

iteration matrices illustrated on pages 29 and 30 show that for α=1 the matrix is equal to the 

minus of α =2.  
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The results of the MSD show linear behavior of MSD for α=2, as expected. The MSD results 

show a slight subdiffusion for 1<α<2. The α=1 scenario produces a nonlinear correlation with 

time.  

Later in the report solutions to the fractional Fokker-Planck equation with various potentials 

were created. Both superharmonic and quartic potentials matched the original results 

presented in Mezler et al.   

In the later stages of the report the 2D fractional diffusion equation is computed. A method 

and test case from Tadjeran et al was implemented. The author’s results matched that of 

Tadjeran et al. Note that the extrapolation method used in the 1D case is not reported for the 

2D case as it is break downs for low step sizes, therefore the author decided that the 

implementation would be of no benefit. 

The right sided 2D model was then put aside to focus on the symmetric fractional diffusion 

equation. Several Gaussian functions were diffused for α =1.0, α =1.5 and α =2.0. The 

principle of skewness was also demonstrated. 

The phenomenon of anomalous plume diffusion was then simulated using the 2D fractional 

diffusion code with a modification that allows advection. The results show that standard 

diffusion occurs for integer α and subdiffusion occurs for 1<α<2.  

Finally, an interesting concept, that as far as the author is aware, has yet to be explored is 

functional order derivatives(FOD’s). The derivation of the FOD was presented and 

applications of FOD’s were discussed and testable scenarios were also presented. 

Unfortunately, time restraints prevented the testable scenarios to be computed. 

The subject of fractional dynamics has many avenues that have yet to be researched despite 

the fact that there is already a vast amount of work already published on the subject. Further 

work of interest includes: 

• The computation of testable scenarios of FOD’s.  

• A piece future work that was intended for this project is the study of the average 

behaviour of Levy flights. This would include making several thousand Levy flights 

for each value of alpha analysing their group behaviour. Theory suggests that Levy 

flights and fractional diffusion are equivalent and so the future work mentioned will 

test the theory. 

• The modification of fractional diffusion and random walk processes to include 

particle interaction. This can either be of the form of chemical reactions or 

annihilations, which would cause the diffusion equation to break down as the 

continuity equation would need to be modified to include energy and mass. 
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• Recently, a large amount of work has been published on the subject of relativistic 

diffusion [40,41].  Creating a fractional relativistic diffusion equation or researching 

whether FOD can create relativistic diffusion would be an interesting line of inquiry. 
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