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ABSTRACT 
 

 
Detection and measurement of rainfall rate has always been a key ingredient when forecasting 

for extreme weather events, such as local storms and flash floods.  Conventional radar 

reflectivity (Z) observations measuring backscatter from hydrometeor particles are vital for 

estimates of rainfall, but current methods do not always produce accurate results. Raindrop 

shapes found to become increasingly oblate with drop size can not be inferred from Z alone 

hence alternating horizontal and vertical polarization parameters are widely used which provide 

information on hydrometeor drop shape and concentration density, to be exploited for better 

rainfall estimates.  This dissertation examines the previous and current use of radar polarization 

parameters in rainfall estimation, particularly the use of differential reflectivity ( DRZ ) on the 

reflectivity factor (Z) to rainfall rate (R) relationships.   

 

A retrieval algorithm is proposed using the techniques of optimal estimation theory to predict 

more accurate rain rates exploiting the data provided by polarization radar and known drop size 

distributions.  Analysis of real data is performed in a block-wise manner using smoothness 

constraints to enforce spatial continuity.  
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1. INTRODUCTION 
 
Precipitation measurements are one of the main areas of interest and application in radar 

meteorology. Weather influences many aspects of life and economic value such as crop & 

livestock farming, wind and hydropower production, effective ground and air transport through to 

outdoor leisure events.  With severe weather occurrences such as storms and flash floods causing 

some of the most frequent and devastating natural hazards world wide, there is a growing demand 

for accurate quantitative measurements of rainfall. It has been shown that flooding causes more 

deaths and damage than any other hydro meteorological phenomenon world wide, and was the 2nd 

leading cause of weather related deaths in 1992 after lighting.  Recent events such as the Boscastle 

floods in 2004, where 2 inches of rain fell in just 2 hours, or the Pakistani floods in Feb 2005 

where 278 people died as a result of one week’s torrential rain, have highlighted the importance for 

better localized weather warnings.  The scale and intensity of these weather events is governed by 

atmospheric processes within the hydrological cycle, the movement of water from the oceans to 

the atmospheres and back to the oceans, via the land, with both local and more global scale effects 

such as climate change.   

 

 
Figure 1.  Schematic diagram of the Hydrological cycle (adapted image, original from Scientific American 1989), all 
units are in 31210 m× of water transport. 

 

The development of stratiform clouds usually from mid latitudinal frontal systems is generally 

slow resulting in smaller precipitation drops and lighter rainfall, whereas convective structures 

form more slowly producing larger drops and more intense rainfall (Steiner and Houze Jr 1997).  

Continually improving radar and satellite meteorological measurements able to determine such 
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intensities are being used alongside frequent synoptic observations and NWP mesoscale model 

data to produce more accurate short range forecasts known as ‘nowcasts’ e.g. in the Met office 

Nimrod NWP system (Collier 1991). Additionally subsequent radar scans over longer time 

windows can provide useful information on the development of weather systems and the 

trajectories of storm dynamics, providing more information for forecasters and local environmental 

agencies to foresee such severe weather events. 

Even though current radar methods produce superior information about spatial and temporal 

resolution of rainfall events, they can have exaggerated biases, so calibration with gauge data and 

visual reports is essential. The calibration of radar with rain gauge networks using simultaneous 

measurements essentially removes any pervasive bias error in reflectivity calibration as well as 

storm bias due to drop size variations (Wilson and Brandes (1979)).  With ongoing technological 

advances, some scientists have predicted that radar, which can observe precipitation over vast 

areas in a very short time, ultimately will replace rain gauge data (Battan 1973).   

 

During the outbreak of World War II there was extensive research into radar developments, mainly 

for military purposes, with the first precipitation echoes being detected around 1941 on a 10cm 

wavelength aircraft scan. It soon after became clear that radar would be an excellent tool for storm 

observations and weather tracking, although the first attempts to measure rainfall by radar were 

delayed until after the war.  The main operating radar frequencies are C-band (5cm wavelength) 

widely used in Europe and Japan, and S-band (10cm wavelength) mainly used in the USA, with 

normally negligible heavy rain attenuation problems at S-band. 

 

 

Conventional reflectivity to rainfall Z(R) relationships were first proposed by Laws and Parsons 

(1943) with a constant empirical relationship for all rain types, since then technological 

developments have introduced advanced polarization measurements providing estimates of 

hydrometeor target shape, size and orientation, enabling more accurate rainfall estimation 

techniques assuming known drop size distributions DSDs.   

 

The aim of this dissertation is to develop an alternative approach to current polarization rainfall 

prediction techniques, which use polarization data to predict rainfall rate from DSDs and raindrop 

concentration alone.  We will formulate a retrieval scheme which receives both conventional and 
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polarization measurements, particularly differential reflectivity at points of azimuth and range 

within a 2-D radar scan, using optimal estimation methods to provide individual Z(R) relationships 

at various range gate regions with assumed similar characteristics within the scan, to produce 

better case sensitive rainfall estimates throughout.  We will assume that attenuation affects due to 

heavy rain are negligible within the range this project, and will eliminate any data with spuriously 

high polarized returns from ground clutter. The radar theory and further polarization details 

required for the scheme will be introduced in Chapter 2, followed by an outline of optimal 

estimation and data assimilation techniques in Chapter 3.  The observational data and methodology 

of the retrieval scheme will be recorded in Chapter 4, and an analysis of our findings in Chapter 5. 

To finish a final conclusion of the results will be made in Chapter 6 along with suggestions for 

future work. 
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2.  RADAR THEORY AND RAIN DROP SIZE DISTRIBUTIONS 

 

The purpose of this chapter is to summarize the basic techniques and applications of radar theory, 

from conventional radar through to the introduction of polarization parameters.  We will provide a 

further discussion of the history and developments in raindrop size distributions ranging from 

Marshall and Palmer’s exponential distributions (1948) to the normalized Gamma distribution used 

by Illingworth and Blackman (2002), alongside ongoing discussions of the influences of such 

polarization radar data and size distributions on determining rainfall rate.   

 

2.1. Radar reflectivity ( Z ) 

 
It has been shown that radar reflectivity Z and rainfall rate R are related, where Z is proportional to 

the backscatter power from a radar scan, hence can be used for measuring rainfall.  As 

electromagnetic waves propagate through the atmosphere, their interaction with hydrometeors 

generates backscatter radiation detected by the radar receiver.  The microwave signal is then 

converted to a low-frequency signal relating to the size intensity of the hydrometeor target.  The 

radar reflectivity (Z) assuming spherical droplets can be expressed as 

 

                                                       dDDDNZ 6

0
)(∫

∞
=  36 −mmm ,                                                (2.1) 

 

Where N(D)dD is the number concentration of droplets with diameter between D and dD, Z 

usually measured in dBZ is can be expressed on a logarithmic scale as 

 

                                                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

−

36
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10 1
)(log10)(

mmm
mmmZdBZZ .                     (2.2) 

 

Conventional reflectivity measurements assuming ‘ideal’ spherical drop targets can indicate 

rainfall intensity, but give limited information about the shape properties or composition of 

hydrometeors, particularly for oblate spheroids falling at terminal velocities, or melting snow and 

ice. 
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Empirical relationships exist relating Z to R using  

 

                                                                   baRZ = ,                                                                 (2.3)      

                                           

where Z is proportional to the concentration of drops with fixed diameter D given in Eq.(2.1), 

hence the return in Z could be equivalent for a high density of small drop as that of fewer larger 

drops, leading to uncertainties in distinguishing precipitation type.  Such relationships have been 

proposed where rain coefficients a and b vary, dependant on drop diameter and concentration, 

giving rise to unique relationships characteristic of different rainfall types. 

       

  Z(R) relationship Z= a bR   Hydrometeor type Reference 

  300 44.1R   Spherical ice and water   Rhyde (1946) 

  200 6.1R  Stratiform rain Marshall and Palmer (1948) 

  31 71.1R  Orographic rain at cloud base Blanchard (1953) 

  486 37.1R  Thunderstorm rain Jones (1956) 

  140 5.1R  Drizzle Joss et al 1970 

  250 5.1R  Widespread rain  Joss et al (1970) 

  500 5.1R  Thunderstorm rain  Joss et al (1970) 

 
Table 1 Empirical Z(R) relationships for varying hydrometeor types, using conventional reflectivity, a measured 
in bmmhmmm −−− )( 136  
 

For a scan of hydrometeor particles with a classified rain type, we can find a set of coefficients (a 

and b) which provide the best fit to the Z(R) relationship (see Eq.2.3) allowing R to be estimated, 

such as those proposed above for drizzle, widespread rain and thunderstorms (by Joss et al 1970), 

but in reality these coefficients are expected to vary spatially between different rain types even 

within a single radar scan.  Atlas and Ulbrich (1974) have shown that early empirical relationships 

between radar reflectivity at non-attenuating wave lengths do not account for such different rainfall 

types, hence conventional reflectivity Z(R) relations based on single-parameter drop size 

distributions are prone to large errors. Important extensive research has been carried out showing 

that raindrops under aero-dynamical stress vary with size, becoming increasingly oblate with 

increased size, but conventional radar are unable to detect these properties.  To overcome this 
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problem, reflectivity measurements at both vertical and horizontal polarizations have been 

introduced to determine both oblateness and size plus drop concentration hence resulting in better 

rainfall rates.  

 

2.2 The Polarization parameters 

 
Current advanced radar techniques enabling measurements of polarization parameters, with 

increasing information on drop size, shape and orientation can be exploited for better estimates of 

rainfall rate than those available from reflectivity alone.  These new polarization parameters such 

as differential reflectivity DRZ  and differential phase shift DPφ  can be used for more accurate 

rainfall predictions. Linear polarization techniques transmitting and receiving pulses with both 

vertical and horizontal copolar returns HZ  and VZ  can provide useful measurements for 

determining raindrop shape, size and orientation. 

 

2.2.1 Differential reflectivity ( DRZ ) 

 
Differential reflectivity is a measure of mean particle shape, particularly important for rain 

characteristics at low radar elevation angles, and can be written as the ratio of two voltage levels 

 

 ⎟
⎠
⎞⎜

⎝
⎛=

V

H
DR Z

ZZ log10  dB,            (2.4) 

 

measured in decibel (dB ) logarithmic units. Measurements of DRZ  increase as rain drops become 

increasingly large and more oblate shown in Fig.2. 

 

                                                                                               0≈DRZ   

                                                                                                                0>DRZ  

                                                                                                               0>>DRZ    

                                               

Figure 2 Radar signal with copolar returns HZ  and VZ  for measurements of DRZ  , increasing with drop size. 
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The oblateness of raindrops falling at terminal velocity through the atmosphere is known to 

increase with drop volume. With such measurements it is possible to relate drop size distributions 

such as the exponential function proposed by Marshall and Palmer (1948) given by Eq. (2.5) 

 

                                               )/67.3exp()( 00 DDNDN −=  13 −− cmm ,                                       (2.5) 

 

to rainfall rate.  Where D is the individual drop diameter, 0D  is the median volume drop diameter, 

0N  is the concentration parameter fixed by 0D  and the observed value of actual reflectivity Z.  

With dual polarization scans measuring DRZ  given by 

 

                                  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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∫
∫

dDDND

dDDND
Z

V

H
DR )()(
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log10 10 σ

σ
dB,                                           (2.6) 

                                               

where Hσ  and Vσ  are the horizontal and vertical radar backscatter cross sections or shape 

functions of the oblate spheroids respectively as used by (Seliga and Bringi 1976), assuming 

raindrops fall with a constant vertical minor axis and exponential size distribution N(D)dD of 

Eq.(2.5).  It can now be easily seen that DRZ  is a function dependant only on 0D  with fixed 0N , 

hence any measurement of DRZ  can be used to calculate a fixed value of 0D , for a diagrammatic 

representation see Fig.16 (sect.4.2).  These measurements of Z and DRZ  to find median drop size 

diameter from known drop size distributions can be used to imply more accurate rainfall rates 

relationships R(Z, DRZ ) of the form Eq.(2.7) where c is a constant. 

 

 )( DRZcRfZ =                   (2.7) 

 

Analysis of equivalent DRZ  and Z scans can provide invaluable information for determining 

rainfall type. Reflectivity in both the horizontal and vertical is affected by the hydrometeors 

dielectric constant, with ice particles having a lower dielectric constant than that of liquid water 

even if oblate.  If such oblate ice particles become wet, e.g. melting snow in the bright band, then 

this corresponds to high values of both reflectivity and differential reflectivity in the melting layer. 
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DRZ  can also be a useful tool alongside Z in hail identification, which usually tumbles as it falls, 

this can be associated with DRZ  returns of 0 dB or values lower than that of rain, yet higher values 

of Z (Illingworth 2003). 

 

 
Figure 3  Vertical Range Height Indicator (RHI) scan of radar reflectivity Z (dBZ)  measured at distance north east 
and height (Km) through a shallow precipitation system on 20/04/1999 at 16:47:32 , data provided by the Chilbolton 
radar remote sensing facility UK. 
 

 

 
Figure 4 An example vertical RHI scan of differential reflectivity DRZ (dB) for equivalent location, date and time as 

Fig 1.  Some evidence of non spherical drops with dBZ DR 5.0≈  around 10km north east of the Chilbolton site, 
indicating heavier rain. 
 
Figures 3 and 4 show warmer colours of increased horizontal reflectivity Z coincidental with high 

DRZ  returns at 2km, this is a typical indication of snow and ice melt in the ‘‘bright band’’ or 

melting layer.  Areas of high reflectivity below the bright band mainly indicate light rain where 
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there is little, if any cross polar return in the DRZ , yet cells of slightly high polar activity around 

10km show the sensitivity of differential reflectivity which can be exploited in quantifying rain 

rate intensity.  

 

2.2.2 Linear depolarization ratio ( DRL ) 
 
Precipitation particles as a target are usually small with respect to most radar wavelengths, but 

larger oblate particles generating non-Rayleigh scattering are not always easily distinguishable 

from ground clutter or anomalous propagation which are essentially far from spherical Rayleigh 

scatters (small target diameter compared to wave length) using conventional reflectivity.  

Fortunately their identification is less ambiguous via the use of polarization radar. 

 

The linear depolarisation ratio DRL  can be described as the ratio of the flux of the cross polarized 

component of backscattered light relative to that of the copolarized component (Mishchenko & 

Hovenier 1995), and can be defined  
 

 ⎟
⎠
⎞⎜

⎝
⎛=

H

VH
DR Z

ZL log10    dB                                                 (2.8) 

 

As used by Illingworth (2003), where VHZ  is the cross polar return at vertical polarization 

resulting from horizontal transmission, and HZ  the horizontal reflectivity.  Measurements of DRL  

are triggered only by oblate particles with asymmetric oscillations and a canting angle opposed to 

the polar axes.  Spherical particles yield a negligible DRL , yet non-spherical highly orientated 

scatters can substantially deviate.  In low radar elevation angles DRL  can be used in the 

identification of ground clutter of non uniform shape and size with uncorrelated cross and copolar 

returns. From now on we will assume that DRL > -10 dB to be an indication of ground clutter 

containing anomalous data, hence will be removed. DRL  can be a valuable source when rain is 

mixed with frozen precipitation, melting snowflakes at bright band with high canting angles due to 

their rocking motion gives rise to an DRL ≈ -15 dB, melting hail and ice crystals result in DRL  
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within the range of -20 to -26dB, which can be distinguished from heavy rain fall with an upper 

band of ≈ -26dB and lower band of around -34dB (Chandrasekhar and Bringi 2001). 

 

 
Figure 5  Vertical RHI scan of linear depolarization ratio (dB) equivalent location and time to figures 3 & 4.  Showing 
clear anomalous propagation at low ground levels 0.1 to 0.2km high, and higher 20−≈DRL dB at ‘bright band’.  
Figures 3, 4,5, and 6 courtesy of Robin Hogan (University of Reading) using data supplied by the Chilbolton weather 
radar. 

 

2.2.3 Differential phase shift ( DPφ ) and specific differential phase ( DPK ) 

 

Polarization radar measuring the velocity of the polarized propagating waves can output 

differential phase measurements, which are the result of the return in the horizontally polarized 

beam traveling progressively more slowly than that of the vertical return through a region of oblate 

droplets HVDP φφφ −= .  Measuring this time lag provides additional complimentary information 

upon the shape and size of the hydrometeors.  The Specific Differential Phase shift DPK (º 1−km ) is 

the rate of change of DPφ  with range, where DPφ  monotonically increases with range. Current work 

into accurate rainfall estimates have proposed DPK  as the new measure of rainfall rate. 

Sachidananda and Zrnić (1987) have shown DPK  to R relationships less sensitive to drop size 

distributions variations than previous Z(R) relationships, hence may yield more accurate rain 

estimates for heavy rain of the form  

 

                                                               b
DPaKR = .                                                                     (2.9) 
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Such relationships are also advantageous since they are likely to be unaffected by attenuation 

inaccuracies, or spurious hail measurements. Inaccuracies can arise since these relationships 

assume DPφ  can be measured to 1º or better, but in reality the DPφ   resolutions can be quite noisy, 

with large perturbations of up to ± 5 º in some cases. Measuring the velocity gradient DPK  rather 

than return intensity can also result in inaccuracies related to continually changing phases and 

variations in the target velocity itself. 

  

 
Figure 6 Vertical RHI scan of a noisy differential phase shift DPφ  field on 20/04/1999 at equivalent time 16:47:32 
corresponding to the Z and DRZ  scans through the shallow precipitation system seen in Figures 3 and 4.  Areas 

corresponding to high reflectivity up to 30 dBZ in Fig.3 yield no significant measurement in the DPφ  return, hence is 
only useful in heavy precipitation systems. 
 
 
2.3 The use of DRZ  and DPK  for improved rainfall rates 

 

The use of DRZ  and DPK  parameters have great advantages in estimating rainfall rate, and hail 

identification which is often interpreted and over estimated as very heavy rainfall, where DPK  only 

responds to the contribution of oblate droplets, not tumbling hail.  The error in R derived from 

reflectivity Z to rain relationships alone can be up to the often-quoted ‘factor of two’, work has 

been done to implement ploarization relationships e.g. R=f (Z, DRZ ) and R= f ( DPK ) to reduce this 

error.  The equations used to imply rainfall from DRZ  and DPK  have been derived from 

representing naturally occurring raindrop size spectra distribution as a gamma distribution (Ulbrich 

1983) in Eq(2.10) 
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(2.10) is equivalent to that of the exponential DSD proposed by Marshal and Palmer Eq.(2.5) if the 

spectrum shape parameter µ governing the shape of the distribution is = 0. This new 3-parameter 

gamma distribution has a range of tuneable parameter sets µ, 0N  and 0D  derived by Ulbrich from 

the range of empirical Z(R) relationships published by Battan (1973). For or a better representation 

of the variations in drop size distributions Illingworth and Blackman (2002) have shown that a 

normalized form of Eq.(2.10) where the 3 variables become independent, each representing real 

physical characteristics is more consistent with DSD observations Eq.(2.11).  The natural 

variability of rain drop size spectra are hence well captured by this normalized 3-parameter gamma 

distribution 

 

                                    ⎟⎟
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)67.3(033.0)(
4

+Γ
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+
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µµ

µ

f  ,                                              (2.12) 

 

wN  is now the normalized concentration parameter independent of the spectrum width µ. 

Such distributions were invented to overcome the non-independence of µ and 0D  present in 

classical exponential distributions and early gamma distributions, and are exploited to complement 

various polarization diversity techniques to overcome uncertainties related to drop size variability.  

A constant value of wN  as proposed in the ‘ZPHI’ technique (Testud et al 2000) is used with 

combined polarization parameters to reduce DSD and instrumentation errors, along with 

conventional reflectivity to constrain statistical errors related to random positions and velocities 

associated with polarized radar.  The algorithm uses specific differential phase shift DPφ  as an 

external constraint to correct the effects of attenuation on the observed reflectivity, polarized in 

both the horizontal and vertical, though its application will not be implemented within this project.  
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Chandrasekar et al (1990) derived the linear R (Z, DRZ ) relationship given in Eq.(2.13), 

 

                                                     05.197.098001.0 −×= DRZZR   1−mmh .                                      (2.13) 

 

which uses the best fit to the Ulbrich drop size spectra parameters, wN  is no longer fixed by 0D  

and Z, unlike 0N  (Seliga and Bringi 1976), but this averaging leads to an over estimate of rainfall 

for a given DRZ  at higher rainfall rates.  An alternative approach is also suggested for the newly 

proposed normalized gamma distribution for µ= 5, of the form 

 

                        32 )(01039.0)(385.114.848.21)(/ DRDRDRDR ZZZZfRZ +−+== ,                 (2.14) 

 

Used by Illingworth (2003) where rainfall is proportional to Z, but the performance of this is yet 

unknown.  Similar rain rate relationships have been formed for specific differential phase shift 

DPK  by averaging over the Ulbrich range such as those proposed by Sachidanada and Zrnic (1987) 

 

                                    866.01.37 DPKR =          or        155.100154.0 RK DP = .                               (2.15) 

 

The alternative R( DPK ) relationships for the normalized gamma distribution at µ= 5 allowing R to 

be sensitive to changes in absolute drop concentration wN  (Illingworth and Blackman 2002) are, 

 

                                   71.05.47 DPKR =          or            40.135004.0 RK DP ×= .                           (2.16) 

 

These new relationships Eq.(2.14) and Eq.(2.16) based on Normalized gamma distributions with a 

mean spectrum value µ= 5 in natural rainfall and more realistic drop shapes have been proposed 

for better rainfall rates accurate to dB1± , more accurate than those based on the averaged Ulbrich 

non-normalized DSD of (2.13) and (2.15). For best rainfall estimates R may be derived from Z and 

DRZ  when hail is absent, but when hail is indicated by polarized radar R( DPK ) relationships 

should provide the most accurate performance.  However R( DRZ ) and R( DPK ) relationships can 

yield non physical results when the polarization parameter returns become negative due to 
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fluctuating instrumental error, leading to unrealistic negative rain rates, hence we combine 

unconditionally positive Z with polar parameters DRZ  or DPK  for more accurate results.   
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3.  APPROXIMATION THEORY AND SMOOTHING FUNCTIONS 

 
Many problems exist in the atmospheric sciences where the desired parameters can not be 

measured directly, but instead one has to infer unknown variables using models and available data.  

Inverse modeling is used to find the best representation of the required parameter, together with 

any prior information (Rodgers 2000). Measured data is often associated with some uncertainty, 

hence optimal estimation and fitting procedures can be used to assess how these uncertainties 

affect the estimated variables.  Data assimilation techniques generally use a probabilistic approach 

and apply statistical estimation theory to the given data. Field data which is often accompanied by 

noise, even though all control parameters remain constant the resultant outcomes vary, hence we 

use curve fitting techniques to best approximate these trends.  A best fitting curve with minimal 

deviation from all points is desired, and techniques such as least squares estimation (otherwise 

known as minimum variance unbiased estimation) can be used.   

 

In our problem the observed variables are Z and DRZ , and we wish to estimate an optimal pair of 

state coefficients a and b at each range gate from which rain rate R can be inferred using the 

empirical relationship Eq.(2.3).  As previously discussed (see sect.2.1) these coefficients are 

expected to vary spatially between regions of convective and stratiform rain, so we will investigate 

the use of spline functions and filtering techniques in our retrieval algorithm for smoother 

variations.  Our algorithm will perform techniques similar to that of ‘variational data assimilation’, 

but using only two space variables, range and azimuth, generally without time dependence.  

 

3.1   The inverse problem 

 
A standard inverse problem often reducing to matrix inversion can be set up as a system of 

simultaneous linear or non-linear equations, with some observational error, biases, and some 

approximations in the model equations.  Given enough information the model should determine 

what the observations will find if the model represents the system adequately.  Measurements, in 

our case of DRZ , can be assembled into an observation vector denoted Y and our unknown 

parameters a and b into a state vector denoted X .  To determine X  from Y  we have a forward 

model H[X] containing the equations of the physical system, (such as the drop size distribution 
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formulae) relating the observations to the state variables, where =Y H [ ]X  can be used directly for 

a linear problem. For slightly non-linear problems the forward model can be linearized about some 

prior state to find a solution, yet many heavily non-linear realistic systems are not adequate for 

linearization within the desired accuracy of the measurements. 

 

3.2   The least squares method and the non-linear problem 

 
Early inverse modeling techniques proposed by Laplace required perfect and complete input data, 

but radar data which is often noisy and incomplete lends itself to a another type of inverse problem 

where a line of best fit can be used as an approximating function, even though it might not agree 

precisely with the data at any point.  Such an approach is the ‘method of least squares’, sometimes 

called the ‘method of differential correction’ using observations to refine an initial estimate, by 

minimizing the squared differences between the values on the approximating line and the observed 

data. 

 

 
Figure 7   diagramatic representation of the least squares fit or linear regression line for the linear case, where the line 
of best fit is found my minimizing the sum of the squares of these differences. 
 
Inverse problems can be particularly difficult to treat if there are many unknown parameters or if 

the forward model is heavily non-linear, especially if no previous knowledge of the parameters are 

available (R. Bannister 2003).  Fortunately our moderately non-linear problem with a relatively 

low number of parameters and prior information is manageable.  
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The method of least squares invented by Gauss, ultimately involves minimizing a cost function, 

which penalizes the misfit of the observation set to the model parameters and any previous data, 

using the squared differences between the actual observations and the observations of the forward 

model (computed from the model parameters). This method requires known or sufficiently 

estimated error variances. A simplified version of our desired function can be expressed as 

 

                                      
( ) ( )

∑
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⎤

⎢
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⎡ −
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−
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mod XXYYJ
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                                              (3.1) 

 

Where Y is the observed differential reflectivity, modY  is DRZ  predicted by the model parameters, 

with a know error variance 2
Yσ equal to the standard deviation squared.  Even though we observe 

both DRZ  and Z our observation vector contains only DRZ , since we can assume that Z  is 

accurately calibrated hence does not require error fitting, nor is Z directly dependant on the state 

parameters a or b.  The desired state vector ),( baX =  for which =Y H [ ]X  holds contains the 

shape coefficients of the Z(R) relationship Eq.2.3, but does not contain rain rate (R), since this is 

inferred by Z rather than Y= DRZ . We also have an ‘a priori’ state ),( apapap baX =  for a given 

background state containing previous knowledge of state variables before any observations are 

accounted for. In practice X should be retrieved over a given region of similar DRZ  measurement to 

best represent the characteristics of the observations. 2
Yσ and 2

apXσ are the error variances in the 

observations and the prior state respectively, using ∑ to sum each component within the radar 

scan.   

 

3.2.1 The cost function 

 

If we can assume that our observational errors are independent of each other or any prior state, and 

that they obey a Gaussian probability density distribution, our inversion can then be posed as a 

variational problem of minimizing a scalar known as the cost function, given by 
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                                                [ ] [ ]( ) [ ]( )XHYSXHYXJ Y
T −−= −1

2
1

                                     (3.2) 

 

For simplicity this is equivalent to the first term only of Eq.(3.1), the ‘a priori’ state (second term) 

has been removed to be re-introduced in section.3.2.2. In general X is the state vector (size n), Y 

the observation vector (size m), H is the forward model operating on the observations and YS  an 

mm×  covariance matrix containing the uncertainty or standard deviations of the observations 

squared.  If the observational errors of different Y components are uncorrelated it follows that YS  

is diagonal matrix of the variances for each individual element of Y.   

Any covariance matrix correlating the different elements of any vector as described by Rodgers 

(2000) can be written as 

 

                                                          ( ){ }jjiiij yyyyS −−= )(ε  ,                                                 (3.3) 

 

where iy is the observed mean of the parameter iy  at each point, ε  is the expected value operator 

of the error covariance.  The minimization of the cost function is made easier if the forward model 

is linear or can be linearized, and if there is an appropriate background state to be implemented as 

a first guess 0X , to which we can then linearize about for 0XX =  using the approximation 

 

                                                [ ] [ ] ( )00 XXKXHXH −+≈ .                                          (3.4) 

 

The matrix K of partial derivatives is known as the Jacobian, the first derivative of the forward 

model.  K represents the sensitivity of the predicted observations iy  to the changes in the model 

parameter ix , written jiij xyK ∂∂=   

                                       =∂∂= ji xyK

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

n

mm

n

x
y

x
y

x
y

x
y

1

1

1

1

.                                                  (3.5) 

 



 3.  Approximation Theory and Smoothing Functions        

 19
                   

If we substitute Eq. (3.4) into the cost function Eq. (3.2) we have Eq.(3.6) 

 

            [ ] [ ]( ) [ ]( ))()(
2
1

00
1

00 XXKXHYSXXKXHYXJ Y
T −−−−−−= −

,            (3.6) 

 

then set [ ]0XHYY −=δ  and 0XXX −=δ  such that the linearized cost function simplifies to 

 

                            [ ] ( ) ( )XKYSXKYXXJ Y
T δδδδδ −−=+ −1

0 2
1

.                           (3.7) 

 

To minimize the cost function (3.7), we seek the maximum likelihood of X which minimizes J, 

found at the turning point of J∇ , where the gradient of J with respect to every component of Xδ  

is zero, in matrix notation this gives 

 

                                                  ( ) 01 =−−=∇ − XKYSKJ Y
T

x δδδ .                                 (3.8) 

 

It is usually unfeasible to determine Xδ  from J∇  by setting XKY δδ − = 0 and hence 

YKX δδ 1−= , since K is not an invertible square matrix( in this case more observations than 

parameters).  So alternatively in practice we set Eq.(3.8) ( ) 01 =−− − XKYRK T δδ  as shown by 

Bannister (2003) and expand to give, 

 

                                                 XKSKYRK Y
TT δδ 11 −− = .                                                     (3.9) 

 

We then denote the unconditional square combination of matrices KRK T 1−  as the invertible 

Hessian matrix A, 

                                                             A = KRK T 1−                                                                  (3.10) 

 

then rearrange for Xδ .  It follows that 
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                                                       YRKAX T δδ 11 −−= ,                                                            (3.11) 

 

from which we can determine X using 0XXX += δ  .   

 

It is unlikely that the first minimum of J, will predict the best estimate of X  particularly if the 

initial guess is considerably different to the current state , so this process of linearization and 

minimizing is then repeated, where the previous value of X then becomes 0X , about which we 

linearize.  This process is repeated in a Newtonian iteration fashion (Rodgers 2000) where we 

update our initial guess at each iteration using XXX δ+→ 0 , the iterative loop terminates when 

the values of X and 0X  converge to a chosen suitable degree of accuracy.   

This final vector X giving rise to the minimum value of the cost function minJ  at J∇ = 0 is known 

as the analysis vector aX .  In our problem aX  contains the optimal parameters a and b which we 

can then use to imply rainfall rate R using the empirical relationship ( ) b

a
ZR

1
= . 

 

3.2.2 Introducing an ‘a priori’ constraint   
 

An important feature of this algorithm is that it can be expanded to allow the inclusion of 

additional data constraints, and can hence be weighted appropriately to each data set assuming the 

respective standard deviations are known, which is particularly advantageous for constraining 

spuriously high or noisy observations.   To limit illegitimate observations influencing the state of 

the analysis vector aX , we will introduce an a priori constraint with a known standard deviation to 

within which all observations errors will then be limited.  This ‘a priori data’ is included in the 

vector apX , with an associated covariance matrix apS  as described by Rodgers (2000)   

 

                                                 ( ){ }T
apapap XXXXS −−= )(ε .                                          (3.12) 

 

This error term is then added to our Hessian matrix A Eq.(3.10) to give Eq.(3.13) 
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11 −− += ap

T SKRKA ,                                                    (3.13)      

 

It then follows that our new extended update matrix Xδ  becomes 

                                        

                                               )}({ 111
apap

T XXSYRKAX −−= −−− δδ .                                    (3.14) 

 

apXX −  is the difference between the estimated state X and the a priori vector apX .  Our estimate 

of X at each stage of the forward model cycle can now be weighted accordingly to both the state of 

the previous iteration and the a priori information. 

 

3.3   Filtering methods and smoothing functions 
 

In reality we know that our state variables will vary spatially within a given region of 

observational data (in our case a scan radius of ≈ 90km), to capture this we ideally want to retrieve 

the optimal values representing the physical state at each individual radar pixel.  Problems occur in 

the operation environment when applying retrieval schemes to radar data using wavelengths of an 

attenuating frequency and heavy susceptibility to noise, making it infeasible to retrieve values at 

each pixel.  Heavy rain which can attenuate the signal behind it and instrumental errors providing 

noisy measurements often require modification using smoothing techniques to correct for 

instability.  In reality we expect some smooth spatial continuation within both range and azimuth 

of a typical radar scan, yet avoiding the ‘’block-wise’’ retrieval approach as discussed by Thomson 

and Illingworth (2003).  We will propose a smoothing algorithm, using a weighted spline in the 

range direction followed by a Kalman smoother in azimuth.  These techniques will now be 

discussed. 

 

3.3.1  B-spline basis functions 

 
In many physical applications we need smooth results without irregularities or discontinuities. 

Usually we are able infer the desired smoothness using weighted basis functions, to constrain 

shapes and produce smoother contours.  Various basis splines are referred to by Prenter (1975) 
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such as the ‘cubic spline’ for improving piecewise cubic Lagrange and piecewise cubic Hermite 

interpolation. Basis splines which we shall denote B-splines from now on, can be linear, quadratic 

or cubic with the particular property of local control.  Bartels et al (1987) have shown that local 

control makes it possible to alter a single data point to modify only part of a curve or surface 

without affecting points outside of its vicinity, unlike a polynomial or Fourier transform.  The 

equation for a B-spline of thk -order with n+1 control points ( )nPPPP ,.....,, 210  can be written 

 

                                  ∑
=

=
ni

iki PtWtP
,0

,, )()(                   for          .0 mt ≤≤                     (3.15)    

                 

Where P(t) are intermediate points within the controls, each with a weighting function W specific 

to the order of the basis spline and the shape of the basis functions kiW ,  are relative to the spacing 

between intermediate and control points.  For simplicity we shall restrict our discussion to a linear 

B-spline for 1-D smoothing, with uniform spacing of constant itt − .  

 

 
Figure 8   Graphical representation of the linear B-spline with uniform spacing.  The triangular functions represent the 
weighting distribution of data lying between control points, triangle peaks and bases have weighting 1 and 0 
respectively. 
 

Implementation of the B-spline for noisy data in the least square fitting will be discussed further in 

the methodology of Chapter 4, a more general treatment of the least squares case is given by 

Bartels et al. (1987). 

 

3.2.2 Kalman filtering for least squares estimation 
 

For smoother spatial variation within radar azimuth we could expand our 1-D-spline to a 2-D-

spline such that it would smooth in both azimuth and range, but formulation of the required 
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weighting matrix to implement this would be tricky for our domain.  Alternatively in this project 

we will introduce similar techniques to that of a Kalman smoother, an approach presented by 

Kalman and Bucy (1961) to impose spatial continuity in azimuth (ray-ray).  When measurements 

are made sequentially, with some correlation between measurements, the purpose of the Kalman 

filter is to use previous measurements to estimate the evolution of the underlying dynamical 

system, or in our case simply constraining the retrieval at one ray by the previous ray.  The 

formulation of the Kalman filter consists of the regular forward model H and an additional 

evolution operator tµ  illustrated in Eq.(3.16), 

 

                                                        ( ) tttt XX ξµ += −1                                                        (3.16) 

 

where tX  is the state vector at time t and tξ  is a vector for un-modeled noise variations (Rodgers 

2000).  For the persistent atmospheric state assumed for our problem tµ =1, hence can be 

discounted. 

 

Incorporation of Kalman smoothin in to the retrieval algorithm can be implemented by treating the 

previous measurement of the adjacent ray as an additional a priori constraint, where azimuth can 

now be considered as the pseudo time dependant variable.  We also require an additional error 

covariance term describing the accuracy of the previous ray denoted pS which is then added to the 

new Hessian matrix Eq(3.13) similar to the ‘a priori’ approach of Sect.3.2.2 to give 

 

                                                 
111 −−− ++= pap

T SSKRKA ,                                                (3.18) 

 

we then have an extended form of the update vector Eq.(3.14) given by  

 

                              )}()({ 1111
ppapap

T XXSXXSYRKAX −−−−= −−−− δδ ,                          (3.19) 

 

where pX is the final analysis state of the adjacent ray, equivalent to the state at 1−tX . 
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Rodgers (2000) uses techniques similar to Eq.(3.18) and Eq. (3.19) in his discussion of the Kalman 

smoother where a best estimate of some quantity is needed from given data for before and after the 

desired time, the filter is run forwards in time as described, then additionally run backwards, 

commencing with a prior estimate given by the final analysis of the forward time series.  For the 

scope of our project we will only implement the Kalman smoother in the forward direction.  

 

Simulation of more realistic evolving dynamical systems are commonly described in versatile 

four-dimensional variation schemes, capturing the complex time and space scales of real physical 

processes. Lermusiaux and Robinson (1999) discuss further filtering and smoothing schemes via 

data assimilation for evolving error subspace statistical estimation (ESSE). 
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4. THE RETRIEVAL ALGORITHM 

 

4.1   Observational data 

 
The observational data for our algorithm provided by the Chilbolton S-band radar UK on 19th May 

1999, gives varying scans at elevations from 0.5º dwelling in low level precipitation though to 

higher level regions of ice at 2.5º, with varying spatial coverage in azimuth, at frequent time 

intervals throughout the day.  A good typical vertical profile of the atmosphere with in a short time 

window of each set of data is illustrated in Figure.13.  We will test the algorithm on 3 different 

data sets over a period of 90 minutes at times 16:29:28, 16:38:06 and 16:55:33 with elevations 0.5º 

(low-level), 2.0º (affected by the melting layer) and 0.7º (mid-level) respectively.  We can assume 

a constant underlying dynamical system over the period of each radar scan, and that our 

reflectivity parameters Z and DRZ  are accurately calibrated to within 0.1dB and 0.2dB accordingly. 

 

  
Figure 8 Diagram showing the example paths of radar elevations 0.5º, 0.7º and 2.0º (left)  transmitted in horizontal 
PPI scan from the Chilbolton radar antenna  (pictured right) 
 

The horizontal radar scans transmitting and receiving polarized signal to and from the radar 

antenna will follow a path through the vertical structure of the atmosphere varying according to 

elevation, with higher level transmissions intercepting melting snow and ice at bright band, 

followed by a constant region of ice hydrometeors beyond this in Fig.8.  The algorithm tests will 

focus on proposing better spatial gate-gate representation in quantitative rainfall estimates at lower 

elevations dwelling in precipitation, yet unrealistic high rain rate results expected for the 

R( DRZZ , ) approach  beyond bright band should confirm the performance of the model.  

 



                                           4.  The Retrieval Algorithm        

 26
                   

DATA SET 1: ‘Horizontal Plan-Position Indicator (PPI) radar scan with shallow elevation 0.5º, at 

time 16:29:18’ 

  
Figure 9 A PPI radar reflectivity scan at elevation 0.5º dwelling in low level precipitation, observed with the narrow 
S-band Chilbolton radar in the UK on 19th May 1999, at 16:29:28. Data with Spurious linear depolarization returns 
( DRL  >-10 dB) have been removed. Warm coloured areas of high reflectivity visible in the ENE direction.  

 
Figure 10 Differential reflectivity cross section at 0.5º, observed with the narrow S-band Chilbolton radar in the UK 
on 19th May 1999, at equivalent time to Fig. 9.  Evidence of oblate drops in DRZ  returns at various points in range and 

Azimuth, ( DRL >-10 dB removed). 
 

Visual analysis of the conventional reflectivity field (see Fig.9) and the equivalent polarized 

reflectivity returns, indicate similarities in the location of precipitation features, with heavy rainfall 

characteristics identifiable from high dBZZ 30≥ corresponding to dBZ DR 1≥ triggered by oblate 

droplets.  Between 60km and 80km east we can see a region of range gates triggering minimal 

polarized returns of dBZ DR 10 ≤≤ combined with dBZ 3020 ≤≤ indicating a dense area of small 

spherical drops, our model predictions should recognize this and hence infer heavier rain rates than 

those proposed using the Marshall and Palmer coefficients (1948) for Z alone. 
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DATA SET 2: ‘Horizontal (PPI) scan at 2.0º’ elevations, affected by melting layer at mid range, 

retrieved at 16:38:06. 

 

 
Figure 11 A PPI radar reflectivity scan with higher target elevation 2.0º covering varying levels of precipitation with 
range, from the S-band Chilbolton radar in the UK on 19th May 1999, at 16:38:06. Data with spurious linear 
depolarization returns ( DRL  >-10 dB) have been removed.  The melting layer is indicated at mid range (60km) in the 

DRL  field with returns ≈-20 dB. 
 
Now compare Fig.11 with the equivalent DRZ  plot at 2.0º, assuming ice on from the melting layer. 

 
Figure 12 Differential reflectivity at 2.0º elevation, observed with S-band Chilbolton radar in the UK on 19th May 
1999, at 16:38:06. There is evidence of more oblate drops in the DRZ  plot at close range beneath the bright band, with 

low DRZ  further in the range of assumed ice, coinciding with high reflectivity returns shown in Fig 11. 
 
 
Beyond the melting layer, we have a large region of low polarized reflectivity resulting from 

tumbling ice.  Using DRZ  to imply rain rate in this area will be unreliable since  DRZ  is no longer 

related to Z/R (see Section 2.1.1). 
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RHI SCAN   Vertical (Range Height Indicator) profile of the atmospheric state taken at 16:53:46 

at a single azimuth North-East of the radar site, showing the vertical structure of the reflectivity 

parameters, within a 30 minutes period of data sets 1,2 and 3. 

 

 
Figure 13 An RHI reflectivity scan including conventional reflectivity, differential reflectivity and linear 
depolarization ratio at azimuth 57.5º, at 16:53:46 on 19th May 1999. Figure courtesy of R. J. Hogan using data 
provided from the Chilbolton S-band radar UK. 
 

Fig.13 shows a good vertical cross section 57.5º North East of the Chilbolton site, evidence of 

strong convective cells in the horizontal reflectivity field, aligned with prominently high DRZ  at 

equivalent areas beneath the visible bright band at 2km.  Anomalous DRL  returns are also visible 

within close range of the radar antennae due to limited sensitivity in the early stage of each 

transmission and clutter in the radar side lobes, plus high anomalous DRL  returns at very low 

elevations taken to be ground clutter. 
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DATA SET 3:  ‘Horizontal (PPI) radar data with mid level elevation 0.7º, at time 16:55:33’ 

          
Figure 14 A PPI radar reflectivity scan at elevation 0.7º dwelling in low/mid level precipitation ranging from ground 
level at close range to just beneath the melting layer at far distance (90km). Observed with the Chilbolton S-band radar 
on the 19th May 1999,at a later time 16:55:33 ( 17:27 minutes on from data set 2). Data with Spurious linear 
depolarization returns ( DRL  >-10 dB) evident at close range has been removed. 
                                                                                                

 
Figure 15 Horizontal profile of differential reflectivity for data at elevation 0.7º, observed with the narrow S-band 
Chilbolton radar in the UK on 19th May 1999, at 16:55:33 showing evidence of more oblate drops with positive DRZ  
over numerous range gates in range and azimuth, data containing DRL >-10 dB has again been removed.  
 

Observations with negative DRZ  returns indicating unphysical negative rainfall rates will be 

ignored in the retrieval scheme when computing R using R(Z, DRZ  ) relationships. 
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4.2   Methodology 

 
The optimal estimation scheme designed for use on each data set exploits individual measurements 

of Z, DRZ   and DRL  retrieved at each radar pixel located in azimuth and range. 

Firstly the observations of Z and DRZ  are processed, suppressing any data containing ground 

clutter, by eliminating any spuriously high returns in dBLDR 10−> .  We then recalibrate 

measurements of DRZ  to best represent the observed data, such that at areas of zero DRZ  the model 

and measured DRZ  agree, noting that this is an ad hoc ambiguous process of trial and error.  For our 

purposes we will denote this procedure the ‘zero DRZ ’ criterion. 

A look up table is created using the drop shapes of Goddard et al (1995) containing drop shape 

information for the gamma size distribution, with a shape parameter µ=5 and median 

equivolumetric diameters 0D  ranging from 0.1 to 6 mm, this table outputs correlations between 

DRZ  and RZ H /  (the ratio of reflectivity at horizontal and rainfall rate, from the median 

volumetric drop diameter 0D ) for use in our model predictions.   

 

 
Figure 16 The values of DRZ  with RZH /  and DRZ  with 

0D  computed assuming Goddard drop shapes, for constant 

µ = 5.  For any measured value of DRZ  we can look up an equivalent drop diameter 0D  and reflectivity-rain rate 

ratio RZH / , or use RZH /  to obtain DRZ . 
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Figure 17 The Goddard drop shape spectra relationship for 0D  (mm) and RZH /  )/( 1−mmdBZ  for varying DRZ  
(dB), with constant µ = 5, for the normalized gamma DSD application. 

 

Our initial guess 0X and ‘a priori’ data apX of the state vector exist in the form ),)ln(( baX =  

where a=200 and b=1.6 as used by Marshall and Palmer (1948), using ln(a) to avoid non-physical 

rain estimates when a becomes negative.  We then use the Newtonian iteration technique to 

minimize the cost function and refine our initial guess as described in Section 3.2. 

At each iteration the forward model is required to predict DRZ  at each pixel from RZ H  (Fig.16) 

using the observations of HZ  and R calculated from the current state variables ln(a) and b, next the 

model must also calculate an estimate of the Jacobian K for each point. 
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To do this we have a function denoted f, similar to that of Eq.(2.7) which calculates DRZ  from the 

ratio of HZ / R exploiting data from the lookup distribution table of fixed drop shape versus drop 

size shown in Fig.16.  
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This function also provides us with the derivative of DRZ  with respect to In (Z/R), a function to aid 

with calculating the Jacobian.  We will denote the derivative function g, given by 
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It follows that, 
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and finally by taking the natural log of Eq 4.5, we have  
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In order to compute the gradient matrix K containing the rate of change of DRZ  with the state 

vector )),(ln( baX = , we implement Eq.4.3 and Eq.4.6  to give 
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and 
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We can now derive the Jacobian matrix K , containing each derivative of DRZ  at every point 

within the radar domain, with respect to each pair of state coefficients ln(a) and b.  The Hessian 

matrix and update vectors then follow, dependant on prior information, and desired smoothing 

techniques.  We will now discuss the application of the techniques covered in Chapter 3 in the 

operational development of our optimization algorithm.  
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METHOD 1: Constant a & b per ray, no a priori data constraint  

 

If we first consider the case with only an initial guess of the state variables ),(0 baX =  with a=200 

and b=1.6 (Marshall and Palmer 1948) for each ray (azimuth), we then wish to determine an 

optimum analysis state ),( baX a =  for each ray from which we can estimate rainfall rate at each 

pixel using Eq.(4.4). Each ray in the north easterly domain will be processed in turn commencing 

with the most northerly finishing at the most easterly ray. There will be no relation between 

adjacent rays at this stage. 

 

Our Jacobian  K  Eq.(4.1) using both Eq.(4.7) and Eq.(4.8) will be an 2×m  matrix where m is the 

number of finite HZ  and DRZ  elements within the full range of each ray. It then follows that the 

Hessian matrix as described in Section (3.2) Eq.(3.10) )2)(()2(1 ×××== − mmmmKRKA TT   

is an invertible 22×  square matrix,  from which our extended update vector as shown in Eq.(3.11) 

follows )1)(()2()22(}{ 111 ××××== −−− mmmmYRKAX TT δδ , a 12×  update to the state vector 

),( bInaX δδδ =  containing a set of update constants at each iteration, for which we update 

XXX ii δ+→+1 .  Finally when iX  and 1−iX converge to a suitable degree of accuracy (in our 

case allowing 4 iterations) we can then calculate the final Rainfall state for each ray using the 

equivalent optimum ray state aX  in Eq.(4.4).  The estimated rain rate at this stage of our retrieval 

scheme may be very sensitive to observational errors and spurious unstable returns in the DRZ  

field, resulting in unphysical a, b hence R, so we introduce a background ‘a prior’ constraint.  

 

METHOD 2: Constant a & b coefficients per ray, given ‘a priori’ data a=200 and b=1.6 

 

The next stage in developing the retrieval algorithm is to include the a priori data, which we will 

write as ),( baX ap = , taking our best estimate of the prior state to be a=200 and b=1.6 (Marshall 

and Palmer 1948), associated with a diagonal 22×   error covariance matrix denoted, 
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The variances in the a priori constraints )ln( apa and apb will be taken to be 0.5 and 0.002 

respectively, allowing error variations of 71.0)ln( ±a equivalent to 6.4056.98 ≤≤ a  
bmmhmmm −−− )( 136 and errors in b of 045.0±b .   

The Hessian )22()22(11 ×+×=+= −−
ap

T SKRKA  remains a square 22×  matrix, and the 

update vector )}12)(22()12{()22()}({ 1111 ××−××=−−= −−−−
apap

T XXSYRKAX δδ is again a 

12×  vector containing Inaδ  and bδ as in method 1.  At this stage of the retrieval algorithm a and 

b have been constrained by a realistic prior state, but do not best represent the physical fluctuation 

state within each ray, hence we will introduce a method to overcome this. 

 

METHOD 3: Constant a and b calculated over ranges of length 3km or 9 km, within each ray.  

 

We then use a similar approach to that of Thompson and Illingworth (2003) to calculate an 

independent analysis state vector for numerous range gates within each ray of total length 90≈ km, 

rather than the continuity of method 2.  We subdivide each ray into n sections, in our case using 

n=10 (equivalent to 9km) or 30 sections (length 3km) and apply the retrieval algorithm to optimize 

the unique state of each section.  For each ray the state vector ),( baX =  now has n components of 

both a and b, again with the initial guess 0X  equal to a=200 and b=1.6.  Our Jacobian Eq.(4.1) is 

now a nm 2× matrix given by 
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The Hessian ( )( )( ) ( )nnnmmmmnSKRKA ap
T 222211 ×+×××=+= −−

 becomes a nn 22 ×  

square matrix, and it follows that the update vector ),( baInX δδδ =  size 12 ×n , has n update 

components of each a and b, derived from Eq.(4.11) 

 

( )( ) ( )( )( ){ }122212)22()}({ 111 ××−××××=−−= −−− nnnmmmmnnnXXSYRKAX apap
T δδ  
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                                                               ( ) ( ) ( ){ }121222 ×−××= nnnn                                        (4.11) 

                                                               ( )12 ×= n .                                           

   

Using this technique will give better case sensitive results over a radar scan than method 2, but is 

likely to result in sharp variations of a and b at regional boundaries. 

 

METHOD 4: ‘enforcing smoothness in range using B-splines’ 

 

For further improvements we will implement a linear-B-spline as discussed in Sect.3.2.1 to smooth 

between the regional gates of method 3, eliminating any unphysical sudden changes inferred at 

range gate boundaries. If for example we have n=30 sections, we can define a 2D basis weighting 

function )( nmW ×= where the smoothed state vector for each ray with a unique pair of shape 

variables at each radar pixel is ( )baX ˆ,ˆˆ =  size ( )12 ×m , such that aWa =ˆ  and bWb =ˆ  for a and b 

size ( 1×n ), to produce â and b̂ both ( 1×m ) for m finite observations. 

Graphically we can represent the linear B-spline as;  

 

 

              

 

 
Figure 18 Diagram representing the application of the linear B-spline weighting system for calculating m smooth state 
variables ( )baX ˆ,ˆˆ =  from n range gate states ),( baX =  lenth s, where msn =× . 
 
When constructing the weighting function it is important that at any single point, the total 

weighting of the adjacent contributing points should sum up to one.  For example at point s 

21 5.05.0ˆ XXX s += , weighted equally to the adjacent control points. The B-spline which operates 

in matrix notation can be defined for an example n controls with s=10 intermediate points as, 

 

 

 

 

 

)ˆ,ˆ(ˆ baX =

),( baX =
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=× )( nmW                                                                                                                             (4.12) 

 

 

 

 

 

 

 

 

 

We then calculate Jacobian_hat denoted K̂ , the derivative of each measurement of DRZ  with 

respect to each component of ( )baX ˆ,ˆˆ =  giving an mm 2× matrix, which is a quasi-diagonal matrix 

containing the change in each observation of DRZ  with its equivalent state parameters a and b 

denoted on each diagonal. 
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To calculate the 12 ×n  update vector using the new smoother state variables we require an nm 2×  

Jacobian as in method 3 Eq.4.10, the derivative of DRZ  with respect to a smoothed set of n state 
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variables a and b. To compute this Jacobian it is necessary to multiply each side of K̂  by the 

weighting function W, to give the desired function 
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The Hessian and update then follow from method 3.  A final, smoother 2×m  analysis state vector 

( )baX a
ˆ,)ˆln(ˆ =  can be calculated from the final 2×n  analysis state )),(ln( baX a = , from which we 

can then calculate ib

i

i
i a

ZR
ˆ

1

ˆ ⎟
⎠
⎞⎜

⎝
⎛= to give a more accurate estimate of rainfall at each pixel. 

 

METHOD 5: ‘additional continuity constraint in azimuth using the Kalman smoother approach’ 

 

The finale step in developing the most accurate retrieval system is to implement a Kalman filtering 

technique Eq.(3.19) for a smoother relation from ray to ray.  To do this we introduce an additional 

weighted constraint using the final analysis state from the previous estimate at time t-1 denoted 

pX , taken to be the most recent computed state of the adjacent ray. We will implement the 

Kalman smoother in the forward direction, from most Northerly to East, but in future work an 

additional smoothing in the opposite direction could be tested.  The Hessian function now with the 

additional error covariance term of the previous ray pS remains as a square ( )nn 22 ×  invertible 

matrix, 

                       ( ) ( ) ( )nnnnnnSSKRKA pap
T 222222111 ×+×+×=++= −−−

.                (4.15) 

 

from which the update vector follows 

 

)}()({ 1111
ppapap

T XXSXXSYRKAX −−−−= −−−− δδ ( ) ( ) ( ) ( ){ }12121222 ×−×−××= nnnnn  

                                                                                            ( )12 ×= n .                                        (4.16) 
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The update state (Eq.4.16) now contains ),( baX = at each iteration constrained to the previous ray, 

from which ( )baX ˆ,ˆˆ =  can be calculated to produce the additional smoother fitting results in range, 

as described in method 4.  Unless otherwise stated we will assume that the errors from the previous 

ray will satisfy the ( )nn 22 ×  diagonal error covariance matrix shown in Equation (4.17) 
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with 03.0)ln(var =pa  an error deviation of 17.0±  and 001.0)var( =pb  equivalent to 031.0± error 

from the final state predictions of ln(a) and b of the adjacent ray. 
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Figure 19 Flow diagram showing the each stage of the retrieval algorithm, the red line for the weighted spline of 
method 4, and the Newtonian iteration of the forward model represented by the blue line loop. i) simple forward 
model, ii) converts basis function weights into state variables, iii) forward model to obtain DRZ  from Z/R. 
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5.   RESULTS AND ANALYSIS 
 

Each of the data sets were processed by the retrieval algorithm at each stage, trialing and testing 

the variable parameters and tuneable error deviations, all combined to provide the best algorithm 

producing the most accurate rainfall estimates specific to each case. Comparisons and verifications 

of the improved algorithm performance are investigated at each stage of the development, to 

determine the best optimal retrieval scheme. 

 

5.1  Case1: The algorithm development  using a low elevation precipitation scan 

 
First we will consider the case at 16:29:28 on 19th may 1999 using data set 1, with 102 

measurements of data in azimuth and 300 in range (90km).  Firstly we must re-calibrate the DRZ  

field using the ad hoc criterion, such that when DRZ  measured ≈ 0 dB, our model data must also 

predicts zero return in DRZ .  

 

 
Figure 20  Plot of measured, model and standard differential reflectivity  taken from the middle ray at north east, 
using the ‘a priori’ data of method 2, without any recalibration coefficient (0dB). Our model visibly overestimates 
measurements at zero return. Noting non physical unstable data at < 27km. 
 

Trialing various recalibration coefficients, gives the best match to the ‘zero DRZ ’ criterion at -0.3dB 

shown in Fig.(21), which we shall now use unless otherwise stated for the remainder of data set 1. 
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An error of 0.1 dB in DRZ can lead to differences of ≈ 8.0% in estimates of rain rate, in practice for 

improved estimates we assume DRZ  can be calibrated to 0.2 dB.  

 

 
Figure 21 Equivalent plot of measured, model and standard differential reflectivity to Fig.20, using a recalibration 
coefficient of -0.3dB for better calibrated 

DRZ  around 0dB.  As indicated our measured and model data are in better 
agreement at zero return than that of Fig.(20), using the ‘zero DRZ ’ criterion. 
 

Using the newly calibrated reflectivity field we can calculate an estimate of rainfall using the 

standard Marshall and Palmer (1948) state variables a=200, b=1.6 and (Eq.2.3). 

 
Figure 22 Standard final rainfall rate (mm/hr) in logarithmic units )(log10 10 R=  using the standard rainfall coefficients 
a=200 b= 1.6 and the empirical reflectivity rain rate relationship Eq.(2.3), calculated for finite values of reflectivity 
and differential reflectivity only. 
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We now implement method 2 on the observed (Z, DRZ ) field to calculate a single Z(R) relationship 

for each ray, with an initial guess and a priori constraint both equivalent to a=200 and b=1.6. 

 
Figure 23 plots of state variables X=(a,b) calculated for each ray in azimuth, where visibly higher values of constant 
‘a’ are influenced by  larger values of  conventional and polarized reflectivity as seen in figures 9 & 10. 
 

If we then recalculate the final rainfall rate in logarithmic units, using the new analysis state 

variables and Z(R) relationship specific to each individual ray, and calculate the difference from 

the standard state we have (Fig.24), from 

      )(
)(

)(log10)( 1

1

10 dB
mmhdardstanR

mmhfinalRdifferenceR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= −

−

.                              (4.18) 

 

 
Figure 24 Plot in logarithmic units  of the final rainfall rate 1−mmh , with a constant state a and b  per azimuth, also the 
log difference (dB) between the state of the standard state of Fig 22 and the final optimized rain rate using Eq.(4.18). 
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In the log difference profile Fig.(24) 3dB and -3dB represent a difference factor in the final rain 

rate of 2 and 1/2 respectively.  If we extract a sample ray from Fig.(23) at ≈ 77º NE, where a=353 

and b=1.3 we can see an overall increase in rainfall prediction from the model, compared to that of 

the standard predictions. An example of this is visible at 57km and 83km East Fig.(25) where high 

Z returns infer increased R using Eq.(4.4) due to sensitivity to the reduced b coefficient.  These 

increased rain rates contribute to the high difference factors around the same areas of Fig.(24).   

 

 
Figure 25 Observations of  DRZ , Z and the inferred rain rate R 1−mmh  for the standard, and model predictions. 
Higher rain rate estimates using the model state than that of the standard coefficients coinciding with high Z returns. 

 

Errors at this stage may occur due to high polarized returns over a short length in range influencing 

the optimization state of the whole ray, such as the higher DRZ  ≈ 5 dB at 15 km (Fig.25) compared 

to more realistic returns beyond 20km.  Hence we introduce the range gate approach similar to the 

work of Thompson and Illingworth (2003).  To do this we implement the developments of method 

3 (constant a and b over each section in range, with a priori state), using initially n =10 (9km) 

range gates of length per ray (90km), such that the rain rate-reflectivity relationship at separate 

sections better represent the spatial characteristics.  
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Figure 26 State variables X=(a,b) calculated for each ray over every 3km in range, showing large fluctuations in the 
state parameters for each ray.   
 

 
Figure 27 Rain rate for the equivalent easterly ray of (Fig.25) where the estimated rain rate peaks with conventional 
reflectivity (57km, and 83km). For kmX 6355 ≤≤  we have a=346 and b=1.27, and for kmX 9082 ≤≤  a=25.78 
b-1.42, different relationships both giving rise to increased rain estimates. 
 

Figure 27 shows the sensitivity of the combination of a and b in the Z(R) relationship Eq.(4.4) in 

predicting rain from reflectivity intensity.  The same set of state coefficients can produce either 

higher or lower estimates of rain than the standard state (a=200, b=1.6) predictions, dependant on 

the measured reflectivity Z (dBZ). Essentially a low value of a does not necessarily infer high rain 

rate unless it is combined with a low b coefficient, nor does a high value of b always imply low 

rain rates.  Using the analysis state ),( baX = of Fig.(26) we can now re-calculate the final rainfall 

rate R ( 1−mmh ) in logarithmic units dB = ))(log10( 10 R for each region of similar data to better 

represent the spatial physical characteristics within the data, shown in the upper plot of Fig.(28). 

The block-wise estimation technique shows a large difference in the logarithmic difference profile 

(lower Fig.28) particularly at further distances of range> 50km, where increased rainfall estimates 

can be associated with combined high Z and low DRZ  (Fig.9, Fig.10).  For example at both 75km 

and 90km NE we have low measurements of DRZ  interpreted in our model as small spherical drops 
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but at a more dense drop concentration indicated by high Z, hence resulting in heavier rain rates in 

the model forecast.  

 

 
Figure 28   Plot in logarithmic units (dB) of the final rainfall rate 1−mmh , with 10 sets of state coefficients for each 
ray, and the difference between this block-wise estimate state (method 3) and the standard Z(R) state (difference of  
6dB ≈ factor of 4). 
    

 
Figure 29 Measured, model estimated and the standard Z(R) differential reflectivity taken from the middle ray of the 
scan spatially equivalent to Fig.(21). The model 

DRZ  is predicted from the constant set of state variables Fig.(26) over 
every 9km range gate using only a priori data.   
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If we compare Fig.21 and Fig.29 we can clearly see that the block-wise range techniques of 

method 3 allows our model to better represent the characteristic highs and lows of the DRZ  field for 

finite non-negative observations than the results of method 2, which assume a constant analysis 

state over the whole domain of each ray.    

 

In analysis of Fig.(28) the ratio between predicted rain rate for the regional approach and the 

standard rain rate estimates, shows that there are visible areas of sharp variations at regional 

boundaries in the state parameters and difference factor, although in many regions there is 

encouraging evidence of spatial continuity even though smoothness is has not been enforced. The 

most sever discontinuities mainly occur within range e.g. the 9th section between 81km and 90km. 

To avoid these unphysical sharp variations we will begin by introducing the 1-D B-spline weighted 

smoother in range, as proposed in method 4. 

   

 
Figure 30 State variables X=(a,b) (upper plots) with linear spline, and smoother state variables ( )baX ˆ,ˆˆ =  (lower plots) 
calculated for each ray in azimuth and 10 gates in range, using the weighted B-spline technique of method 4.  

 

Method 4 implements visible smoothing in range, but unrealistic sharp changes from ray to ray in 

the azimuth dimension, particularly around 75km east and 35km north as indicated. 
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The final rainfall rates calculated using the smoothed set of analysis state variable â  and b̂  for 

each individual radar pixel of Fig.(31) shows a vast difference from the standard estimates.  An 

example of this exists at km75≈  NE with a difference factor of up to 4 (or 6dB) triggered by a 

continuous region of low DRZ  return for kmRange 8060 ≤≤  yet even higher Z returns in 

surrounding radar pixels influencing the increased rainfall estimate, previously underestimated rain 

rate using standard drop information. 

 

. 

Figure 31 Plot in logarithmic units )(log10 10 R=  of the final rainfall rate 1−mmh , with 10 sets of state coefficients for 
each rain gate per azimuth, alongside the difference between the state of the initial guess Fig.(22) and the new final 
optimized rain rate (above), incrementing the Basis function as proposed in method 4. 
 

The results derived at this stage from the block-wise range and basis spline techniques combined 

appear to give a close fit to the observational data with more physically smooth rain gate relation, 

yet still showing slight discontinuities in azimuth. Finally for further improvements in the ray to 

ray relation of the smoothed state ( )baX ˆ,ˆˆ =  we then introduce the idea of a Kalman smoothing 

system as proposed in method 5, implemented to avoid severe unrealistic differences within the 



                                                 5.  Results and Analysis       

 48
                   

state of adjacent rays.  The results of the optimization enforcing the Kalman smoothing constarint 

gives smoother state variables (Fig.32) which are then transferred into rain rate (Fig.33). 

  
Figure 32 All smooth state variables ( )baX ˆ,ˆˆ =  calculated for each ray with n=10 range sectors within m observations 
in range, using the weighted linear (m x n) B-spline technique of method 4 and the Kalman filter of method.5 with ray 
to ray covariance of Eq.(4.17). 

 

. 
Figure 33 Plot of logarithmic final rainfall rate 1−mmh  and difference (dB), calculated from ( )baX ˆ,ˆˆ =  each radar pixel 
in azimuth and range, result of optimizing methods 4 and 5, n=10. 
 

When we assume continuity within range and azimuth (Fig.33), using a tighter Kalman constraint 

from ray to ray var(lna)=0.03, varb=0.002 (method 5) than that of only the a priori state 
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var(lna)=0.5 varb=0.001 for Eq.(4.9), plus the weighted spline function, the results confirm this 

spatial relation where the characteristic physical features of the simple block-wise process in 

Fig.(28) remain, becoming even more pronounced with continuity forcing. 

 

 

Figure 34 DRZ  verification by comparing the model, measured and standard differential reflectivity using methods 4 
and 5 combined (azim 51º), for range > 30km.   
 

The 
DRZ  field predicted using our fully developed model Fig.(34) still shows a more accurate fit to 

the actual observations than that of the standard empirical model or the constant ray state 

predictions Fig.(21), but has the advantage that spurious data at individual radar pixels 

uncharacteristic of surrounding points can be dampened to better represent the physical state 

within a region of similar features.  We can now assume the combination of the linear weighted 

spline and Kalman smoother (method 4 and 5 combined) to be the optimal retrieval algorithm for 

our problem, we will assume this algorithm to be standard to the remaining data sets unless 

otherwise stated. 
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5.2  Case 2: Choosing  regional range lengths for a high elevation scan (2.0º), 
affected by hail and bright band 
 

Next we will consider the case at 16:38:06 with elevation of 2.0º on 19th may 1999 using data set 

2, with 225 measurements in azimuth and 300 within 90km range from the polarized reflectivity 

fields of Fig.11, Fig.12.  Again we re-calibrate the observed DRZ   by the ‘zero DRZ ’ criterion for 

finite, positive values, noting that at 2.0º we expect returns of 01 ≤≤− DRZ  beyond 50km (the 

melting layer) due to ice, which is clearly visible in the DRL  field (Fig.11) 

 

 
Figure 35  Polarized differential reflectivity (dB) taken at an ENE ray for finite data (recalibration criterion applied to 
data < 50km) with the equivalent conventional reflectivity field HZ  , with high HZ returns (dB)  yet falling DRZ  at 
further  range beyond the melting layer. 
 

Figure 35 shows how polarization returns of low (-1 to 0 dB) DRZ  at 45km or beyond 50km with 

very high observations of Z can be used to identify tumbling highly oblate ice particles. Below the 

melting layer such returns can be the results of extreme concentrations of spherical drops, or more 

probably an area of hail, Or at higher elevations (2.0º) as the radar signal passes through the 

melting layer at mid-range in to a region of ice as shown in (Fig.9).  We will now optimize the full 

scan using our smoothed retrieval algorithm, using various regional range lengths. 
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Figure 36 Smooth state variables ( )baX ˆ,ˆˆ =  for method 4 B-spline with 10 (9km) range sections then 30 (3km) regions, 
followed by the combined B-spline and Kalman smoothing technique of method 5 for the equivalent range lengths. 
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For a 2º elevation scan changes in precipitation structure will occur at sharper gradients in range 

below melting layer than those of a low elevation scan dwelling in precipitation e.g. (Case 1). For 

this data set such changes may be more accurately represented by implementing more frequent 

range divisions, for example at every 3km rain gate.  The results of the state parameters )ˆ,ˆ(ˆ baX =  

are shown for the block-wise technique with B-spline weighting and then Kalman smoother for 

both 3km and 9km region lengths shown in Fig.(36). 

 

               

 
Figure 37 Plots of Standard Rainfall rate (dB) with a=200 b= 1.6, the optimal final rainfall rate using smoothing in 
azimuth and range, and their logarithmic difference profile with 10 9km sections per ray. 
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Figure.38. Final rain rate and the difference between them using Eq. (4.18), all in logarithmic units (dB) using the B-
spline in azimuth and Kalman smoother in range over 3km range divisions 
 

The final rainfall profiles using the optimal retrieval algorithm over both 3km and 9km range 

sections seem to strongly agree in the location of precipitation characteristics with only slight 

variations in rainfall intensity over each area. At 9km (Fig.37) rainfall features above bright band 

are more intense than those using 3km (Fig.38) shown by larger areas of high R(final)/R(standard) 

difference ratios ≈15dB in (Fig.37).  Below the melting layer logarithmic differences are higher 

using 3km regions implying better sensitivity to DRZ  fluctuations at steeper gradients. In each case 

a major feature resulting in increased rain rate is indicated around 40km to 47km east and 0km to 

10km north with a difference factor of up to 15 dB to previous standard rain estimates, this area 

coincides with large Z and zero DRZ  below bright band an area generally without ice.  In this case 

it is highly likely that this feature represents large drops of tumbling hail, but has been interpreted 

as very high density small rain drops, hence polarization parameters should be examined carefully 

to identify the possible presence of hail before issuing over estimated flash flood rainfall rates. 
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Figure 39 Large over estimate of rainfall intensity using the model prediction, in an area now known to be hail rather 

than intense precipitation. 

 

Finally we can verify that the more frequent block-wise approach in the optimization model, 

smoothing over 3km region length rather than 9km better captures the fluctuations in differential 

reflectivity characteristic of a high elevation precipitation scan.  The model predictions of DRZ  for 

3km regions show a closer fit to the observational field than the predictions of the 9km approach, 

seen in Fig.(40), yet both are much more accurate than the standard state predictions. 

 

 
Figure 39  Comparison plot of final predicted, measured and standard differential reflectivity using  a the linear spline 
and Kalman smoothing in model prediction of

DRZ  for both 9km (upper) and 3km (lower) optimization areas.  
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5.3 Case 3: Tuning the Kalman smoother error covariance term, for a mid level 

precipitation scan 
 

Finally consider the late case at 16:55:33 with an elevation of 0.7º on 19th may 1999 using data set 

3, with 225 measurements in azimuth and 300 in range.  Using the ‘zero DRZ ’ criterion 

observations of DRZ  have been recalibrated by -0.35 dB throughout the scan., again disregarding 

unphysical negative returns at further range caused by possible attenuation. 

 

 
Figure 40 Measured, predicted and standard 

DRZ  for at elevation 0.7º for single set of state variables  a=103 and 
b=1.9 calculated through a ray containing heavy rainfall. High reflectivity return at region (C) with large oblate drops 
indicated by 

DRZ  at (A), resulting in an area of attenuated , negative 
DRZ  data at region (B) . 

 
 
(Fig.40) shows a ray typical of the observational data presented in (Fig.14) and (Fig.15) Z and DRZ  

respectively.  Consider the region of constantly high Z over 25-35km (C) and compare with the 

same region of differential reflectivity (A), we can see that the polarized reflectivity provides 

additional information about the full scale intensity of the precipitation feature particularly at 30km 

indicating maximum strength rain rate within this location. The strength of the rainfall estimate in 
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this area is likely to be underestimated by the conventional model for the standard Z(R) 

relationship, hence we implement our optimal algorithm using the block-wise smoothed approach. 
 

 

 

 
Figure 41 plots of Standard Rainfall rate using mm/hr in logarithmic units (dB) using the standard rainfall coefficients 
a=200 b= 1.6, the optimal final rainfall rate using the smoothed state in azimuth and range of Fig.(42), and their 
logarithmic difference profile Eq.4.(18). Region of heavy rain high with Z, and DRZ  indicated. 
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The rain rate predictions surrounding the returns of returns at (A) and (C) in (Fig.40) predict 

heavier rainfall levels using the block-wise approach than that of the standard model as expected, 

clearly visible in the circled region of logarithmic difference profile around 30km NNE. But this 

area of heavy attenuating rainfall is may have affected the stability of the retrieval algorithm at rain 

gates beyond this range, hence other polarization parameters could be applied gate by gate to 

correct for attenuation (Smyth and Illingworth 1998).  The retrieval algorithm using the original 

ray to ray correlation covariance as proposed in method 5 using the covariance matrix Eq.(4.17) 

predicts the rain rates of Fig.(41) which are given by optimized state variables shown by Fig.(42). 

 
Figure 42 Plot of all smooth state variables ( )baX ˆ,ˆˆ =  calculated for each pixel using optimization with 10 range gates, 
the linear B-spline (method 4) and the forward Kalman smoother of (method 5). 

 

Using the current smoothing constraints Fig.(41) we can still see sharp edges at ray boundaries in 

the state variable field, implying that a tighter relation in azimuth could be enforced. To increase 

this ray to ray correlation such that our co-variance matrix represents stronger spatial continuity we 

use 02.0)ln(var =pa and 009.0)var( =pb  equivalent to 03.0± and 14.0±  error deviations respectively, 

the results of this are shown in Fig.(43). 

 
Figure 43 Smooth state variables â  and b̂  using the optimization of methods 4 and 5, but with a stronger ray to ray 
relation in the Kalman smoother, 02.0)ln(var =pa  error of 14.0±  and 0009.0)var( =pb  or 03.0± error Eq. (4.17). 
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In Fig.(43) we can see that such increased continuity in azimuth is able to heavily dampen and 

even erase whole features with desired tuning, for example the high values of state variable a 

shown at  75km east, 10km north of Fig.(42) are severely dampened in smoother state of Fig.(43). 

This capability highlights the importance of tuning the Kalman error variance term to suit the 

operational environment, chosen accordingly by the physical characteristics of each specific case. 

For this set of data the stronger ray to ray correlation gives rain rate estimates Fig.(44),  

 
 
Figure 44 Optimal final rain rate mm/h (dB) and the logarithmic difference using (Eq.4.18) for the state parameters of 
(Fig.43) to calculate rainfall from reflectivity at each pixel. The stronger constraint of the Kalman smoother is visibly 
slightly smoother than that of log difference profile of (Fig.42), yet maintains the location and strength of major 
differences. 
 
For this set of data the fine tuning of the Kalman weighting is not a crucial factor greatly 

influencing the over all rain rate profile, but could result in improved accuracy if chosen correctly.  

The analysis of Figures 43 and 44 suggests that the tighter relation could over dampen reflectivity 



                                                 5.  Results and Analysis       

 59
                   

features and hence under-estimate rain rates, so we will subsequently assume the original 

constraint of 03.0)ln(var =pa and 001.0)var( =pb  for improved rain estimates in the optimal model. 

 

   

 

 
 

Figure 45 Plot to compare final predicted, measured and standard differential reflectivity using methods 4 and 5 
combined over two adjacent rays in the NE direction.  The upper plot showing the most northerly 

DRZ  profile, and the 
lower its adjacent more easterly ray of 

DRZ  . Reflectivity field Z for the more northerly ray. 
 
The model predictions shown in Fig.(45) show a better fit to the measured data than the predictions 

yielded by the standard state variables, but the ray to ray Kalman smoothing visibly dampens 

precipitation features according to continuity within azimuth e.g. the increased  DRZ  visible in the 
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more easterly ray Fig.(45) at 28km is dampened in the model due to a lower return at the same 

distance in the adjacent ray. In reality we expect precipitation and hence DRZ to fluctuate spatially 

over a small region but usually at less sharp gradients, hence we want to avoid over smoothing of 

real physical structures yet enforce enough smoothing such that unrealistic sharp variations are 

reduced.  For this set of data the error covariance of the initial Kalman constraint appears to reduce 

possible unrealistically high fluctuations for example at 65km in both adjacent rays of Fig(45) 

where high polarized reflectivity arises amongst a surrounding area of negative DRZ return. 
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6  CONCLUSIONS  
 
 

6.1 Analysis and model evaluation 
 
 
This study has emphasized the important role of combining conventional and polarization radar 

data (particularly Z and DRZ ) to provide essential drop diameter and concentration information 

required for more accurate rainfall rate estimates using block-wise optimal estimation theory 

techniques.  The method of least squares has proved to be a powerful tool in performing a region 

by region optimization, using the (Marshall and Palmer 1948) prior state for stratiform rain and the 

widely used normalized gamma distribution of raindrop size spectra Eq.(2.11), for fixed 5=µ  

drop shapes of Goddard et al (19995). Exploiting such raindrop information we propose an optimal 

retrieval algorithm for determining a set of state variables ),( baX =  per region or smoothed 

state )ˆ,ˆ(ˆ baX =  with continuity in range and/or azimuth at each range gate to infer unique Z(R) 

relationships Eq.(2.3), alternative to the ideal but costly gate by gate DRZZ /  approach similar to 

that of Thompson and Illingworth (2003). 

 

Our model uses the assumptions that Z (dBZ) should scale with R 1−mmh  for a given rain drop 

diameter ( 0D ) and hence DRZ  , with natural variations in the normalized drop concentration WN  

represented in the formula )(/ DRZfRZ = .  Commencing with an initial guess and back ground 

state we use Z(R) relationships to calculate rain rate and hence DRZ  in an iterative fashion until our 

model and observations agree to a degree where the state variables a and  b converge to an analysis 

state from which we best estimate rain rate. For such rain rates to be accurate we assume 

measurements of DRZ  can be calibrated to 0.2 dB, but in the operational environment such 

accuracies are difficult to achieve. 

 

The block-wise approach was introduced to better represent the known spatial variability of the 

state parameters within the observational range due to fluctuations in drop size shape and density, 

the consequential improvements from using a constant state per ray are verified in the improved fit 

of our model DRZ  data to the actual observed values.  At this early stage of the algorithm 
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development the results in the analysis state and hence rain rate without enforced smoothness 

showed encouraging signs of spatial continuity, but occasional unphysical sharp variations 

between regional boundaries suggested the need for stronger gate to gate relation.  Linear 1-D B-

splines were implemented to smooth unphysical discontinuities in range, then the concept of the 

Kalman smoother applied to constrain the relation of the ray to ray analysis.  These techniques 

generally showed confirmation of the already apparent physical gate to gate similarities within a 

radar scan, by enhancing the influence of evident physical features in resulting precipitation 

estimates, rather than suppressing the size and scale of the fluctuations.  Predicted Rain rates with 

major logarithmic differences from the standard state predictions occurred for various 

characteristic combinations of data in the polarization field. Firstly in areas of medium reflectivity 

Z yet high DRZ  where standard relationships had previously estimated low rain rates proportional 

to Z, the use of additional polarized returns indicating more oblate and hence larger drops than in 

conventional reflectivity alone yielding new Z(R) relationships inferring more accurate heavier 

rain rates.  The second opposite case showing little (if any) DRZ  observations yet higher 

reflectivity returns depicts small spherical particles, but at a much higher concentration density 

than originally anticipated, again resulting in increased rain rates. Finally the sensitivity of our 

polarized DSD model can also reduce often over estimated light precipitation (drizzle) 

distinguished from low Z and spherical 0 DRZ  returns.  The analysis of using polarized radar data 

in our retrieval algorithm has shown large improvements in better representing a precipitation 

system, but errors can arise. For data where zero or negative returns in DRZ  accompany 7 high Z  

induced by tumbling oblate ice particles such as hail, the retrieval algorithm incorrectly recognized 

this as heavy spherical rain, resulting in voluminous over estimates, wrongly inferring severe 

weather conditions.  These results are also visible for data retrieved beyond bright band, a 

continuous region of ice.  For best Rainfall estimates, the retrieval algorithm results should be 

verified by visual analysis of the polarization field, taking into consideration elevation, attenuation 

and any information of precipitation type. 
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6.2 Future work 
 

The determination of rain fall rates from using Z and DRZ  alone in the operational environment 

can lead to major errors where heavy rain can attenuate the radar beam.  This could be accounted 

for in the retrieval algorithm using calculations of differential attenuation ( VH AA − ) (functions of 

Z/R) to perform a gate by gate correction scheme along a ray on the polarization measurements 

HZ  and VZ such that differential reflectivity can then be calculated properly using Eq.(2.4) and 

hence improve rain rate validity.  Smyth and Illingworth (1998) propose a similar approach using 

additional polarization measurements DPK  and DPφ  to ensure a numerically stable attenuation 

correction algorithm.   

 

The results of our smoothing techniques show definite improvements in range gate relation, yet the 

Kalman smoother did not give show the same level of filtering, without over dampening results. 

Better use of the Kalman smoother could be implemented by performing the smoothing procedure 

ray to ray in both the forward and backward direction (see Sect.3.2.2), requiring the problem to be 

reformulated to operate on the whole region. A more obvious suggestion would be to implement a 

2-D Basis to smooth in both range and azimuth for equivalent continuity enforcements, although 

this would be tricky to formulate and would require longer computational time again for the whole 

domain to be minimized at once, rather than the current ray-ray fashion. An alternative approach 

would be to formulate a neural network least squares problem using the variable projection 

techniques, further discussed by Pereyra et al (2004), particularly advantageous for sparse data 

sets. 

 

Finally the ‘a priori’ data (a=200 and b= 1.6) to which we constrain our analysis state, also used as 

a good initial guess, could vary according to rainfall type, or an actual background state.  Finally 

for fine tuning the covariance matrices apS of the ‘a priori’ field and PS  the ray to ray correlation, 

currently fixed over the whole domain, could be further investigated as variable parameters 

dependant on the final model-observation error deviation which could also be computed for the 

analysis state at every gate containing measured data.   
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