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Abstract

This dissertation is concerned with the flow of chemical agents through porous media

at low levels of saturation, giving rise to a fast diffusion process. A velocity based

moving mesh method based upon the assumption of local mass conservation is applied

to the porous medium equation in one dimensional cartesian and radial coordinates and

discretised using both finite differences and finite elements. Comparisons are drawn

between the fast and slow diffusive regimes, evaporation is also considered from the

domain. An appropriate numerical model output in three dimensions is successfully

compared to some real experimental data.
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Chapter 1

Introduction

This dissertation is concerned with the application of moving meshes applied to nonlin-

ear diffusion, specifically the porous medium equation. We shall discuss a conservation

based moving mesh method based on advecting the nodes with the fluid velocity. In

particular this method will be applied to modelling the dispersion of liquid chemicals

in the porous medium (otherwise known as the fate of chemical agents).

1.1 Background

Exposure to chemical agents can have a major impact on the environment. Being able

to model the fate of the agent accurately is therefore an extremely useful tool.

When a chemical agent is released into a porous medium, diffusion will occur and

the substance will spread. The rate of diffusion depends, among other factors, on the

properties of the medium as well as those of the chemical agent. To model the diffusive

properties of the medium, features such as the size and coarseness of grains are con-

sidered. Also, when modelling the chemical agent, properties such as the viscosity and

the temperature at which it vaporizes are important.

It is well known that a spreading liquid in a porous medium can form a capillary

1



2 CHAPTER 1. INTRODUCTION

bridge network, which aids the diffusive process. As described in [11], at very low levels

of saturation the liquid bridges between grain particles are only connected by the thin

films covering grain particles, see figure 1.1. These low levels of saturation cover a wide

range of values, so understanding the change in transport properties of the medium at

these levels is of vital importance. The network properties are defined by the diffusive

regime imparted by these conditions.

Figure 1.1: Schematic to show two grains within a porous medium at low levels of

saturation

Capillary transport at low levels of liquid saturation is generally a slow process com-

pared to diffusion at higher levels of liquid saturation [4], but it is the process responsible

for the long term distribution and therefore for environmental effects.

In the situation where saturation levels are low a process can occur referred to in mod-

elling terms as fast diffusion. The features that distinguish this fast diffusion regime

from normal or slow diffusion are that the liquid is only contained in isolated capillary

bridges and on the rough surface of particles.
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Although modelling capillary networks around rough surfaces sounds complex, Darcy’s

law is used to model the transport in the porous medium. Darcy’s law is formulated by

considering the approximate dynamics of averaged distributions of macroscopic pres-

sure, velocity and saturation. Information about the particular porous system and

associated behaviour is contained in the functional parameters. By combining Darcy’s

law and mass balance the porous medium equation is derived which can be used to

model liquid spreading and is described mathematically in the next chapter.

Previously, the fast diffusion process has not been measured experimentally in suffi-

cient detail to make reliable quantitative predictions. This is due to the difficulties of

understanding capillary effects on rough surfaces and in measuring liquid at low levels

of saturation. However recent advances have now made this possible and we shall com-

pare experimental results from a research group at the University of Santa Barbara [12]

to those produced by the numerical model.

An important feature that has previously not been modelled in this context is the

effect of evaporation on the diffusion process. Evaporation can occur by, for example,

air flow over the surface of a liquid or by a supply of heat. Since we are considering the

application under which we model the long term fate of a chemical agent this could be

particularly important at low levels of saturation, i.e. below the threshold at which the

capillary bridges break. Since this is a new feature we will concentrate on this effect

from a modelling perspective.

1.2 The velocity based moving mesh approach

Throughout this dissertation we consider a velocity-based moving mesh method de-

vised for non-linear time-dependent partial differential equations (PDE’s), which has

numerous physical and biological applications [3]. The method can adjust to the evolu-
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tion of the solution of a PDE as well as resolving sharp features and respecting global

properties. In a Lagrangian-like formulation the velocity of the mesh points is given by

v =
∂x̂

∂t
(1.1)

where v = v(x̂, t) denotes the fluid velocity, x̂(t) is the position of the mesh point and

t is the time. By the use of time integration the mesh can be moved.

The method requires a mapping from the physical space to the velocity domain. The

mesh is then modified by giving each computational node a velocity so as to advance

the solution in time.

We follow earlier work on a velocity based moving mesh method which can be found in

the following references [3], [6], [9], [2], [5] and [14].

Alternative adaptive mesh methods can be found in [8].

1.3 Overview of the Dissertation

The main objective of this dissertation is to take the key physical principles defined in

the previous section and build a mathematical model to accurately describe them. By

a quantitative comparison between some experimental results and the numerical model

we hope to lay the groundwork for building a model that could be used in different

research communities to give a quantitative description of capillary transport in porous

media. This would allow them to predict the long-term spread of chemicals and pollu-

tants and to deduce the environmental effects of this exposure.

In the previous section we have described the main physical concepts of the prob-

lem along with some background material. In Chapter 2 we derive the porous medium

equation and relate it to the described physical problem. We also define some useful
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properties of the porous medium equation.

We split Chapter 3 into two main sections for modelling diffusion by the porous medium

equation which (i) excludes and (ii) includes evaporation. (i) In this first section we

have the property of local mass conservation. This allows us to derive a Lagrangian

velocity-based moving mesh method. This essentially takes an initial mesh and advects

the nodes at the Darcy velocity using local mass conservation, allowing the solution

to evolve with the mesh. (ii) In the second section we no longer have mass conser-

vation because we include evaporation into the diffusion process. This requires us to

take a slightly different approach whereby local mass fractions are conserved. Both ap-

proaches are implemented in both 1D Cartesian and d-dimensional radially symmetric

coordinates. We begin modelling in 1D Cartesian coordinates since the procedure is

clearer in that case. The key coordinate system for comparing the numerical model

to the experimental data will be radially symmetric in 3D, allowing us to capture the

hemispheric geometry of the diffusing chemical agent.

In Chapter 4, using similar principles for both mass conserving and non-mass con-

serving diffusion we describe a finite element formulation. We choose to include this

further approach because ideally if we were to move the model into higher dimensions

without radial symmetry then the finite element method would be more flexible than

applying finite differences. This is because their geometrical nature can model curved

boundaries more accurately.

In Chapter 5 we discuss results. Firstly we compare the fast and slow diffusive regimes

to see the key differences between the two. We follow this by observing the effects

of evaporation on both regimes within the numerical model. Finally we compare the

most appropriate numerical model to some real experimental data, allowing us to make

quantitative conclusions about the validity of the model.
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We end with Chapter 6 where we conclude our findings and suggest avenues for further

work in this field.

Apart from the comparison between the numerical model with some experimental data,

in Chapter 5 we will not be concerned with precise physical values. Instead we shall

use values that are representative of the phenomena that we expect to see.



Chapter 2

The Porous Medium Equation

The Porous Medium Equation (PME) is

ut = ∇ · (um∇u) (2.1)

where u = u(x, t) is a non-negative scalar function in x ∈ Rd and time t ∈ R. The

power m is the diffusion growth exponent and in most applications takes values m ≥ 1.

However for our applications we shall mostly be interested in negative values, m < 0,

a situation known as fast diffusion.

The PME is known best for modelling an ideal gas in a homogeneous porous medium.

Other applications include diffusion, heat transfer and fluid flow. Diffusion, and in

particular Fast Diffusion, will be the target applications throughout this dissertation.

2.1 Derivation of the PME using Darcy’s Law

We now describe the approach in [17] to derive the PME using three model equations

that relate variables associated with gas flow through a porous medium.

7
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(i) Mass balance

Also known as the continuity equation, the equation of mass conservation is given by

ερt +∇ · (ρV) = 0 (2.2)

where ε ∈ (0, 1) is the porisity of the medium, V is the velocity, ∇· is the divergence

operator, and ρ is the density.

(ii) Darcy’s Law

Darcy’s Law is generally used to describe the dynamics of flows through porous media

and is given by

µV = −κ∇p (2.3)

where p is the pressure of the gas, µ is the viscosity and κ is the permeability tensor

which we take to be a constant.

(iii) Equation of state

An equation of state for a fluid is the ideal gas law

p = p0ρ
γ (2.4)

where p0 is some chosen reference pressure and γ ≥ 1 is the specific heat ratio.

To form the PME (2.1), we first substitute (2.4) into (2.3) to give

V = −κ
µ
∇p0ρ

γ

= −κp0

µ
∇ργ

= −γκp0

µ
ργ−1∇ρ, (2.5)

which can then be substituted into (2.2) to give

ρt =
γκp0

εµ
∇ · (ργ∇ρ). (2.6)
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By writing ρ = u and γ = m and scaling out the constant γκp0
εµ

we arrive at the PME

(2.1).

2.2 The PME with a source term

We also want to study the effects of evaporation by the introduction of a negative source

term in (2.1), arising from mass balance. The PME with a source term is known as the

CPME [17] and takes the form

ut = ∇ · (um∇u) + s(x) (2.7)

where s(x) is the source term.

2.3 Initial data and boundary conditions

Due to the physical nature of the problem discussed in §1.1, we have a Dirichlet bound-

ary condition and zero total flux at the moving boundary i.e.

u = ub and uv + um∇u · n̂ = 0, (2.8)

where n̂ is the normal to the boundary and we choose u = ub to be a small fraction of

the total initial value of u. This represents the threshold value beyond which the capil-

lary network bridges of fluid between granules of the porous media break, as described

in §1.1.

In the standard PME problem u = 0 on the boundary, although putting u 6= 0 re-

moves one of the difficulties of the equation since the standard PME is degenerate at

u = 0. A consequence is that waiting times do not arise in this problem.

We also assume an initial data function

u(x, 0) = u0(x) (2.9)
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2.4 Mass conservation

A property of the PME (2.1) with the boundary conditions (2.8) is conservation of

mass, which we now verify using similar methods to those in [3]. For a region Ω(t) with

a boundary ∂Ω(t) moving with the normal velocity v · n̂ we begin by differentiating the

total mass integral with respect to time and applying Reynolds Transport Theorem [18],

so that

d

dt

∫
Ω(t)

udx =

∫
Ω(t)

utdx +

∫
∂Ω(t)

uv · n̂dΓ (2.10)

Substituting the PME (2.1) for ut we have

d

dt

∫
R(t)

udx =

∫
R(t)

∇ (um∇u) dx +

∫
∂R(t)

uv · n̂ dΓ (2.11)

Using the Divergence theorem

d

dt

∫
R(t)

udx =

∫
∂R(t)

(um∇u+ uv) · n̂ dΓ = 0 (2.12)

by the zero flux boundary condition from (2.8). Since the time derivative of total mass

is zero, the total mass ∫
R(t)

udx = c (2.13)

where c is a constant, therefore conserved.

A further noteworthy feature of the PME is the existence of self similar solutions.

However due to the practical emphasis of this disseration we do not consider them

here.

2.5 One dimensional representation of the problem

From here onwards without loss of generality the description is confined to 1D coordi-

nate systems.
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The 1D Cartesian form of (2.1) is

ut =
∂

∂x

(
um

∂u

∂x

)
, (2.14)

with moving boundaries at a(t) and b(t), which will be solved on a moving mesh x̂i(t),

for i = 0, ...N , such that

a(t) = x̂0(t) < x̂1(t) < ... < x̂N−1(t) < x̂N(t) = b(t) (2.15)

The boundary conditions are

u = ub and uv + umux = 0 at x(t) = a(t), b(t), t > 0, (2.16)

which are equivalent to the multi-dimensional boundary conditions (2.8).

The one dimensional version of the initial data (2.9), for (2.14) is

u(x, 0) = u0(x) (2.17)

in the region x̂i(t
0) ∈ [a(t0), b(t0)]. From (2.17), we choose u0 to be symmetric in the

x-axis. By the nature of the PME this symmetry will remain for all time. Therefore,

from this point onwards without loss of generality we consider only the domain from 0

to any b(t).

The most appropriate way to model based on the multi-dimensional physical prob-

lem in §1.1 will be as a radial ‘blob’ of fluid. Due to the geometrical nature of this

problem we shall also look at the PME in radial coordinates

ut =
1

rd−1

∂

∂r

(
umrd−1∂u

∂r

)
(2.18)

where d is the number of dimensions. The d-dimensional radial form of the PME has

the advantage that we can model a multi-dimensional process in a 1D coordinate sys-

tem. However, in the radially symmetric case (2.18) adding the effects of evaporation

as in (2.7) limits the model to d = 1 or 2. This is because the source term acts over
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the entire domain which in the case of d = 1, 2 is the whole domain, consistent with

the physical problem. However in the case d = 3 modelling evaporation in this way

becomes invalid as it only occurs over the boundary.

The change in boundary conditions and initial data from Cartesian to radial coordinate

systems is a trivial alteration from (2.16) and (2.17) respectively.



Chapter 3

A velocity-based moving mesh

method

In this chapter we describe a Lagrangian approach used to design a moving mesh

method for the PME. The idea of the method is to use the principle of local mass

conservation to generate a velocity with which to advance the mesh. When dealing

with a mass conserving problem the velocity based moving mesh method is consistent

with the total integral of the density being constant. We initially look at the mass

conserving problem where there is no evaporation occuring and then at the non-mass

conserving evaporation case. In both cases we go on to show how the solution u can be

recovered algebraically from the new mesh and the constant masses using conservation

properties.

3.1 Deriving the velocity from mass conservation

We shall describe the method to generate the velocity of the nodes from the local mass

conservation principle for both the 1D Cartesian case and the radially symmetric case

in d dimensions.

13



14 CHAPTER 3. A VELOCITY-BASED MOVING MESH METHOD

3.1.1 One dimension

Here we consider the PME (2.14) in one dimension, with zero flux and u = ub on the

boundaries. We know that the total mass is conserved from equation (2.13) which in

1D is ∫ b(t)

0

udx = c (3.1)

For local mass to be conserved we require it to be constant for all time. The mass from

0 to a general point x̂i(t) in (0, b(t)) is∫ x̂i(t)

0

udx = ci (3.2)

for u > 0. We assume that the x̂i(t) are such that the ci’s are constant in time, corre-

sponding to mass conservation in the segment from 0 to x̂i(t).

We now differentiate (3.2) with respect to time and apply Leibnitz’ integral rule to

find that
d

dt

∫ x̂i(t)

0

udx =

∫ x̂i(t)

0

∂u

∂t
dx+

[
u
dx

dt

]x̂i(t)
0

(3.3)

Substituting from (2.14) we have

d

dt

∫ x̂i(t)

0

udx =

∫ x̂i(t)

0

∂

∂x

(
um

∂u

∂x

)
dx+

[
u
dx

dt

]x̂i(t)
0

=

[
um

∂u

∂x
+ u

dx

dt

]x̂i(t)
0

=

[
u

(
um−1∂u

∂x
+
dx

dt

)]x̂i(t)
0

= u

(
um−1∂u

∂x
+
dx

dt

) ∣∣∣∣
x=x̂i(t)

= 0 (3.4)

using the assumption that the ci’s in (3.2) are constants. We note that (3.4) is equivalent

to zero total flux through all segment boundaries. We can now rearrange (3.4) to give

the velocity at any point x̂i(t) as

vi =
dxi
dt

= −um−1
i

(
∂u

∂x

)
i

= − 1

m

(
∂

∂x
(um)

)
i

(3.5)
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provided that ui 6= 0. So we know that in order to preserve mass we must move nodes

with this velocity. We notice at this point that the velocity (3.5) is that arising from

Darcy’s Law (2.3).

3.1.2 The Finite Difference Method

In the finite difference method (3.5) is approximated by

vi =
dxi
dt

= − 1

m

((
uni+1

)m − (uni−1

)m
xni+1 − xni−1

)
(3.6)

To obtain the new mesh from (3.6) we employ explicit Euler timestepping, as in

xn+1
i − xni

∆t
= − 1

m

((
uni+1

)m − (uni−1

)m
xni+1 − xni−1

)
, (3.7)

taking the values of xi and ui on the right hand side at the previous time level n. A

stability condition on ∆t is required, in addition to which there is a condition to prevent

node overtaking also required. To do the latter we impose in effect a Lagrangian type

CFL condition on the scheme, limiting the size of the timestep that we can take relative

to the size of the space step such that for a general point xi

|(vi+1 − vi)∆t| < |xi+1 − xi| , ∀i, t (3.8)

The condition (3.8) may not guarantee stability of (3.7), but by following this restric-

tion we can prevent nodes overtaking. In practice the value of ∆t is estimated by trial

and error.

Conservation tells us that the ci’s in (3.2) remain constant for all time. This tells

us that for a general point x̂i(t) we have∫ x̂i+1(tn+1)

x̂i−1(tn+1)

u(x, tn+1)dx =

∫ x̂i+1(t0)

x̂i−1(t0)

u(x, t0)dx (3.9)

allowing us to find the new distribution of mass at any time. We can then use a

mid-point rule to find

ui(x, t
n+1) =

ci+1 − ci−1

xi+1(tn+1)− xi−1(tn+1)
(3.10)
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where the ci’s are from (3.2).

3.1.3 Semi-implicit timestepping

We now describe a semi-implicit timestepping method for finding the nodal position.

This is useful because it allows us to take a longer timestep than with an explicit method

and also prevents nodes overtaking. This method is still first order in time but avoids

the Lagrangian type CFL condition (3.8), allowing larger timesteps to be taken.

We begin with a form of the scheme (3.7) for the nodal velocity formulated in §3.1.2,

taking m = 1 for clarity. We can write

xn+1
i − xni

∆t
= −

un
i+ 1

2

− un
i− 1

2

xn
i+ 1

2

− xn
i− 1

2

= −
un
i+ 1

2

xn
i+ 1

2

− xn
i− 1

2

+
un
i− 1

2

xn
i+ 1

2

− xn
i− 1

2

for (1 ≤ i ≤ N − 1), which can be modified without further loss of accuracy to

xn+1
i − xni

∆t
=

1

xn
i+ 1

2

− xn
i− 1

2

[
−un

i+ 1
2

(
xn+1
i+1 − xn+1

i

xni+1 − xni

)
+ un

i− 1
2

(
xn+1
i − xn+1

i−1

xni − xni−1

)]

=
1

xn
i+ 1

2

− xn
i− 1

2

[
un
i− 1

2

xni − xni−1

(
xn+1
i − xn+1

i−1

)
−

un
i+ 1

2

xni+1 − xni

(
xn+1
i+1 − xn+1

i

)]
(3.11)

The time accuracy is left unchanged to first order in time as can be seen from the

truncation error. However this useful trick has allowed us to treat some terms implicitly.

The scheme can be rearranged so that all the xi evaluated at time n+ 1 are on the left

hand side and those evaluated at n are on the right hand side, giving

xn+1
i−1 e

n
i + xn+1

i fni + xn+1
i+1 g

n
i = xni (3.12)
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for (1 ≤ i ≤ N − 1), where

eni = −
ui+ 1

2
∆t(

xni − xni−1

) (
xn
i+ 1

2

− xn
i− 1

2

)
fni = 1 +

ui− 1
2
∆t(

xni+1 − xni
) (
xn
i+ 1

2

− xn
i− 1

2

) +
ui+ 1

2
∆t(

xni − xni−1

) (
xn
i+ 1

2

− xn
i− 1

2

)
gni = −

ui− 1
2
∆t(

xni+1 − xni
) (
xn
i+ 1

2

− xn
i− 1

2

)
We can now determine xn+1

i by inverting the tridiagonal matrix on the left hand side

of the following tridiagonal system



fn1 gn1 0 . . . 0

en2 fn2 gn2 . . . 0
...

. . . . . . . . .
...

0 . . . enN−2 fnN−2 gnN−2

0 . . . 0 enN−1 fnN−1





xn+1
1

xn+1
2

...

xn+1
N−2

xn+1
N−1


=



xn1

xn2
...

xnN−2

xnN−1 − gN−1x
n+1
N


(3.13)

Note that this has given us the new nodal positions, xn+1
i without first calculating the

velocity as in §3.1.2.

The end points x0 and xN are

xn+1
0 = 0 (3.14)

xn+1
N = xN −∆t

(
unN − unN−1

xnN − xnN−1

)
(3.15)

where xn+1
N has been calculated explicitly using an upwind scheme. Because of this, we

can think of (3.14) and (3.15) as Dirichlet boundary conditions for xn+1
i . This is why

we begin the matrix system (3.13) at x1 and end at xN−1.

From (3.11) the new distribution of xi satisfies a maximum/minimum principle, as

in [13], which prevents nodes from overtaking.
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3.1.4 Radial symmetry

The radially symmetric porous medium equation (2.18) is

∂u

∂t
=

1

rd−1

∂

∂r

(
rd−1um

∂u

∂r

)
(3.16)

where d is the number of dimensions, r(t) is the radial coordinate and u = u(r, t). In

this section we determine the corresponding velocities for (3.16). Apart from the change

in coordinate system, the boundary conditions (2.16) and initial data (2.17) remain the

same. Also the total mass ∫ b(t)

0

urd−1dr (3.17)

remains constant in time

For 0 < r̂i(t) < b(t), the local mass conservation principle at time t is now∫ r̂i(t)

0

urd−1dr = ci (3.18)

and represents the total mass up to the node r̂i(t).

As in §3.1.1 we shall derive velocities from the conservation of mass principle. We

assume that the ci’s in (3.18) are constant in time and differentiate the integral in

(3.18), applying Leibnitz’ Integral rule, to give

d

dt

∫ r̂i(t)

0

urd−1dr =

∫ r̂i(t)

0

rd−1∂u

∂t
dr +

[
urd−1dr

dt

]r̂i(t)
0

(3.19)

Substituting from (3.16) we have

d

dt

∫ r̂i(t)

0

urd−1dr =

∫ r̂i(t)

0

rd−1

(
1

rd−1

∂

∂r

(
rd−1um

∂u

∂r

))
dr +

[
urd−1dr

dt

]r̂i(t)
0

(3.20)

=

∫ r̂i(t)

0

∂

∂r

(
rd−1um

∂u

∂r

)
dr +

[
urd−1dr

dt

]r̂i(t)
0

(3.21)

=

[
rd−1um

∂u

∂r
+ urd−1dr

dt

]r̂i(t)
0

(3.22)

= rd−1u

(
um−1∂u

∂r
+
dr

dt

) ∣∣∣∣
r̂i(t)

= 0 (3.23)
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since the ci’s are constants. As before this is equivalent to zero total flux through all

section boundaries.

We can rearrange (3.23) to find the velocity as in §3.1.1, giving

vi =
dr̂i
dt

= −um−1
i

(
∂u

∂r

)
i

= − 1

m

(
∂

∂r
(um)

)
i

(3.24)

Once again, as would expected for a mass conserving problem, we have derived the

Darcy velocity as in (3.5) except in terms of the radial coordinate.

In the finite difference method using radially symmetric coordinates (3.24) is approxi-

mated as

vi =
dri
dt

= − 1

m

((
uni+1

)m − (uni−1

)m
rni+1 − rni−1

)
, (3.25)

and to find the new nodal positions r̂i(t) we use explicit Euler timestepping as in §3.1.2,

or semi-implicit timestepping as in §3.1.3.

Due to the conservation in each section we can use the new mesh spacing to recover

the solution u, as in (3.10), which in the radial sense is

ui(r, t
n+1) =

ci+1 − ci−1

rd−1
i (tn+1) (ri+1(tn+1)− ri−1(tn+1))

(3.26)

3.2 Including evaporation from the boundary

In the remainder of the chapter we consider the evaporation case, as described physi-

cally in §1.1. In this case global mass conservation no longer applies. This requires us

to take a slightly different approach to finding the nodal velocity, this time based on

local conservation of mass fractions.

As in §3.1 we first describe the method to find the velocity in 1D Cartesian coordi-

nates and then generalise to radially symmetric coordinates in d dimensions (although

d = 2 is the only realistic value physically).
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3.2.1 One dimension

We consider the CPME (2.7) with evaporation from the boundary in one dimension. A

source term is present and for now we shall keep the general form s(x) so that

ut =
∂

∂x

(
um

∂u

∂x

)
+ s(x) (3.27)

where in practice s(x) is negative. Evaporation will cause total the mass to reduce,

eventually to zero and local mass cannot be conserved. We therefore require another

way to derive the velocity. Let us define the total mass to be∫ b(t)

0

udx = θ(t), (3.28)

say, which now varies with time. Taking the time derivative of (3.28) using Leibnitz

Integral Rule we find that

θ′(t) =
d

dt

∫ b(t)

0

udx

=

∫ b(t)

0

utdx+ [uv]b(t)0 (3.29)

Substituting in (3.27) we have

θ′(t) =

∫ b(t)

0

(
∂

∂x

(
um

∂u

∂x

)
+ s(x)

)
dx+ [uv]b(t)0

=

[
um

du

dx
+ uv

]b(t)
0

+

∫ b(t)

0

s(x)dx

= u(b)

(
u(b)m−1∂u(b)

∂x
+
db

dt

)
+

∫ b(t)

0

s(x)dx (3.30)

=

∫ b(t)

0

s(x)dx (3.31)

since the first term of (3.30) vanishes by virtue of the zero total flux boundary condition

in (2.16).

Although local mass cannot be conserved, the integral of u in the segment from 0 to
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x̂i(t) can be assumed to be a constant fraction of θ(t), so the following mass fractions

integral µi:

1

θ(t)

∫ x̂i(t)

0

udx = µi (3.32)

is constant for all time. Note that µN = 1.

We approach conservation of µi in a similar fashion as for the ci in §3.1.1. We be-

gin by multiplying both sides of (3.32) by θ(t) and taking the time derivative of the

resulting equation so that

d

dt

∫ x̂i(t)

0

udx =
d

dt
(θ(t)µi)

= θ′(t)µi (3.33)

Evaluating the left hand side of (3.33), it can be shown in a similar manner as for (3.30)

that

d

dt

∫ x̂i(t)

0

udx = u(x̂)

(
u(x̂)m−1∂u(x̂)

∂x
+
dx̂

dt

)
+

∫ x̂i(t)

0

s(x)dx

Now substituting (3.31), (3.32) and (3.34) into (3.33) we can rearrange to find the nodal

velocity

dx̂

dt
=

∫ b(t)
0

s(x)dxµ(x̂)

u(x̂)
− u(x̂)m−1∂u(x̂)

∂x
− 1

u(x̂)

∫ x̂i(t)

0

s(x)dx (3.34)

which consists of the Darcy velocity (3.5), together with a contribution from the source

term. As in §3.1, we can employ explicit Euler timestepping for x̂i(t) or use semi-

implicit timestepping, although the latter requires the terms in (3.34) to be written as

a derivative.

Conservation of partial mass in each segment tells us that the µi’s in (3.32) remain

constant in time, therefore for a general point x̂i(t)

µi =

∫ x̂i+1(tn+1)

x̂i−1(tn+1)
u(x, tn+1)dx∫ b(tn+1)

0
u(x, tn+1)dx

=

∫ x̂i+1(t0)

x̂i−1(t0)
u(x, t0)dx∫ b(t0)

0
u(x, t0)dx

(3.35)
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allowing us to find the solution u at any time. As with the conservation form we use a

mid-point rule to find the new distribution of u such that

ui(x, t
n+1) = θ(tn+1)

µi+1(x)− µi−1(x)

xi+1(tn+1)− xi−1(tn+1)
(3.36)

where θ(tn+1) = θ(tn) + ∆tθ′(tn+1) and θ′(tn+1) can be found directly after each redis-

tribution of nodes using a discretisation of (3.31).

3.2.2 Radial symmetry

We now find the velocity of the nodes in the radial case when evaporation is occurring

from the boundary. The radially symmetric PME with a source term is

∂u

∂t
=

1

rd−1

∂

∂r

(
rd−1um

∂u

∂r

)
+ s(r) (3.37)

where in practice s(r) is negative. In the application described in §1.1 we may physi-

cally only take d = 1, 2 as explained in §2.5.

Due to the mass reduction caused by evaporation we shall, as in §3.2.1, define the

partial mass as a fraction of the total mass, which is assumed to be conserved. We

define the total mass as ∫ b(t)

0

urd−1dr = θ(t), (3.38)

say, which varies with time. Taking the time derivative of (3.38) we find that

θ′(t) =
d

dt

∫ b(t)

0

urd−1dr

=

∫ b(t)

0

rd−1utdr + [urd−1v]
b(t)
0
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Substituting in (3.37) we have

θ′(t) =

∫ b(t)

0

rd−1

(
1

rd−1

∂

∂r

(
rd−1um

∂u

∂r

))
+ rd−1s(r)dr + [urd−1v]

b(t)
0

=

[
rd−1um

∂u

∂r
+ urd−1v

]b(t)
0

+

∫ b(t)

0

s(r)dr

= u(b)r(b)d−1

(
u(b)m−1∂u(b)

∂r
+
db

dt

)
+

∫ b(t)

0

s(r)rd−1dr (3.39)

=

∫ b(t)

0

s(r)rd−1dr (3.40)

where the first term of (3.39) vanishes by the zero flux boundary condition in (2.16).

The integral of u from 0 to r̂i(t) is now assumed to be a constant fraction of θ(t)

so the following mass fraction integral µi:

1

θ(t)

∫ r̂i(t)

0

urd−1dr = µi (3.41)

is constant for all time.

We approach the conservation of µi as we did in §3.2.1, except for the radial case.

We begin by multiplying both sides of (3.41) by θ(t) and then taking the time deriva-

tive of the resulting equation so that

d

dt

∫ r̂i(t)

0

udr =
d

dt
(θ(t)µi) (3.42)

= θ′(t)µi (3.43)

Evaluating the left hand side of this, for a general point r̂i(t) it can be shown in a

similar manner as for (3.39) that

d

dt

∫ r̂i(t)

0

urd−1dr = u(r̂i)r̂i

(
u(r̂i)

m−1∂u(r̂i)

∂r
+
dr̂i
dt

)
+

∫ r̂i(t)

0

s(r)rd−1dr (3.44)

Now substituting (3.40), (3.41) and (3.44) into (3.42) we can rearrange to find the nodal

velocity

dr̂i
dt

=

∫ b(t)
0

s(r)rd−1drµ(r̂i)

r̂d−1
i u(r̂i)

− u(r̂i)
m−1∂u(r̂i)

∂r
− 1

r̂iu(r̂i)

∫ r̂i(t)
d−1

0

s(r)rd−1dr (3.45)
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which as in §3.2.1 consisits of the Darcy velocity together with other terms due to the

source. We can therefore employ the same timestepping methods as for (3.34) to re-

cover the new mesh spacing.

Due to the conservation of partial mass in each section we can use the new mesh

spacing to recover the solution u. We apply a mid-point rule to (3.41) to give

ui(r, t
n+1) = θ(tn+1)

µi+1(x)− µi−1(x)

rd−1
i (tn+1) (ri+1(tn+1)− ri−1(tn+1))

(3.46)

where θ(tn+1) = θ(tn) + ∆tθ′(tn+1) and θ′(tn+1) can be found directly after each redis-

tribution of nodes using (3.40).

3.3 The Finite Difference Algorithm

Without loss of generality, we write the algorithms for Cartesian coordinates, as it is

a trivial change to use radial coordinates. We shall be solving this problem on a mesh

x̂i, for i = 0, ...N , such that

a(t) = x̂0(t) < x̂1(t) < ... < x̂N−1(t) < x̂N(t) = b(t) (3.47)

with moving boundaries at a(t) and b(t), where the movement of x̂i(t) is caused by the

zero flux condition across the interior boundaries. This is done by using the following

algorithms to evolve the initial data (2.17).

3.3.1 PME in Conservation form (no evaporation)

Given the mesh and the solution at an initial time t0, the algorithm is:

1. Compute the initial total mass c0
i up to each node x̂i(t)

c0
i =

∫ x̂i(t
0)

0

u0dx (3.48)
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2. Compute the nodal velocity as in §3.1.1. (If using the semi-implicit method as in

§3.1.3 skip to step 4.)

3. Compute the updated mesh using

xn+1
i = xni + ∆t vi (3.49)

where ∆t is the time-step.

4. Recover the new mass distribution as described in §3.1.2 using the initial masses

c0
i found in step one of this algorithm.

5. Repeat previous three steps for chosen number of time steps

3.3.2 PME in Non-conservation form (with evaporation)

Given the mesh x̂i(t
0) and solution u(x̂i, t

0) at initial time t0, the algorithm is:

1. Compute the initial total mass θ(t0)

θ(t0) =

∫ b(t0)

0

u0dx (3.50)

and also the initial partial masses

c0
i =

∫ x̂i(t
0)

0

u0dx (3.51)

and then compute the mass fractions µi

µi =

∫ x̂i(t0)

0
u0dx∫ b̂(t0)

0
u0dx

(3.52)

2. Compute the nodal velocity as in (3.34).

3. Compute the updated mesh using

xn+1
i = xni + ∆t vi. (3.53)

and the new total mass

θn+1 = θn + ∆t (θ′)
n

(3.54)
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4. With the new partial mass

ci = µiθ
n+1 (3.55)

recover the new mass distribution, using (3.36), with the partial mass fractions

µi’s found in step one of this algorithm.

5. Repeat previous four steps for chosen number of timesteps



Chapter 4

Finite element formulation

In this chapter we describe a finite element approach to deriving a moving mesh method

for the PME. As in the previous chapter we describe the method based on the assump-

tion of local mass conservation (consistent with the total integral of density being

constant). The method will firstly be used to find the velocity of nodes in the non-

evaporation case where conservation applies, and then in the evaporation case where

conservation no longer applies.

The finite element formulation combines a particular finite representation of the so-

lution u with a weak form of the PME. To implement this we introduce a weak form of

the conservation principle using a continuous and once-differentiable test function wi

for (0 ≤ i ≤ N) advected with the mesh velocity v. We define a distributed mass ci as∫ b(t)

0

wiudx = ci (4.1)

for (0 ≤ i ≤ N).

So as not to alter the total mass of the problem we require the wi’s to be a parti-

tion of unity, so that
N∑
j=0

wj = 1 (4.2)

27
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Here we choose w to be a standard piecewise linear finite element hat function φi where

φi =


xi+1−x
xi+1−xi if x ∈ (xi, xi+1);

x−xi−1

xi−xi−1
if x ∈ (xi−1, xi);

0 otherwise.

(4.3)

for (2 ≤ i ≤ N − 1) (with suitable modifications at i = 0, N), which agrees with

the condition (4.2) enforced upon w whilst at the same time providing useful compact

support. The solution u is a linear combination of the basis functions (4.3).

4.1 Deriving the velocity from mass conservation

4.1.1 1D finite element method

We now propose a mass conservation principle in which the distributed mass ci will

remain constant for all time. As in §3.1.1, to get the velocity we differentiate the mass

and apply Leibnitz’ Integral rule to (4.1) so that

d

dt

(∫ b(t)

0

φiudx

)
=

∫ b(t)

0

∂(φiu)

∂t
dx+ [φiuv]b(t)0

=

∫ b(t)

0

(
∂(φiu)

∂t
+

∂

∂x
(φiuv)

)
dx

=

∫ b(t)

0

(
φi
∂u

∂t
+ u

∂φi
∂t

+ φi
∂(uv)

∂x
+ (uv)

∂φi
∂x

)
dx

=

∫ b(t)

0

(
φi

(
∂u

∂t
+
∂(uv)

∂x

)
+ u

(
∂φi
∂t

+ v
∂φi
∂x

))
dx

=

∫ b(t)

0

φi

(
∂u

∂t
+
∂(uv)

∂x

)
dx (4.4)

= 0 (4.5)

for (0 ≤ i ≤ N) since the ci’s in (4.1) are assumed constant and the φi’s are advected

with speed v, so that ∂φi
∂t

+ v ∂(φi)
∂x

= 0. Now substituting a weak form of the one-
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dimensional Cartesian PME (2.14),

d

dt

(∫ b(t)

0

φiudx

)
=

∫ b(t)

0

φi

(
∂

∂x

(
um

∂u

∂x

)
+
∂(uv)

∂x

)
dx = 0 (4.6)

Integrating (4.6) by parts we find∫ b(t)

0

φi

(
∂

∂x

(
um

∂u

∂x

)
+
∂(uv)

∂x

)
dx =

[
φi

(
um

∂u

∂x
+ uv

)]b(t)
0

−
∫ b(t)

0

∂φi
∂x

(
um

∂u

∂x
+ (uv)

)
dx (4.7)

= −
∫ b(t)

0

∂φi
∂x

(
um

∂u

∂x
+ (uv)

)
dx (4.8)

= 0, (4.9)

for (0 ≤ i ≤ N). The first term of (4.7) is zero since there is zero flux flowing through

the boundary b(t). As we seek the velocity, equation (4.8) is rearranged to give∫ b(t)

0

∂φi
∂x

uvdx = −
∫ b(t)

0

∂φi
∂x

um
∂u

∂x
dx (4.10)

for (0 ≤ i ≤ N). Since

N∑
i=0

φi = 1 (4.11)

⇒
N∑
i=0

∂φi
∂x

= 0 (4.12)

the left hand side of (4.10) gives only N − 1 independant equations. To get around this

problem we impose one value of v as a Dirichlet condition.

An alternative approach is to rewrite v in terms of a velocity potential ψ where

v =
∂ψ

∂x
(4.13)

Expanding ∂ψ
∂x

in a series of φi’s we have

∂ψ

∂x
=

N∑
j=0

ψj
∂φj
∂x

(4.14)
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We subsitute (4.14) into the left hand side of (4.10) to give∫ b(t)

0

∂φi
∂x

uψdx =

∫ b(t)

0

∂φi
∂x

u
N∑
j=0

ψj
∂φj
∂x

dx (4.15)

=
N∑
j=0

∫ b(t)

0

u
∂φi
∂x

∂φj
∂x

dxψj (4.16)

for (0 ≤ i ≤ N). Again since the φ’s constitute a partition of unity there are only N−1

independent equations, but without loss of generality we can set ψ = 0 at an arbitrary

point.

Substituting (4.16) into (4.10) leads to the matrix system

Kψ = f (4.17)

where K is a singular matrix, known as the stiffness matrix. In this case the K matrix

is the following tridiagonal system

K =



K0,0 K0,1 0 . . . 0

K1,0 K1,1 K1,2 . . . 0
...

. . . . . . . . .
...

0 . . . KN−1,N−2 KN−1,N−1 KN−1,N

0 . . . 0 KN,N−1 KN,N



where

K0,0 =
u1 + u2

2(x2 − x1)

Ki,i =
ui + ui−1

2(xi − xi−1)
+

ui + ui+1

2(xi − xi+1)

Ki,i+1 =
ui + ui+1

2(xi − xi+1)

Ki+1,i =
ui + ui−1

2(xi − xi−1)

KN,N =
uN + uN−1

2(xN − xN−1)
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As we can see from the K matrix entries, we have averaged u across the nodes. This is

because it is a linear function of x.

Imposing ψ = 0 at any point and reducing the system (4.17) accordingly we get

Krψr = f
r

(4.18)

where Kr, ψr and f
r

are K, ψ and f modified by ψ = 0 at one point. Then Kr is

non-singular and

⇒ ψ
r

= K−1
r f

r
(4.19)

Once we have recovered ψ, we can differentiate to find the velocity. However, due to

the way in which we have calculated ψ the derivative will only give us accurate values

of v halfway between nodes. The following equation then linearly interpolates v to the

nodes:

vnode i =

v
i− 1

2

xi−xi−1
+

v
i+1

2

xi+1−xi
1

xi−xi−1
+ 1

xi+1−xi

, (4.20)

which is known to be exact for linear v, see [15]. We now have the velocities, allowing

us to find the new positions of nodes xi using explicit Euler timestepping.

4.1.2 Recovering the solution u

Unlike in the finite difference case, it is non-trivial to calculate new values for u(x) at

the end of each iteration and we have to solve another matrix system. Beginning with

the weak mass conservation principle (4.1) with wi replaced by φi, we expand u(x) in

terms of the basis function φ so that

u(x) =
N∑
j=0

ujφj(x) (4.21)

Substituting this in to (4.1) we find∫ b(t)

0

φi(x)u(x)dx =

∫ b(t)

0

φi(x)
N∑
j=0

ujφj(x)dx

=
N∑
j=0

∫ b(t)

0

φi(x)φj(x)dxuj = ci (4.22)
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which results in the matrix system

Mu = c (4.23)

where M is a non-singular mass matrix and c is a vector of ci’s which can be pre-

computed at t = t0, that we can solve for (4.22). Hence

u = M−1c (4.24)

The coefficient matrix M is tridiagonal of the form

M =



M0,0 M0,1 0 . . . . . . . . . 0

M1,0 M1,1 M1,2 0
...

0
. . . . . . . . .

...
... Mi,i−1 Mi,i Mi,i+1

...
...

. . . . . . . . . 0
... MN−1,N−2 MN−1,N−1 MN−1,N

0 . . . . . . . . . 0 MN,N−1 MN,N


with entries

M0,0 =
x1 − x0

3

Mi,i =
xi+1 − xi

6
+
xi − xi−1

6

Mi,i+1 =
xi+1 − xi

6

Mi+1,i =
xi − xi−1

6

MN,N =
xN − xN−1

3

4.2 Deriving the velocity with evaporation

4.2.1 1D finite element method

For the non mass-conserving finite element method with evaporation we once again

assume conservation of partial mass fractions to deduce the velocity as in §3.2. We
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begin with the total mass ∫ b(t)

0

udx = θ(t), (4.25)

which varies with time. The derivative of (4.25) has already been shown in §3.2.1 to be

θ′ =

∫ b(t)

0

s(x)dx (4.26)

We also define the distributed mass from 0 to b(t) as∫ b(t)

0

φiudx (4.27)

We express the distributed mass as a fraction of the total mass to give

1

θ(t)

∫ b(t)

0

φiudx = νi (4.28)

which we assume to be constant in time. Now multiplying both sides of (4.28) by θ(t)

and taking the time derivative we have

d

dt

∫ b(t)

0

φiudx = νiθ
′(t) (4.29)

We now evaluate the left hand side of (4.29). From (4.4) we have

d

dt

∫ b(t)

0

φiudx =

∫ b(t)

0

φi

(
∂u

∂t
+
∂(uv)

∂x

)
dx (4.30)

Substituting equation (3.27) into (4.30) gives us

=

∫ b(t)

0

φi

(
∂

∂x

(
um

∂u

∂x

)
+ s(x) +

∂(uv)

∂x

)
dx (4.31)

Integrating (4.31) by parts, we have

d

dt

∫ b(t)

0

φiudx =

[
φi

(
um

∂u

∂x
+

∫ b(t)

0

s(x)dx+ uv

)]b(t)
0

−
∫ b(t)

0

∂φi
∂x

(
um

∂u

∂x
+

∫ b(t)

0

s(x)dx+ uv

)
dx (4.32)

=

[
φi

∫ b(t)

0

s(x)dx

]b(t)
0

−
∫ b(t)

0

∂φi
∂x

(
um

∂u

∂x
+

∫ b(t)

0

s(x)dx+ uv

)
dx (4.33)
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where we have used the zero flux boundary condition from (2.16).

Putting this all together into (4.29), we rearrange to make the velocity term the subject

giving ∫ b(t)

0

∂φi
∂x

uvdx =

[
φi

∫ b(t)

0

s(x)dx

]b(t)
0

−
∫ b(t)

0

∂φi
∂x

(
um

∂u

∂x

∫ b(t)

0

s(x)dx

)
dx

+µi

∫ b(t)

0

s(x)dx (4.34)

We can treat this in an almost identical way, as we did (4.10), the only difference being

the right hand side which we now call f . Once again we write the velocity as the

derivative of the velocity potential and solve the matrix system

Kψ = f (4.35)

from which we find the velocity potentials ψ. As in §4.1.1 we can differentiate ψ to find

the velocity and then interpolate, using equation (4.20), to recover v at the nodes.

4.2.2 Recovering the solution u with evaporation

As in §4.1.2 the solution u can be recovered directly from the finite element form. Since

the νi’s are constant for all time we have

νi =
1

θ(t)

∫ b(t)

0

φi(x)u(x)dx =

[
1

θ(t)

∫ b(t)

0

φi(x)u(x)dx

]
t=t0

(4.36)

As in §4.1.2 we expand u(x) in terms of the basis function φ and the partial mass at

time t from (4.36) becomes

1

θ(t)

∫ b(t)

0

φiudx =

∫ b(t)

0

φi(x)
N∑
j=0

ujφj(x)dx (4.37)

=
N∑
j=0

∫ b(t)

0

φi(x)φj(x)dxuj = νi (4.38)
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This results in the non-singular matrix system

Mu = d (4.39)

⇒ u = M−1d (4.40)

The only difference between this matrix system and (4.24) is the right hand side. The

vector d in this instance is

d = θ(t)ν (4.41)

found by rearranging (4.36).

Using the M matrix as defined in §4.1.2 we now have all of the information required to

recover the solution u.

4.3 1D Finite Element algorithm

For the 1D finite element algorithm we begin with the initial mesh, with nodes, xi(t
0)

for i = 0, 1, ...N , with boundary conditions (2.16) and initial data (2.17).

4.3.1 Mass conserving algorithm

Given the mesh and solution at initial time t0, the algorithm is:

1. Compute the constant distributed masses ci of the segments using the mass inte-

gral (4.1) at time t0

2. Compute the nodal velocity by following the method using the velocity potential

described in §4.1

3. Compute the updated mesh using

xn+1
i = xni + ∆t vi (4.42)
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4. Compute the new solution by solving the matrix system (4.24) where the right

hand side can be computed using the ci’s from step 1.

5. Repeat the previous four steps for the chosen number of time steps.

4.3.2 Non mass-conserving algorithm (with evaporation)

Given the mesh and solution at initial time t0, the algorithm is:

1. Compute the initial total mass θ(t0)∫ b(t0)

0

u0dx = θ(t0) (4.43)

the weak form of the initial masses di∫ x̂i(t
0)

0

φiu
0dx = di. (4.44)

and the mass fractions µi

νi =

∫ b(t0)

0
φiu

0dx∫ b(t0)

0
u0dx

(4.45)

2. Compute the nodal velocitys from the velocity potentials as described in §4.2.1.

3. Compute the updated mesh using

xn+1
i = xni + ∆t vi. (4.46)

Use the new mesh distribution to calculate θ′(tn+1) directly from (4.26) and from

this the new total mass

θ(tn+1) = θ(tn) + ∆t θ′(tn+1) (4.47)

4. Use the new total mass (4.47) to recover the solution u as described in §4.2.2.

5. Repeat the previous four steps for the chosen number of time steps.
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Results

We split the results chapter into two main sections. We begin by presenting numerical

results for the methods described in Chapter 3 and Chapter 4, followed by a comparison

of the numerical model with some real data.

5.1 Numerical results

We first describe numerical results for the methods derived in Chapter 3 and Chapter

4. We pay particular attention to the differences between fast diffusion and slow diffu-

sion and also the effects of evaporation. Since the various methods described provide

similar results we do not show them all for each one. Instead we display results for

chosen cases, illustrating the various methods described.

We begin by comparing results for fast diffusion and slow diffusion using the mass

conserving 1D finite element model derived in §4.1. We analyse several plots that have

been produced to give good supporting arguments to our observations, allowing us to

deduce the various behaviour.

We then investigate the effects of evaporation on the two dimensional radially sym-

metric PME for both the fast and slow diffusive regimes. We show that we can force

37
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retreat of the boundary in both cases.

5.1.1 The Numerical model test problem

To run the numerical model we need to define boundary conditions and initial data.

This is chosen specifically to demonstrate behaviour representative of the physical phe-

nomena described in §1.1. The boundary conditions (2.16) are defined as

u = 0.1 and uv + umux = 0 at x(t) = a(t), b(t), t > 0, (5.1)

where u = 0.1 is representative of the threshold value beyond which the capillary

network bridges of fluid between granules of the porous media break. The initial data

(2.17) is chosen to be

u(x, 0) = 0.9(1− x2) + 0.1 (5.2)

in the region x ∈ [a(t0), b(t0)], where initially a(t0) = −1 and b(t0) = 1. This initial data

is chosen due to its symmetrical nature and also because it adheres to the physically

reasonable idea of high to low concentration away from the centre of mass.

5.1.2 Fast Diffusion vs Slow Diffusion

Here, we use the 1D finite element conservation-based moving mesh method described

in §4.1 for the PME (2.14) without evaporation to examine the differences between the

fast and slow diffusive regimes, for which we take m = −1.5 and m = 1 respectively. We

begin by plotting the initial distribution given in (5.2) for both regimes and advancing

the distribution using the same time and space steps for each regime. This will give

us an idea of how the distribution develops in each case and also allows us to make

quantitative comparisons between the two. We then plot the distribution of the nodal

velocities, followed by the development of nodal positions with time to try to develop

a clear idea of the differences in the fast and slow diffusive regime models.
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Figure 5.1: Half plane numerical solutions of the PME with Plot A: m = −1.5, Plot B:

m = 1

In figure 5.1 we see that the fast diffusion regime causes a much faster spreading of

the distribution of u than the slow regime does. This observation is reflected both in

the development of the position of the boundaries and also the rate at which the curve

flattens. A further observation is that initially the fast diffusive regime forces a very

different distribution to the initial data (although it eventually regains a similar form),

whereas the slow diffusive regime keeps much the same shaped distribution as the initial

data.

In figure 5.2, showing velocities for the two cases in figure 5.1, we first observe that

for both of the fast and slow diffusive regimes the velocity at the origin is zero. This

is the case because the initial data (5.2) is symmetric about x = 0 which is the centre

of mass. (Furthermore, if we were including an evaporation term i.e. for the pme with

a source term (2.7) in one dimension, this symmetrical distribution property would

remain because the source acts equally on the whole domain.) The plots support some

of the ideas developed in the previous paragraph from figure 5.1, since there is approx-
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Figure 5.2: Velocities of the nodes for numerical solutions of the PME with Plot A:

m = −1.5, Plot B: m = 1

imately one order of magnitude difference between the velocities of the nodes between

the two regimes, explaining how fast the mass spreads for the fast diffusive regime.

We also see that for the slow diffusive regime the distribution between the variables is

almost linear, which supports the idea of little deformation occuring from the initial

spread. For the fast diffusive regime the nodes close to the boundary are moving much

faster than those near the origin, displayed by the flattening of the distributions near

the boundary positions in Plot A. This supports the idea of larger deformation from the

initial data. A further key difference is that the velocities for the fast diffusive regime

are decreasing a significant amount more than those for slow diffusion, implying that

the fast diffusion process is more powerful initially but tends towards a more similar

rate. A final interesting observation for figure 5.2 is that the velocities for fast diffusion

keep a similar form throughout the time that the model is run for. This contradicts

what was observed in 5.1 where the distribution appeared to initially change from the

initial distribution and then return to a similar form.
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Figure 5.3: Trajectories of the nodes for the numerical solutions of the PME with Plot

A: m = −1.5, Plot B: m = 1

Finially, figure 5.3 shows the trajectories of the nodes from figure 5.1. We see that

for the fast diffusive regime, because of the increasing nodal velocities, as we get to-

wards the free moving boundary of u, the distribution initially spreads at a very high

rate compared with that of slow diffusion which, as would be expected from Plot B of

figure 5.2, stays almost linear. However by the end of the time period Plot A shows

that the nodal speed is rapidly decreasing as the gradient appears to tend towards that

of Plot B, agreeing with similarities between later distributions in figure 5.1.

The results displayed in this section are all consistent with what we would expect

from the PME in the fast diffusion regime, since it contains um which becomes large

when m < 0 and u is small. (We note that the magnitude of m taken, 1.5 for fast

diffusion, is not too large as to trigger superfast diffusion [16])

5.1.3 Evaporation effects for fast and slow diffusion

We now take a look at the effects of evaporation on the 2D radially symmetric PME

with a source term ((3.37) with d = 2) for both the fast and slow diffusive regimes.
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(Ideally this would be modelled in 3D, however as mentioned in §3.2.2 this cannot be

done in the radially symmetric case since the evaporation only occurs at the boundary

which wouldn’t be taken into account in the model developed here.)

We plot the elapsed time against the position of the free moving boundary r(N) for

both fast and slow diffusion.

Figure 5.4: Positioning of the free moving boundary r(N) for s(r) = −5 for fast diffusion

in Plot A (m = −1.5) and slow diffusion in Plot B (m = 1).

From figure 5.4, which shows the evolution in position of the boundary rN in time when

s(r) = −5, we see that under the same conditions (in particular for the same source

term), the fast and slow diffusive regimes produce a similarly shaped distribution for

the position of the free moving boundary. However Plot A shows that the fast diffusive

regime dominates the effect of evaporation for a longer amount of time and has a larger

effect on the distance travelled by the free moving boundary than in Plot B. In the

time for which this model has been run, the initial effect of fast diffusion is much much

stronger than for slow diffusion, forcing the free moving boundary to be advected away

more than an order of magnitude further. As well as having a faster rate of diffusion,
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the fast diffusive regime also appears to amplify the effect of the source term. After

reaching it’s peak distance at a later time, the boundary in Plot A recedes around 0.17

spacial units as opposed to around 0.08 spacial units in Plot B.

If we choose the value of s(r) to be too large the distribution of mass falls below

the boundary u = 0.1 just before the leading edge. This behaviour is unphysical in

the context of the prroblem described in §1.1. This is because we chose our boundary

conditions and initial data §5.1.1 based on there being a limit at this point, beyond

which the liquid capillary network bridges are no longer connected.

5.2 The model problem

We now compare the numerical results to some experimental data. This will give us

an idea of how accurately the models work in a particular application. This particular

example is representative of those described by the aims set out in §1.1.

The experimental data from the University of Santa Barbara [12] is for liquid spreading

of TEHP, which is an organophosphate liquid with low vapour pressure at room tem-

peratures. This means that the evaporation effects will be negligable in this case.

The liquid begins on the surface of the porous medium. Once it has diffused into

the medium, only at saturation levels below around 20% can we start to consider the

fast diffusion process [12]. We would then expect the geometry to be hemispherical,

therefore the most appropriate model we have to compare to experimental data is the

one described in §3.1.4 for the radially symmetric PME (3.16) with d = 3.

Since the received data has dimensions, we take the PME in the appropriate form,

using the derivation in §2.1 and non-dimensionalise it. By doing this we can compare

numerical results produced by the program to the non-dimensional experimental results
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quantitavely. We begin with the 3D radially symmetric PME in the form

∂S

∂t
= D0

1

r2

∂

∂r

(
r2

(S − S0)m
∂S

∂r

)
(5.3)

where S is the saturation measured as a percentage of full saturation, S0 is taken to be

a fraction of the boundary value and D0 is the diffusion coefficient with units m2s−1.

The given data provides the volume in (m3) of the saturated area, which by the hemi-

spheric geometry gives the position of the boundary, i.e. the radius as

R =

(
3V0

2π

) 1
2

(5.4)

We would like (5.3) in a similar form as (3.16) so we define the non-dimensional variables

t′ and r′ such that

r′ =
r

R0

, t′ = t
D0

(R0)2
(5.5)

where R0 is a chosen reference boundary position. By substituting these into (5.3) and

rearranging we have
∂S

∂t′
=

1

r′2
∂

∂r′

(
r′2

(S − S0)m
∂S

∂r′

)
(5.6)

This has the Darcy velocity as derived in §3.1.4

v = −∂S
∂r′

(5.7)

Using the finite difference algorithm from §3.3.1 we can recover the boundary position

rN . This can then be converted into a volume by the rearrangement of (5.4) allowing

a direct comparison to the non-dimensionalised experimental data. For the model we

use the intial distribution

S0 = S(b) + (Smax− S(b))cos
(πr

2

)
; (5.8)

where Sb is the saturation level at the boundary which is chosen to be the last entry

from the values of S in the data. This is an equivalent boundary condition to u = ub

from (2.16), so if the saturation falls below this point then the fluid bridges between
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porous grain particles will break and the model no longer applies. The value Smax is

the highest level of saturation from the data set. From (5.8), the factor (Smax−S(b))

in front of the cosine function is equivalent to k from (2.17). The results are as follows:

Figure 5.5: Numerical solutions of the radiall symmetric 3D PME plotted against values

from experimental data.

From figure 5.5 we see that there is a very good match between the numerical method

output and the experimental values. Therefore for this data set we can conclude that

the model provides a good representation for fast diffusion in porous media.



Chapter 6

Conclusions and further

developments

In this final chapter we summarise the work carried out in this project, followed by

ideas for future development in this area of research.

6.1 Summary

In this dissertation we have looked at a variety of ways in which to use a velocity based

moving mesh method to model both fast and slow diffusion in a porous medium. In

particular, we have implemented such a numerical method in various geometries for the

fast diffusion process and found a strong correlation between the output produced and

experimental data modelling a chemical agent diffusing in a porous substrate under

similar conditions.

We worked throughout the project on a one-dimensional domain. In Chapter 3 we

began by formulating a velocity based moving mesh method based on the principle of

local mass conservation, in order to model the evolution of the PME in time. This was

done in both 1D Cartesian coordinates and also in d-dimensional radially symmetric

coordinates. The advantage of the radially symmetric coordinates was that we could

46
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model 3D spherical phenomenon in 1D, making the later comparison with experimental

results possible. Using the same coordinate systems we then modelled the PME with a

source term to represent evaporation happening within the domain under the principles

of conservation of mass fractions.

In Chapter 4 we followed up the work from the previous chapter by deriving a finite

element formulation of the problem. This used a similar methodology with a velocity

based moving mesh method employed for both the mass conserving and evaporative

situations. This was modelled in 1D Cartesian coordinates. Had it not been for time

constraints the model would have been moved into higher dimensions. It would have

been of particular interest to be able to extend the model to 3D finite elements, since

this would have provided the opportunity to model the evaportation process at the

boundaries of a 3D domain. The model output could then have been compared to the

appropriate experimental data, further developing the framework of applications to be

considered.

In Chapter 5 we discussed the results, which were split into two main sections. We

began from a mathematical modelling standpoint by using the various models to com-

pare the fast and slow diffusive regimes, followed by comparisons between the effects of

incoorporating evaporation into both of these cases.

Finally we looked at results from an experimental point of view. We ran the most

appropriate model with some conditions imparted by experimental data from [12] and

compared the output of the numerical model to the normalised experimental data.

This produced a strong correlation between the model output and the experimental

data providing an impetus that the ideas conveyed in this dissertation should be car-

ried further. Since we have only compared the model to one set of results, we cannot

draw any concrete conclusions, but it is a good indicator that the methods presented

in this dissertation could potentially provide a framework for the effective modelling of
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fast diffusion in porous media, in general geometries.

6.2 Future work

To complement this dissertation we now suggest some ideas for future development in

this area.

Evaporation

Currently, outside this dissertation there is apparantly no work within this application

of how to model evaporation mathematically. Ideally the next development in this

field would be to accurately model this process. However this poses several difficul-

ties. Firstly more experimental data would be required for a liquid known to evaporate

within a known rate of evaporation. Using this rate of evaporation in the source term

for the CPME (2.7) would then hopefully provide a reasonable set of numerical results

in comparison to the experimental data. A further problem in modelling fast diffusion

with evaporation is that when comparing to experimental results, the model needs to

be 3D. However as stated in earlier sections the 3D radially symmetric approach does

not do this in the model presented here, because by the nature of the source term it acts

on every node. The ideal next step would be to modify a 3D finite element program to

include evaporation from the boundary.

Another idea is to use a different type of source term. As an example a time-periodic

function could be used to represent a higher rate of evaporation during the day, com-

pared to at night.

A further exploitation of the evaporation process could be to investigate when the

saturation falls below a certain threshold and the capillary bridges are no longer con-

nected. Aside from looking at the fate of chemical agents, this could have applications



6.2. FUTURE WORK 49

concerning wet granular systems. Drying and separation of granular molecules can have

catastrophic effects such as causing landslides and avalanches.

In the study of the dynamics of wet granular matter knowledge of the levels of sat-

uration within a porous material is highly important. In [11] it is described how dry

sand acts as if it were in a liquid state, whereas saturated sand can be formed into

reasonably stable structures. A particular example is presented in [11] of a large land-

slide where a part of the slope has moved downwards and has left a parabola shape in

the remaining earth, implying that it was in a viscous liquid state as it fell. A further

observation is that the adjacent parts of the land where conditions would most likely

be similar nothing has happened. This could imply that this is a threshold process

whereby if the saturation of soil falls below a certain level then it reaches a liquid state.

In the study of avalanches, as described in [10], the water saturation of natural snow

cover varies. The snow acts as a porous medium and in general water fills up to 20% of

the pore volume. When the saturation level is around 7%, we enter the fast diffusion

regime. Saturation below this level can be critical as the bridges between pores might

break causing the snow granules to part. On a large scale this could cause an avalanche.

Since the two previous examples include much larger height scales and masses than

in the chemical agents problem, when formulating a model for these processes we

would need to account for gravity. We therefore would have to take a slightly dif-

ferent approach than we have in this dissertation. However, we would essentially still

be modelling the cause of landslides and avalanches by the fast diffusion and evaporation

processes.
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2D and 3D Finite element method

The natural progression in a modelling sense would be to attempt to increase the

Catesian coordinate spatial dimensions for the finite element method. We suggest this

approach rather than finite differences because, in general for curved boundaries, the

finite element method provides a better approximation to the solution. Modelling with

2D finite elements was close to being put into practice for this project and would have

provided a good addition to the current framework.

If possible 3D finite elements would be implemented to allow comparisons between

the model and experiments for the non mass-conserving evaporation case.

Semi-implicit timestepping

For the results we have produced in this dissertation, it has not been necessary to

employ the semi-implicit timestepping method derived in §3.1.3. This is due to the

low computational demands of the programs. However if we wanted to run the model

to produce results over a much longer period of time then the small timesteps needed

for the explicit scheme could become an issue, in which case the use of semi-implicit

timestepping could become essential.

Furthermore, semi-implicit timestepping can applied to the 1D finite element method,

which would have been implemented had it not been for time restrictions.

Self similar solution

Since the main aim of this dissertation was to try to create a model agreeing with

physical phenomena it had seemed unnecessary to worry about the analytical properties

of the PME. However, to take a more rigorous approach self-similar solutions could be

compared to check the accuracy of the numerical methods. The self similar solutions

are well documented for the mass conserving slow diffusion process for example see [7]
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for the 1D cartesian version and see [3] for the 1D radially symmetric version. However

these would not have been useful in the fast diffusive regime, which is another reason

why similarity solutions have not been followed up in this dissertation.

Other meshing techniques

We finally consider two ways in which to adjust the mesh being used.

In order to increase the accuracy of the moving mesh method, the initial mesh can

be altered. One way is to create an optimal initial mesh as in [1]. This essentially ad-

justs the initial distribution of the mesh so as to minimize the L2 norm of the difference

between the approximation to the initial conditions to and the exact initial function

over the mesh values.

Another reason to alter the initial mesh is when higher resolution is required in a partic-

ular part of the solution. One way in which this can be done is by using equidistribution

which relocates grid points without increasing the total number of them. Altering the

initial mesh in this way could be useful for example, when tracking a moving boundary

by increasing the resolution near the boundary.
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