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Abstract

Data assimilation is used in numerical weather prediction to improve weather

forecasts by incorporating observation data into the model forecast. The

Ensemble Kalman Filter (EnKF) is a method of data assimilation which up-

dates an ensemble of states and uses this to provide a state estimate and

associated error estimate at each step. Some implementations of the EnKF,

such as the Ensemble Transform Kalman Filter (ETKF), have been found to

exhibit undesirable behaviour. This dissertation investigates two such prob-

lems exhibited by the ETKF: ensemble collapse and bias. A solution to the

ensemble collapse problem using random rotations is given and experimental

results with the ETKF with the random rotations applied are presented. The

conditions for an EnKF to be unbiased are examined, and these conditions

are used to determine further restrictions on the random rotations to ensure

that applying them to the filter will not introduce a bias. An unbiased filter

with random rotations is developed and experimental results with this new

filter show that it does not exhibit the ensemble collapse problem, and that

it is unbiased.
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Chapter 1

Introduction

1.1 Background

Data assimilation (DA) is a method of combining observation data with

model forecast data in order to more accurately predict the state of a system.

One of its most common uses is in numerical weather prediction (NWP).

In NWP, we have observation data about different atmospheric properties,

such as pressure, temperature and wind speed, obtained from various sources,

such as ground stations, radiosondes, aircraft and satellites, at many different

locations. We also have details of the state of the system at an earlier time,

and a model which uses this to predict a forecast state. In the analysis

step of the DA system, this model forecast state is combined with recent

observation data to give an accurate estimate of the state of the system,

called the analysis state. This analysis state is then used to produce the

forecast state for the next analysis timestep.

The Kalman Filter (KF) is a sequential data assimilation scheme for use

with linear systems. Each update step consists of a forecast step, in which

the analysis from the previous step is run through the model, and an analysis

step, in which the observation data is assimilated into the forecast from the

model to produce the analysis. As well as updating the state estimate at

each step, the KF also updates the error covariance, which is a measure of
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the uncertainty in the state estimate.

The Ensemble Kalman Filter (EnKF), first described by Evensen [1994],

generalises the idea of the KF to nonlinear systems by using an ensemble, or

statistical sample, of forecasts. In the forecast step, the ensemble members

are each forecast individually by the full nonlinear model, and in the analysis

step the update equations are based on the linear equations used in the KF.

The mean and covariance of the updated ensemble provide the state estimate

and error covariance respectively.

1.2 Motivation

There are various different implementations of EnKF algorithms, such as

the perturbed observation filter (Burgers et al. [1998]), the ensemble trans-

form Kalman filter (Bishop et al. [2001]), the ensemble square root filter

(Whitaker and Hamill [2002]) and the ensemble adjustment Kalman filter

(Anderson [2001]). Some of these implementations have been shown to ex-

hibit undesirable behaviour, such as ensemble collapse (Lawson and Hansen

[2004], Leeuwenburgh et al. [2005]) and bias (Livings [2005]). Figure 1.1

gives a very simple illustration of ensemble collapse. The dots labelled xi,

i = 1, . . . , 7, represent the 7 ensemble members in this example. We can see

that before the assimilation, the ensemble members are fairly evenly spread,

but after the assimilation all but one of them has collapsed onto one point.

A full mathematical examination of the ensemble collapse problem is given

in Section 4.2.

The bias problem can occur in implementations where the state estimate

is updated separately from the ensemble. The ensemble mean should be

equal to the state estimate, but in cases where the bias problem occurs,

these statistics are inconsistent. The bias problem also causes the ensem-

ble standard deviation to be too small, which results in the analysis being

overconfident, and which in turn may cause the next forecast to be biased

and overconfident. Figure 1.2 shows a simple and very extreme example of
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Figure 1.1: Simplified diagram showing ensemble collapse

bias. Here the state estimate, which is updated separately from the indi-

vidual ensemble members, is clearly not equal to the mean of the ensemble

members.

Figure 1.2: Simplified diagram showing a biased ensemble update

1.3 Aims of this dissertation

The aim of this dissertation is to investigate the ensemble collapse and bias

problems, and to try to develop a filter which does not exhibit either prob-

lem. This will be achieved by running experiments using the swinging spring

system, which is described fully in Section 2.1, and analysing the results from
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these experiments.

1.4 Principal new results

The main new results in this dissertation are

• Applying random rotations to the ETKF to eliminate the ensemble

collapse problem

• Establishing that random rotations can introduce a bias to the filter

• Developing a new unbiased filter with random rotations

1.5 Outline of the dissertation

Chapter 2 introduces the swinging spring system, which is used in the ex-

periments. Certain properties of this system make it relevant to NWP, and

in particular to the problem of initialisation. The chapter describes the ini-

tialisation problem and investigates the initialisation of the swinging spring

system. Details of the experimental setup are also given.

Chapter 3 gives a description of the EnKF and a particular implementa-

tion of it, the ensemble transform Kalman filter (ETKF). Details of how the

filter is implemented in the experiments are also given.

In Chapter 4, we investigate the ensemble collapse problem. We begin by

explaining why the problem occurs, and then give a solution to the problem,

that of applying random rotations to the analysis update, which was sug-

gested by Leeuwenburgh et al. [2005]. We also introduce ensemble skewness

as a measure of ensemble collapse. We compare experimental results from

the original ETKF and the ETKF with the random rotations applied.

Chapter 5 begins by describing the bias problem and why it occurs. The

revised ETKF of Wang et al. [2004] is introduced, and experimental results

comparing the ETKF and revised ETKF, both with and without the random
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rotations of Chapter 4, are given. A quantitative measure of bias is also

defined.

In Chapter 6 we develop an unbiased filter with random rotations by

placing further restrictions on the random rotation matrix. The new filter is

tested and compared with other filter formulations.

Finally, Chapter 7 gives a summary of the results and proposes some ideas

for further work.

9



Chapter 2

Experimental setup and

initialisation

The system used in the experiments is the swinging spring, or elastic pendu-

lum system, which is described in Lynch [2003]. This system has both high

and low frequency oscillations, and is therefore a good analogy of a model of

atmospheric dynamics, in which both high frequency gravity waves and low

frequency Rossby waves occur. It is relevant to the problem of initialisation

in numerical weather prediction (NWP), which is described in Section 2.3.

We begin by introducing the swinging spring system.

2.1 The swinging spring system

The experimental setup is shown in Figure 2.1. A heavy bob of mass m is

suspended by a light elastic spring of elasticity k and unstretched length l0

from a fixed point, and is allowed to move in a vertical plane. The motion

of the bob is defined by the high frequency elastic oscillations of the spring,

and lower frequency rotation oscillations about the suspension point.

The position of the bob at a given time is expressed in polar coordinates

(r, θ), where r is the distance from the suspension point and θ is the angle

from the downward vertical direction. The radial and angular momenta are
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given by pr = mṙ and pθ = mr2θ̇ respectively. The gravitational and elastic

forces on the bob are as shown in Figure 2.2, where g is the gravitational

acceleration.

Figure 2.1: The swinging spring setup. The bob is attached to an elastic

spring, and its position is given by polar coordinates (r, θ).

Figure 2.2: Elastic and gravitational forces acting on the bob, which has

mass m.

We define the state vector X = (θ, pθ, r, pr)
T , and note that we can write

this as X =

 Θ

R

, where Θ =

 θ

pθ

 is the rotational component and

R =

 r

pr

 is the elastic component of motion.

The Hamiltonian for this system is the sum of the kinetic, elastic potential

and gravitational potential energies, given by

H =
1

2m

(
p2

r +
p2

θ

r2

)
+

1

2
k(r − l0)

2 −mgr cos θ.

Using the Hamiltonian equations
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ṗr = −∂H

∂r
, ṙ =

∂H

∂pr

ṗθ = −∂H

∂θ
, θ̇ = −∂H

∂pθ

the following equations of motion for the bob can be derived:

θ̇ =
pθ

mr2
(2.1)

ṗθ = −mgr sin θ (2.2)

ṙ =
pr

m
(2.3)

ṗr =
p2

θ

mr3
− k(r − l0) + mg cos θ. (2.4)

The system has one stable equilibrium point, at which the bob is vertically

below the suspension point and the spring is fully stretched. At this point

the gravitational and elastic forces are balanced: k(l − l0) = mg, where l is

the length of the spring at this point.

If we suppose that the amplitude of the motion is small, we can linearise

about this point, giving

θ̇ =
pθ

ml2
(2.5)

ṗθ = −mglθ (2.6)

ṙ =
pr

m
(2.7)

ṗr = −k(l − l0). (2.8)

where in these equations, the variables (θ, pθ, r, pr) are redefined to be per-

turbations from the stable equilibrium point (0, 0, l, 0). From this we can

see that in the linear case, the Θ and R components are independent. The

rotational component of motion can be expressed as

θ̈ +
g

l
θ = 0,
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which has frequency ωθ =
√

g
l
, and the elastic component as

r̈ +
k

m
r = 0,

which has frequency ωr =
√

k
m

.

Defining ε to be the ratio of the frequencies, we have

ε =
ωθ

ωr

=

√
mg

kl
=

√
l − l0

l
< 1.

The parameter values for the experiments are chosen such that ε � 1,

i.e. the frequency of the rotational motion is much lower than that of the

elastic motion.

2.2 Parameter values

For the purposes of our experiments, we use the parameter values m = 1,

g = π2, k = 100π2 and l = 1, which are taken from the example in Lynch

[2003]. This gives frequencies ωθ = π and ωr = 10π, so the frequency ratio

is ε = 0.1 and the cyclic frequencies of the rotational and elastic motions are

fθ = ωθ/2π = 0.5 and fr = ωr/2π = 5 respectively. Figure 2.3 was produced

using the numerical method detailed in Section 2.4. It shows the trajectories

of each of the 4 variables plotted against time and the corresponding modulus

of the Fourier transform coefficients, for the initial conditions (θ, pθ, r, pr) =

(1, 0, 1.05, 0). The Fourier tranforms were computed using the MATLAB

fast Fourier transform function fft. We can see that the θ and pθ coordinates

have large peaks in the Fourier transform plots at f = fθ and the r and

pr coordinates have large peaks at f = fr, but with small peaks at around

f = 2fθ, indicating that there is some interaction between the fast and slow

oscillations.
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2.3 Initialisation

In the atmosphere there are many different motions with different timescales.

In NWP systems, we are generally interested only in motions with timescale

greater than one day, and motions with significantly smaller timescales are

regarded as noise. Initialisation is the process of adjusting the initial condi-

tions in such a way that the high frequency noise is eliminated. In typical

large scale atmospheric flow, the low frequency Rossby waves and high fre-

quency gravity waves have very separate scales of motion and there is very

little interaction between them. Although the high frequency gravity waves

are significant in some situations, for example near a steep hill or where there

is fast change occurring, generally they are not useful and can be regarded

as noise which we want to reduce.

In some cases, the initial conditions may be inaccurate due to observa-

tional errors, and this can lead to incorrect gravity waves in the forecast.

In an uninitialised system, this can cause problems; for example, new ob-

servations are checked for accuracy against a short range forecast, but if

the forecast is noisy then good observations may be rejected and incorrect

observations may be accepted.

In a data assimilation scheme, we want to make sure that the initial

conditions for the forecast step, produced by the analysis step, do not cause

large gravity waves to occur in the forecast step.

We now consider the initialisation of the swinging spring system described

in Section 2.1.

2.3.1 Linear initialisation

First consider the case where the amplitude of the motion is small. Then

the system approximately satisfies the linear equations 2.5-2.8. Since the

high and low frequency oscillations in this case are independent, in order

to eliminate the high frequency oscillations, we can simply set the initial

14



amplitudes of the high frequency components to zero:

R =

 r

pr

 = 0

at t = 0. So our initial conditions are r(0) = l and pr(0) = 0. This is called

linear initialisation.

Figure 2.4 shows the trajectories and corresponding Fourier transforms

for the swinging spring system with linear initialisation. It should be noted

that the scales on the axes for the r and pr variables are smaller than those

for the uninitialised system. Compared to the uninitialised system, the θ

and pθ plots are unchanged, but the effect of the low frequency oscillations is

having more of an effect on the frequency of the r and pr coordinates, seen

both by the slower oscillation in the trajectories as well as the high frequency

oscillations, and by the larger peak at f = 2fθ in the Fourier transform.

The linear initialisation has not had the desired result of removing the

high frequency oscillations since the amplitude of the oscillations is too large

for the linear system to be a good approximation to the system dynamics.

2.3.2 Nonlinear initialisation

Nonlinear initialisation is used in cases where the amplitude of the motion

is larger, and so the nonlinear terms can no longer be neglected. In this

case there is interaction between the high and low frequency oscillations,

and so if we set the initial amplitudes of the high frequency components to

zero, low frequency oscillations will still cause high frequency oscillations to

develop over time. So instead we set the initial tendency of the high frequency

components to zero:

Ṙ =

 ṙ

ṗr

 = 0

at t = 0.

Using equations 2.1-2.4 we can find explicit expressions for the initial

conditions to achieve this. Using equation 2.3 we set ṙ(0) = 0 by setting
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pr(0) = 0. For ṗr = 0 we substitute θ̇(0), obtained from equation 2.1, into

equation 2.4, set the right hand side of equation 2.4 equal to zero and solve

for r(0), giving

r(0) =
l(1− ε2(1− cos θ(0)))

1−
(

θ̇(0)
ωr

)2 . (2.9)

Finally, by equation 2.1 we have

pθ(0) = mr(0)2θ̇(0). (2.10)

Figure 2.5 shows the trajectories and corresponding Fourier transforms

for the swinging spring system with nonlinear initialisation. As in the linear

initialisation case, note that the scales on the axes for the r and pr variables

are again smaller. Again the θ and pθ plots are unchanged, but now we can

see that the high frequency oscillations in the r and pr coordinates are almost

no longer present, although very low amplitude high frequency oscillations

can still be seen in the pr coordinate, both by the small wiggles in the tra-

jectory plot, and by the small peak in the Fourier transform at f = fr. The

prominent oscillation frequency in these two variables is f = 2fθ.

2.4 Numerical Method

In the MATLAB code used for the experiments, the equations for the swing-

ing spring system (equations 2.1-2.4) are integrated using the MATLAB func-

tion ode45. This function uses an explicit Runge-Kutta (4,5) pair with

adaptive step size. More details of the Runge-Kutta pair are given in Lam-

bert [1991], although there it is referred to as DOPRI (5,4). Essentially, the

explicit fifth-order Runge-Kutta formula is used to integrate the equations

and the difference between the fourth- and fifth-order methods is used as an

estimate of the truncation error. Parameters are specified in the program to

determine an upper bound on the error estimate, by adjusting the step size.

There is also a parameter which determines an upper bound on the step size,

which ensures that the numerical method is stable.
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To determine the stability of the numerical method, we consider the sta-

bility of the linearised system given by equations 2.5-2.8. This should give

an indication of the stability of the nonlinear system, which whould be much

more complicated to analyse.

As mentioned in Section 2.1, the linear system can be decoupled into two

independent components, each oscillating with simple harmonic motion. Up

to scaling, these are equivalent to a single oscillator which can be written in

complex form as

ẏ = iy (2.11)

and this can be related to the general linear scalar system

ẏ = λy (2.12)

given in Section 5.12 of Lambert [1991].

The exact solution of equation 2.11 satisfies the difference equation

y(tk+1) = eihy(tk) (2.13)

where h is the stepsize of the scheme, and an approximation to this can be

written in terms of the stability function R as

yk+1 = R(ĥ)yk (2.14)

where ĥ = λh = ih.

We therefore need to find ĥ to ensure that R(ĥ) has modulus close to one

and argument close to h. Lambert [1991] gives the stability function for the

DOPRI (5,4) scheme as

R(ĥ) = 1 + ĥ +
ĥ2

2
+

ĥ3

6
+

ĥ4

24
+

ĥ5

120
+

ĥ6

600
. (2.15)

Plots of
∣∣∣R(ĥ)

∣∣∣− 1 and arg(R(ĥ))− h against h are given in Section 4.3

of Livings [2005] and these were used to obtain the value 0.01 for the upper

bound on the step-size, for the parameter values given in Section 2.2. Full

details are given in Livings [2005]. While this stability analysis is not the
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same as analysing the full nonlinear system, the parameter values chosen as a

result of the linear stability analysis showed no instability in the experiments,

both in this dissertation and in Livings [2005].

Although we are modelling a continuous system, for the purposes of our

experiments we take the truth to be that generated by the discrete numerical

approximation to the system, and not the truth from the continuous system

which the equations are modelling. In the experiments, the discrete system

is used both to generate the truth and in the forecast step.

2.5 Notes about the experimental setup

The experiments were carried out using the MATLAB code written for Liv-

ings [2005], though modifications and additions have been made for this

dissertation.

In our experiments, we use frequent, perfect observations of all four co-

ordinates. We take observations at time intervals of 0.1, beginning at time

0.1. Although the errors in the observations are actually zero, we assume

standard deviations for the coordinates of around one tenth of the amplitude

of the oscillations in the truth, and assume that the errors are uncorrelated.

The standard deviations used are given in Table 2.1, and these determine the

diagonal entries in the covariance matrix R. This covariance matrix is also

used to generate the initial ensemble, which is formed by taking a pseudo-

random sample of vectors from a normal distribution with mean equal to the

true initial state and covariance matrix equal to this covariance matrix. The

ensemble is then translated so that the ensemble mean is exactly equal to

the true initial state. This last step represents having perfect observations

at the initial time.

In the experiments in Chapters 4 and 5, the true state at time t = 0, and

therefore also the ensemble mean at this time, are initialised using nonlinear

initialisation; however, the ensemble at t = 0 is left uninitialised.

All the results presented in this dissertation use perfect observations and
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a perfect model, and an ensemble of size N = 10.

Component Standard deviation

θ 0.1

pθ 0.3

r 7× 10−4

pr 5× 10−3

Table 2.1: Standard deviations used in the observation error covariance ma-

trix and in generating the initial ensemble.
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Figure 2.3: Trajectories for the swinging spring system and the corresponding

Fourier transforms, with parameter values m = 1, g = π2, k = 100π2 and

l = 1, and initial conditions (θ, pθ, r, pr) = (1, 0, 1.05, 0).
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Figure 2.4: Trajectories for the swinging spring system with linear ini-

tialisation and the corresponding Fourier transforms, with parameter val-

ues m = 1, g = π2, k = 100π2 and l = 1, and initial conditions

(θ, pθ, r, pr) = (1, 0, 1.05, 0).
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Figure 2.5: Trajectories for the swinging spring system with nonlinear ini-

tialisation and the corresponding Fourier transforms, with parameter val-

ues m = 1, g = π2, k = 100π2 and l = 1, and initial conditions

(θ, pθ, r, pr) = (1, 0, 1.05, 0).
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Chapter 3

Description of the filter

In this chapter we describe the algorithms for the Kalman Filter (KF) and a

general Ensemble Kalman Filter (EnKF), and describe a specific implemen-

tation of the EnKF, the Ensemble Transform Kalman Filter (ETKF), which

is the implementation used for the experiments in this dissertation.

3.1 General Setup and Notation

Let n be the dimension of the state space, and let m be the dimension of the

observation space. The state vector at a given time tk is denoted by x(tk),

and the observation vector at the same time by y(tk). The superscripts t, f

and a are used to denote the truth, forecast and analysis respectively.

We assume that the system dynamics satisfy the model equation

xt(tk) = mk(x
t(tk−1)) + η(tk−1) (3.1)

where mk is the model operator, which can be linear or nonlinear, and η is the

random model error, which is unbiased, and is from the normal distribution

N(0,Qk), where Qk is a known covariance matrix. The observations satisfy

y(tk) = hk(x
t(tk)) + ε(tk) (3.2)

where hk is the observation operator, which again can be linear or nonlin-

ear, and ε is the random observation error, with covariance matrix Rk. We
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assume that observation errors between different observations are uncorre-

lated, so the matrix Rk is diagonal, and ε is from the normal distribution

N(0,Rk). We also assume that the model errors and observation errors are

uncorrelated with each other. As well as these models for the system dynam-

ics and observations, we are also given an initial state estimate xa
0 and error

covariance matrix Pa
0.

If the model operator and observation operator are linear then equations

3.1 and 3.2 can be expressed in terms of matrices Mk and Hk:

xt(tk) = Mkx
t(tk−1) + η(tk−1) (3.3)

y(tk) = Hkx
t(tk) + ε(tk). (3.4)

From now on we simplify the notation by writing xk for x(tk) and yk for

y(tk).

3.2 The Kalman Filter

The Kalman Filter (KF) is valid only for linear systems. It is discussed in

more detail in Jazwinski [1970], but here we give the basic KF algorithm.

We assume that the dynamical model Mk and observation operator Hk

are both linear. At each timestep tk, the algorithm consists of a forecast step

and an analysis step. We write xf
k for the forecast state estimate and xa

k for

the analysis state estimate. As well as updating the state estimate in each

of these steps, the KF also updates the error covariance matrix, P, which is

defined by

Pf
k =

〈
(xf

k − xt
k)(x

f
k − xt

k)
T
〉

(3.5)

Pa
k =

〈
(xa

k − xt
k)(x

a
k − xt

k)
T
〉

(3.6)

where for a given quantity s, 〈s〉 denotes the expected value of s.
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3.2.1 The forecast step

The update equations for the state forecast and the error covariance forecast

at time tk are

xf
k = Mkx

a
k−1 (3.7)

Pf
k = MkP

a
k−1M

T
k + Qk. (3.8)

If we assume a perfect model then we can neglect the matrix Qk, and equation

3.8 becomes

Pf
k = MkP

a
k−1M

T
k . (3.9)

3.2.2 The analysis step

The update equations for the analysis state and error covariance are

xa
k = xf

k + Kk

(
yk −Hkx

f
k

)
(3.10)

Pa
k = (I−KkHk)P

f
k (3.11)

where Hk is the linear observation operator and Kk is the Kalman gain

matrix, given by

Kk = Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1
, (3.12)

where Rk is the observation covariance matrix.

3.3 The Ensemble Kalman Filter

The EnKF was first proposed by Evensen [1994] as a method of applying

the ideas of the KF to nonlinear systems. Instead of updating a state esti-

mate and separate error covariance matrix as in the KF, the EnKF uses an

ensemble, or statistical sample, of state estimates.

We now return to the nonlinear model m, so we replace equation 3.7 with

xf
k = mk(x

a
k−1). (3.13)

From now on we will consider the analysis step at only one time, and will

therefore drop the k subscripts.
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3.3.1 Notation

To describe the EnKF, we first introduce some new notation.

We use an ensemble of size N , and denote the ensemble members by xi,

i = 1, . . . , N , each of which is of length n. The ensemble mean is given by

x̄ =
1

N

N∑
i=1

xi. (3.14)

We define the n×N ensemble matrix by

X =
1√

N − 1

(
x1 . . . xN

)
(3.15)

and the ensemble perturbation matrix by

X′ =
1√

N − 1

(
x1 − x̄ . . . xN − x̄

)
. (3.16)

The ensemble covariance matrix is of dimension n× n and is given by

Pe =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T (3.17)

which can be written in terms of the ensemble perturbation matrix as

Pe = X′X′T . (3.18)

3.3.2 Dealing with a nonlinear observation operator

We introduce a forecast observation ensemble, with ensemble members de-

noted by yf
i , i = 1, . . . , N , and defined by

yf
i = h(xf

i ). (3.19)

If we have a linear observation operator h = H then the mean of this ensemble

is

ȳf = Hx̄f (3.20)

and the ensemble perturbations are given by

y′i = H(xi)−H(x)

= H(xi)−H(x̄)

= H(xi − x̄).
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We define an ensemble perturbation matrix Y′, with columns y′i, i = 1, . . . , N ,

which can be written as

Y′ = HX′. (3.21)

Using this equation, we can write the update equations 3.10 and 3.11 without

including the observation operator matrix H, and since both Y′ and X′ are

perturbation matrices, the equations will then be valid for both linear and

nonlinear observation operators. (Livings et al. [2006])

We define an ensemble version of the Kalman gain matrix by

Ke = Pf
eH

T
(
HPf

eH
T + R

)−1
. (3.22)

Using equations 3.21 and the fact that Pf = X′fX′f T
, we can rewrite this in

terms of X′f and Y′f as

Ke = Pf
eH

T
(
HPf

eH
T + R

)−1

= X′fX′f T
HT

(
HX′fX′f T

HT + R
)−1

= X′fY′f T
(
Y′fY′f T

+ R
)−1

= X′fY′f T
S−1 (3.23)

where

S = Y′fY′f T
+ R. (3.24)

Similarly, we can write the covariance update equation 3.11 as

Pa
e = (I−KeH)Pf

e

=
(
I−X′fY′f T

S−1H
)
X′fX′f T

= X′f
(
I−Y′f T

S−1HX′f
)
X′f T

= X′f
(
I−Y′f T

S−1Yf
)
X′f T

. (3.25)

An alternative method of applying the EnKF to the case of nonlinear

observation operators is given in Section 4.5 of Evensen [2003].
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3.3.3 The EnKF algorithm

The main steps of a general EnKF algorithm are as follows:

• Given an initial state estimate xa
0 and error covariance matrix Pa

0,

we begin by generating an analysis ensemble of initial states xa
i , i =

1, . . . , N , whose mean is equal to xa
0 and whose covariance is determined

by Pa
0.

• The forecast step: the ensemble members are each updated using the

full nonlinear dynamical model:

xf
i = mk(x

a
i ) (3.26)

and the mean x̄f and covariance Pf
e of the forecast ensemble are com-

puted.

• The analysis step: the mean and covariance of this forecast ensemble

are then used to assimilate the observations and the result is used to

compute a new analysis ensemble.

There are many different formulations of the EnKF, and these differ in

the analysis step. One method, the perturbed observation EnKF described

in Burgers et al. [1998], generates an ensemble of observations consistent

with the error statistics of the observation and assimilates these into each

ensemble member. Many other formulations come under the category of

ensemble square root filters (SRFs). Tippett et al. [2003] gives a uniform

framework for SRFs.

3.4 The Analysis Step of an Ensemble Square

Root Filter

In Section 3.3.2 we defined an ensemble version of the Kalman gain matrix

and wrote this as

Ke = X′fY′f T
S−1. (3.27)
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The analysis state estimate is updated by

x̃ = x̄f + Ke(y− ȳf ) (3.28)

where ȳf = h(x̄f ).

We write the equation for the analysis covariance update as in equation

3.25 as

Pa
e = X′f

(
I−Y′f T

S−1Yf
)
X′f T

. (3.29)

A solution for the analysis ensemble perturbation matrix is

X′a = X′fT, (3.30)

where the N ×N matrix T is a matrix square root of I−Y′f T
S−1Y′f in the

sense that

TTT = I−Y′f T
S−1Y′f . (3.31)

Note that this definition of a matrix square root is different from the definition

more commonly used in mathematics, that T is a square root of a matrix V

if T2 = V; however, the definition TTT = V is widely used in engineering

applications and in meteorology (Tippett et al. [2003]).

The matrix square root is not unique, since

X′a = X′fTU (3.32)

is also a solution, where U is any n× n orthogonal matrix.

The main difficulties in computing the analysis update are inverting the

matrix S, which is of size m × m, and finding the matrix square root T

of I −Y′f T
S−1Y′f . Different implementations of the EnKF overcome these

problems in different ways; in Section 3.5 we describe the ETKF implemen-

tation.

3.5 The Ensemble Transform Kalman Filter

The ETKF, first described by Bishop et al. [2001], is an implementation

of the EnKF, and can also be classified as an SRF. Instead of using the
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computationally expensive inversion of the matrix S, the ETKF makes use

of the fact that the matrix R is much easier to invert since it has a simpler

structure, normally diagonal.

We use the identity

I−Y′f T
S−1Y′f =

(
I + Y′f T

R−1Y′f
)−1

, (3.33)

which can be shown by postmultiplying both sides of the equation by I +

Y′f T
R−1Y′f and substituting in equation 3.24. Using this, we can avoid the

problem of computing S−1.

We compute the eigenvalue decomposition

Y′f T
R−1Y′f = CΛCT (3.34)

where C is a matrix of orthonormal eigenvectors and Λ is the diagonal matrix

of corresponding eigenvalues. Then

I−Y′f T
S−1Y′f =

(
I + CΛCT

)−1

= C (I + Λ)−1 CT

and so we can take

T = C (I + Λ)−
1
2 (3.35)

as the desired matrix square root. Thus the analysis ensemble perturbation

matrix is updated by

X′a = X′fC (I + Λ)−
1
2 . (3.36)

Since Λ is a diagonal matrix, I + Λ is also diagonal so the matrix (I + Λ)−
1
2

is easy to compute.

3.6 Implementing the ETKF

We use the implementation of the ETKF described in Livings [2005], which

in parts is different to the algorithm of Section 3.5, although the methods are

analytically equivalent. The method described in this section is numerically
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more efficient than that of Section 3.5 because it avoids unnecessary matrix

multiplications, reduces loss of accuracy through rounding errors, and reduces

the amount of storage of large matrices.

Firstly, we introduce a scaled forecast observation ensemble perturbation

matrix

Ŷ
f

= R− 1
2Y′f . (3.37)

This has the effect of normalising the observations so that they are dimen-

sionless with standard deviation one. This prevents possible loss of accuracy

due to rounding errors. Writing

Y′f T
R−1Y′f = Ŷ

fT
Ŷ

f
(3.38)

we see that the eigenvalue decomposition 3.34 becomes

Ŷ
fT

Ŷ
f

= CΛCT . (3.39)

We can also avoid performing the multiplication Ŷ
fT

Ŷ
f

and thus avoid pos-

sible loss of accuracy. Instead of using the eigenvalue decomposition, we use

the singular value decomposition (SVD)

Ŷ
fT

= CΣVT (3.40)

where C is the N×N eigenvector matrix as in equation 3.34, Σ is the N×m

matrix satisfying Λ = ΣΣT and V is an m×m orthogonal matrix.

We can then still use equation 3.36 to update the ensemble perturbation

matrix.

To update the state estimate, we can rewrite equation 3.22 as

Ke = X′fY′f T
(Y′fY′f T

+ R)−1

= X′fŶ
fT
(
Ŷ

f
Ŷ

fT
+ I

)−1

R− 1
2

= X′fCΣ
(
ΣTΣ + I

)−1
VTR− 1

2

where the last line is obtained using the SVD 3.40 and the fact that V is

orthogonal.
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To avoid storing the Kalman gain matrix Ke, we build up the product

vector

d = Σ(ΣT + I)−1VTR− 1
2 (y− ȳf ) (3.41)

from right to left, and use the equation

x̃ = x̄f + X′fCd (3.42)

to update the state estimate.
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Chapter 4

Ensemble collapse

In this chapter we discuss the problem of ensemble collapse, which some for-

mulations of EnKFs, such as the ETKF, have been found to exhibit. We

begin by reviewing results from previous work on this subject in Section 4.1.

In Section 4.2 we give a mathematical explanation of why the ensemble col-

lapse problem occurs, and Section 4.3 examines one proposed solution to the

problem, that of applying random rotations, and gives results of experiments

with this solution applied. Finally, Section 4.4 suggests the use of skewness

as a quantitative measure of ensemble collapse and gives some experimental

results.

4.1 Previous work

Livings [2005] carried out experiments with the swinging spring system de-

scribed in Section 2.1 using the same experimental setup as in this disser-

tation, which is detailed in Chapter 2. The experiments used the ETKF

formulation of the EnKF, which is described in Section 3.5 and is the filter

formulation used in the experiments for this dissertation. The results, as-

suming a perfect model, with frequent observations of all coordinates, and

an ensemble of size N = 10, showed that there was a collapse from 10 ensem-

ble members to just 5. Figure 4.1 is a recreation of the results from Livings
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[2005], produced using the same MATLAB code. It shows the individual

ensemble members relative to the truth for each of the 4 coordinates, and

it can be seen that there is a decrease after the first assimilation from 10

distinct ensemble members to 5.

Lawson and Hansen [2004] performed experiments with the Ikeda system,

a two-dimensional, nonlinear, chaotic system, which is described in more

detail in Section 3b of Lawson and Hansen [2004]. The filter used was the

EnSRF, a square root filter which is analytically equivalent to the ETKF of

Section 3.5, although the numerical implementation is different. Their results

showed that the filter exhibited the ensemble collapse problem; it was found

that after repeated updates by the EnSRF, most of the ensemble members

collapsed onto one state, with only very few outliers. Leeuwenburgh et al.

[2005] obtained similar results from using a more realistic model, the Max

Planck Institut fur Meteorologie Ocean Model (details of the model are given

in Leeuwenburgh et al. [2005] Section 3). They also suggested modifying the

filter by applying a random rotation as a way of overcoming the ensemble

collapse problem. This idea that it may be necessary to postmultiply by a

random orthogonal matrix had also been suggested in Evensen [2004].

As in equation 3.30, the EnSRF update equation for the analysis ensemble

perturbation matrix is

X′a = X′fT (4.1)

but now we postmultiply by an N ×N random orthogonal matrix U, giving

X′a = X′fTU. (4.2)

This modified filter, the so-called EnSRF+, was found not to exhibit ensem-

ble collapse.

4.2 Mathematical explanation of ensemble col-

lapse

Leeuwenburgh et al. [2005] gives an explanation of why the ensemble collapse
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problem occurs, but here we follow the more rigorous explanation of Livings

[2005].

The following theorem explains why ensemble collapse occurs in the ETKF.

Theorem 1 For a system with N > m, the number of distinct ensemble

members is reduced to at most m+1, with at least N −m ensemble members

equal to the ensemble mean x̄a (i.e. the perturbation from the mean is zero)

and the remaining ensemble members having different states.

Proof This proof is based on Section 6.2 of Livings [2005]. Suppose N > m

and let the observation operator H be linear. Then writing Y′a = HX′a we

can rewrite the update equation for the analysis ensemble perturbation as

Y′a = HX′fC(I + Λ)−
1
2

= Y′fC(I + Λ)−
1
2

= R
1
2 Ŷ

f
C(I + Λ)−

1
2

= R
1
2VΣT (I + Λ)−

1
2

where C, Σ and V are from the SVD 3.40. Σ is an N × m matrix of the

form

Σ =

 Σ1

0

 (4.3)

where Σ1 is an m × m diagonal matrix and 0 denotes the (N − m) × m

submatrix of zeros. The N ×N matrix Λ is defined by

Λ = ΣΣT =

 Λ1 0

0 0

 (4.4)

where Λ1 = Σ1Σ
T
1 . Thus the number of non-zero entries on the diagonals of

Σ1 and Λ1 correspond to the number of non-zero eigenvalues of Ŷ
fT

.

Substituting into the expression for Y′a gives

Y′a = R
1
2V

(
ΣT

1 (I + Λ1)
− 1

2 0
)

=
(

R
1
2VΣT

1 (I + Λ1)
− 1

2 0
)

(4.5)
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where here 0 denotes the m × (N −m) matrix of zeros and I is the m ×m

identity matrix. Thus Y′a can have no more than m non-zero columns, which

is equivalent to saying that no more than m ensemble members can differ

from x̄a, and therefore the ensemble members can have no more than m + 1

distinct states. 2

Figure 4.2 shows the ensemble members relative to the truth, plotted at

each of the first 10 assimilations. This shows the ensemble collapse property

of the filter in more detail than Figure 4.1. We can see that the number

of distinct ensemble members reduces to 5 after the first assimilation, and

decreases further after subsequent assimilations.

It should be noted that in NWP systems, we typically have a very large

observation space, and so N � m. Therefore the ensemble collapse problem

will not affect such systems. However, in some cases the operations are

processed in small batches (Brown and Hwang [1997]) and so the value of

m at a given time may be small. In such systems, and in systems with low

dimensional observation spaces such as the swinging spring system, it should

be considered as a potential problem if using an ensemble size N > m + 1.

4.3 Random rotations

The random rotations suggested by Leeuwenburgh et al. [2005] are achieved

by postmultiplying equation 3.36 by an N × N random orthogonal matrix

U. If we define an m×m matrix A by

A = R
1
2VΣT

1 (I + Λ1)
− 1

2 (4.6)

then we can write equation 4.5 as

Y′a =
(

A 0
)
. (4.7)

We can write the matrix U in terms of submatrices as

U =

 U1 U2

U3 U4

 (4.8)
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where U1, U2, U3 and U4 are of dimensions m×m, m×(N−m), (N−m)×m

and (N −m)× (N −m) respectively. Then

Y′aU =
(

AU1 AU2

)
. (4.9)

Since the matrix U can be any orthogonal matrix, this does not guarantee

an increase in the number of non-zero columns of the matrix; for example,

in the case U = I the matrix will remain the same. However, in most cases

there is an increase in the number of non-zero columns compared with the

original matrix.

In this implementation, the matrix U is obtained from the SVD U∆W =

B where B is a pseudo-randomly generated matrix whose entries are from

a uniform distribution on the interval (0, 1). This is produced using the

MATLAB function rand(N).

Figure 4.3 shows the results from the ETKF with random rotations. The

ensemble members are plotted relative to the truth, at each of the first 10

assimilations. The rotations appear to have stopped the ensemble collapse

problem from occurring.

4.4 Skewness

Skewness is a measure of the asymmetry of a distribution. A perfectly sym-

metric, Gaussian distribution would have zero skewness. Since in the case

of ensemble collapse we will have a non-Gaussian distribution of ensemble

members, we can use skewness as a means of quantitatively measuring en-

semble collapse.

For now we consider xi to be one component of the ensemble member vector

xi. We use the definition of skewness given in Appendix A of Lawson and

Hansen [2004]. For an ensemble x1, . . . , xN , we define the mean, variance

and third central moment by

x̄ =
1

N

N∑
i=1

xi
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σ2 =
1

N − 1

N∑
i=1

(xi − x̄)2

µ3 =
1

N − 1

N∑
i=1

(xi − x̄)3

respectively, and the skewness by

γ =
µ3

σ3
.

Figures 4.4 and 4.5 show the absolute value of the skewness of the anal-

ysis ensemble at each analysis step, corresponding to Figures 4.2 and 4.3

respectively. It can be seen that postmultiplying by the random rotation

matrix has decreased the skewness, agreeing with the differences in ensemble

distribution seen in Figures 4.2 and 4.3.
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Figure 4.1: ETKF, ensemble members. Coordinates are plotted relative to

the truth. Red lines show ensemble members, black lines are observations

plotted as error bars.
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Figure 4.2: ETKF, ensemble members at each analysis step. Ensemble mem-

bers are plotted as coloured stars relative to the truth at each of the first 10

assimilations.
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Figure 4.3: ETKF with random rotations at each analysis step. Ensemble

members are plotted as coloured stars relative to the truth at each of the

first 10 assimilations. The ensemble collapse seen in the original ETKF is no

longer occurring.
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Figure 4.4: Absolute value of ensemble skewness for each coordinate plotted

against time for the ETKF.
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Figure 4.5: Absolute value of ensemble skewness for each coordinate plotted

against time for the ETKF with random rotation.
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Chapter 5

Biased and unbiased filters

Another property of the ETKF found by Livings [2005] in experiments with

the swinging spring system was that the statistics of the analysis ensembles

were inconsistent with the actual error, which was thought to have been

caused by a bias in the ensemble mean. This chapter examines this property

in more detail. Section 5.1 gives a mathematical explanation of the bias

problem and looks at its effect on results from the ETKF. In Section 5.2 we

introduce the revised ETKF, a modification on the original ETKF from Wang

et al. [2004] and give some experimental results for this filter formulation.

Section 5.3 defines a quantitative measure of bias and compares results from

different filter implementations.

5.1 The bias problem

Recall that x̃ is the state estimate, updated by equation 3.28. The updated

ensemble members are given by

xa
i = x̃ + x′ai (5.1)

and so the ensemble perturbation matrix can be written as

X′a =
(

xa
1 − x̃ . . . xa

N − x̃
)
. (5.2)
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Since X′a is a perturbation matrix, we should find that its column sum,

given by X′a1, is equal to zero, where 1 is the vector 1 = (1, . . . , 1)T of length

N . However,

X′a1 =
1√

N − 1

N∑
i=1

(xa
i − x̃)

=
1√

N − 1

(
N∑

i=1

xa
i −N x̃

)

=
N√

N − 1

(
1

N

N∑
i=1

xa
i − x̃

)

=
N√

N − 1
(x̄a − x̃) .

However, this expression is only equal to zero if

x̄a
i = x̃,

and since we obtain x̃ from equation 3.28, this may not always be the case.

In a biased filter, we have in general

x̄a
i 6= x̃

and therefore

X′a1 6= 0.

This biasedness also has an effect on the ensemble covariance. If we

express the analysis ensemble members as

xi = x̃ + x′i (5.3)

then the mean of this equation is

x̄ = x̃ + x̄′ (5.4)

and subtracting equation 5.4 from equation 5.3 gives

xi − x̄ = x′i − x̄′. (5.5)
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Thus the covariance matrix is given by

Pe =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T

=
1

N − 1

N∑
i=1

(x′i − x̄′)(x′i − x̄′)T

=
1

N − 1

N∑
i=1

(x′ix
′
i
T − x′ix̄

′T − x̄′x′i
T

+ x̄′x̄′
T
)

= X′aX′aT − N

N − 1
x̄′x̄′

T
.

If the filter is unbiased then x̄′ = 0 and the last line is just

X′aX′aT
.

Otherwise we have a smaller covariance than we expect, and therefore the

standard deviation for each coordinate will also be too small. This results in

the filter being overconfident. Figure 5.1 shows results from the ETKF. The

ensemble mean and ensemble mean ± standard deviation are plotted relative

to the truth. The truth is frequently more than one standard deviation away

from the ensemble mean, which implies the filter is biased and overconfident.

5.2 The Revised ETKF

Wang et al. [2004] suggest a new filter, the revised ETKF, obtained mod-

ifying the ETKF by postmultiplying equation 3.36 by the transpose of the

orthogonal matrix C. The resulting analysis update equation is

X′a = X′fC (I + Λ)−
1
2 CT . (5.6)

Note that our new matrix T = C (I + Λ)−
1
2 CT is symmetric. Theorem 2 of

Livings et al. [2007] states that if T is symmetric then the filter with analysis

update X′a = X′fT is unbiased, and therefore we can deduce that the revised

ETKF is unbiased. See Livings et al. [2007] Section 3 for the proof of this

theorem.
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Figure 5.2 shows the ensemble mean and ensemble mean ± standard

deviation plotted relative to the truth for the revised ETKF. The ensemble

mean is now almost always within one standard deviation of the truth, so

this filter is not overconfident.

Since the matrix CT is orthogonal, the revised ETKF also overcomes the

ensemble collapse problem, by the argument of Section 4.3. Figure 5.3, which

shows the ensemble members plotted as coloured stars relative to the truth

at each analysis time, and it can be seen that there is no evidence of ensemble

collapse.

5.3 Measuring bias

In the same way that we used the ensemble skewness as a quantitative mea-

sure of ensemble collapse in Section 4.4, it is also useful to measure the

biasedness of the filter in a similar way. Since an unbiased filter has the col-

umn sum of the perturbation matrix X′a equal to zero, we use this column

sum to measure the biasedness of the filter. We define the bias b by

b =
1

N

N∑
i=1

x′i

=
1

N

N∑
i=1

(xi − x̃)

= x̄− x̃

where xi denotes one component of the ensemble member vector xi, and

similarly for x′i, x̃ and x̄.

Table 5.1 shows the average absolute value of bias over 60 assimilations

for each of the 4 components, for 4 different filter formulations: the ETKF,

the revised ETKF, the ETKF with random rotations and the revised ETKF

with random rotations. The bias in the analysis ensemble is calculated at

each analysis step. The values for the revised ETKF, which we expect to be

unbiased, are sufficiently close to machine zero that they can be assumed to

be a result of rounding errors, and can therefore be neglected. However, the
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values for the other filter formulations are much larger, indicating that they

are biased filters. In particular, note that applying the random rotations

to the revised ETKF introduces a bias into the results compared with the

original revised ETKF.
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Figure 5.1: ETKF, ensemble statistics. Ensemble is mean shown in red, and

ensemble mean ± standard deviation is shown in blue, both relative to the

truth. The filter is biased and overconfident.
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Figure 5.2: Revised ETKF, ensemble statistics. Ensemble mean is shown in

red, and ensemble mean ± standard deviation is shown in blue, both relative

to the truth. The signs of bias and overconfidence seen in Figure 5.1 are no

longer present.
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Figure 5.3: Revised ETKF, ensemble members at each analysis step. En-

semble members plotted as coloured stars relative to the truth at each of the

first 10 assimilations. There is no ensemble collapse occurring.
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Chapter 6

An unbiased filter with random

rotations

This chapter brings together the theory and results of Chapters 4 and 5. As

we saw in Table 5.1, applying the random rotations of Section 4.3 to the

revised ETKF introduces a bias into the results. In Section 6.1 we develop a

random rotation matrix which will prevent ensemble collapse without intro-

ducing a bias in the results, and Section 6.2 gives some experimental results

using this new rotation matrix.

6.1 A random rotation matrix which does not

introduce bias

Livings et al. [2007] gives a set of conditions on SRFs to determine whether

the filter is biased or unbiased. We have already seen one of these conditions

in Section 5.2, where it was used to explain why the revised ETKF is unbi-

ased. Here we use two more of the conditions to develop restrictions on the

random rotation matrices to ensure that applying them to an unbiased filter

will not introduce a bias.

Theorem 1 of Livings et al. [2007] states that if the matrix T in equation

3.30 has 1 as an eigenvector then the filter is unbiased. This can be shown
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by the fact that if we write λ as the corresponding eigenvalue, then

X′a1 = X′fT1 = λX′f1 = 0. (6.1)

So in order to find a rotation matrix which will not introduce a bias, we need

to construct an N ×N orthogonal matrix U such that 1 = (1, . . . , 1)T is an

eigenvector. To do this, we use the following theorem:

Theorem 2 Let W be an N × N orthogonal matrix whose first column is

proportional to 1 = (1, . . . , 1)T . Let V be an N ×N orthogonal matrix of the

form

V =

 1 0

0 V1

 .

Then U = WVWT is an orthogonal matrix with 1 as an eigenvector.

Proof This proof is based on the proof of Theorem C5 in Livings et al. [2007].

Let matrices V and W be as described in the theorem. Then V has e1 as

an eigenvector, with corresponding eigenvalue 1, where e1 = (1, 0, . . . , 0)T is

the first standard basis vector, so we can write

Ve1 = e1.

Writing the first column of W as α1, we have that

We1 = α1. (6.2)

In fact for W to be orthogonal, we must have α = 1√
N

.

Premultiplying equation 6.2 by WT gives that WT1 = 1
α
e1, and therefore

U1 = WVWT1

=
1

α
WVe1

=
1

α
We1

= 1

54



so 1 is an eigenvector of U, as required. 2

So to construct U with the required properties, we first construct the

matrices V and W such that V is of the form

V =

 1 0

0 V1


and W has first column equal to α1; and then find U by solving the equation

U = WVWT .

V1 is found from the SVD of a random (N − 1) × (N − 1) matrix B:

B = U1Σ1V1.

W is constructed by applying the Gram-Schmidt Orthogonalisation al-

gorithm to the matrix

W =
(

1 e2 . . . eN

)
.

The Gram-Schmidt algorithm used is the ‘modified’ algorithm from Chap-

ter 8 of Trefethen and Bau [1997]. This is used instead of the ‘classic’ algo-

rithm of Chapter 7, which in practice is unstable due to rounding errors. The

algorithms are described fully in Trefethen and Bau [1997]. The modified al-

gorithm for constructing an orthonormal basis q1, . . . , qN with the same span

as v1, . . . , vN is as follows:

for i = 1 to N

rii = ‖vi‖
qi = vi

rii

for j = i + 1 to N

rij = 〈qi, vj〉
vj = vj − rijqi

where 〈qi, vj〉 denotes the usual scalar product.

The matrix W will always remain the same for a given value of N . How-

ever, the matrix U will change each time due to the randomly chosen sub-

matrix V1 of V.
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Theorem 3 of Livings et al. [2007] states that if equation 3.30 gives an

unbiased filter then equation 3.32 also gives an unbiased filter if the matrix

U has 1 as an eigenvector. This is proved by the fact that if X′fT1 = 0 then

X′fTU1 = νX′fT1 = 0. (6.3)

where ν is the corresponding eigenvalue. Therefore if we apply the new

random rotations to an unbiased filter such as the revised ETKF, we expect

that the modified filter will still unbiased.

6.2 Experimental results

Ideally we would like to test this postmultiplier matrix by applying it to an

unbiased filter which has the ensemble collapse problem. In this case, we

would expect that the modified filter would still be unbiased, and that it

would no longer have the ensemble collapse problem. However, here we test

the two properties separately, using the ETKF to test for ensemble collapse

and skewness, and the revised ETKF to test for bias.

Figure 6.1 shows the results of the ETKF with the new rotation matrix

applied. The ensemble members are plotted relative to the truth, at each of

the first 10 assimilations, as in Figure 4.2. The modified filter does not show

signs of ensemble collapse. The absolute value of the ensemble skewness for

the modified filter is shown in Figure 6.2. The values of absolute skewness

have been reduced compared to the values seen in Figure 4.4 for the original

ETKF, although they appear to be slightly larger than the values for the

ETKF with random rotations, shown in Figure 4.5.

Figure 6.3 shows the ensemble mean and ensemble mean ± standard

deviation for the revised ETKF with the new rotation matrix applied. The

filter is still unbiased; in fact, the results are almost identical to those in

Figure 5.2 for the original revised ETKF.

Table 6.1, which is an addition to Table 5.1, shows the average absolute

value of bias for the ETKF and revised ETKF, both with the new rotations
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applied. The values for the revised ETKF with the new rotations indicate

that the filter does remain unbiased. However, the ETKF with the new

rotations is still biased.
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Figure 6.1: ETKF with the new rotation matrix. Ensemble members are

plotted as coloured stars relative to the truth at each of the first 10 assimi-

lations.
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Figure 6.2: Absolute value of ensemble skewness for each coordinate plotted

against time for the ETKF with the new rotation matrix.
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Figure 6.3: ETKF with the new rotation matrix, ensemble statistics. En-

semble mean is shown in red, and ensemble mean ± standard deviation is

shown in blue, both relative to the truth.
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Chapter 7

Conclusions

7.1 Summary

In this dissertation, we have investigated the problems of ensemble collapse

and bias which are seen in some implementations of the EnKF, including the

ETKF. We have developed a modified version of the ETKF which does not

exhibit either problem.

In Chapter 2, we introduced the swinging spring system, which can be

used as an analogy of a model of atmospheric dynamics. In particular, it is

relevant to the problem of initialisation in NWP. We described linear and

nonlinear initialisation methods, and illustrated results for each of these for

the swinging spring system.

Chapter 3 introduced the EnKF and the particular EnKF implementa-

tion, the ETKF, which was the filter used in the experiments in later chapters.

In Chapter 4, we investigated the problem of ensemble collapse. We

described a solution to this problem, which was proposed by Leeuwenburgh

et al. [2005], of applying random rotations to the analysis update. This was

tested by applying it to the ETKF, and results from the original ETKF

and the ETKF with random rotations were compared. It was found that the

original ETKF exhibited ensemble collapse, but that the ETKF with random

rotations did not. This was further verified by comparing the absolute value
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of the ensemble skewness for the two filters. The ETKF had larger ensemble

skewness than the ETKF with random rotations. These results agreed with

those of Leeuwenburgh et al. [2005].

In Chapter 5, we described the bias problem, and introduced the revised

ETKF of Wang et al. [2004]. While the ETKF was seen to have a bias in

the ensemble mean, the revised ETKF was not. The revised ETKF was also

shown not to have the ensemble collapse problem. However, it was found

that applying the random rotations described in Chapter 4 to the revised

ETKF introduced a bias in the results.

In Chapter 6, using results from Livings et al. [2007], we developed fur-

ther restrictions on the random rotation matrix to ensure that it would not

introduce a bias when applied to an unbiased filter. The new rotation matrix

was tested by applying it to both the ETKF and the revised ETKF. It was

found that the ETKF with the new rotations did not exhibit the ensemble

collapse problem seen in the original ETKF, and that applying the new ro-

tations to the revised ETKF did not introduce a bias to the results. These

results imply that in the case of an unbiased filter with the ensemble collapse

problem, the new random rotations could be applied to prevent ensemble

collapse without introducing a bias.

It should be noted that the experimental setup used in this dissertation

was not ideal. Firstly, the experimental results shown here were all for just

one run of the filter, with one particular initial state, set of observations and

initial ensemble. It would be useful to carry out more runs of the filter to

check that the results still agree with those presented here. Also the ensemble

size used was always 10, so the experiments should be repeated with different

ensemble sizes. The experiments here assumed a perfect model and used

perfect observations of all 4 components at each assimilation time, but in a

more realistic situation, this would not be the case. Therefore it would be

useful to carry out the experiments on an imperfect system.
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7.2 Future work

7.2.1 Initialisation experiments

We now have two filters which do not have either of the undesirable proper-

ties of bias or ensemble collapse: the original revised ETKF of Wang et al.

[2004], described in Section 5.2, and the revised ETKF with the restricted

random rotations of Section 6.1. Although the extra matrix multiplication of

the revised ETKF with the restricted random rotations adds an additional

computational cost to the filter compared to the revised ETKF, it is possible

that there are other properties which are improved by the rotations, for ex-

ample the initialisation properties of the two filters. It would be interesting

to compare the two filters.

This could be done by repeating the assimilation up to a certain time,

and then leaving the model to forecast for the remaining time with no fur-

ther observations. The results could then be compared for the two filters

to see if there is a difference in how well-initialised the system is after the

assimilations, ie. whether the amplitude of the fast oscillations remain small.

It may also be useful to begin with an initialised ensemble, rather than

just an initialised state, and examine the behaviour of the individual ensemble

members.

In Section 2.3.2, we initialised the system by setting ṙ = ṗr = 0. There-

fore, a quantitative way of determining how well-initialised the system is

would be to evaluate ṙ and ṗr at later times.

7.2.2 A possible connection between ensemble collapse

and bias

The new random rotations developed in Chapter 6 would be especially useful

in the case of an unbiased filter with the ensemble collapse problem. However,

it is possible that no such filter actually exists. For example, the revised

ETKF was developed in order to overcome the bias problem of the ETKF,
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but as well as being unbiased, the revised ETKF also no longer has the

ensemble collapse problem. There may be a connection between the two

properties, and it could in fact be true that an unbiased filter will never have

the ensemble collapse problem, or conversely that a filter with the ensemble

collapse problem must always be biased.

This possible connection could be investigated using the conditions for

unbiasedness in Livings et al. [2007] and the explanation of ensemble collapse

in Section 4.2.

7.2.3 Optimal random rotations

Another way of develping the random rotations idea further would be to

try to find an optimal random rotation matrix. In Section 4.4 we used the

ensemble skewness as a measure of ensemble collapse, so we could try to find

a random rotation matrix such that the ensemble skewness is minimised.
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