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Abstract

In this study an idealised semi-analytic model is used to simulate baroclinic insta-

bility on the African easterly jet (AEJ) and model the time evolution of potential

vortcity (PV) waves on the basic state. Work in the literature has focussed on

mid-latitude westerly jets so the analysis of an idealised easterly jet is new. Using

analytically calculated Green functions, the PV structure is inverted at each time

step to obtain the meridional winds. The meridional flow advects the basic state

PV, thus affecting the evolution of PV waves. The time integration is performed

numerically. It is shown that the curvature of the AEJ is sufficient to cancel the

planetary meridional vorticity gradient β and hence create a negative meridional

PV gradient somewhere below the jet core. Therefore a pair of counter-propagating

Rossby waves (CRW’s) can exist and mutual growth can occur. One CRW is a

westward propagating wave formed on the positive meridional temperature gradient

at the ground, the other an eastward propagating wave formed on the negative PV

gradient in the interior. The wavelength with the fastest growing normal mode is

found to be approximately 1500km. With an initial perturbation given 5 days to

develop, the total energy growth is found to be highly sensitive to the initial PV

structure with the optimal perturbation over this time strongly resembling a tilted

monopole. Phase-locking of CRW’s within the allowed time is shown to be possible

but the energy growth is strongly dominated by linear transient mechanisms during

this time.
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1 Introduction

1.1 The African Easterly Jet

A jet stream is a fast zonal air current caused by a large meridional gradient of

potential temperature (PT)
∣∣∣ ∂θ∂y ∣∣∣ >> 0 in thermal wind balance:

f
∂ū

∂z
= − g

θ0

∂θ

∂y
(1)

with an increase or decrease of zonal velocity with height ∂ū
∂z

, where zonal velocity ū is

positive if it is eastward. In (1), f = 2Ωsinφ is the Coriolis parameter, g = 9.81ms−2

is acceleration due to gravity, θ0 is a reference value for PT, Ω = 7.292× 10−5s−1 is

the rate of the Earth’s rotation and φ is latitude. The PT is given by:

θ = T

(
p

p0

)R/cp
(2)

where T is absolute temperature, p is pressure, p0 is a reference value for pressure,

R is a gas constant for air and cp is specific heat capacity at constant pressure. For

adiabatic flow, PT is conserved following air parcels and and the pressure factor

accounts for decreasing temperature in adiabatic expansion.

In the Northern Hemisphere, f > 0, implying that a positive potential temperature

gradient ∂θ
∂y
> 0 is associated with a negative zonal wind shear ∂ū

∂z
< 0 and vice versa.

It is normally the case in the Northern Hemisphere that ∂θ
∂y
< 0 (temperature de-

creases from equator to pole), which, if the gradient is sufficient, implies a significant

increase in velocity with height. This is known as a westerly jet stream (eastward

winds).

In North Africa, however, the Sahara desert is much warmer than the region imme-

diately south of it. Therefore, due to the large positive PT gradient, (1) implies a

negative zonal wind shear, i.e. wind speed becoming more easterly (westward) with

height. This is the African Easterly Jet (AEJ), a lower tropospheric westward

air current flowing along the southern edge of the Sahara at approximately 16◦N

latitude from Ethiopia (40◦E) to the west African coast (15◦W) . It has a jet core at

approximately 650 hPa (4km altitude) where mean wind speed is 12ms−1 (Thorn-

croft et al. (2008)). African Easterly Waves (AEW’s) are meridional undulations
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Figure 1:

Thermal satellite image showing cloud tops along the African easterly jet. Image
taken from

http://www.wunderground.com/blog/Drakoen/archive.html?year=2008month=06.

in the AEJ, bringing moist air from the equatorial coastline to the south and dry

air from the Sahara desert to the north. This results in the distinctive cloud pattern

shown in Figure 1. The convection in the moist air brings most of the rainfall to the

arid Sahara region. As the winds in the jet are responsible for transporting mois-

ture across west Africa, such perturbations can determine where and when there is

rainfall in the region. AEW’s are observed to propagate west along the AEJ and

a small number of storms embedded within them develop into tropical cyclones as

they leave the continent, gaining energy from the Atlantic ocean and form some of

the hurricanes reaching North America. Therefore the mechanisms behind AEW’s

are of great interest from a research perspective in order to describe their evolution

and hence forecast both the region’s weather and the development of tropical cy-

clones.

Waves are common to all jet streams and are known as atmospheric Rossby waves

which are created by potential vorticity (PV) anomalies as will be described in

Section 2. Following Bretherton (1966) , a single Rossby wave is neutral (does

not grow) by itself but growth can occur, depending on the stability of the atmo-

sphere, via the interaction of two Rossby waves propagating in opposite directions.
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It will be shown that, if certain conditions are satisfied, these two waves eventu-

ally phase-lock and mutually grow exponentially. Such pairs of waves are known as

counter-propagating Rossby waves (CRW’s) and form the basis of this study.

1.2 Aims of this study

Almost all the research on growth via CRW interaction has been for westerly jets

and as we shall see there is a profound asymmetry between easterly and westerly

jets due to the meridional Coriolis gradient β = df
dy

which makes easterly jets more

stable. Easterly jets will be the focus of this study. As will be shown in Section

2, due to the positive temperature gradient at the ground below the AEJ, a pair

of mutually growing CRW’s is not possible unless curvature of the jet profile is

sufficient to overwhelm the positive β. Sustained exponential growth can only occur

if the pair of CRW’s phase-lock in a mutually amplifying configuration - the growing

normal mode. Therefore the first thing that must be established for any study on

CRW interaction on the AEJ is that the jet curvature is indeed strong enough. For

the purposes of this particular study, we are specifically interested in the following

questions:

1. For which wavelengths do normal modes grow most rapidly on an easterly jet

and how quickly do they propagate? Also, how does this behaviour contrast

with a westerly jet with the same structure but opposite sign?

2. How sensitive is the evolution of the system to the initial perturbation and

what is the nature of the optimal perturbation for which energy growth is

greatest?

3. Given the finite-time available for Rossby waves to propagate along the AEJ,

tAEJ, do CRW’s have sufficient time to phase-lock and, if so, how much of the

total energy growth is attributable to transient changes in PV structure as

opposed to modal growth?

1.3 Relevant scaling

Before describing the mathematics of CRW’s, it is necessary to establish some of the

constants and scales that will be used throughout this study: At 16◦N, the latitude

of the AEJ, we have the following:

f = 2Ωsin(16◦) = 4.02× 10−5s−1 (3)
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β =
df

dy
=
df

dφ

dφ

dy
=

2Ωcos(16◦)

a
= 2.20× 10−11m−1s−1 (4)

where a = 6.37 × 106m is the mean radius of the Earth. Following the literature,

the Brunt-Vaisala frequency:

N =

√
g

θ0

∂θ

∂z
≈ 0.01s−1 (5)

is taken to be constant at the above value to good approximation throughout the

atmosphere. We introduce a magnitude for the vertical wind shear:

Λ = 3× 10−3s−1 (6)

so that dū
dz

= Λdû
dẑ

, where ẑ,û are the non-dimensional height and zonal velocity

respectively. Height z is non-dimensionalised, following Held (1978), as follows:

Hz =
f 2Λ

N2β
= 2.2km (7)

so that z = Hz ẑ and we will see in due course that, algebraically, this is a very useful

scale to use. The corresponding velocity scale is thus:

U = ΛHz = 6.6ms−1 (8)

where ū = Uû. Assuming Burger number NH
fL

= 1, we use the natural length-scale:

L =
N

f0

Hz = 547km (9)

where x = Lx̂ and x̂ is the non-dimensional zonal co-ordinate. And hence the

advective time scale is:

T =
L

U
= 82, 919s ≈ 1 day (10)

where t = T t̂. The length of the AEJ is approximately:

LAEJ ≈ 5000 km (11)

and hence the non-dimensional minimum time available for waves to propagate along

the jet is given by:

tAEJ =
LAEJ

uAEJT
= 5.03 (12)
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where uAEJ = 12ms−1 is the mean speed at the jet core. We also non-dimensionalise

wavenumber and wavelength as follows. The angular wavenumber is given by:

k =
2πL

λ
(13)

We non-dimensionalise wavelength by:

λ = 4πLr (14)

where wavelength:

r =
1

2k
(15)

is the parameter used in the Charney model (Charney (1947)) as will be studied

in Section 2. Finally, we introduce a density height scale Hρ such that the non-

dimensional density is given by:

ρ = ρ0e
−z/Hρ (16)

In order to establish the value of Hρ, we note the equation for hydrostatic balance:

dp = −ρgdz (17)

where p is pressure. Using the ideal gas equation:

p = ρRT (18)

where R = 287JK−1kmol−1 is the gas constant for the atmosphere, (17) becomes:

dp

p
≈ − gdz

RT0

(19)

where T0 is a reference temperature, provided that temperature variations are small

compared to temperature values δT << T . Hence:

Hρ ≈
RT0

g
= 7.7km (20)

for average temperature in profile above west Africa T0 ≈ 260K.
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1.4 Quasi-geostrophic theory

For geostrophic balance, where the horizontal pressure gradient and Coriolis forces

are balanced, the zonal and meridional wind components u and v are as follows

(Pedlosky(1990)):

u = −∂ψ
∂y

v =
∂ψ

∂x
(21)

where the geostrophic streamfunction is given by:

ψ =
p′

ρf0

(22)

for a pressure perturbation p′. The vertical component of geostrophic relative vor-

ticity is then given by:

ξ =
∂v

∂x
− ∂u

∂y
=
∂2ψ

∂x2
+
∂2ψ

∂y2
(23)

For hydrostatic balance, where the vertical pressure gradient is balanced by gravity,

the buoyancy is given by:

b′ = f0
∂ψ

∂z
(24)

where the buoyancy is defined as:

b′ =
gθ′

θ0

(25)

From (2) and (25), we see that T ,θ and b′ are all positively correlated so that here-

after we shall refer to anomalies of temperature, PT and buoyancy interchangably.

From (21) and (24), thermal wind balance follows, where in this case we are just

interested in thermal wind balance for a meridional temeprature gradient (1).

Quasi-geostrophic (QG) theory applies to an atmosphere that can be taken to

be in geostrophic balance to good approximation but where the evolution of the

geostrophic variables ξ and b′ is related to the ageostrophic wind components uag,vag,w

where u+ uag gives the full zonal velocity (and similarly for v) and w is the vertical

velocity. We define ζ = f + ξ as the vertical component of absolute (planetary plus

relative) vorticity with the notion that stretching (contracting) the vortex results in

an increase (decrease) of absolute vorticity:

Dζ =
f0

ρ

∂

∂z
(ρw) (26)

6



where D denotes the total derivative ∂
∂t

+u ∂
∂x

+v ∂
∂y

, i.e. the rate of change following

the (in this case geostrophic) flow. It is also the case that advection of PT surfaces

through the vertical results in buoyancy anomalies, expressed by the thermodynamic

equation:

Db′ = −N2w (27)

From (26) and (27), we obtain the QG potential vorticity (PV) equation:

Dq = 0 (28)

where QG PV (hereafter referred to as PV) is given by:

q = f + ξ +
f0

ρ

∂

∂z

(
ρb′

N2

)
(29)

1.5 Potential vorticity

Substituting (24) into (29), we obtain:

q = f0 + βy +
∂2ψ

∂x2
+
∂2ψ

∂y2
+

1

ρ

∂

∂z

(
f 2

0ρ

N2

∂ψ

∂z

)
(30)

This means that PV is equal to the planetary vorticity f0 + βy plus the curvature

of the local flow, assuming geostrophic and hydrostatic balance. We thus write

q = f+q′ where q′ = ∂2ψ
∂x2

+ ∂2ψ
∂y2

+ 1
ρ
∂
∂z

(
f20 ρ

N2
∂ψ
∂z

)
and hence, referring to the differential

operator on ψ as `:

ψ = `−1(q − f) (31)

i.e. the geostrophic streamfunction (hereafter streamfunction) is obtained by invert-

ing the given differential operator. By considering (31) and (21), we see that a PV

anomaly can influence the flow at distant points via the winds that it induces. This

is a crucial concept for this study.

From (28), PV is conserved following the geostrophic flow in the absence of friction

or diabatic effects. Thus it is a convenient variable to consider for initial value prob-

lems where we assume no friction or diabatic heating (as will be done throughout

this study). If we define a basic state as the background flow at a particular location

in the absence of a perturbation then (28) can be used to describe the evolution of

some perturbation from the basic state. In stability studies the basic state is nor-

mally taken to be zonally symmetric and steady so that ū = ū(y, z). The basic state
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is also specified by the unperturbed PV q̄(y, z). Putting q = q̄(y, z) + q′(x, y, z, t)

and linearising (28), we obtain:

∂q

∂t
+ ū

∂q

∂t
+ vq̄y = 0 (32)

where, in (32) and hereafter, q refers to the perturbation PV. (32) describes the

evolution of PV q and its induced perturbation meridional wind v from a basic

state defined by ū and q̄y. We thus turn our attention to the nature of such PV

perturbations.
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2 Growing waves on jets

2.1 Counter-propagating Rossby waves

Consider a positive meridional PV gradient in the x-y plane (q̄y > 0), as depicted in

Figure 2 where x and y are the zonal and meridional co-ordinates. If an air parcel is

displaced to the south (i.e. into an area of lower PV than itself, due to the positive

PV gradient), it creates a positive PV anomaly and forms a Rossby wave, i.e.

a wave in the PV contours as shown. A positive PV anomaly induces increased

cyclonic (anti-clockwise) rotation in its new environment. This implies that air is

advected from the north (high PV) on the left flank of the anomaly and from the

south (low PV) on the right flank of the anomaly. Thus the positive PV anomaly is

shifted westwards.

Similarly, a negative PV anomaly (an air parcel displaced to the north into

an area of higher PV than itself) induces increased anti-cylonic (clockwise) rotation

in its new environment. This implies that that air is advected from the south (low

PV) on the left flank of the anomaly and from the north (high PV) on the right flank

of the anomaly. Thus the negative PV anomaly is also shifted to the left. Therefore

Figure 2: A Rossby wave forming on a positive PV gradient and hence propagating
westward. Taken from Hoskins et al. (1985).

a Rossby wave formed on a positive PV gradient propagates west relative to the

background zonal flow ū as the above process is continued indefinitely. By a reverse
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argument, a Rossby wave formed on a negative PV gradient (q̄y < 0) propagates

east relative to ū.

Now consider the situation shown in Figure 3, where one Rossby wave is formed

on a positive PV gradient and another is formed at a different latitude on a negative

PV gradient. In this case, the wave formed where q̄y < 0 (wave 1) is propagating

to the right relative to ū and the wave where q̄y > 0 (wave 2) is propagating to

the left relative to ū. They are hence known as counter-propagating Rossby

waves (CRW’s). If the two CRW’s are at sufficiently close latitudes to interact

then the meridional advection of air parcels associated with each wave (due to the

PV anomalies as described above) is felt at the home-base of the other. In Figure

Figure 3: Counter-propagating Rossby waves with a phase difference between π
2

and π that leads to mutual growth and hindering of each’s propagation direction.
Bold horizontal arrows indicate each wave’s propagation direction in the absence of
interaction. Horizontal arrows labelled U indicate the advection of the wave due
to the background zonal flow, relative to mid-channel flow. Bold vertical arrows
indicate meridional air parcel advection due to the CRW at that location, dotted
vertical arrows indicate air parcel advection due to the other CRW. Taken from
Heifetz and Methven (2005).

3, the positive PV anomalies of wave 2 are between a quarter and a half wavelength

to the left of the positive PV anomalies of wave 1. We say the phase difference

10



ε = ε2 − ε1 (where εi = kxi and the x = 0 at the positive anomaly of wave 1) is

between π
2

and π. Following the arguments of Hoskins et al. (1985), in this partic-

ular configuration, negative PV air at home-base 2 is advected north (by the flow

induced by wave 1) where there is already a negative PV anomaly at wave 2. Thus

the negative anomaly of wave 2 is amplified. However, this occurs slightly right of

the centre of the negative anomaly of wave 2, thus forcing the anomaly to the right

and so hindering its tendency to propagate to the left.

Similarly, the advection of air parcels from wave 2 that is felt at wave 1 acts to

amplify the negative anomaly there but reduce its propagation to the right. The

net effect is that the two CRW’s mutually amplify one another and hinder their

counter-propagation.

Applying the same argument to the configuration where 0 < ε < π
2
, we find that the

two CRW’s also mutually amplify one another but act to shift one another’s neg-

ative anomalies in the direction they are already propagating, so that the CRW’s

propagate more rapidly in their opposite directions. Thus the interaction helps the

counter-propagation.

Thus, for 0 < ε < π, a large ε causes the CRW’s to hinder each other and so

reduce ε, while a small ε causes the CRW’s to help each other and so increase ε as

summarised in 4. The CRW’s therefore converge to some ε in this range where they

phase-lock and so propagate with the same phase speed (including the effect of the

interaction). As mutual amplification occurs for all phase differences in this region,

the waves continue to grow indefinitely when in their phase-locked configuration.

This is known as the growing normal mode (GNM).

Similarly, for an initial ε between 0 and −π, the CRW’s mutually decay by each

advecting high PV air to where the other has a negative anomaly. It also fol-

lows that the CRW’s hinder each other for −π < ε < −π
2

and help each other for

−π
2
< ε < 0. Therefore the CRW’s can phase-lock at some negative ε and continue

to decay indefinitely. Thus is known as the decaying normal mode (DNM). How-

ever, this is an unstable fixed point in the phase diagram (Figure 4).

Thus we see that either the GNM or DNM is reached if the below condition, known

as the Charney-Stern criterion for instability (Charney and Stern (1962)) , is satis-
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fied:

qy < 0 for CRW1 and qy > 0 for CRW2 (33)

where the numbering of the CRW’s is arbitrary. In reality the background zonal flow

ū is different at the locations of the two waves. If ūqy<0 > ūqy>0, i.e. the background

flow is greater (more positive) where the PV gradient is negative than where it is

positive, then each CRW initially propagates in the same direction as the relative

zonal flow and so wave 1 is forced to the right of wave 2. This means ε is made

negative whatever the initial phase difference and so the CRW’s cannot phase-lock.

If however:

ūqy>0 > ūqy<0 (34)

as is pictured in Figure 3, then the wind shear forces wave 2 to the right of wave 1

(ε > 0) and the GNM is eventually reached, whatever the initial phase difference.

(34) is known as the Fjortoft criterion for instability (Fjørtoft (1950)). The situation

Figure 4: A summary of the mutual growth/decay and mutual helping/hindering for
all CRW phase differences in the situation where (33) and (34) are satisfied, taken
from Heifetz et al. (2004a). The arrows in the innermost circle indicate convergence
to ε+, the phase difference in the GNM(ε− denotes the phase difference in the DNM).
In this case π

2
< ε+ < π and −π < ε− < −π

2
.

where two CRW’s form at locations sufficiently close to interact and where (33) and

(34) are satisfied is called shear instability. If two CRW’s satisfying (33) and

(34) are formed at different latitudes as described and so interact across the y-axis

12



then the shear instability described is called barotropic instability. Alternatively,

two CRW’s may be formed at the same latitude but at different altitudes and so

interact in the vertical (across the z-axis). In this case the meridional advection of

air parcels associated with each CRW is felt higher up (or lower down) at the other,

as illustrated in Figure 5. In this case it is called baroclinic instability. In reality

growth occurs via a combination of barotropic and baroclinic instability. However,

for the purposes of this study we are solely concerned with baroclinic instability.

Figure 5: Counter-propagating Rossby waves separated vertically (but otherwise
identical to those in Figure 3) where the meridional advection of air parcels at the
level of each CRW is felt higher up or lower down at the level of the other. All
arrows are as in Figure 3. Taken from Heifetz et al. (2004a).

2.2 The CRW equations

With a physical picture of the interaction between two edge waves in place, we seek

a set of equations to describe the evolution of their amplitudes and phases. We

recall:
∂q

∂t
+ ū

∂q

∂x
+ vq̄y = 0 (35)

Following Heifetz et al. (2004a) , we write the total PV perturbation q and the

associated meridional wind v as linear combinations of the two CRW’s:

q = Q1e
iε1q1 +Q2e

iε2q2 (36)

13



v = Q1e
iε1v1 +Q2e

iε2v2 (37)

where Q1,Q2 are the amplitudes of the two waves and ε1,ε2 are their phases. We

assume wave-like perturbations in the zonal direction:

qj = q̃je
ikx ψj = ψ̃je

ikx (38)

Recalling v = ∂ψ
∂x

, we put:

vj = −iṽjeikx = ikψ̃je
ikx (39)

At z1, the location of wave 1, we must have q2 = 0, i.e. the PV there is descibed

purely by q1. Substituting (36) and (37) into (35) with q2 = 0 and, dividing by eikx,

we obtain the evolution of amplitude and phase at z1:(
Q̇1e

iε1 + iε̇1Q1e
iε1 + ikū1Q1e

iε1
)
q̃1 − i

(
Q1e

iε1 ṽ1 +Q2e
iε2 ṽ2

)
q̄y1 = 0 (40)

where dotted letters denote time derivatives and ūi and q̄yi denote the velocity and

PV gradient at the location of wave i. Dividing by Q1e
iε1 q̃1 and equating the real

and imaginary parts we obtain:

Q̇1 = −Q2γ
1
2sinε (41)

ε̇1 = −kū1 + γ1
1 +

Q2

Q1

γ1
2cosε (42)

where ε = ε2 − ε1 is the phase difference between the two waves and:

γij =
ṽj
q̃i
q̄yi (43)

describes the effect of the meridional wind induced by wave j felt at wave i. Applying

the same method at z2, the location of wave 2, and thus imposing q1 = 0, we obtain:

Q̇2 = Q1γ
2
1sinε (44)

ε̇2 = −kū2 + γ2
2 +

Q1

Q2

γ2
1cosε (45)

Equations (41), (42), (44) and (45) are known as the CRW evolution equations.

(41) and (44) demonstrate that the amplitude of each wave evolves purely due to

interaction with the other wave. (42) and (45) demonstrate the evolution of the
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phase speed of each wave is a combination of advection by the basic state zonal

flow (the first term in each), its own natural propagation direction due to the sign

of the PV gradient on which it is formed (the second term in each) and the effect

of the other wave on its propagation direction (the third term of each). A further

condition is required to completely specify the relative CRW amplitudes. Heifetz

et al. (2004a) argue that the most appropriate one is:

−γ1
2 = γ2

1 = γ (46)

where γ > 0 is known as the interaction coefficient. Equations (41), (42), (44) and

(45) can then be simplified to:

χ̇ = γ
(
1− χ2

)
sinε (47)

ε̇ = −k
(
c2

2 − c1
1

)
+ γ

(
χ+

1

χ

)
cosε (48)

where χ = Q1

Q2
and cii = ūi − γii

k
is the phase speed of wave i in the absence of inter-

acton (referred to as the intrinsic phase speed of wave i).

In the phase-locked configuration, the two waves must grow at the same rate. There-

fore, from (41), (44) and (46), the normal mode growth rate, i.e. the rate of change

of amplitude for both waves in the phase-locked configuration (the GNM or DNM),

is given by:

σ = γsinεNM (49)

where εNM is the normal mode phase difference. This illustrates that mutual growth

occurs for 0 < ε < π and mutual decay occurs for −π < ε < 0 as argued in Section

2.1.

We now consider the GNM alone. From (41), (44) and (46), we see that when

the two waves have equal growth rates (as per the GNM) they also have equal

amplitudes. From (48), we see that equal phase speeds ε̇ = 0 (as per the GNM)

implies:

cosε+ =
k(c2

2 − c1
1)

2γ
(50)
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where ε+ denotes the GNM phase difference. Combining (49) and (50) and using

cos2φ+ sin2φ = 1, we obtain:

σ =

(
γ2 − k2 (c2

2 − c1
1)

2

4

) 1
2

(51)

Given the dependence of wavelength on growth rate, we would thus like to discover

the fastest growing wavelengths for specific basic states defined by ū and q̄y. First

however, it is necessary to describe how an expression for q̄y is obtained.

2.3 Formulation of the PV gradient

From (30), assuming constant N , the basic state PV is given by:

q̄ = f0 + βy +
∂2ψ

∂x2
+
∂2ψ

∂y2
+
f 2

0

N2

1

ρ

∂

∂z

(
ρ
∂ψ

∂z

)
(52)

As stated earlier, in stability studies, the basic state is taken to be zonally symmetric

so that ū = ū(y, z). We recall the horizontal wind equations:

v̄ =
∂ψ

∂x
, ū = −∂ψ

∂y
(53)

Substituting (53) into (52), assuming no basic state meridional velocity v̄ = 0 and

differentiating w.r.t. y, we obtain the basic state meridional PV gradient:

q̄y = β − ∂2ū

∂y2
− f 2

0

N2

1

ρ

∂

∂z

(
ρ
∂ū

∂z

)
(54)

For a purely baroclinic flow as we are interested in, i.e. ū varies only in the vertical,

(54) becomes:

q̄y = β − f 2
0

N2

1

ρ

∂

∂z

(
ρ
∂ū

∂z

)
(55)

Substituting the exponentially decaying density profile (16) into (55), we obtain:

q̄y = β +
f 2

0

N2

(
1

Hρ

∂ū

∂z
− ∂2ū

∂z2

)
(56)

Using the Held height scale (7), we find that:

q̄y = β

(
1 +

Hz

Hρ

∂û

∂ẑ
− ∂2û

∂ẑ2

)
(57)
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meaning that q̄y is non-dimensionalised with a scale of β. So, from (57), in order

to satisfy the Charney-Stern criterion for baroclinic instability (33), we require a

vertical zonal velocity profile û(ẑ) such that d2û
dẑ2
− Hz

Hρ
dû
dẑ

> 1 somewhere in the

vertical and d2û
dẑ2
− Hz

Hρ
dû
dẑ
< 1 somewhere else in the vertical.

2.4 The Charney model

The constant density Charney model describes the simplest basic state where baro-

clinic growth via CRW interaction is possible without an upper boundary. It consists

of a negative potential temperature gradient at the ground θy < 0 (as is normally the

case in the Northern Hemisphere) in thermal wind balance with a uniform increase

of zonal wind with height:

ū = Λz (58)

where Λ is a positive constant. For constant density, Hρ =∞ from (16). Also, from

(58), ∂2u
∂z2

= 0. Therefore, from (57), the PV gradient is equal to β, i.e. constant and

positive. Note that, from (43), the evolution of amplitude is proportional to q̄y so,

from (57), we see that the introduction of density decay would increase q̄y so that

baroclinic growth would be faster.

So it may seem that, since there is no negative PV gradient, the Charney-Stern

criterion (33) cannot be satisfied for the Charney model and so CRW’s are not

possible. However, we shall now see that, due to the negative PT gradient at the

ground, a pair of CRW’s can indeed be formed.

2.5 Boundary waves

We recall the equation for hydrostatic balance:

∂ψ

∂z
=
b′

f0

(59)

For a warm anomaly (b′ > 0), concentrated at the ground with no interior PV

anomalies above it, (59) shows that the induced streamfunction ψ increases with

height. Since we must have decay of the streamfunction with height, this means that

ψ < 0 near the ground. Similarly, the streamfunction must decay with horizontal

distance from the centre of the perturbation. From (22), this negative streamfunc-

tion is associated with a negative pressure anomaly. Therefore, there is cyclonic

circulation (positive q) around the negative ψ anomaly and hence a positive tem-
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perature anomaly behaves as a positive PV anomaly. By a reverse argument, a cold

anomaly (b′ < 0) induces an anti-cyclonic circulation around a positive streamfunc-

tion anomaly and so behaves as a negative PV anomaly.

Since, in the case of the Charney model, a negative temperature anomaly at the

boundary induces anticyclonic flow like a negative PV anomaly in the interior, a

surface buoyancy wave propagates along basic state PT contours in the same way

as interior PV waves propagate along PV contours.

For interior temperature anomalies with the boundary sufficiently far away (as is the

case in Figure 2), cyclonic anomalies are induced by positive PV anomalies where
∂2ψ
∂z2

> 0 and therefore, from (59), not at a local maximum or minimum in b′. There-

fore, the above argument is valid only for boundary waves.

With a picture of shear instability via the interaction of a boundary temperature

wave and an interior wave in place, we can derive an interesting characteristic of the

GNM in the Charney model by first establishing the intrinsic phase speeds of each

wave:

2.5.1 Boundary wave phase speed

The linearised thermodynamic equation in terms of bouyancy is:(
∂

∂t
+ ū

∂

∂x

)
b′ + vb̄y = 0 (60)

For a boundary wave, we impose that it has no interior PV:

q =
∂2ψ

∂x2
+
f 2

0

N2

∂2ψ

∂z2
= 0 (61)

The perturbation streamfunction is therefore given by:

ψ = Aei(kx−ωt)e−Nkz/f0 (62)

for some constant A. We therefore have:

v = ikAeikxei(kx−ωt) b′ = −NkAei(kx−ωt)e−Nkz/f0 (63)
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Substituting (63) into (60):

c =
ω

k
= ū− 1

Nk
b̄y (64)

2.5.2 Interior wave phase speed

From the PV evolution equation (35), assuming a wave-like perturbation purely in

the x-direction with wavenumber k and frequency ω:

q = q̃(z)ei(kx−ωt) (65)

ψ = ψ̃(z)ei(kx−ωt) (66)

and hence, from the geostrophic streamfunction identities:

v =
∂ψ

∂x
q = ∇2ψ (67)

where N and ρ are assumed constant for the purposes of illustration, we obtain:

q = −k2ψ̃ei(kx−ωt) v = ikψ̃ei(kx−ωt) (68)

Substituting (68) into (35) and dividing by ψ̃ei(kx−ωt), we obtain the phase speed for

a Rossby wave propagating on an interior PV gradient:

c =
ω

k
= ū− 1

k2
q̄y (69)

2.6 Existing results for the Charney model

Comparing (64) and (69), we see that as wavelength increases (i.e. as k decreases),

the intrinsic westward phase speed of wave 2 increases more rapidly than the intrinsic

eastward phase speed of wave 1. The CRW’s can therefore only phase-lock in a

hindering configuration, which from Figure 4, means π
2
< ε+ < π. At ε+ = π, from

(49), the growth rate σ is zero and so for a sufficiently large wavelength there can

be no normal mode growth. This is known as the first neutral point. Lindzen et al.

(1980) have shown that the first neutral point for the Charney model occurs at:

r =

(
1 +

2Hz

Hρ

) 1
2

(70)

which, for constant density, i.e. Hρ = ∞, is equal to 1 as shown in Figure 6 where

the dispersion relations for growth rate and phase speed are shown for the constant
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density Charney model. We see neutral points at integer r where r = λ
4πL

is the

non-dimensional wavelength. There is a maximum at r ≈ 0.63. For mid-latitudes,

f0 is greater and β smaller than those given in Section 1.3 for westerly jets due to

the latitude dependence. In this case Heifetz et al. (2004b) have used f0 = 10−4s−1

and β = 1.6× 10−11m−1s−1, which, using the expressions for scales given in Section

1.3, implies Hz ≈ 15km, L ≈ 1650km, U ≈ 45ms−1 and T ≈ 10 hours. Since,

in this case r = 1 corresponds to a wavelength of approximately 21,000 km, we

are solely interested in the the region 0 < r < 1 before the first neutral point.

Figure 6: Dispersion relations for the normal modes in the constant density Charney
model with non-dimensional wavelength r along the horizontal axis. (a) Eastward
phase speed, denoted Cr and growth rate, denoted KCi of the unstable modes.
Neutral points occur at integer r. (b) Westward phase speed of the first two neutral
modes shown with the eastward phase speeds of the unstable modes from (a). Note
the change in scale from (a). Taken from Heifetz et al. (2004b)

In Figure 7, the PV structures and induced meridional wind structures are shown

for each CRW in the constant density Charney model. We see that, as required,

the upper CRW has zero PV at the ground where the lower CRW has a PV maxi-

mum and the lower CRW has zero PV at the level where the upper wave has a PV
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Figure 7: Non-dimensionalised x-z cross sections showing contours of PV q and
induced meridional wind v in the constant density Charney model. Surface PT
anomalies are also indicated by Θ. The positive and negative meridional wind that
each CRW induces at the other’s home-base is denoted by circled crosses and dots
respectively. (a) The fastest growing normal mode (as obtained in 6). (b) The
corresponding DNM, defined as the complex conjugate as the GNM in (a). (c) and
(d) The upper and lower CRW’s obtained using the home-base method. Taken from
Heifetz et al. (2004b)

maximum. Since the upper CRW has no temperature anomaly at the ground, its

induced flow is simply cyclonic (anti-cyclonic) around the positive (negative) PV

anomalies. Regarding the lower CRW, we note that, since at the ground θy < 0 but

q̄y = β > 0, northward displacement of air parcels implies a positive PT anomaly

but a negative PV anomaly (see Figure 2) with the reverse true for a southward

displacement. Therefore, since the lower CRW is defined by a strong temperature

anomaly signature which overwhelms the interior PV, the induced flow is cyclonic

(anti-cyclonic) around the positive (negative) temperature anomalies, despite the

negative (positive) interior PV there. This leads to the eastward tilt in PV contours

but westward tilt in meridional wind contours that we see for the GNM (where

ε > 0), with the reverse true for the DNM. In Figure 8, CRW structures for the

constant density Charney model are shown. For the upper CRW we see a positive

PV anomaly structure with the greatest maximum amplitude obtained for r = 0.63,

shown to be the fastest GNM in Figure 6. The PV structure tends to exponential

21



Figure 8: Vertical PV structures of the upper and lower CRW’s obtained using
the home-base method in the constant density Charney model. Amplitudes are
normalised so that, when superposed with the correct phase difference, they recon-
struct the GNM normalised by its surface tempertature. The numbers label the
wavelengths r. (a) and (b) show the upper CRW and (c) and (d) the lower CRW.
Taken from Heifetz et al. (2004b).

decay from the ground as r → 1 and tends to a δ function at the ground as r → 0.

The fastest GNM has its homebase the furthest from the ground. The lower CRW

has negative PV at the ground, extending as far as the boundary PT anomalies are

able to overwhelm the interior PV anomalies.

Having observed some of the CRW’s and PV structures that have been found for

westerly jets in the literature, we now wish to establish these for easterly jets. First

though a model description is needed.
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3 Semi-analytic model procedure

3.1 Outline of problem

As stated in the introduction we wish to look at the time evolution of PV perturba-

tions on the AEJ in order to address each of the questions posed and compare AEW

characteristics to the characteristics of waves propagating on westerly jets in the

literature. We therefore require a model that will take an initial PV perturbation

q0(x, z) and allow it to develop according to the linearised PV conservation equation

(35).
∂q

∂t
+ ū

∂q

∂x
+ vq̄y = 0 (71)

for a given basic state. We use a semi-analytic model as developed by Hylke De

Vries for his thesis (De Vries (2006)) and used by Methven and de Vries (2008) to

perform basic experiments for the time evolution of simple initial PV structures on

a basic state defined by a uniform westerly shear. The use of the model to simulate

PV evolution on the AEJ consists merely of altering the basic state zonal flow defi-

nition. The model works as follows:

Assuming wavelike perturbations in the x-direction, the perturbation streamfunc-

tion and PV are written:

ψ(x, z, t) = eikxψ̃(z, t) (72)

q(x, z, t) = eikxq̃(z, t) (73)

Substituting (72) and (73) into (71) and dividing by eikx, we obtain:

∂q̃

∂t
= −ik

(
ūq̃ + q̄yψ̃

)
(74)

For a given basic state, i.e. where q̄y and ū are known functions of z, we seek a

solution to (74) in terms of a perturbation defined by q̃ and ψ̃. From (74), we see

that, if we know the PV and streamfunction at a given time, then we can find the

PV at a subsequent time. Thus for an initial value problem, where the initial PV

structure is defined, we seek a means of obtaining the streamfunction from the PV

at a given time. From (30), for constant N , the instantaneous PV perturbation is

related to the corresponding streamfunction as follows:

q(x, y, z) =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
f 2

0

N2

1

ρ

∂

∂z

(
ρ
∂ψ

∂z

)
(75)
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(75) states that the perturbation PV is equal to the curvature of the perturbation

streamfunction. For a flow perturbed in the x-z plane alone, (75) can be simplified

to:

q (x, ẑ) =
∂2ψ

∂x2
+

1

ρ

∂

∂ẑ

(
ρ
∂ψ

∂ẑ

)
(76)

where ẑ = N
f0
z. Note, since N and f0 have the same dimensions, ẑ is not non-

dimensional, just rescaled, and is different to the non-dimensional ẑ introduced in

Section 1.3. We hereafter dispense with the circumflex (̂ ) notation for the remainder

of this section so that z refers to height rescaled by N
f0

until further notice. From

(72) and (76), we have:

q̃(z) = −k2ψ̃(z) +
1

ρ

d

dz

(
ρ
dψ̃

dz

)
(77)

Thus we seek a means of inverting the differential operator in (77). One way of

doing so is to consider the corresponding Green function problem:

−k2G(z, h) +
1

ρ

d

dz

(
ρ
dG

dz

)
= δ(z − h) (78)

where the RHS is zero for z 6= h and, by Green function theory:

q̃(z) =

∫ ∞
0

δ(z − h)q̃(h)dh (79)

ψ̃(z) =

∫ ∞
0

G(z, h)q̃(h)dh (80)

From (79), the PV at z is the integral over all vertical levels h ≥ 0 of the PV at h

multiplied by the δ(z − h) function. The δ function therefore ensures that only the

PV at h = z contributes to q̃(z) at a given instant (as is logically necessary). From

(80), however, we see that, due to the Green function G(z, h), the PV at every level

h ≥ 0 contributes to the streamfunction at z.

The physical interpretation of this is to consider the PV at each vertical level to

be a δ function spike which is concentrated into a single infinitesimal layer. How-

ever, due to the advection of air parcels that it excites, it is contributing at any given

instant to the streamfunction at all other levels. Where the basic state meridional

PV gradient is non-zero, the induced meridional wind will advect PV and hence

modify PV anomalies. Following Heifetz and Methven (2005), we call the stream-
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function associated with a PV spike at z = h a Kernel Rossby Wave (KRW) at

h and say that the KRW at h excites the KRW’s at all other levels z.

In order to represent (74) in a numerical model, we discretise the vertical into N

strips of width ∆z so that z is defined at z0,z1, ... ,zN where zj = j∆z. Represent-

ing the time derivative in (74) by a finite difference approximation, we can find that

q̃n+1, the x-independent part of the PV at time tn+1, can be obtained if we know

both q̃n and ψ̃n. Thus for an initial value problem, where q̃0
j = q̃0(zj) is given for

j = 0, 1, ..., N , we obtain the streamfunction ψ̃n from the PV q̃n at each time tn for

n = 0, 1, 2, ... using the Green function method.

We consider a KRW at each level z0, z1, ..., zN . In reality, there are an infinite num-

ber of KRW’s throughout the vertical, each representing the PV at a given level.

Therefore as ∆z → 0 and hence N →∞, the model approaches the continuous flow.

G(z, h) represents the streamfunction associated with the PV δ function at z = h

and its role is to determine the extent to which the KRW at h affects the stream-

function at z. So, from (80), the total streamfunction at a given level is the sum

of the streamfunction contributions of each KRW. So we expect the Green function

to peak at z = h (i.e. affect the streamfunction at its own level the most) and fall

either side, the further from z = h its effect is felt. We thus turn our attention to

the structure of the Green functions in question.

3.2 Specific Green functions

We recall:

−k2G(z, h) +
1

ρ

d

dz

(
ρ
dG

dz

)
= δ(z − h) (81)

The exact Green function therefore is obtained as a solution to the homogenous

problem (with the RHS equal to zero) for two subdomains either side of the delta-

function at z = h. The exact solution depends on a choice of boundary conditions

and density profile.

In order to establish a boundary condition for G, we recall the equation for hy-

drostatic balance:

b′ = f0
∂ψ

∂z
(82)
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Assuming no potential temperature perturbation at the boundary, θ′ = 0 and hence

b′ = gθ′

θ0
= 0, we obtain:

dψ̃

dz
= 0 (83)

Hence, from (80) :
dG

dz
= 0 at solid boundaries (84)

In the absence of an upper boundary, we require that the effect of a KRW at z = h

decays to zero as the distance from h tends to infinity. Thus:

G→ 0 as z →∞ if no upper boundary (85)

We now find three specific Green functions for different density and boundary spec-

ifications.

3.2.1 Constant density with a rigid lid

We first find the Green function, G1, for the case where z is bounded at z = H (as

well as at z = 0) and the density is constant.

For constant ρ, (78) becomes:

d2G

dz2
− k2G = δ(z − h) (86)

Thus we require exponential solutions. Imposing boundaries at z = 0, H, we require
dG
dz

= 0 at these heights. In order to satisfy both these conditions we must construct

a solution consisting of two separate branches. From (86), there must be a discon-

tinuity in the gradient at z = h so this is the point where the two branches must

meet (which confirms the notion that the Green function should have a maximum

at z = h, i.e. a KRW should have the greatest effect at its own level). Thus the

general solution is:

G1(z, h) =

{
Acosh [k (H − z)] z > h

Bcosh(kz) z < h
(87)

For continuity we require that the two branches of the solution meet at z = h:

Acosh [k (H − h)] = Bcosh(kh) (88)
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We can obtain a further condition on the solution by considering the discontinuity

in dG
dz

at z = h that the δ function creates. Integrating (86) between h − ∆z and

h+ ∆z: ∫ h+∆z

h−∆z

d2G

dz2
dz − k2

∫ h+∆z

h−∆z

Gdz =

∫ h+∆z

h−∆z

δ(z − h)dz (89)

we obtain: [
dG

dz

]h+∆z

h−∆z

− k2

∫ h+∆z

h−∆z

Gdz = 1 (90)

using the fundamental property of the δ function. As ∆z → 0, the area under

the G curve between h −∆z and h + ∆z must tend to zero since G is everywhere

finite. Hence the second term on the LHS of (90) disappears. However, due to the

aforementioned discontinuity in dG
dz

at z = h, the first term remains, leaving:

[
dG

dz

]h+∆z

h−∆z

→ 1 as ∆z → 0 (91)

meaning that there is a change of 1 in dG
dz

at z = h, indicating a minimum in G at

z = h (but still a maximum of the modulus since a KRW at z = h should have the

greatest effect at its own level). Applying (91) to (87) yields:

−kAsinh [k (H − h)]− kBsinh(kh) = 1 (92)

Substituting (88) into (92) we obtain:

kAsinh [k (H − h)] +
kAsinh (kh)cosh [k (H − h)]

cosh(kh)
= −1 (93)

Hence we deduce:

A = − cosh(kh)

k [cosh(kh)sinh [k (H − h)] + sinh(kh)cosh [k (H − h)]]
(94)

which, using the identity sinh (φ1 + φ2) = coshφ1sinhφ2 + sinhφ1coshφ2, simplifies

to:

A = − cosh(kh)

ksinh(kH)
(95)

and hence, substituting (95) into (88):

B = −cosh [k (H − h)]

ksinh(kH)
(96)
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giving the full solution:

G1(z, h) = − 1

ksinh(kH)

{
cosh(kh)cosh [k (H − z)] z > h

cosh [k (H − h)] cosh(kz) z < h
(97)

3.2.2 Constant density without a rigid lid

We now seek the Green function, G2, for the model with no upper boundary but

still constant density. We now require dG
dz

= 0 at z = 0 and G→ 0 as z →∞. From

(86), this implies that the full solution should be as follows:

G2(z, h) =

{
Ae−k(z−h) z > h

Bcosh(kz) z < h
(98)

The ODE for G2 is the same as for G1 so (91) is also valid in this case. Therefore

the conditions at z = h of continuity and unit change in dG
dz

yield, respectively:

A = Bcosh(kh) (99)

−kA− kBsinh(kh) = 1 (100)

Combining (99) and (100), we obtain:

B (cosh(kh) + sinh(kh)) = −1

k
(101)

Hence:

B = −1

k
e−kh (102)

Hence, substituting (102) into (99):

A = − 1

2k

(
1 + e−2kh

)
(103)

Thus the full solution is given by:

G2(z, h) = − 1

2k

{ (
1 + e−2kh

)
e−k(z−h) z > h

2e−khcosh(kz) z < h
(104)

3.2.3 Exponentially decaying density without a rigid lid

Finally, we find the Green function, G3, where there is no rigid lid and we vary

the density field to decay with height as is observed to be a good approximation
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in the atmosphere due to its compressibility and approximate hydrostatic balance

(17). Putting:

ρ(z) = ρ0e
−z/Hρ (105)

and substituting into (78) we obtain:

−k2G+ ez/Hρ
d

dz

(
e−z/Hρ

dG

dz

)
= δ(z − h) (106)

Hence:
d2G

dz2
− 1

Hρ

dG

dz
− k2G = δ(z − h) (107)

By considering the corresponding quadratic characteristic equation for this ODE,

this gives the general solution:

G3(z, h) =

{
A
(
C1e

λ1(z−h) +D1e
λ2(z−h)

)
z > h

B
(
C2e

λ1z +D2e
λ2z
)

z < h
(108)

where λ1,2 =
1±
√

1+4k2H2
ρ

2Hρ
. Again, we require G→ 0 as z →∞. This implies C1 = 0

since λ1 > 0 and λ2 < 0 ∀k > 0.

Again, we also require dG
dz

= 0 at z = 0. This implies λ1C2 + λ2D2 = 0 and so

D2 = −λ1
λ2
C2.

Thus, allowing A to absorb D1 and B to absorb C2

λ2
, we obtain:

G(z, h) =

{
Aeλ2(z−h) z > h

B
(
λ2e

λ1z − λ1e
λ2z
)

z < h
(109)

Since the ODE for G3 is different to that for G1 and G2, we must check that the

condition of unit change in dG
dz

at z = h is still valid. Integrating (107) between

h−∆z and h+ ∆z:[
dG

dz

]h+∆z

h−∆z

− 1

Hρ

[G]h+∆z
h−∆z − k

2

∫ h+∆z

h−∆z

Gdz = 1 (110)

As ∆z → 0, the change in G between h−∆z and h + ∆z must tend to zero, since

G is continuous. Therefore the second term on the LHS of (110) disappears (as, it

has already been demonstrated, does the third term) and so (91) is indeed valid in

this case also. Therefore the conditions at z = h of continuity and unit change in
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dG
dz

yield, respectively:

A = B
(
λ2e

λ1h − λ1e
λ2h
)

(111)

λ2A− λ1λ2B
(
eλ1h − eλ2h

)
= 1 (112)

Substituting (111) into (112):

λ2B
(
λ2e

λ1h − λ1e
λ2h
)
− λ1λ2B

(
eλ1h − eλ2h

)
= 1 (113)

Hence:

B =
1

λ2 (λ2 − λ1)
e−λ1h (114)

And substituting (114) into (111):

A =
1

λ2 − λ1

(
1− λ1

λ2

e(λ2−λ1)h

)
(115)

giving the general solution:

G3(z, h) =
1

λ2 − λ1

{ (
1− λ1

λ2
e(λ2−λ1)h

)
eλ2(z−h) z > h

1
λ2
e−λ1h

(
λ2e

λ1z − λ1e
λ2z
)

z < h
(116)

3.3 Comparing Green functions

In reality, we have a density profile that decays with height and, although the

tropopause can act as a rigid lid, the AEJ’s mean height is approximately 4km (a

quarter the height of the tropopause over West Africa), so G3 is in fact the most

realistic Green function and the one that will be used for all model simulations in

this study. However, it is useful to plot all 3 together to illustrate the effects of

unbounded flow and density decay on the Green function.

In Figure 9, G1,G2 and G3 are plotted against z for 0 ≤ z ≤ H for H = 10km

(where, in the case of G1, H also represents the rigid lid). We put Hρ = 7km and,

following De Vries et al. (2009), k = 1.6
H

and vary the KRW height h. For all the

curves shown, we see a smooth decrease above and below the height h of the KRW.

This represents the streamfunction associated with a PV δ function at z = h with

decreasing effect on KRW’s the further they are from z = h.
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Figure 9: G1(z, h),G2(z, h) and G3(z, h) against (re-dimensionalised) z for 0 ≤ z ≤
10 km with Hρ = 7km and k = 1.6× 10−4 m−1. h = 0 (top left), 2.5 km (top right),
5 km (bottom left) and 10km (bottom right).

G1 has greater amplitude than G2 throughout the vertical in each figure. This

illustrates the fact that, when a rigid lid is imposed, the effect of meridional advec-

tion felt higher up or lower down is magnified within the confined region.

For the KRW at the ground, G3 (where the density decays with height) has greater

magnitude throughout the vertical than G2 (which is for an otherwise identical

model). As we raise the level of the KRW, G3 comes to have a smaller amplitude

than G2. This indicates that a KRW in an area of high density has a greater effect

on a KRW in an area of lower density than if the density were constant.
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3.4 Time evolution

Having established the exact Green functions for each model settings, we can simply

evaluate them at each level zj and incorporate the values obtained into the program

as follows:

Substituting (79) and (80) into (74) and dividing by eikx we obtain:

∂q̃

∂t
= −ik

[
ū

∫ ∞
0

δ(z − h)q̃(h)dh+
∂q

∂y

∫ ∞
0

G(z, h)q̃(h)dh

]
(117)

where q̃(h) is shorthand for q̃(h, t). The RHS of (117) is known as the linear dy-

namical operator for q̃ and describes the evolution of PV using the Green function

method. From (73) and (72) we see that z and t act to define the amplitude and

phase of the waves that form along the x-axis. Hence, following Heifetz and Methven

(2005), we put:

q̃(z, t) = Q(z, t)eiε(z,t) (118)

where Q(z, t) and ε(z, t) are the amplitude and phase respectively of q(x, z, t). We

subsequently use the shorthand Q(z) and ε(z). Substituting (118) into (117) and

dividing by eiε(z), we obtain:

Q̇+iQ(z)ε̇ = −ik
[
ū

∫ ∞
0

Q(h)ei[ε(h)−ε(z)]δ(z − h)dh+ q̄y

∫ ∞
0

Q(h)ei[ε(h)−ε(z)]G(z, h)dh

]
(119)

Finally, equating the real and imaginary parts of (119) and using the following

identities: ∫ ∞
0

f(h)sin [ε(z)− ε(h)] δ(z − h)dh = 0 (120)∫ ∞
0

f(h)cos [ε(z)− ε(h)] δ(z − h)dh = 1 (121)

we obtain the KRW amplitude and phase evolution equations:

Q̇ = −kq̄y
∫ ∞

0

Q(h)sin [ε(z)− ε(h)]G(z, h)dh (122)

ε̇ = −k
[
ū+ q̄y

∫ ∞
0

Q(h)

Q(z)
cos [ε(z)− ε(h)]G(z, h)dh

]
(123)

(122) and (123) indicate that the amplitude and phase of each KRW evolves ac-

cording to meridional displacements of air due to KRW’s at every other level. The

G(z, h) function serves to magnify/reduce the effect of each KRW, depending on its
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proximity to the KRW in question.

The leapfrog finite difference numerical scheme which we use to approximate the

PV conservation equation (71) is thus:

Qn+1
j −Qn−1

j

2∆t
= −k∆z q̄y(zj)

N∑
i=0

(
Qn
i sin

(
εnj − εni

)
G(zj, zi)

)
(124)

εn+1
j − εn−1

j

2∆t
= −k

[
ū(zj) + ∆z q̄y(zj)

N∑
i=0

(
Qn
i

Qn
j

cos
(
εnj − εni

)
G(zj, zi)

)]
(125)

i.e. we use the amplitude and phase of the KRW’s at all vertical levels z0,z1,...,zN at

time tn as well as the known analytic functions ū(zj), q̄y(zj) and G(zj, zi), in order

to calculate the amplitude and phase of the KRW at zj at time tn+1. As such it is

a semi-analytic model.

(122) and (123) describe the evolution of the continuous spectrum of PV. They

can be constrasted with the simple CRW equations (41), (42), (44) and (45) where

the evolution of PV is described by the interaction of 2 waves alone and hence known

as the discrete spectrum. For a given initial perturbation, the CRW equations do

not describe the full flow evolution as we shall see. In the subsequent sections we

will use the KRW model described here to model the growth of perturbations on the

AEJ and then establish how much of the growth can be explained by two CRW’s.

First, however, as stated at the beginning of this section, a definition of the basic

state for the AEJ is required.
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4 Defining idealised easterly jets and their stabil-

ity

4.1 Derivation of basic state for easterly jet

With a model defined for the evolution of PV in terms of KRW phase and ampli-

tude, we must establish a basic state for the AEJ defined by vertical profiles of zonal

velocity ū(z) and meridional PV gradient q̄y. These functions of z can then be sub-

stituted into the model equations (122) and (123) and will determine the instability

of the jet. As discussed in Section 1.1, θy > 0 at the ground (z = 0) in the region of

the AEJ so baroclinic instability can be achieved by a negative q̄y at some height in

the interior, i.e. at some z > 0.

With a single well-defined scale established (see Section 1.3), we dispense with the

circumflex (̂ ) notation so that z,u hereafter denote the non-dimensional height and

basic state zonal velocity respectively unless otherwise stated. Correspondingly,

we hereafter use the notation for the dimensional PV gradient to denote the non-

dimensional PV gradient, recalling (57):

q̄y = 1 +
Hz

Hρ

du

dz
− d2u

dz2
(126)

In a jet stream region, we expect to see a smooth vertical structure consisting of (i)

a peak velocity at the jet core, (ii) near zero velocity at the boundary(ies) and (iii)

a decay to zero as z →∞ if there is no upper boundary.

For the AEJ, we have just one boundary at z = 0. Therefore we put u(z) = 0

at z = 0 and u(z)→ 0 as z →∞.

One simple smooth function satisfying the given requirements is

u(z) = τze−z/γ (127)

where the τ and γ parameters are inserted to allow us to define a jet that is appro-

priately scaled and centred. Hence:

du

dz
= τe−z/γ

(
1− z

γ

)
(128)
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The observed mean height of the AEJ is 4 km. Hence, recalling the height scale

Hz = 2.2km, we require u to have a maximum at z = 4
2.2

= 1.8. From (128), this

maximum is given by zjet = γ. Hence:

γ = 1.8 (129)

The observed velocity of the AEJ core is -12 ms−1 (negative because of the easterly

jet). Hence, recalling the velocity scale U = 6.6ms−1, we require the maximum u to

be ujet = −12
6.6

= −1.8. Hence, from (127), we obtain:

τ =
ujet
zjet

ezjet/γ = −e (130)

given that γ = zjet and ujet = −zjet. Hence, substituting (129) and (130) into (127),

we obtain the exact solution for the vertical zonal wind profile that we will use to

represent the AEJ:

u(z) = −ze
(

1− z
zjet

)
where zjet = 1.8 (131)

The fact that |ujet| and |zjet| are equal results from using Λ = 3×10−3s−1 which is in

fact equal to 12ms−1

4000m
, i.e. the dimensional jet velocity divided by the dimensional jet

height. Hence |ujetdim
U
| = | zjetdim

Hz
|, where ujetdim and zjetdim refer to the dimensional

values of u and z at the jet core.

Substituting (131) into (126), we obtain the meridional PV gradient as a function

of z:

q̄y(z) = 1− e
(

1− z
zjet

) [
Hz

Hρ

(
1− z

zjet

)
+

2

zjet
− z

z2
jet

]
(132)

Figure 10 shows the zonal velocity and PV gradient through the vertical, using a

density height scale of Hρ = 7.7km. As we can see, q̄y is positive at the ground (due

to θy > 0) but negative for approximately 0 < z < 1.5, due to the curvature of the

jet cancelling β. So the Charney-Stern criterion for instability is satisfied. Further,

u(0) is more negative where qy < 0 than u(z) where qy > 0. Thus the Fjortoft

criterion for instability is also satisfied. Hence if one CRW is formed at the ground

and another somewhere between the ground and z = 1.5 then baroclinic growth

can occur. It should be noted that, although qy changes sign in the interior, thus

satisfying the Charney-Stern criterion (33) there (independently of the boundary
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temperature gradient), the basic state flow is greater (less negative) at the negative

PV gradient (below z = 1.5) than at the positive PV gradient above, so the Fjortoft

criterion (34) is not satisfied. Thus any anomalies created above z = 1.5 cannot

lead to phase-locking CRW’s.

Figure 10: Basic state zonal velocity (left) and PV gradient (right) against height
height for an easterly jet. All variables non-dimensional

4.2 Asymmetry between easterly and westerly jets

For the equivalent westerly jet we have, from (131):

u(z) = ze

(
1− z

zjet

)
where zjet = 1.8 (133)

and hence, substituting (133) into (57):

q̄y(z) = 1 + e

(
1− z

zjet

) [
Hz

Hρ

(
1− z

zjet

)
+

2

zjet
− z

z2
jet

]
(134)

In Figure 11 we see that a westerly jet at the latitude of the AEJ only serves to

enhance the β effect and hence q̄y remains positive throughout the vertical, except

at the ground where the boundary PV q̄y < 0 (due to θy < 0). Since u(z) > 0

for z > 0 the Fjortoft criterion is also satisfied for a westerly jet. Thus baroclinic

instability is possible via one CRW formed on the negative temperature gradient at

the ground and another formed on the positive PV gradient somewhere in the jet.

Recalling (43), the evolution of amplitude is proportional to q̄y. Therefore, since
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|q̄y| is greater for the westerly jet, baroclinic growth will faster than for the east-

erly jet (this is examined in the following section). This illustrates the asymmetry

between easterly and westerly jets due to the β effect stated in Section 1.2.

Figure 11: Basic state zonal velocity (left) and PV gradient (right) against height
for a westerly jet. All variables non-dimensional.
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5 Dispersion relation and structure

With a pair of CRW’s shown to be possible, we now turn our attention to the normal

mode problem and to the rate of growth to which they can lead. We recall:

∂q̃

∂t
= −ik

[
ū

∫ ∞
0

δ(z − h)q̃(h)dh+
∂q

∂y

∫ ∞
0

G(z, h)q̃(h)dh

]
(135)

Alternatively:

q̇ = Aq (136)

where q is the vector containing q̃i = q̃(zi) values for i=0,1,...,N and A, the linear

dynamical operator, is the matrix of coefficients describing the effect of q̃i on the

evolution of q̃j for i,j=0,1,...,N . The complex eigenvalues λ0, λ1,..., λN satisfying:

Aq = λq (137)

give the complex normal mode phase speeds c where:

q = q0e
ik(x−ct) = q0e

ik(x−Re(c)t)ekIm(c)t (138)

Thus the GNM and DNM growth rates are given by:

σGNM = kmax {Im(λ)} σDNM = kmin {Im(λ)} (139)

i.e. the greatest and smallest (most negative) imaginary parts of eigenvalues multi-

plied by k. And the GNM phase speeds are given by the corresponding real parts

of the eigenvalues. We note that the general solution to (136) is given by:

q(t) = q(0)eAt (140)

which illustrates that perturbations grow exponentially in the GNM.

5.1 Dispersion relation

We use the semi-analytic model with the linear dynamical operator obtained us-

ing the analytic Green functions to perform the above eigenanalysis for a range of

wavenumbers. The growth rates obtained are shown in Figure 12 along with those

for the equivalent westerly jet (see Section 4.2) and for the Charney model (uniform

westerly shear) with the same parameters. For the easterly jet normal mode growth
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occurs approximately in the region 0 < r < 0.5 with waves longer than this (r = 0.5

corresponds to a dimensional wavelength of approximately 3000 km) unable to grow.

The fastest growing wavelength is approximately r = 0.22 which is equivalent to a

dimensional wavelength of 1500 km. We see that both the easterly jet and Charney

model have greater growth rates and are able to sustain growth over a greater range

of wavelengths. This reflects the restriction imposed by β on an easterly jet. We

recall that growth rate is proportional to PV gradient (see (43)) which explains the

high growth rate of the westerly jet (recalling the large PV gradient in Figure 11).

In fact the westerly jet does not even seem to have a long wave cut-off as the other

two plots do. We suspect that this is due to a superimposition of growing modes

from approximately r = 0.55 onwards; however, this is irrelevant to our interests in

this study.

Also shown are the corresponding phase speeds, obtained as desribed above, up

to the long-wave cut-off for the easterly jet. The phase speed is always negative for

the easterly jet and always positive for the two, demonstrating that phase-locked

CRW’s always propagate with the shear. We see that, for an easterly jet, GNM phase

speed increases with wavelength, approaching the speed of the jet core z = −1.8 as

growth rate tends to zero, i.e. neutral waves are merely passively advected by the

jet. For the fastest wavelength r ≈ 0.22, the GNM phase speed is approximately

equal to -0.9, i.e. half the speed of the jet core.

Figure 12: Left: Dispersion relation for growth rate against wavelength for easterly
jet, westerly jet and uniform westerly shear, all with identical parameters. Right:
dispersion relation for phase speed against wavelength for the same profiles. Density
decays exponentially in all cases (see (16)). All variables non-dimensional.
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5.2 Growing normal mode structures of PV and meridional

wind

The full PV and meridional wind structures for the easterly jet are shown in Figure

13 for the fastest wavelength r = 0.22 and a near neutral wavelength r = 0.45 (see

Figure 12). Note the resemblance, especially for r = 0.22, to Figure 5, i.e. positive

and negative anomalies at the top of the perturbation are to the left of those at

the bottom, allowing anomalies to be amplified as described in Section 2.1. The

meridional wind is greatest at the ground where the boundary temperature wave

dominates. For the longer, almost neutral wavelength, the perturbation extends

further up, approaching z ≈ 1.5 where the PV gradient ceases to be negative (see

Figure 10). The growth rate of a PV structure extending to a height where the

PV gradient is very small is since growth rate is proportional to PV gradient (see

(43)). Since the Fjortoft condition (34) cannot be satisfied above this level and hence

CRW’s cannot phase-lock, as argued in Section 2.1, this is the height to which the

top of the GNM PV structure tends as the growth rate tends to zero.

5.3 CRW structures

The observations in the previous subsection are reflected in Figure 14 where the

vertical PV structures of the CRW’s are given for the same two wavelengths as well

as for the observed fastest growing wavelength for a westerly jet r = 0.29 (see Figure

12). A near neutral wavelength is not studied for a westerly jet because, as shown in

Figure 12, this would be for r >> 1, where r = 1 is equivalent to approximately 7000

km (note the difference in scale for r to that used in the literature for mid-latitude

parameters - see Section 2.6) and hence beyond the range of realistic wavelengths.

In all cases, the upper CRW has a positive PV maximum (since the Green functions

used are negative), which is sharp due to the change in sign of qy above it which

acts as a lid. The lower CRW’s are less distinctive and, similarly to those for the

Charney model in Figure 8, consisting of negative PV near the ground where the

boundary PT gradient dominates. As the growth rate tends to zero (compare the

first and second rows), the non-zero PV of both CRW’s approaches the height of zero

PV gradient z ≈ 1.5, similarly to the top of the structure approaching this height in

Figure 13 as explained. The CRW’s for the westerly jet do not have the sharpness

of those of the easterly jet since the PV gradient is positive throughout the interior.

Note the likeness of the CRW’s for the westerly jet (especially the upper CRW) to

those shown for the Charney model in Figure 8. It seems that, for westerly shear
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Figure 13: GNM PV (left) and meridional wind (right) on the x-z-plane for r = 0.22
(top) and r = 0.45 (bottom). Note the changes of scales between all plots. All
variables non-dimensional.

(where β does not need to be cancelled), the presence of a jet as opposed to linear

shear, does not significantly change the structures by which baroclinic instability is

possible (although, from Figure 12, the growth rate is significantly increased).
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6 Initial Value Problem

We are now interested to see how a given initial PV structure will evolve within

time tAEJ on the AEJ. We have seen the normal mode growth that the AEJ allows.

However, this does not describe the full evolution of the perturbation as there are

other mechanisms at work before the CRW’s phase-lock. General initial conditions

may include PV that did not arise from displacements of the zonally symmetric state.

Therefore, following De Vries et al. (2009), the perturbation PV is partitioned as

q = qd + qp where qp is known as the passively advected residual PV (PAR PV).

The PAR PV is merely advected by the shear flow and is neutral (can not amplify).

However, as described in Section 6.1, it can still lead to growth.

6.1 Various growth mechanisms

Following De Vries et al. (2009), the growth is partitioned into the following mech-

anisms:

• Shear instability, i.e. mutual growth via the interaction of two CRW’s as

described in Section 2.1.

• Resonance. This refers to excitation of the CRW’s by meridional advection

associated with interior PAR PV in the same way as the CRW’s excite one

another. However, since the PAR PV is neutral, the CRW’s cannot amplify

the PAR PV in return and so this is a one-way mechanism and hence linear.

• The Orr mechanism. This describes the effect that the shear has on the interior

PAR PV, known since the work of Orr (1907). If we consider a breakdown of

the PAR PV into that at each level in the interior, the PAR PV elements (called

PV building blocks by de Vries(2006)) at each level are passively advected

and so do not interact with one another. If we have an initial PV structure

consisting of structurally similar but out-of-phase PV building blocks then over

time the shear disperses the initial PV structure. Thus the streamfunction

amplifies for an initial upshear tilt and decays for an initial downshear tilt,

altering the kinetic energy of the perturbation. The crucial distinction of this

mechanism is that, although the streamfunction is amplified, the PV is not,

which makes it easy to spot that the Orr mechanism, as opposed to the other

two considered, is responsible for observed energy growth.

Together, the resonance and Orr mechanisms are the linear transient effects referred

to in Section 1.2. We seek to establish the extent to which these, as opposed to CRW
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interaction, are responsible for growth of AEW’s for a range of initial conditions.

6.2 Simple initial conditions

The simplest initial conditions are a PV monopole (alternating positive and negative

anomalies) and a dipole (two layers of alternating positive and negative anomalies,

half a wavelength out of phase). These are shown in Figure 15 along with the

corresponding meridional wind obtained using the Green function method. Such

structures are used by De Vries et al. (2009) for the Charney model. The validity

of using them as initial disturbances is beyond the scope of this project. For now

we use them merely to illustrate how simple wave-like structures will develop on the

AEJ.

6.3 Tilting of structures

As discussed in Section 2, the phase difference at time t between the upper and

lower PV anomalies determines their mutual amplification and phase adjustment at

t. Since the Charney Stern and Fjortoft conditions are satisfied (equations (33) and

(34)), phase-locking will eventually occur for any initial PV perturbation and the

growing normal mode will be reached. However, due to the finite time available for

waves to propagate along the AEJ, there is limited time available for this to happen

and so growth may be minimal. Therefore we seek to establish the growth that

will occur for a given phase difference between the top and bottom of an initial PV

monopole or dipole.

We define the tilt of a perturbation as the phase difference between the PV anoma-

lies at the top and bottom of the perturbation divided by the vertical distance

between them (the depth of the perturbation), normalised by wavelength r = 1
2k

.

For a perturbation with constant tilt throughout the vertical, this is equivalent to

the phase difference between the anomalies at z and the ground divided by z for

any z. Since the length and height scales are related by L = N
f0
Hz, this is therefore

given by M L
H
k
r

= N
2f0
M where M is parameter such that M = 0 implies zero tilt

and M = ±1
2

and −1
2
< M < 1

2
gives the full range of possible tilt.

We wish to know the effect of the tilt in the initial PV structure on growth during

the time available for waves to propagate along the AEJ. We measure growth by

the log of the ratio of total energy TE(t) of the perturbation at time tAEJ to total
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energy at t = 0 where:

E(t) = log

(
TE(t)

TE(0)

)
(141)

where total energy is the sum of kinetic energy and available potential energy and

is given by (Pedlosky (1990)):

TE = −1

2
({ψ, q}+ {q, ψ}) (142)

where {p, q} = 1
2

∫ ∫
p ∗ qρ̄ dydz and p∗ denotes the complex conjugate of p. Since

M is a measure of phase difference, normalised by wavelength, a plot of M against

E will have a period in the M -axis of 1. We compare the wavelength with the fastest

GNM r = 0.22 (from Figure 12) and an almost neutral wavelength r = 0.45 for an

initial monopole and an initial dipole. Figure 16 shows the relationship between

tilt and energy growth, where in each case M is plotted between 1
2

and −1
2
. We

notice that in all the plots in Figure 16, E > 0 for M < 0, i.e. the total energy of

the perturbation always increases when the initial PV structure is tilted upshear.

Note that for a positive tilt (as is the case in the GNM for an easterly (negative)

shear - see Figure 3) growth via CRW interaction is much greater. Therefore, since

the total energy growth in this time is much greater for negative tilt than positive

tilt, this suggests that the Orr mechanism is playing a much greater role than CRW

interaction (even in the case of the wavelength with the fastest growing normal

mode). This will be quantified in Section 7.

6.4 Time evolution for optimally tilted initial PV structures

Using the optimal tilt obtained in each of the plots in Figure 16, we now use the KRW

amplitude and phase evolution equations (122) and (123) to model the evolution of

PV during the time taken to cross the AEJ in each case. Recalling (12), this time

is found to be t = 5.03 which is approximately equal to 5 days.

6.4.1 Monopole

In Figures 17 and 18, the evolution of PV and induced meridional wind is shown

at t = 0, t = 2.5 and t = 5 for an initial monopole for the two wavelengths we

are examining. In both cases we notice the PV structure untilting over time due to

the shear, suggesting the Orr mechanism being highly active during this time. The

shape of the initial structure is altered more for shorter waves due to the greater ratio

between shear and wavelength. We notice that, for both wavelengths, at t = 2.5,
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although there is significant increase in the meridional wind, the PV amplitude is

no greater. This strongly suggests that the Orr mechanism is dominant during this

time. For the shorter (faster growing) wavelength, the maximum PV amplitude

more than doubles between 2.5 < t < 5, meaning that CRW interaction may take

place during this time. However, the PV at t = 5 does not particularly resemble

the GNM for the same wavelength so we suspect that this growth is largely due to

resonance. For the longer (almost neutral) wavelength, there is only slight increase

in amplitude at t = 5, suggesting that growth by CRW interaction is very small.

6.4.2 Dipole

In the case of the dipole (Figures 19 and 20), due to the extra complexity of the

structure and same-signed anomlies not being aligned, it is more difficult for the

shear to untilt the structure. The two layers become increasingly disparate, making

it increasingly difficult for interaction to occur throughout the perturbation. In

the case of the longer wavelength, there is little difference in either structure or

magnitude, suggesting none of the mechanisms are particularly active.
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7 Optimal growth

7.1 Singular vector analysis

Having observed the evolution of simple PV structures, we now wish to discover the

initial PV structure for which growth is greatest over the given time tAEJ. We recall

the linear dynamical operator A, defined in (117), where q̇ = Aq and q = Qeiε

for amplitude and phase vectors Q,ε. There must be some q0 such that, for the

optimisation time topt, q(topt) is maximised for a given norm. As we are interested

in energy growth, this is the norm for which we shall calculate this optimum initial

condition and our optimisation time is tAEJ. The optimal perturbation can be ob-

tained by singular value (SV) analysis (Farrell (1982)) of A where, since A is an

N×N matrix (where N is the number of levels at which z is defined in the discretisa-

tion), N SV’s are obtained. The one giving the greatest energy growth, the leading

SV, is then the initial q vector that maximises total energy growth within time tAEJ.

The singular vector analysis is complex and need not be given here. However,

the relevant code to obtain the leading SV is included in the semi-analytic model

written by Hylke de Vries. The SV structures obtained for r = 0.22 and r = 0.45 are

shown in the top left panels of Figures 21 and 22 respectively and their full evolution

at t = 0, t = 2.5 and t = 5, along with the induced meridional wind, follows in the

same figures. We notice that the SV looks remarkably similar to the optimally tilted

monopole (see the top left panels of Figures 17 and 18) for both wavelengths. The

main differences are that the SV is slightly curved to compensate for the curvature

of the jet and does not extend as high as the chosen monopoles (whose maximum

heights were chosen arbitrarily). For r = 0.22 (the wavelength with the fastest GNM

growth) the maximum height is at approximately z = 0.6, one third of the height of

the jet core, so that, for an optimal perturbation, the interaction takes place in the

region where the PV gradient is greatest (most negative - see Figure 10). For the

longer wavelength r = 0.45 the SV extends higher but it is still within the region

where the PV gradient is negative.

In the evolution of PV and meridional wind, we notice much greater amplitudes

than the plots in Section 6. As for the initial monopole, for both wavelengths there

is minimal growth in PV amplitude for 0 < t < 2.5 meaning that the Orr mechanism

is responsible for most of the growth in this time (which must be significant since

this is the leading singular vector). As for the monopole, during 2.5 < t < 5, the
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maximum PV amplitude doubles for both wavelengths, thus the resonance and/or

CRW interaction mechanisms are active during this time. For the near neutral wave-

length r = 0.45, the final PV structure does not much resemble that of the GNM

for the same wavelength (see Figure 13). Therefore we suspect that the observed

doubling of PV amplitude is mainly due to resonance. For r = 0.22 however, at

final time, both the PV and meridional wind strongly resemble those of the GNM

for the same wavelength, suggesting that the CRW’s have phase-locked at tAEJ and

hence CRW interaction may have been a significant part of the observed growth in

amplitude.

The observations we have made from these figures are highly useful for diagnos-

ing aspects of the growth of these optimal perturbations as described. However,

there still exists a large uncertainty as to whether resonance or CRW interaction

are responsible for the growth in PV anomaly amplitude at later times. Also, since

the Orr mechanism does not amplify the anomalies, we cannot compare its growth

to that of CRW interaction. We therefore seek a means of quantifying the growth

from CRW interaction as a fraction of the total perturbation growth.

7.2 Total energy growth for the leading singular vector

We are interested in how much of the total perturbation energy at t = tAEJ is due

to the CRW’s. In order to discover this, we note that, in the GNM, the total energy

TEGNM(t) evolves with exponential growth rate σTE:

TEGNM(t) = TE0e
σTEt (143)

where σTE = 2σGNM (because TE is of order of magnitude of the perturbation

squared), which is equal to 0.47 for r = 0.22 and 0.13 for r = 0.45. Figure 23

shows log
(

TEGNM(t)
TE(0)

)
= σTEt plotted against time for 0 ≤ t ≤ 20 in the cases of

each of the wavelengths r = 0.22 and r = 0.45. Also plotted is E(t) = log
(

TE(t)
TE(0)

)
,

using the singular vector as the initial perturbation PV. For both wavelengths, E(t)

eventually becomes a straight line with the same gradient σTE as the GNM plot,

indicating exponential growth due to CRW interaction alone from this point on. For

r = 0.22, this occurs at approximately t = 5 ≈ tAEJ, confirming that the CRW’s

have phase-locked (as we previously suspected from comparing the PV structure in

Figure 21 at t = 5 with that of the GNM for the same wavelength). For r = 0.45,

the total energy in fact decreases after t = tAEJ, suggesting that decay associated
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with the transient mechanisms dominates before the CRW’s eventually phase-lock

at approximately t = 10. This confirms that the growth in amplitude for this near

neutral wavelength for 2.5 < t < 5 observed in Figure 22 is mainly due to resonance.

We can now compare total energy growth with that which would be attained by

a GNM (CRW’s in a phase-locked configuration). At t = tAEJ, the ratio is:

TEGNM(tAEJ)

TE(tAEJ)
(144)

which is equal to 0.029 for r = 0.22 and 0.023 for r = 0.45. So, for both a fast-

growing and an almost neutral wavelength, with the leading singular vector for

topt = tAEJ as the initial perturbation, energy growth during the time taken to cross

the AEJ is almost entirely due to transient effects.
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8 Conclusions and further work

8.1 Conclusions

We have seen that a vertical profile of zonal wind with the observed characteristics

of the African easterly jet has sufficient curvature to cancel the planetary vorticity

gradient β at a range of altitudes between the ground and somewhere below the

jet core. This means that a negative interior PV gradient exists at these altitudes.

Boundary temperature anomalies formed on the positive temperature gradient at

the ground act as PV anomalies and form a westward (relative to the basic state

zonal flow) propagating wave which can create anomalies in the interior and form an

eastward propagating wave there due to the negative PV gradient. This means the

Charney-Stern criterion is satisfied and so a pair of CRW’s can indeed be formed

on the AEJ. Since the basic state zonal flow at the positive temperature gradient

at the ground is greater (less negative) than at the negative PV gradient in the

interior, the Fjortoft criterion is also satisfied and growth via baroclinic instability

is therefore possible.

Addressing the questions posed in Section 1.2:

1. For a basic state defined by AEJ characteristics, the wavelength for an AEW

that supports the fastest growth via CRW interaction is 1515 km. At this

wavelength the GNM growth rate is by a factor of 0.23 per day and the GNM

phase speed is 6ms−1 westwards (relative to the ground) which is half the jet

maximum velocity. For wavelengths longer than approximately 3500 km, nor-

mal mode growth is infinitesimal and hence, unless an unrealistic amount of

time is available, it cannot make any significant contribution to the develop-

ment of the perturbation.

2. The finite time available for CRW’s to develop into the GNM means that the

initial perturbation is crucial and, unless it is suitably tilted, there is insuffi-

cient time for the wind shear to take the PV structure into the GNM. However,

for initial PV structures tilted in a mutually amplifying configuration, the to-

tal growth is minimal or even negative. For an initial upshear tilt, the shear

always acts to reverse the tilt of the PV and the energy of the perturbation

is always greater at time tA than to begin with, even though the PV ampli-

tudes remain fairly similar. Therefore the Orr mechanism is highly active for

AEW’s and counter-acts CRW interaction within the given time. Growth is
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significantly greater for an initial monopole than for a dipole.

Although providing very low normal mode growth rates, waves as long as

3000 km (as compared to the fastest growing wavelength for normal modes in

Sections 6 and 7) still lead to reasonably similar total energy growth within

the time of propagation across the AEJ. Longer waves require less initial tilt

(as a fraction of wavelength) for total growth to be maximised. The leading

singular vector representing the optimal perturbation for time tAEJ is remark-

ably similar to the monopole with optimal initial tilt. This suggests that the

AEJ favours simple initial perturbations.

3. At both wavelengths studied, the PV amplitude of the singular vector hardly

changes in the first half of the time to cross West Africa (0 < t < 2.5), in-

dicating that the energy growth is dominated by the Orr mechanism. In the

second half (2.5 < t < 5), the PV amplitude approximately doubles and (at

the smaller wavelength) the growth rate gradually reduces to that of the GNM,

indicating that the resonance mechanism is dominant in this time before CRW

interaction takes over. Thus CRW’s on the AEJ can indeed phase-lock within

the time taken to cross west Africa at the speed of the jet maximum. Longer

waves do not phase-lock in the allowed time and for r = 0.45 this appears to

happen after 2tAEJ. At this wavelength the resonance mechanism dominates

and there is in fact decay of total energy before the CRW’s phase-lock.

Even for the short wavelength where phase-locking occurs, the GNM growth

rate is not sufficiently large for growth via CRW interaction to be significant

during the limited time window when compared to the linear transient growth

mechanisms which inevitably dominate at short times. For the wavelength

giving the fastest GNM, the normal mode energy at tA is only 3 per cent of

the total perturbation energy and the mean log growthrate of the GNM during

this time is less than half that of the total perturbation. And for longer waves

these ratios are even smaller.
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8.2 Further work

In this study two major assumptions have been made, the validity of each of which

should be investigated.

• Firstly a purely baroclinic flow has been studied so that the zonal flow is

independent of y. Due to the approximate thermal wind balance, the vertical

shear is inevitably more significant but a 3-D jet should be considered to

estalish the extent to which meridional variations in zonal velocity play a role.

• In the PV equation Dq = 0, it is assumed that there are no frictional or di-

abatic effects and it is this equation which has formed the foundation of all

the work here. de Vries, Methven and Frame (2010) develop a theoretical

framework for the evolution of extratropical baroclinic waves with a param-

eterisation of latent heat release based on the notion that hot air rises and

cool air descends. In this model, assuming a negative temperature gradient,

warm moist air from the south ascends and becomes saturated while cool dry

air from the north descends. However, in west Africa, the correlation between

moisture and temperature is reversed due to the Sahara desert, meaning that

warm dry air from the north ascends and cool moist air from the south de-

scends. Hence saturation does not occur since it is dry air that rises. Therefore

a new parameterisation of latent heat release in baroclinic waves is required

to allow for this unusual situation.
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Figure 14: Vertical PV structure for lower CRW’s (left) and upper CRW’s (right).
Top row is for an easterly jet with r = 0.22. Second row is for an easterly jet
with r = 0.45. Bottom row is for a westerly jet with r = 0.29. All variables
non-dimensional.
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Figure 15: Initial PV (left) and induced meridional wind (right) on the x-z plane for
an untilted monopole (top) and dipole (bottom). Note change of scale for meridional
wind between top and bottom plots. All variables non-dimensional.
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Figure 16: Tilt of initial PV monopole for r = 0.22 (top left), PV monopole for
r = 0.45 (top right), PV dipole for r = 0.22 (bottom left) and PV dipole for
r = 0.45 (bottom right) against log energy amplification at t = tAEJ. Note changes
of scale between plots. All variables non-dimensional.
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Figure 17: Evolution of PV (left) and meridional wind (right) on the x-z-plane for
an initial monopole with optimal tilt for the wavelength of the fastest GNM r = 0.22
at t = 0 (top), t = 2.5 (middle) and t = 5 (bottom). Note the changes of amplitude
between plots. All variables non-dimensional.
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Figure 18: As for Figure 17 but for near neutral neutral wavelength r = 0.45.
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Figure 19: As for Figure 17 but for an initial dipole with optimal tilt.
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Figure 20: As for Figure 19 but for near neutral wavelength r = 0.45.
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Figure 21: Evolution of PV (left) and meridional wind (right) on the x-z-plane
for the leading singular vector for r = 0.22 at t = 0 (top), t = 2.5 (middle) and
t = 5 (bottom). Note the changes of amplitude between plots. All variables non-
dimensional.
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Figure 22: As for Figure 21 but for near neutral wavelength r = 0.45
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Figure 23: Log total energy growth against time using the leading singular vector
as the initial perturbation for r = 0.22 (left) and r = 0.45 (right). Log GNM energy
growth also shown in each plot by the straight lines. All variables non-dimensional.
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