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Abstract

This dissertation considers different approaches to numerically modelling
tidal bores, which are features involving steep gradients and discontinuities.
We first give a brief background on how and where tidal bores form and
then go on to derive the shallow water equations which can be applied in
this situation as the length scale of our problem is much larger than the
depth of water.

We then have a review of three different finite element methods which
were investigated by White et al. (2006), with particular attention to how
well they perform when applied to discontinuities. In chapter three we go
on to investigate different approaches to adapting the mesh used in the
numerical model, before focusing on two methods which move the nodes
with time.

In chapters four and five we go on to apply these methods in two different
models. A simple model with a rectangular domain is investigated in chapter
four, using various initial conditions. The second model is based on the tidal
flow in the Daly River, Australia and the two moving mesh methods are
applied to this in chapter five.
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Chapter 1

Tidal Bores

In a river estuary there is often a conflict of flow due to the tidal flows of the
sea meeting the river effluence. This can result in a phenomenon known as
a tidal bore occurring either in the estuary and/or further upstream, as the
incoming tide forces water up the river against the current. A tidal bore is
simply a steep fronted wave or series of waves which travel upstream along
the river. It can take one of two forms: a breaking bore or an undular bore.
A breaking bore is rare and only usually occurs for a short period of time,
for instance as the bore travels over a particularly shallow stretch of the
river.

Figure 1.1: Tidal bore on the River Severn, England. (Picture sourced
from [26], map [27].)

Tidal bores do not occur in all rivers. They are most likely to occur in
estuaries which have a large tidal range and which narrow and/or shallow
rapidly. It is thought there are about 100 rivers worldwide which experience
tidal bores. The largest one in Britain occurs on the River Severn which
reaches heights of 3m and speeds of 15kmh−1 [26]. In the Zheijang Province
in China a large bore forms on the Qiantang River known as the ‘Silver’ or
‘Black Dragon’. The river flows into Hangzhou Bay which is around 100km
wide. Within the bay is a peninsula of reclaimed land which narrows the
estuary down to several kilometers suddenly. The river bed also rises rapidly
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Figure 1.2: Tidal bore on the Qiatang River, China. (Picture sourced
from [26], map [27].)

and so as the tide comes in water is forced into a rapidly decreasing channel
causing a bore to form which has been thought to have reached 8.9m high
and travels at speeds of around 30kmh−1 [26]. The bore which has been

Figure 1.3: Tidal bore on the Rio Araguari, Brazil. (Picture sourced from
[26], map [27].)

classed as the most dangerous in the world forms on the Rio Araguari in
Amapa State, Brazil. This river drains into the Atlantic Ocean close to the
Amazon. It has been sighted breaking as far out to sea as 10km due to the
river basin extending so far out and 150km inland. It has an average height
of 2-4m and travels around 25kmh−1 [26].

Very little is known about the effects tidal bores have on the river envi-
ronment which is why producing accurate numerical models would be benefi-
cial alongside field studies. The bore has an effect on the sediment transport
taking place within a river which then affects other organisms. For instance,
in the Amazon, piranhas feed off matter which is suspended after the bore
has passed and in the Bay of Fundy the eggs released by striped bass are
carried up the river by the bore [7]. There are also effects on the river banks
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due to the increased turbulence and large velocities of the water. This can
lead to erosion and damage to vegetation and ecosystems along river banks.
This is the main reason tidal bores are studied.

A tidal bore is also known as a hydraulic jump. When a liquid is flowing
in a channel of fixed width at a high velocity, say u2, and meets a liquid
with a lower velocity, u1, the elevation increases. This allows the fluid which
had been travelling at velocity u2 to convert some of its kinetic energy to
potential energy. Hydraulic jumps can be stationary, for example after a
weir, or moving, as in the case of a tidal bore. Hydraulic jumps only occur in

Figure 1.4: The change in elevation occuring where a fast flowing fluid
encounters a slower moving fluid.

supercritical flows. These are where the flow velocity, which can be thought
of as the speed at which a leaf being carried along by the river would travel,
is greater than the wave velocity, the speed of ripples caused by an object
falling into the river. If the flow velocity is less than the wave velocity the
flow is said to be subcritical. The wave velocity in shallow water is c =

√
gH

where g is the gravitaional constant and H is the depth of the fluid. The
Froude number is defined as the ratio of the flow and wave velocities and is
given by

Fr =
u√
gH

(1.1)

where u is the flow velocity of the fluid, H is the depth of the fluid and g is
the gravitational constant. Therefore for a hydraulic jump, or tidal bore, to
occur the Froude number must be greater than 1.

1.1 Basic Equations

1.1.1 Momentum Equation

According to Newton’s second law of motion, the rate of change of motion of
a body is equal to the sum of forces acting on the body. Assuming that the
fluid is non-viscous and incompressible the only forces acting on a material
element are the pressure force and the gravitational force. Therefore in
three dimensions taking x, y to be the horizontal plane and z to be vertically
upwards

Dv
Dt

= −1
ρ
∇p− g (1.2)

where v = (u, v, w) is the velocity, ρ is the density and p the pressure of
the fluid and g = (0, 0,−g) is the gravitational acceleration. Note that we
are using the material derivative which measures the change of a variable in
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time following a particular fluid particle,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (1.3)

This is the momentum equation in a non-inertial frame. However, as the
Earth is constantly in motion in space it is more correct to obtain this
equation with respect to variables measured relative to the earth, i.e. relative
to a rotating reference frame.

In the following the subscript f will denote a variable in the fixed refer-
ence frame and the subscript r will denote a variable in the rotating reference
frame. Consider a material element at position xr. Its velocity vr = Dxr/Dt
relative to an inertial frame is given by

vf = vr + Ω× xr (1.4)

where Ω is the angular velocity vector. On Earth, as any other sphere, the
angular velocity vector at any latitude φ is given by Ω = Ω(0, cos φ, sinφ)
with Ω being the rotation rate of the earth. Similarly, the acceleration
relative to an inertial reference frame is(

Dvf

Dt

)
f

=
Dvf

Dt
+ (Ω× vf ) (1.5)

Substituting in the velocity from equation (1.4), we obtain(
Dvf

Dt

)
f

=
D

Dt
(vr + Ω× xr) + Ω× (vr + Ω× xr)

=
Dvr

Dt
+ 2Ω× vr + Ω× (Ω× xr) (1.6)

for the acceleration apparent in an inertial frame.
As can be seen there are two “corrections” which are made to take ac-

count of the rotating reference frame. The first, 2Ω × vr, is known as the
Coriolis acceleration which is perpendicular to both the motion of the par-
cel of air and the planetary vorticity, Ω. The second term, Ω × (Ω × xr),
is the centrifugal acceleration of the air parcel due to the earth’s rotation.
This acts perpendicular to and away from the axis of rotation and is often
absorbed into the gravitational acceleration, which will be assumed here.

Therefore our momentum equation (1.2) in a rotating reference frame is

Dv
Dt

+ 2Ω× v = −1
ρ
∇p− g. (1.7)

1.1.2 The Continuity Equation

This equation is based on the concept of the conservation of mass. Consider
a fixed, infinitely small, element of volume in a fluid (as shown in figure 1.5)
which has density ρ and velocity v = (u, v, w) at the centre. Mass flows
constantly through the sides, for instance, the left hand side of the element
will have a mass flux of {

ρu− 1
2

∂

∂x
(ρu)δx

}
δyδz
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Figure 1.5: The flow of mass through a fixed element of fluid.

and similarly the right hand side will have{
ρu +

1
2

∂

∂x
(ρu)δx

}
δyδz

Therefore, taking all sides into account the net flow of mass into the volume
element will be

−
{

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw)

}
δxδyδz

and taking the limit of this as the volume goes to zero the rate of increase
of mass per unit volume is

− ∂

∂x
(ρu)− ∂

∂y
(ρv)− ∂

∂z
(ρw) = −∇ · (ρv)

By defintion ρ is the mass per unit volume , and so ∂ρ/∂t is the rate of
increase of mass per unit volume. Hence, one form of the continuity equation
is

∂ρ

∂t
+∇ · (ρv) = 0. (1.8)

Since we are only thinking of incompressible fluids, which are fluids whose
density does not change in time we have

Dρ

Dt
=

∂ρ

∂t
+ v · ∇ρ = 0, (1.9)

and so the continuity equation is simply

∇ · v = 0. (1.10)

1.1.3 Shallow Water Equations

We shall now further simplify the momentum and continuity equation to
apply to a body of water whose depth is small compared to another length
scale, for instance the length of the river. This approximation is valid in
many instances such as flow in open channels, the tides and waves breaking
on a shallow beach. We will only be working in two dimensions, x which we
shall take parallel to the undisturbed water surface and z which is vertically
upwards. The velocity of the fluid will be given by u(x, z, t) in the x-direction
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Figure 1.6: Schematic of coordinate system and variables used in the one
dimensional shallow water equations.

and w(x, z, t) in the z-direction. The lower boundary of the fluid is solid and
will be taken to be z = −h(x) so that the depth of the undisturbed water is
h. The surface displacement is then given by z = η(x, t). In two dimensions
and ignoring the Coriolis effect on the basis that it will be negligible as
we are looking at a small region, the momentum equations and continuity
equation can written as

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(1.11)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (1.12)

∂u

∂x
+

∂w

∂z
= 0 (1.13)

In addition to the above equations we also have boundary conditions.
Along the bottom boundary of the fluid z = −h(x) we must have zero
vertical velocity, which can be expressed as

D

Dt
(η + h)

∣∣∣
z=−h

= (w + u hx)
∣∣∣
z=−h

= 0. (1.14)

At the free surface we have a kinematic condition

D

Dt
(η − z)

∣∣∣
z=η

= (ηt + u ηx − w)
∣∣∣
z=η

= 0. (1.15)

and also the dynamical condition

p
∣∣∣
z=η

= 0. (1.16)

Integrating the continuity equation (1.13) over the depth of the fluid we
find ∫ η

−h
ux dz + w

∣∣∣η
−h

= 0, (1.17)

and with the use of (1.14) and (1.15) to substitute the values of w at z = −h
and z = η respectively we obtain∫ η

−h
ux dz + ηt + u

∣∣∣
η
ηx + u

∣∣∣
−h

hx = 0. (1.18)
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With the use of the relation

∂

∂x

∫ η(x)

−h(x)
u dz = u

∣∣∣
z=η

ηx + u
∣∣∣
z=−h

hx +
∫ η

−h
ux dz

this simplifies to
∂

∂x

∫ η

−h
u dz + ηt = 0. (1.19)

We now make the assumption that the the z-component of the fluid has
negligible effect on the pressure, p. If we set the z-component of acceleration
is negligible in comparison to the pressure gradient, this can be ignored and
so integrating (1.12) over the vertical depth we have

0 = −1
ρ
p
∣∣∣η
z
− g (η − z) . (1.20)

Using boundary condition (1.16) we get the hydrostatic relation

p = ρg (η − z) . (1.21)

From this we obtain
px = ρgηx, (1.22)

which shows that px is independent of z. This means that, by (1.2), the
acceleration in the x-direction is also independent of z and hence so is the
velocity u in the x-direction if it is at any given time. We shall assume
this to be the case, so that now u = u(x, t) only depends on x and t and
integrating over the depth results in∫ η

−h
u dz = u (η + h) . (1.23)

Using this relation in equation (1.19) results in the final form of the conti-
nuity equation under shallow water approximations

ηt + (u (η + h))x = 0. (1.24)

Also, utilising the equation (1.22), the momentum equation (1.11) becomes

ut + u ux = −gηx. (1.25)

As shown in [20] we can rewrite the shallow water equations we have
just derived in an alternate form by making use of the variable

c =
√

g (η + h) (1.26)

which is the propagation speed of small disturbances in the fluid relative to
the flow introduced before. From this we have

ct =
gηt

2c
cx =

gηx + ghx

2c

which allows us to rewrite (1.24) and (1.25) as

ut + uux + 2ccx − ghx = 0 (1.27)
2ct + 2ucx + cux = 0. (1.28)
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1.1.4 Method of Characteristics

If we take the case where the slope of the bottom boundary is constant, in
other words

m ≡ ghx = constant

then we easily find that addition of (1.27) and (1.28) yields{
∂

∂t
+ (u + c)

∂

∂x

}
· (u + 2c−mt) = 0 (1.29)

while subtraction of (1.28) from (1.27) results in{
∂

∂t
+ (u− c)

∂

∂x

}
· (u− 2c−mt) = 0. (1.30)

The first equation shows that the variable u + 2c−mt is constant for a
point moving through the fluid with velocity u + c, while the second states
that u−2c−mt remains constant for a point moving through the fluid with
velocity u−c. Another way to express this would be to say we have two sets
of curves in the x, t plane, C1 and C2, which are known as characteristics
and along these curves the associated functions are constant. In this case

C1 : dx
dt = u + c along which u + 2c−mt = k1 = constant

C2 : dx
dt = u− c along which u− 2c−mt = k2 = constant

(1.31)

The constants k1 and k2 will generally be different along different curves in
the family of characteristics.

(a) (b)

Figure 1.7: Diagrams showing the directions of characteristic curves for
the case of (a) subcritical and (b) supercritical flows.

Earlier on we introduced the idea that a fluid could be supercritical or
subcritical. We can use the idea of characteristics to visualise this. Suppose
we have a fluid which has a positive flow velocity, u > 0. This would mean
that the slope of the family of characteristics C1 will always be positive. If
we now assume that the fluid is supercritical we have u− c > 0 and so our
family of characteristics C2 also has a positive slope, see diag 1.7. However
if we instead assume the flow to be subcritical then we have u− c < 0 and
now the C2 family of characteristics will slope to the left.
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At a hydraulic jump there is a change in the fluid from supercritical
flow to subcritical. Therefore the characteristics of the family C2 will now
intersect, see figure 1.8. Along the boundary of intersection there is a jump
in values of u and c (or η) which is called a shock.

Figure 1.8: Illustration of how the characteristics intersect as the fluid
flow changes from supercritical to subcritical causing a shock to form.
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Chapter 2

The Finite Element Method

The finite element method is a combination of a finite-dimensional repre-
sentation and a weak form of the differential equation to be solved. The
term ‘finite element’ was first used by Clough (1960) [5], however the prin-
ciples of the method had been around for at least 20 years by this time.
It had developed from engineers performing stability analysis on aircraft in
the 1940’s. In 1943 Courant [6] used piecewise polynomial interpolation over
triangular subregions to model torsion problems. By the 1960’s the finite
element method was being applied to problems in stress analysis, fluid flow,
heat transfer and other areas and by the 1970’s non-linear problems were
also being solved with the method [4]. Today the finite element method
is widely used in a range of different areas, from fluid flow and heat flux
to deformation and stress analysis of buildings, bridges and aircraft and in
meteorology and oceanography.

We shall now review three different forms of the finite element method
which were investigated by White et al. [22]. In [22] the linearized shallow-
water equations, with homogeneity in the y-direction, were solved in a finite
domain taking the reference fluid depth h to be constant.

∂u

∂t
− fv = −g

∂η

∂x
,

∂v

∂t
+ fu = 0,

∂η

∂t
+ h

∂u

∂x
= 0,

where f = 2Ω sinφ is the Coriolis parameter, taken to be constant. We are
working within the domain x ∈ [−L/2, L/2] for some value L and t > 0 with
boundary conditions u(x = ±L/2, t) = 0.

These equations were then non-dimensionalized by taking the character-
istic scales f−1, L, η0 and Lh−1fη0 for time, space, elevation and velocities
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respectively to obtain

∂u

∂t
− v = −α2 ∂η

∂x
,

∂v

∂t
+ u = 0, (2.1)

∂η

∂t
+

∂u

∂x
= 0,

where α =
√

gh
fL . Our domain is now x ∈ [−1/2, 1/2] and t > 0 with boundary

conditions u(x = ±1/2, t) = 0.
Two sets of initial conditions were investigated. The first was a motion-

less layer of fluid with a discontinuity in its elevation,

u(x, 0) = v(x, 0) = 0,

η(x, 0) =
{
−1 if −1/2 6 x < 0,
1 if 0 < x 6 1/2.

(2.2)

The second is a generalization of this case using a hyperbolic tangent func-
tion to model the elevation to smooth the discontinuity,

u(x, 0) = v(x, 0) = 0,

η(x, 0) = tanh(Rx). (2.3)

The parameter R is used to alter how steep the change in elevation is, the
larger the value taken for R the closer the function becomes to the initial
discontinuity (2.2).

2.1 The Method of Characteristics

As the equations (2.1) are a system of first order hyperbolic equations they

can be written in the form A
∂u
∂t

+ B
∂u
∂x

= d as follows

1 0 0
0 1 0
0 0 1

 ∂

∂t

u
v
η

 +

0 0 α2

0 0 0
1 0 0

 ∂

∂x

u
v
η

 =

 v
−u
0

 . (2.4)

From this we can calculate the eigenvalues and corresponding eigenvectors
and hence obtain a system of three ordinary differential equations,

d
dtv = −u on dx

dt = 0,

d
dt (αη + u) = v on dx

dt = α,

d
dt (αη − u) = −v on dx

dt = −α.

(2.5)

By dividing our domain into K intervals in space and N time intervals we
can then use a simple finite difference method to solve these, provided we
are within the Courant-Friedrich-Lewy condition which, as both space and
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Figure 2.1: Figure showing the orientation of the characteristics and the
space and time discretizations. (Diagram taken from [22].)

time intervals are dimensionless, is given by 4t
4x < α. Using the forward

Euler scheme we have

vn+1
k − vn

k

4t
= −un

k ,

αηn+1
k + un+1

k − αηn
k − un

k

4t
= vn

k−1,

αηn+1
k − un+1

k − αηn
k + un

k

4t
= −vn

k+1,

where k = 1, . . . ,K + 1 is the spatial discretization and n = 1, . . . , N + 1 is
the time discretization.

This method gives good results as long as the time integration is accurate
enough, and a higher order method than the Euler method is required in
practice. However characteristics cannot be calculated for all systems of
partial differential equations, as they have been for (2.1). Even first order
systems cannot be placed in matrix form if there are nonlinear terms present
and so often this is not a viable option.

2.2 The Continuous Galerkin Method

This is the simplest form of the finite element method. We again divide our
domain into K, not necessarily equal, intervals [x0, . . . , xj , xj+1, . . . , xK ]. If
we discretize our equations (2.1) in time, then multiply by a test function
û = (û, v̂, η̂), which are usually taken to be low order polynomials, and
integrate over our domain Ω. we can then find un+1, vn+1, ηn+1 such that∫

Ω

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx = 0,∫

Ω

(
un+1 − un

4t
û− vnû + α2 ∂ηn+1

∂x
û

)
dx = 0, (2.6)∫

Ω

(
vn+1 − vn

4t
v̂ + un+1v̂

)
dx = 0,
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for n odd, and ∫
Ω

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx = 0,∫

Ω

(
vn+1 − vn

4t
v̂ + unv̂

)
dx = 0, (2.7)∫

Ω

(
un+1 − un

4t
û− vn+1û + α2 ∂ηn+1

∂x
û

)
dx = 0,

for n even. This is a ‘forward-backward’ time-stepping scheme, where we
first calculate ηn+1 and then use this updated value in the equations to
calcuate un+1, vn+1. We alternate the order in which un+1 and vn+1 are cal-
culated so the Coriolis term is semi-implicit, which ensures that no energy is
artificially created or dissipated by this term. We then replace each variable
u, v, η in the above equations by the discrete approximations given by

an+1 ' an+1
h =

K∑
j=0

An+1
j φj(x), (2.8)

where An+1
j are the values of the variables at node j and time step n + 1.

The basis functions φj are piecewise linear and are defined by

φ0(x) =
x1 − x

x1 − x0
x0 6 x 6 x1

φj(x) =


x−xj−1

xj−xj−1
xj−1 6 x 6 xj

xj+1−x
xj+1−xj

xj 6 x 6 xj+1

j = 1, . . . ,K − 1.

φK(x) =
x− xK−1

xK − xK−1
xK−1 6 x 6 xK (2.9)

Similarly we approximate our test functions û by φj(x), j = 1, . . . ,K. There-
fore both uh and ûh are continuous over our domain Ω and piecewise linear
over each element.

Using this method to solve (2.1) with an initial discontinuous elevation
(2.2), White et al. [22] found that spurious oscillations were produced no
matter how fine a mesh was used. However these oscillations were less
pronounced when a smoother initial elevation (2.3) was used. This would
suggest that this method would not be very effective when used to model
problems whose variables have steep gradients in their solution or initial
condition.

2.3 The Discontinuous Galerkin Method

In this method the approximated functions uh do not have to be continuous
across node boundaries. This is because two computational nodes are now
associated with one physical node, representing the values of the variable
to the left and right of the node, see figure 2.2. This is ideal for modelling
variables which have steep gradients and discontinuities. However we still

13



Figure 2.2: Discontinuity of variables at element boundaries.

need to ensure information can be passed from one element to another.
Therefore an extra term must be added to the weak formulation derived for
the continuous Galerkin method which enforces a weak continuity over u
and η. For the backward-forward scheme we have

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx +

K∑
e=1

|a(η̂) [un]|∂Ωe
= 0,

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vnû + α2 ∂ηn+1

∂x
û

)
dx

+
K∑

e=1

∣∣a(û)
[
α2ηn+1

]∣∣
∂Ωe

= 0,

K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + un+1v̂

)
dx = 0, (2.10)

for n odd, and

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx +

K∑
e=1

|a(η̂) [un]|∂Ωe
= 0,

K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + unv̂

)
dx = 0, (2.11)

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vn+1 + vnû + α2 ∂ηn+1

∂x
û

)
dx

+
K∑

e=1

∣∣a(û)
[
α2ηn+1

]∣∣
∂Ωe

= 0,

for n even. The additional terms in (2.10)-(2.11) are to enforce a weak
continuity in u and η across element boundaries. The vertical bars indicate

14



that the expression is to be evaluated over the boundaries of each element
and [un(Xi)] = U−i − U+

i is the jump of the variable across node i. The
function a(û) is defined as

a(û) =
(

λ− 1
2
sign(n̂)

)
û,

where n̂ is the outward pointing normal along each element boundary and
λ ∈ [−1/2, 1/2] is a parameter to alter the weight given to the jump. Taking
λ = 0 gives a centred scheme, however if it is known in which direction
each variable is travelling in a given problem then more weight is given to
the respective node, i− for left-ward moving variables and i+ for variables
moving to the right.

The system (2.10)-(2.11) can be rearranged using integration by parts,
as Hanert et al. [12] has shown, to become

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx

+
K+1∑
i=1

((
1
2

+ λ

)
un(X−

i ) +
(

1
2
− λ

)
un(X+

i )
) (

η̂(X−
i )− η̂(X+

i )
)

= 0,

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vnû + α2ηn+1 ∂û

∂x

)
dx

+α2
K+1∑
i=1

((
1
2

+ λ

)
ηn+1(X−

i ) +
(

1
2
− λ

)
ηn+1(X+

i )
) (

û(X−
i )− û(X+

i )
)

= 0,

K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + un+1v̂

)
dx = 0,

for n odd, and

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx

+
K+1∑
i=1

((
1
2

+ λ

)
un(X−

i ) +
(

1
2
− λ

)
un(X+

i )
) (

η̂(X−
i )− η̂(X+

i )
)

= 0,

K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + unv̂

)
dx = 0,

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vn+1û + α2ηn+1 ∂û

∂x

)
dx

+α2
K+1∑
i=1

((
1
2

+ λ

)
ηn+1(X−

i ) +
(

1
2
− λ

)
ηn+1(X+

i )
) (

û(X−
i )− û(X+

i )
)

= 0,
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for n even.
White et al. again experimented using this method on the initial dis-

continuous elevation (2.2) and the smoother initial condition (2.3). Rather
surprisingly, results were less accurate than those obtained with the con-
tinuous Galerkin method, with severe spurious oscillations occurring from
the step-like discontinuity regardless of element width or the value taken for
λ. The centred scheme, with λ = 0, in fact produced the least oscillations
suggesting that symmetry is important in this problem.

When the hyperbolic tangent function was used for the initial elevation
the frequency of the oscillations was less pronounced and increasing the
number of elements reduced them further. However the continuous Galerkin
method still outperformed this scheme by far, especially for smoother initial
conditions (lower value for R).

This would suggest that forcing weak continuity of u, η does not help
in improving the method and so thought must be given as to what other
variables continuity can be imposed upon.

2.4 The Discontinuous Riemann Galerkin Method

It is suggested that as characteristic variables carry information along char-
acteristic curves, enforcing continuity of these variables between elements
may be of more use. We are also able to apply appropriate weighting as we
know the direction of propagation for each characteristic variable. This is
known as a discontinuous Galerkin finite element method with a Riemann
solver as we are imposing continuity of the Riemann variables.

As before we have a variational formulation similar to (2.6)-(2.7) but
with extra terms for the continuity of the characteristic variables

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx

+
K∑

e=1

|a(η̂) [αηn + un]|∂Ωe
+

K∑
e=1

|b(η̂) [αηn − un]|∂Ωe
= 0,

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vnû + α2 ∂ηn+1

∂x
û

)
dx

+
K∑

e=1

∣∣a(û)
[
αun + α2ηn+1

]∣∣
∂Ωe

+
K∑

e=1

∣∣b(û)
[
αun − α2ηn+1

]∣∣
∂Ωe

= 0,

K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + un+1v̂

)
dx = 0, (2.12)
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for n odd, and

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx

+
K∑

e=1

|a(η̂) [αηn + un]|∂Ωe
+

K∑
e=1

|b(η̂) [αηn − un]|∂Ωe
= 0,

K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + unv̂

)
dx = 0, (2.13)

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vn+1û + α2 ∂ηn+1

∂x
û

)
dx

+
K∑

e=1

∣∣a(û)
[
αun + α2ηn+1

]∣∣
∂Ωe

+
K∑

e=1

∣∣b(û)
[
αun − α2ηn+1

]∣∣
∂Ωe

= 0,

for n even, where

a(û) =
1
2

(
1
2
− λsign(n̂)

)
û, b(û) =

1
2

(
1
2

+ λsign(n̂)
)

û.

Again we can rearrange (2.12)-(2.13) by integrating by parts and taking
λ = 1/2 we obtain

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx

+
1
2

K+1∑
i=1

[η̂(Xi)]
{
(αηn(X−

i ) + un(X−
i ))− (αηn(X+

i )− un(X+
i ))

}
= 0,

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vnû + α2ηn+1 ∂û

∂x

)
dx

+
1
2
α

K+1∑
i=1

[û(Xi)]
{
(αηn+1(X−

i ) + un(X−
i )) + (αηn+1(X+

i )− un(X+
i ))

}
= 0,

K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + un+1v̂

)
dx = 0,

for n odd, and

K∑
e=1

∫
Ωe

(
ηn+1 − ηn

4t
η̂ +

∂un

∂x
η̂

)
dx

+
1
2

K+1∑
i=1

[η̂(Xi)]
{
(αηn(X−

i ) + un(X−
i ))− (αηn(X+

i )− un(X+
i ))

}
= 0,
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K∑
e=1

∫
Ωe

(
vn+1 − vn

4t
v̂ + unv̂

)
dx = 0,

K∑
e=1

∫
Ωe

(
un+1 − un

4t
û− vn+1û + α2ηn+1 ∂û

∂x

)
dx

+
1
2
α

K+1∑
i=1

[û(Xi)]
{
(αηn+1(X−

i ) + un(X−
i )) + (αηn+1(X+

i )− un(X+
i ))

}
= 0,

for n even.
This scheme was applied to the problem with initial discontinuous ele-

vation (2.2) and produced no spurious oscillations, even on a coarse mesh.
As the initial condition was smoothed using (2.3) the L2 norm of the error
became smaller, becoming of the order of 10−3.5 when R = 1.

The methods were all compared by measuring the L2 norm of the error
as the steepness of the initial conditions was altered. The discontinuous
Riemann-Galerkin method (DRGM) consistently outperformed the discon-
tinuous Galerkin method (DGM). For fairly smooth initial conditions, taking
R = 1 the continuous method had roughly the same error as the DRGM.
However when the error over a restricted domain containing no discontinu-
ities was computed, the DRGM was twice as accurate than the continuous
method. This suggests that spurious oscillations which occur from the con-
tinuous method spread into areas where the solution is smooth and affects
the accuracy over a wider area than the DRGM. However extension of the
DRGM to higher dimensions would be difficult, as calculating the Riemann
variables is not usually simple.
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Chapter 3

Adaptive Mesh Techniques

The reasoning behind moving a mesh over time is in order to efficiently cap-
ture features which are very localised. For instance we may have a solution
which is very stable over most of the domain but in a few localised areas
there are moving features which require a high resolution mesh in order
to accurately capture the solution. Also problems which have steep gradi-
ents need a high resolution around the slope, as if the mesh is too coarse
the change in the solution becomes spread out over the element and so the
gradient is not accurately represented.

In the particular area of measuring discontinuties in flow problems, ini-
tially shock fitting techniques were used [14]. This is where two separate
solutions were obtained either side of where the shock is computed to be
and are then pieced together again. Now it is more common to use a shock
capturing technique, where the discontinuity is automatically formed, as in
most problems the position of the discontinuity is not explicitly known, for
example in [9].

Some of the earliest attempts at constructing an adaptive mesh involved
taking a time derivative of the governing equations of the coordinate map-
ping [13] and grid sizes were related to derivatives of flow variables [8]. Later,
systems which simultaneously solve a physical equation and a grid equation
were investigated in Rai & Anderson[19].

There are three general types of mesh adaptation. The first type is known
as h-refinement and adds extra nodes to the areas where the solution is badly
approximated. Secondly, p-refinement increases the order of the numerical
approximation, being used to improve the local accuracy of the solution.
The third is known as r-refinement which dynamically moves a fixed number
of nodes to the most effective location. Combinations of these three types
are also used, for instance hr-refinement where nodes are moved and also
added where needed. They all need a solution indicator to determine where
adaptation is needed. Ideally the solution indicators would be based on error
estimators, however this is rarely done in practice as the exact solution is
not known.

The r-refinement is simple to implement in theory as nodes are not
generated nor taken away over time. The grid should also naturally move to
fit the most prominent feature of the problem. It is these methods we shall
focus on.
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3.1 Moving Mesh Methods

An adaptive mesh is often generated by taking a mapping x(ξ) from a regu-
larly structured grid in computational space ΩC to a grid in physical space
Ω. By altering the mapping we can alter the location of the nodes in physical
space and even the boundaries of the domain. There are two main groups

Figure 3.1: The computational grid (left) and the transformation to the
computational domain (right).

which can be classified under r-refinement. The first are the location-based
methods. These directly control where the physical nodes are to be located
at each time step and interpolate the solution from the old mesh to the new
mesh. In other words this affects the mapping x(ξ) directly, which becomes
a function of time. The second group are velocity-based methods which as-
sign a speed to each individual node at each time, in effect altering the time
derivative of the mapping, xt(ξ). The velocities can be derived in various
ways. A conservation principle can be imposed on an element, for instance
conservation of mass, and from this a velocity is derived, or velocities can
be taken from an external source, such as the discontinuity in the solution
at each node.

3.1.1 Location based methods

The Method of Equidistribution

A location-based method uses the idea of equidistribution of some variable.
Suppose we want to equally space the value of the function M(x) over our
physical domain. This is known as our monitor function. In one dimension
we can take our computational nodes to be ξj such that 0 6 ξj 6 1 and our
physical nodes to be xj such that a 6 xj 6 b, then we have

ξ =

∫ x
a M(x̃)dx̃∫ b
a M(x̃)dx̃

.

If we differentiate this twice with respect to ξ then we have

∂

∂ξ

(
M(x)

∂x

∂ξ

)
= 0 (3.1)

which can be solved for the map x(ξ).
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A commonly used monitor function is the arc length

M(x) =

√
1 + γ

(
du

dx

)2

(3.2)

where u is the function we are modelling and γ is a parameter which can be
used to reduce the extent that the slope is used.

3.1.2 Velocity-based methods

The Lagrangian method

One of the simplest velocity based approaches is to use a Lagrangian co-
ordinate system. This is constructed from the principle that we follow a
single particle in the fluid. If the fluid has velocity u(x, t), ξ is the reference
parameter of the particle and x(ξ, t) is the position of the particle at time
t. Then the Lagrangian coordinate system moves with velocity

dx

dt
= u.

However Lagrangian coordinate systems are very rarely used in numerical
approximations due to the fact they produce a mesh which is very skew and
liable to tangle.

Moving Finite Elements

This method was developed by Miller and Miller [16], [17] and is based on
minimising the residual from the finite element formulation. Suppose we
have a general time-dependent problem

∂u

∂t
= Lu

where L is a spatial differential operator. The continuous moving finite
element (MFE) method seeks to minimise the L2 norm of the residual,

min
xt,

Du
Dt

Imfe

[
xt,

Du

Dt

]
=

∫ (
∂u

∂t
− Lu

)2

Wdx,

=
∫ (

Du

Dt
−5u · xt − Lu

)2

Wdx,

where W is a weight function and Du
Dt is the material time derivative for ξ

fixed. For the classical MFE method the weight function is taken as unity,
W = 1, and for the gradient-weighted MFE method the weight function
is W = 1

1+|5u|2 . By using this method there is a greater chance that the
weighted L2 norm of the residual will be close to its minimum, i.e. the
solution will be as accurate as possible. However these equations can become
degenerate and so extra care has to be taken.
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The Conservation Principle

This is a commonly used velocity based method which computes nodal ve-
locities by imposing a conservation principle on each element in physical
space. Suppose we want to ensure each element conserved the variable M

d

dt

∫ b(t)

a(t)
Mdx = 0, (3.3)

which, using the Liebnitz integral rule, can be written as∫ b(t)

a(t)

∂M

∂t
dx +

[
dx

dt
M

]b(t)

a(t)

= 0. (3.4)

From this the mesh velocity dx/dt can be computed.

3.2 Methods to be Investigated

In my work I shall focus on two of these methods, namely the method of
equidistribution and the conservation principle, which I shall now describe
in more detail. I will apply these to two existing models. The first is a
simple model based on the shallow water equations investigated by Kuo and
Polvani [15] and the second is a more realistic model which simulates tidal
flows in the Daly River in Australia. These shall be described in more detail
later.

3.2.1 Method of Equidistribution

As the problem to be modelled requires a concentration of nodes in areas
where the gradient of the water is large I shall use the arc length monitor
function applied to the elevation η for equidistribution

M(x) =

√
1 + γ

(
dη

dx

)2

. (3.5)

As shown in [1], we can then solve (3.1) by an iterative process until the
solution converges by using the algorithm

∂

∂ξ

(
M(xp)

∂xp+1

∂ξ

)
= 0, (3.6)

for p = 0, 1, . . . with x0 = ξ, which can be discretized as

M(xp
j )

(
xp+1

j+1 − xp+1
j

)
−M(xp

j−1)
(
xp+1

j − xp+1
j−1

)
. (3.7)

This can be written as the matrix system

T (xp)xp+1 = b (3.8)
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where

T (x) =


1 M(x1) 0 · · · 0

M(x1) −M(x1)−M(x2) M(x2) · · · 0
...

. . . . . . . . .
...

0 · · · . . . . . . M(xN−1)
0 · · · 0 0 1


and

b =


a
0
...
0
b


as the boundary of the domain is fixed. This iterative process can be carried
out for every set number of time steps as the model is run.

We therefore now have a new grid, and so we need to interpolate the
values of our variables onto our new node locations, which can be done in a
number of ways.

3.2.2 The Conservation Principle

We shall impose the conservation of volume on each mesh element. This is
given by

d

dt

∫ b(t)

a(t)
(η + h) dx =

∫ b(t)

a(t)

∂

∂t
(η + h) dx +

[
dx

dt
(η + h)

]b(t)

a(t)

= 0, (3.9)

where a(t), b(t) are the boundaries of the mesh element which move with
time. From the continuity equation (1.24) we have

∂

∂t
(η + h) =

∂

∂t
η = − ∂

∂x
(u (η + h))

and so (3.9) becomes

0 =
∫ b(t)

a(t)

∂

∂x
(u (η + h)) dx +

[
dx

dt
(η + h)

]b(t)

a(t)

(3.10)

=
[
− u (η + h)

]b(t)

a(t)

+
[
dx

dt
(η + h)

]b(t)

a(t)

. (3.11)

By rearrangement this then gives us a relation between the velocities of
the nodes either side of the element

ḃ = u(b)− η(a) + h(a)
η(b) + h(b)

(u(a)− ȧ) (3.12)

where the dot represents the derivative with time, i.e. ḃ = db
dt , the node

velocity at x = b. Therefore if we fix one end of the domain, say the left, we
can compute the velocity at each node using (3.12).
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Chapter 4

Numerical Results from the
Basic Model

4.1 A Basic Numerical Model

Kuo and Polvani [15] investigated the geostrophic adjustment problem using
the non-dimensionalized, one-dimensional, non-linear shallow water equa-
tions with rotation. They worked in a domain which had a flat bottom and
so the depth of the undisturbed water h is constant. We used these equa-
tions, setting rotation to zero as we do not expect it to have a significant
effect on our problem. The continuity and momentum equations are

∂u

∂t
+ αu

∂u

∂x
+

∂η

∂x
= 0, (4.1)

∂η

∂t
+

∂u

∂x
+ α

∂

∂x
(ηu) = 0, (4.2)

where α = η0/h is a scaling parameter which can be changed to adjust the
extent of non-linearity in the equations, we shall be taking α = 0.4 for our
investigations. For a detailed analysis of the effect α has on the system refer
to Kuo and Polvani [15].

These equations were used in a discontinuous finite element numerical
model with linear basis functions as given in (2.9) which uses the second
order Runge Kutta method for time integration, in a finite domain, x ∈
[−15, 15], giving u|(x=±15) = 0.

We then adapted this method to allow the mesh to move, using the
two methods in the previous chapter and investigated their effectiveness at
modelling different initial conditions.

4.2 Method of equilibrium

To implement the method descibed in section 3.2.1 we adapted the mesh
every 100 time steps as the code was run and, taking γ = 1, we then in-
terpolated our elevation and velocity values to the new mesh nodes using
piecewise cubic Hermite interpolation.
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In figure 4.5 is a time series of the elevation from an initial condition of

η(x, 0) = − arctan(5x). (4.3)

We have used 200 elements and 2000 time steps. As can be seen in figure
4.5 this method is very good at increasing the density of the nodes around
the location of the shock.

4.3 Volume conservation

We have fixed the left hand boundary, x = −15, and used equation (3.12)
to calculate the velocity associated with each subsequent node to the right.
Note that, as we are working in a domain with a flat lower boundary, h ≡ 0
everywhere due to the scaled equations. Therefore the equation becomes

ḃ = u(b)− η(a)
η(b)

(u(a)− ȧ) . (4.4)

As our grid is now moving during each time step we have to adapt our
equations (4.1)-(4.2) to account for this. As shown in Baines et al. [2], if we
have a fixed coordinate system a and a moving coordinate system x, then
we can define a mapping between these by

x = x̂(a, t).

If û(a, t) is a variable measured from the fixed coordinate system, then its
derivative is given by

∂û

∂t
=

∂u

∂t
+

∂x̂
∂t
· ∇u,

where u(x, t) is the same variable measured from the moving coordinate
system. Therefore a general partial differential equation of the form

∂u

∂t
= Lu,

where L is a spatial differential operator, can now be expressed in integral
form in a moving mesh as

d

dt

∫
û dx−

∫
∂

∂x

(
û

∂x̂

∂t

)
dx =

∫
Lu dx.

Our equations (4.1)-(4.2) thus can be written

d

dt

∫
û dx−

∫
∂

∂x

(
û

∂x̂

∂t

)
dx +

∫ (
αu

∂u

∂x
+

∂η

∂x

)
dx = 0, (4.5)

d

dt

∫
η̂ dx−

∫
∂

∂x

(
η̂
∂x̂

∂t

)
dx +

∫ (
∂u

∂x
+ α

∂

∂x
(ηu)

)
dx = 0. (4.6)
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4.4 Comparison of the methods

We have again produced a time series of the elevation at t = 0, 1, 2, 3, 4, 5
using 200 elements and 2000 time steps from initial condition (4.3) for the
volume conservation method and this is shown in figure 4.6. We can see
that, although this method models the discontinuity very clearly, the water
level is totally disproportionate when compared against the high resolution
model, see figure 4.4. Unlike with the arc length model, the high density
patch of nodes seem to centre just behind the shock which accounts for such
a well-defined discontinuity.

(a) Methods used 50 elements
and a time step of 0.01.

(b) Methods used 200 ele-
ments and a time step of
0.0025.

Figure 4.1: Results computed by conserving the element volume, equidis-
tributing arc length of η and a fixed mesh from initial condition
η(x, 0) = − arctan(5x). These are compared to a high resolution solu-
tion computed on a fixed mesh with 2000 elements and a time step of
0.00025.

From figure 4.1 we see that the volume conservation method tends to
overestimate the height of the discontinuity and the shock also seems to
travel at a faster velocity, making it highly inaccurate overall. There is little
difference between the arc length and fixed mesh methods, no matter what
size elements are taken. However, the arc length method tends to fit the
solution better overall, although it oscillates slightly more than the fixed
mesh solution around the discontinuity.

I also looked at the effect different initial conditions had on the meth-
ods. With a smoother initial condition, see figure 4.2, the solution by the
arc length method and the fixed grid became even more similar, while the
volume conserving method still overemphasized the shock. A totally discon-
tinuous initial condition provided some interesting results, as can be seen in
figure 4.3. On this occasion the volume conserving method does not seem to
have as big an error as before, and the shock is almost in the correct posi-
tion as given by the high resolution solution. Again the arc length and fixed
mesh methods produced almost identical results, both very close to what
is thought to be the true solution. With the discontinuous initial condition
both of these methods produce slight oscillations around the discontinuity,
however the arc length method seems to produce a slightly lower frequency
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(a) Methods used 50 elements
and a time step of 0.01.

(b) Methods used 200 elements
and a time step of 0.0025.

Figure 4.2: Results computed by conserving the element volume, equidis-
tributing arc length of η and a fixed mesh from initial condition
η(x, 0) = − arctan(x). These are compared to a high resolution solution
computed on a fixed mesh with 2000 elements and a time step of 0.00025.

(a) Methods used 50 elements
and a time step of 0.01.

(b) Methods used 200 ele-
ments and a time step of
0.0025.

Figure 4.3: Results computed by conserving the element volume, equidis-
tributing arc length of η and a fixed mesh from initial condition η(x, 0) = 1
for x < 0, and η(x, 0) = −1 for x > 0. These are compared to a high reso-
lution solution computed on a fixed mesh with 2000 elements and a time
step of 0.00025.

of these.
Overall the arc length method produced at least as accurate results as

the fixed mesh, although more investigation could be carried out on more
complex problems to see if there is a distinct advantage over the fixed grid.
The volume conserving method seems to perform better at capturing dis-
continuities clearly but the solution was highly inaccurate overall.
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Figure 4.4: The elevation of the fluid,as computed on a fixed mesh, using
the initial condition η(x) = − arctan(5x) and 2000 elements.
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Figure 4.5: The elevation of the fluid,as computed by equidistribution of
the arc length of η using the initial condition η(x) = − arctan(5x) and
200 elements. The red marks along the x-axis represent the location of
the nodes.
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Figure 4.6: Results computed by conserving the volume of each element
using the initial condition η(x) = − arctan(5x) and 200 elements. The red
marks along the x-axis represent the location of the nodes.
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Chapter 5

Numerical Results from the
Daly River Model

5.1 The Daly River Model

A more realistic model was developed by E.Hanert [25], which allows varia-
tion in the bathymetry and width of the river and has boundary conditions
based on real situations. It was designed to model the tidal forcing in the
Daly River estuary in Australia which experiences a bore at spring tides. It

Figure 5.1: The Daly River in Australia. (Map sourced from [27].)

has a shallow, funnel shaped estuary, characteristic of rivers which produce a
bore. The estuary is about 100km long and its tidal range peaks around 6m
during the spring tide. The river discharge varies considerably during the
year, from an average of 20m3s−1 during the dry season (May-September) to
over 1000m3s−1 in the wet season (January-April) [25]. Experiments have
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Figure 5.2: The Daly River in Australia and key sites at which experiments
were carried out by Wolanski et al. [25]. 2=Palmerston Island, 5=Moon-
Billabong, 6,7=Rockbar and 8=Woolianna. (Map sourced from [25])

already been carried out on the bore which occurs on the Daly River [24],
[25] and figure 5.2 shows some of the sites.

The shallow water equations are essentially the same as (1.24) and (1.25)
with additional terms to represent friction forces and then non-dimensionalized.
The equations to be modelled are

∂u

∂t
+ αu

∂u

∂x
+

∂η

∂x
= −Dr + F, (5.1)

∂η

∂t
+

∂

∂x
(hu) + α

∂

∂x
(ηu) = −SB, (5.2)

where α ∈ [0, 1] is a parameter to adjust the importance of non-linear terms,
Dr is a bottom drag term, F is the Manning friction and SB allows for
variations in the river width. The boundary condition at the mouth of the
river is given by setting η to the tidal elevation

η = η0 sin(Ωt)

where η0 = 5 is the tidal variation and Ω = 2π
12 sets the length of the tidal

cycle. At the top of the estuary the boundary condition is given by setting
the velocity proportional to the river discharge. To set the model off we
take the initial condition to be a still layer of water, u(x, 0) = η(x, 0) = 0.
This model was again adjusted to accommodate a moving mesh using the
two methods of equidistribution of η and conservation of element volume.

5.2 Method of Equidistribution

Again we implement this method as in section 3.2.1, adapting the mesh every
second and then interpolating the variables onto the new mesh, again using
piecewise cubic Hermite interpolation. Note that we also need to interpolate
the river bathymetry and width as well as η and u. After experimentation
we found that with γ = 1 we had very small elements, and even nodes over-
lapping. Therefore we reduced the gradient effect on the monitor function
by setting γ = 0.1.

32



(a) Palmerston Island (b) Moon-Billabong

(c) Rockbar (d) Woolianna

Figure 5.3: Elevation and velocities at the four sites computed on a fixed
mesh using 1034 elements and a time step of 0.0001.

Comparing the results, figure 5.7, with those computed on a fixed mesh,
figure 5.6, we can see that, although the position of the nodes are increased
in density around sharper gradients in the waters elevation, there is not a
great difference between the solutions. Comparing the elevation and ve-
locity at the four sites—Palmerston Island, Moon-Billabong, Rockbar and
Woolianna— still does not give any indication as to any difference between
the models, see figures 5.3 and 5.4.

It would interesting to see how the arc length method performed taking
a coarser mesh for this problem. When applied to the basic model there
only seemed to be a difference from the fixed mesh solution when large
discontinuities were considered, and this became more pronounced when
less elements were used. By having a coarser mesh it would also allow us
to take γ to be a larger value and therefore the node density will be greater
around discontinuities compared to a fixed mesh with an equal number of
elements.

5.3 Volume Conservation

In this method we are trying to conserve the volume of each element, but
this should only be affected by the change in elevation of the river and not
the variation in the bed of the river. As we no longer have a flat lower
boundary to our domain it is important that we do not let the varying
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(a) Palmerston Island (b) Moon-Billabong

(c) Rockbar (d) Woolianna

Figure 5.4: Elevation and velocities at the four sites computed from the
equidistribution of arc length using 1034 elements and a time step of
0.0001.

bathymetry of the river affect the calculation (3.12) for the mesh velocity.
The most obvious choice is to take the height of each element as η, however
this can lead to division by numbers close to zero. Therefore we include the
minimum river depth h0 in our element height, which in our dimensionless
units is simply 1. Therefore to calculate the mesh velocity we use

ḃ = u(b)− η(a) + 1
η(b) + 1

(u(a)− ȧ) .

We again have to alter our equations to allow for the fact that the mesh is
now moving, and so we now need to solve

d

dt

∫
û dx−

∫
∂

∂x

(
û

∂x̂

∂t

)
dx +

∫ (
αu

∂u

∂x
+

∂η

∂x

)
dx = −Dr + F,

d

dt

∫
η̂ dx−

∫
∂

∂x

(
η̂
∂x̂

∂t

)
dx +

∫ (
∂

∂x
(hu) + α

∂

∂x
(ηu)

)
dx = −SB.

After running the model we encountered another problem, the mesh
nodes were overtaking each other. In order to prevent this we could take a
smaller step size. However, instead I decided to remove nodes when the size
of the element became too small, as defined by the CFL condition. They
were then repositioned in the centre of the largest element in the domain
so the total number of nodes remained constant. The value of the variables
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at this new node was given by the average of the values at the nodes either
side. This also helped to reduce the possibility that any area of the domain
was inadequately covered by nodes.

The results of this method can be found in figure 5.8. It can be imme-
diately seen that the bore is clearly defined using this method and that the
bores generated move faster than those generated from a fixed grid. The
elevation upstream also never returns to an average level after the bore has
passed and the velocity of the river is much greater using this method.

(a) Palmerston Island (b) Moon-Billabong

(c) Rockbar (d) Woolianna

Figure 5.5: Elevation and velocities at the four sites computed from the
conservation of the element volume using 1034 elements and a time step
of 0.0001.

Looking at the site readings, figure 5.5, we see that near the river mouth,
at Palmerston Island, the elevation and velocity readings given by all the
models are very similar. At Moon-Billabong and further upstream there is a
marked increase in tidal elevation from the volume conserving method. This
disagrees with findings by Wolanski et al. [25] which states ‘. . ., the tides
become increasingly asymmetric and decreased in amplitude with increasing
distance from site 1’ (as shown in figure 5.2). Also the results from the site
at Woolianna become increasingly erratic as time goes on. This suggests
that there may be an error in the code for this model at the right hand
boundary.

Another cause for concern is the extent to which the nodes tend to
congregate in areas where it does not seem required. Although the aim of
moving the mesh is to increase the mesh resolution in certain areas, we also
do not want to leave other areas too poorly modelled. This seems to be a
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problem particularly at the right hand end of the domain, which may be
the source of the erratic readings at Woolianna. The reason this area of the
domain is so badly affected may be due to the general flow of the river being
to the left, the grid points are ‘carried along by the current’. One area of
further investigation could be to try modifying the mesh velocity to take
this into account, perhaps by subtracting the average river discharge.
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Figure 5.6: Output from the Daly River model using a fixed mesh with
1034 elements and a time step of 0.0001. The lower shaded area repre-
sents the river bed, with the water surface indicated by a continuous blue
line. Velocities are shown by the arrows, whose size is proportional to the
velocity magnitude. The four locations at which readings are taken are
indicated; Palmerston Island, Moon-Billabong, Rockbar and Woolianna.
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Figure 5.7: Output from the Daly River model using an arc length equidis-
tribution method with 1034 elements and a time step of 0.0001. The lower
shaded area represents the river bed, with the water surface indicated by a
continuous blue line. Velocities are shown by the arrows, whose size is pro-
portional to the velocity magnitude. The four locations at which readings
are taken are indicated; Palmerston Island, Moon-Billabong, Rockbar and
Woolianna. The red marks along the x-axis represent every 10 elements.
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Figure 5.8: Output from the Daly River model conserving the volume
of each element with 1034 elements and a time step of 0.0001. The lower
shaded area represents the river bed, with the water surface indicated by a
continuous blue line. Velocities are shown by the arrows, whose size is pro-
portional to the velocity magnitude. The four locations at which readings
are taken are indicated; Palmerston Island, Moon-Billabong, Rockbar and
Woolianna. The red marks along the x-axis represent every 10 elements.
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Chapter 6

Summary and Further Work

We have briefly looked at different finite element methods and their ability
to capture discontinuous solutions, and then continued on to study a range
of approaches to adapting the numerical mesh, focusing on moving mesh
methods.

Two of these methods were investigated in detail, namely the method of
equidistribution and the conservation of volume method. First they were ap-
plied to a simple model in a frictionless rectangular domain. The method of
equidistribution did not produce a better result than a fixed mesh, although
this may be due to the simplicity of the solution being studied. The volume
conservation method did not perform very well at producing an accurate
solution, although discontinuities were defined clearly, most likely due to
the high density of nodes which became positioned around the shock.

One area of further research would be to apply these methods to prob-
lems which have a more complex solution and see how they compare against
a fixed grid. The arc length method could also be applied in a more contin-
uous manner by taking the time derivative of the equidistribution principle
to calculate nodal velocities. We could also combine these two methods, in
effect we would then be conserving the arc length.

We then went on to look at how these methods behaved when applied
to a more realistic model. The conservation of volume method again pro-
duced distinct discontinuities, however the solution was still highly inaccu-
rate overall, giving solutions which which did not conform to observations.
There were also significant problems with mesh tangling. The areas of high
node density did not even seem to correspond to areas where the solution
was complex with this model.

The equidistribution approach proved better, although without any fur-
ther increase in accuracy than a fixed grid. However I think that when the
number of elements is reduced the equidistribution will prove more accurate
than a fixed grid, and this is another area which needs further study. Also
further approaches to calculate the nodal velocities could be investigated.
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