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Abstract

Orographically generated gravity waves, being a sub-grid scale process that has a great im-

pact on numerical weather prediction, must be parametrized in large-scale atmospheric models

(Lott and Miller (1997); Gregory et al. (1998)). Since the 1990s, most of the existing drag

parametrization schemes are based on linear hydrostatic theory, while non-hydrostatic effects

have been studied mainly using numerical simulations, as in the study by Kim and Arakawa

(1995). Although the effects of critical levels (levels where waves are attenuated and absorbed)

have been noted and studied since the 1950s, their three-dimensional filtering effects due to

directional wind shear have been drawing the attention of meteorologists only from the last 20

years onwards (Shutts 1995). Such directional filtering effects contribute to the formation of a

critical layer, in which each level is a critical level for a certain wave number (Broad (1995);

Shutts (1995)). Moreover, non-hydrostatic effects in conjunction with such critical layers have

not been studied thoroughly.

In this dissertation, various approaches, including solving for exact analytic solution, numerical

methods and the WKB approximation, are adopted to solve the Taylor-Goldstein equation, for

flow over a 3D isolated mountain, in both hydrostatic and non-hydrostatic conditions, under

the assumption of inviscid, non-rotating, linearized flow with the Boussinesq approximation.

Two wind profiles with directional shear are chosen to investigate the 3D directional filtering

effect of critical layers. Calculation results mainly focus on two relevant physical quantities,

namely the surface drag, which defines the total vertical flux of horizontal momentum of the

mean wind available to be transported upward (Teixeira et al. (2004)), and the momentum

fluxes, whose divergence corresponds to a force acting on the atmosphere that decelerates the

mean wind (Teixeira and Miranda (2009)).

The main findings show that as the system enters the non-hydrostatic regime, the variation

of those two quantities with the Richardson number Ri (which is defined to be the static sta-

bility N2 of the atmosphere divided by the square of wind shear) becomes more non-linear

and dependent on the degree of non-hydrostaticity. Moreover, a significant decrease in mag-

nitude of the two quantities can be observed, which is due to wave reflection effects. Such a

drop in magnitude may cause an overestimation of the surface drag and momentum fluxes in

parametrization schemes where the hydrostatic assumption is made. Therefore, the inclusion

of non-hydostatic effects should be able to improve the performance of current parametrization

schemes for orographically generated gravity waves.

ii



Acknowledgments

First and foremost, I would like to take this opportunity to thank my parents for their love and

nuture all along, which guide me to fight for my dream and lead to all the achievements I have

today.

Second, I would like to express my gratitude to my supervisor Dr. Miguel Teixeira for his

precious guidance and scientific insight, which is indispensable for the accomplishment of this

dissertation. Moreover, I treasure the valuable discussion with Prof. Mike Baines, whose

encouragement helped me overcome a lot of difficulties encountered during this dissertation.

Third, I would like to thank my friends, especially Mr. Tsz Kin Lai Eric and Ms. Na Zhou Jody,

for their yearlong support and care. We accompanied to face all the challenges throughout this

entire year. Cheers to our friendship.

iii



Contents

Declaration i

Abstract ii

Acknowledgments iii

Contents iv

List of symbols vi

1 Introduction 1

1.1 Aims and Outline of this thesis 2

1.2 Basic Wave properties 3

1.2.1 The wave phase and phase velocity 3

1.2.2 The group velocity and the dispersion relation 5

1.3 Linear Theory 6

1.3.1 The Boussinesq approximation and Linearization 6

1.3.2 The Taylor-Goldstein equation 8

2 Flow over a 2-D isolated mountain 10

2.1 Mountain profile 10

2.2 Different regimes of solution 11

2.3 The surface drag and momentum fluxes: conceptually 14

2.4 The surface drag and momentum fluxes: mathematically 16

2.5 Height dependent Scorer Parameter 17

2.5.1 The critical level 18

3 Flow Over a 3-D Isolated Mountain in the Hydrostatic Regime 20

3.1 Setting of the problem 20

3.1.1 The critical layer 21

3.1.2 The wind profiles 21

3.1.3 The mountain profile 22

3.2 Methodology 23

3.2.1 Exact solution for linear wind profile in hydrostatic limit 23

3.2.2 A Linear numerical model 24

iv



3.2.3 The WKB approximation 26

3.3 Results and comparison 33

3.3.1 Linear wind profile 35

3.3.2 Turning wind profile 37

4 Flow Over a 3-D Isolated Mountain in the Non-hydrostatic Regime 39

4.1 Identification of the non-hydrostatic regime 40

4.2 The linear wind profile with directional shear - Analytic solution 40

4.2.1 Results and discussion 47

4.3 The turning wind profile 50

4.3.1 A two-layer atmosphere 50

4.3.2 Numerical method 51

4.3.3 Boundary conditions 52

4.3.4 Results and discussion 55

5 Concluding remarks and future work 58

5.1 Analysis of methods 58

5.2 Calculation results 59

5.2.1 Hydrostatic regime 59

5.2.2 Non-hydrostatic regime 59

5.3 Overall effect of non-hydrostaticity 60

5.4 Future work 60

Bibliography 62

Appendices 65

A Behavior of gravity waves near a critical level 65

B Definition of Fourier integrals and the Parseval Theorem 71

v



List of symbols

κ = (k1, k2, k3) 3D total wave vector

k = (k1, k2, 0) Horizontal projection of κ (referred as horizontal wave )

k12 The magnitude of k

ω Angular frequency

vp = (vp1, vp2, vp3) 3D phase velocity

vg = (vg1, vg2, vg3) 3D group velocity

u = (u, v, w) Full velocity of the wind

f The Coriolis parameter

p Pressure

θ Potential temperature

ρ Density of air

T Temperature

g Magnitude of gravitational acceleration

Rd Ideal gas constant for dry air
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Chapter 1

Introduction

A stably stratified atmosphere has the important property of supporting the propagation of

waves with different scales, from the large-scale planetary waves such as Rossby waves to the

small-scale sound waves. Some of these waves play a crucial role in meteorological phenonema

(e.g. Rossby waves), while others do not (e.g. sound waves). Nowadays, with the ever improving

technology, numerical weather prediction plays an increasingly important role in weather fore-

cast. However, no matter how advanced the modern meteorological models are, there are still

many phenomena that they cannot capture, for example small-scale but important processes

like convection, cloud microphysics, turbulence, etc. The subject of this study, terrain-generated

gravity waves, are also one of these processes. These small-scale processes can only be captured

by parametrization schemes, and therefore a deep understanding of them is necessary in order

to develop good parametrizations.

As their name tells, terrain-generated gravity waves are wave phenomena generated by orog-

raphy. One distinctive feature of terrain-generated gravity-waves is that they are stationary

to observers on the ground (Lin (2007); Nappo (2012)). From the foregoing discussion we

will learn that these waves are non-dispersive since all wave components have the same phase

speed, which is 0. Terrain-generated gravity waves are worth studying since their presence acts

to transport horizontal momentum of the mean flow vertically. As the waves propagate upward

to a certain high level, they may break and generate turbulence, which is known as clear-air

turbulence (CAT) (Nappo 2012). Studies have shown that such wave-breaking zones often co-

incide with critical levels (Grubǐsic and Smolarkiewicz (1997); Shutts and Gadian (1999)). The

detailed behavior of gravity waves in the vicinity of critical levels will be studied in chapter 2

and appendix A.

There are mainly two kinds of terrain-generated gravity waves, namely vertically-propagating

mountain waves and trapped lee waves (Nappo 2012). One significant difference between them

is that trapped lee waves appear only on the downwind side of mountains. As will be discussed

in later chapters, the atmosphere may sometimes be unable to support wave propagation for

certain waves at some levels. As such waves propagate upward from the obstacle, wave reflec-

tion will occur and cause the waves to be trapped in the lower atmosphere and extend only

horizontally (Nappo 2012). As a result, such waves usually have less impact on the high atmo-
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sphere.

Different from trapped lee waves, vertically propagating mountain waves can extend both hor-

izontally and vertically, and hence have a much greater impact on the high atmosphere, since

transport of momentum and energy can reach much higher levels. In fact, mountain waves even

play an important role in modulating the atmospheric global circulation (McFarlane (1987);

Teixeira and Miranda (2004)).

1.1 Aims and Outline of this thesis

Orographically generated gravity waves influence the atmosphere by exerting a drag force on

it, which acts to decelerate the mean flow. At the same time, horizontal momentum associated

with the mean flow is transported upward to the upper atmosphere. These processes are of

small scale and common in the atmosphere. In order to produce accurate numerical weather

predictions, such small-scale processes must be parametrized in large-scale meteorological mod-

els, due to the lack of sufficient resolution to capture their details. Parametrizations of these

processes have to be developed by first studying their detailed dynamics in idealized settings

and summarizing the variation of quantities that have an important impact on the atmosphere.

The main aim of this dissertation is to study the variations of important quantities associ-

ated with the mountain waves, such as the surface drag and momentum fluxes for flow over

an idealized 3D isolated mountain, subject to different wind profiles, in both hydrostatic and

non-hydrostatic conditions. Non-hydrostatic effects associated with the wind profile will be

examined to see how they affect the variation of those relevant quantities. This is practically

important since the current parametrization schemes assume a hydrostatic atmosphere, which

is certainly not always valid. Moreover, these wind profiles are designed specifically for investi-

gating the interactions between the gravity waves and critical levels, where the wave energy is

known to be significantly absorbed and wave breaking may easily occur (Broad (1995); Shutts

(1995)).

In this chapter, most of the basic concepts, which are necessary for the discussion in the later

chapters, will be introduced. Those concepts include the group velocity and the dispersion

relation of the gravity waves, as well as the linear theory, which uses the important Boussi-

nesq approximation, and the derivation of the Taylor Goldstein equation. In fact, solving the

Taylor-Goldstein equation subject to different types of flow is the main target of this study,

since all the information required can be obtained from the solution to this equation.

In chapter 2, an example using a 2D mountain ridge and a constant wind profile will be il-

lustrated, which allows us to classify the different regimes of the solution space of the Taylor-

Goldstein equation. The discussion in the later chapters will be based on this classification.

Next, two important quantities will be introduced, namely the surface drag and the vertical

momentum fluxes. The discussion will first explain the physical meaning of these quantities by

looking at a 2D mountain ridge example, and then give their mathematical formulations.

Chapter 3 and 4 contain the main results of this study, which are divided into the hydrostatic
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and non-hydrostatic limits. Different approaches have been used in each limit, such as deriving

exact analytic solutions, use of the WKB approximation, and different numerical approaches.

The main calculation results and discussion will focus on the surface drag and the momentum

fluxes.

Chapter 5 summarizes the main findings of this study and states some of the unsolved problems

and future work.

1.2 Basic Wave properties

Most of the wavy oscillations observed in nature do not just consist of a single wave, but are

usually an overlap of a band of waves. Therefore, the analysis of how waves overlap and interact

to form the observed propagating oscillations will be of great importance for understanding wave

phenomena. In this section, some general properties of plane waves will be presented, and the

notations defined will be followed in the rest of this dissertation.

1.2.1 The wave phase and phase velocity

Perhaps the simplest way to describe a 2-dimensional monochromatic plane wave in 3-dimensional

space is using trigonometric functions,

f(x, y, z, t) = A cos (k1x+ k2y + k3z − ωt) = A cos (κ · r− ωt), (1.1)

where k1, k2, k3 are the wave numbers along the three axes of a Cartesian coordinate system,

κ := k1x̂+ k2ŷ + k3ẑ is the total wave vector, r := xx̂+ yŷ + zẑ is the usual radial vector used

in spherical coordinates and A is the amplitude of the wave. The term ‘monochromatic’ means

that the wave vector characterizing the wave is simply a single constant vector. The projection

of κ onto the horizontal plane is defined to be k, with its magnitude being k12 =
√
k21 + k22.

The entire expression inside the bracket of cos in (1.1) defines the phase of the wave, i.e.

φ = k1x+ k2y + k3z − ωt = κ · r− ωt (1.2)

In 3-dimensional space, fixing a time t0, the constraint of constant phase defines a family of

planes in space, i.e. planes of constant phase,

k1x+ k2y + k3z − ωt0 = C, (1.3)

where C is a constant. In the cases of 2D and 1D space, this defines a family of lines and a

family of points respectively. In fact, the normal vector of these constant phase planes can be

obtained by taking the gradient of the left-hand side of equation (1.3), which gives back the

wave vector k1x̂+ k2ŷ + k3ẑ. So the phase planes are all perpendicular to the wave vector κ.

Fixing a particular point, the period T of oscillation is 2π/ω, while fixing a particular time, the

wave length λi along each axis is 2π/ki, where i can stand for x, y, z. The total wave length λ

is defined to be the perpendicular distance between consecutive constant phase planes, which
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can be calculated easily from the following relation(
1

λ

)2

=

(
1

λx

)2

+

(
1

λy

)2

+

(
1

λz

)2

, (1.4)

where λx, λy and λz are the wave lengths of waves projected onto the three coordinate axes.

For simplicity, let us now consider a 2D case in the x-z plane. Fixing a particular position

(x0, z0) at time t = 0, the phase of the wave associated with this point is φ0 = kx0 + mz0.

The wave vector, lines of constant phase and total wave length are illustrated in figure (1.1(a)).

As time t evolves, the lines with constant phase evolve continuously. The velocity of motion of

these lines defines the phase velocity, which is given by the total wave length divided by the

period of oscillation, and its direction is along the wave vector,

vp =
λ

T
=

ω

|κ|
. (1.5)

The projections of the phase line velocities onto the two axes give the phase velocity vpi along

each axis i, and they are related to the total phase velocity via the following equation,(
1

vp

)2

=

(
1

vpx

)2

+

(
1

vpz

)2

, (1.6)

which in fact can be derived by using equation (1.4).
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FIGURE 1.13 A ring wave on the surface of a calm pond moves with group velocity ug , but
the wavelets move with their individual phase speeds, c, which is a function of their wavenumbers,
i.e., kN , kN−1, kN−1, . . . .

of the wave energy is considered that the problem becomes realistic. Indeed, it is
the energy transport that creates the wave. The wave does not create the energy
transport. The speed and direction of energy transport is determined by the group
velocity.

Following Lighthill (1978), imagine a stone thrown into a pond of still water.
After the initial splash, we see a ring of water, a “ring wave,” moving away from
its center. If we could follow the wave and examine it closely, we would see that
the surface of the wave is continually disturbed by a series of smaller waves or
wavelets which propagate from the rear to the front of the larger wave. These
wavelets were created when the stone struck the water surface. The energy of that
initial disturbance was distributed over a wavenumber spectrum of waves. The
wavelets at the rear will have shorter wavelengths than the ones at the front, as
illustrated in Fig. 1.13. These wavelets act to manifest the larger wave, which in
effect is a bundle or packet of waves referred to as a wave packet. Each wavelet is
moving at phase c(k), which is a function of its wavenumber k. The wavelets at the
front have larger wavelengths than the waves at the rear and, therefore have greater
phase speeds. However, it is clear that the wavelets are moving faster than wave
packet which we observe to have speed ug . The wavelets appear neither ahead
nor behind the wave packet, and we conclude that they have no energy content. If
they did, then we would be able to observe them as they moved ahead of the wave
packet. Thus, the energy of the disturbance is contained in the wave packet which
we can observe on the water’s surface. But what is the speed of this packet?

To analyze this energy transport let us consider the simplest case: a wave packet
composed of only two waves traveling in the positive x-direction. Let the waves
have equal amplitudes, a, but slightly different frequencies, i.e., ω + δω, ω − δω,
and wavenumbers, i.e., k + δk and k − δk. The superposition of these waves is
given by

ζ = a cos[(k + δk)x − (ω + δω)t] + a cos[(k − δk)x − (ω − δω)t] . (1.21)

With some trigonometry, (1.21) can be written as

ζ = 2a cos(δkx − δωt) cos(kx − ωt) . (1.22)

(b)

Figure 1.1: (a) A schematic diagram showing a wave with wave vector κ. The red lines indicate lines

of constant phase. Note that λx and λz are both longer than λ, and they satisfy the relation of equation

(1.4). (b) A schematic diagram showing a cross-section of a ring-wave on water. N small oscillations

are superposed on at the surface of the ring-wave, each with a different phase speed c(kj), j = 1, 2, 3, ...

, N. The velocity of the main ring-wave is given by ug, which is in fact the group velocity of the wave.

(Source: Nappo (2012))
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1.2.2 The group velocity and the dispersion relation

In fact, the phase of a wave simply represents a pattern of the oscillation. So, the phase velocity

refers to the movement of this pattern, but not to the movement of physical quantities. A more

interesting problem would be to understand how fast waves transport energy and momentum.

Indeed, wave energy and momentum must be carried with the group velocity of the wave, i.e.

the velocity of motion of the wave packets.

Usually, oscillations occur as a result of overlapping of waves with a band of wave numbers (or

wave vectors). In 1978, Lighthill observed that as a stone falls into a tank of water, a circular

ring-wave is generated in the water, which expands in the radial direction and spreads outward

(Nappo 2012). Moreover, as the circular ring-wave moves, small oscillatory phases are observed

on its surface, which appear to move at a different velocity relative to the ring. The ring-wave,

indeed, consists of waves with a continuous band of wave numbers, which have different phase

speeds on the water surface and hence cause the observed relative motion. However, those

small phases only appear on the surface of the ring-wave, but as they leave it, their amplitude

becomes zero. If the phase of a wave really carried energy, then the small phases should be sus-

tained without being destroyed. Therefore, the fact is that those small phases have no energy

content, while the energy is carried by the ring-wave. In fact, the appearance of the moving

ring-wave is due to the outward propagating energy, which allows the oscillations to appear and

take the shape of a water ring. Therefore, the velocity of the moving wave packet is defined to

be the group velocity.

The mathematical formulation of the group velocity will just be presented here without deriva-

tion. In general, for a 3D case, the oscillation frequency ω can be expressed as a function of

wave numbers ki, i = 1, 2, 3. The group velocity vg = (vgx, vgy, vgz) can be written as

vgx =
∂ω

∂k1
, vgy =

∂ω

∂k2
, vgz =

∂ω

∂k3
. (1.7)

The relation between ω and the wave numbers is called the dispersion relation. The dispersion

relation is of great importance since it describes how the phase and energy propagate in the

medium. For a special case in 1D space, if the phase speed of waves is independent of their wave

number, we have vp = ω/k = C, where C is constant, which means that the dispersion relation

is ω = C k. It can be seen easily that the group velocity and phase velocity are the same and

both independent of wave number. Such wave is described as non-dispersive. However, usually

waves are dispersive, such as the water ring discussed in the previous example. Each small wave

has its own phase speed c(kj) depending on its wave number kj , as shown in figure (1.1(b)).

Hence, different wave components will eventually spread away and change the initial wave form

as the wave propagates.
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1.3 Linear Theory

The motions of the atmosphere under the assumption of inviscid adiabatic flow are governed

by the complicated primitive equations set (1.8), which contains 5 non-linear differential equa-

tions. Despite the fact that the primitive equations can capture many different phenomena of

the atmosphere, they contain more formation than necessary, including unimportant wave phe-

nomena such as sound waves, which do not have any meteorological significance. Such ‘noise’

embedded in the initial condition would cause numerical instability in meteorological models

(Lin 2007). Therefore, appropriate simplifications to the primitive equations are necessary for

studying the dynamics of the atmosphere. In this section, the result after those approximations

will be stated, but the derivation will not be presented. Interested readers may consult any

standard text books on atmospheric fluid dynamics.

Du

Dt
− fv = −1

ρ

∂p

∂x
(1.8a)

Dv

Dt
+ fu = −1

ρ

∂p

∂y
(1.8b)

Dw

Dt
= −1

ρ

∂p

∂z
− g (1.8c)

Dρ

Dt
= −ρ(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
) (1.8d)

Dθ

Dt
= 0, (1.8e)

where D/Dt = ∂/∂t+u∂/∂x+ v∂/∂y+w∂/∂z is the Lagrangian rate of change, u = (u, v, w)

is the total velocity, f is the Coriolis parameter, ρ is density of air, p is pressure, g is the

gravitational acceleration and θ is potential temperature. Note that the above equation set is

not closed. Closure of this equation set requires extra equations such as the equation of state

for ideal gas

p = ρRdT,

and the Poisson equation

θ = T

(
ps
p

)Rd/cp
,

where cp is the heat capacity of dry air under constant pressure, Rd is the ideal gas constant

for dry air, and ps is a reference pressure value, usually set to be 1000hPa.

1.3.1 The Boussinesq approximation and Linearization

The two main challenges of solving the primitive equations are those embedded small-scale wave

phenomena and the intrinsic non-linearity of these equations. Small-scale waves such as sound

waves can be filtered by the anelastic approximation and the Boussinesq approximation, which

may also be used to simplify the equations. It is first assumed that the density ρ and pressure
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p can be written as

ρ(x, y, z, t) = ρr(z) + ρ′(x, y, z, t), (1.9a)

p(x, y, z, t) = pr(z) + p′(x, y, z, t) (1.9b)

and that the magnitude of perturbations ρ′ and p′ is much smaller than that of those reference

states ρr and pr. Then, in the subsequent simplifications, we may neglect the effect of ρ′ in

all equations, except the vertical momentum equation (Booker and Bretherton 1967). This

is because the atmosphere supports small-scale waves mainly via two mechanisms: one is the

compression force, and another is the buoyancy force (Lin (2007); Nappo (2012)). The com-

pression force arises from the compressibility of air, which produces acoustic waves with short

wave length, such as sound waves. Such short waves are regarded as ‘noise’ in the investigation

of atmospheric dynamics. The buoyancy force is due to the contrast of density between an

air parcel and its environment. Such buoyancy force causes oscillations of the air parcel and

produces gravity waves. Therefore, to focus on gravity waves it is necessary to kill off the com-

pression force by assuming no density variation in the continuity equation, but at the same time

allowing the density contrast in the vertical direction. Together with the hydrostatic balance,

the results of the Bousinesq approximation after simplification are expressed as,

Du

Dt
− fv = − ∂

∂x

(
∂p′

ρr

)
(1.10a)

Dv

Dt
+ fu = − ∂

∂y

(
∂p′

ρr

)
(1.10b)

Dw

Dt
= − 1

ρr

∂p′

∂z
− ρ′

ρr
g (1.10c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1.10d)

Dθ

Dt
= 0, (1.10e)

The problem of non-linearity can be solved by the so-called linearization process, which assumes

that other field variables can also be written as their spatial mean plus a small variation.

u = (U(z), V (z), 0) + u′(t, x, y, z) (1.11a)

θ = θ̄(z) + θ′(t, x, y, z), (1.11b)

where the bar or capital letters denote time-averaged mean values and are assumed to only

vary in the z-direction if non-zero. A prime denotes both time- and spatially-dependent pertur-

bations. Note that the vertical velocity w is assumed to be a perturbation, since its average is

zero. Substitute (1.11) into (1.10) and simplify by assuming that any product of perturbations
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is negligible, and then the final result is

∂u′

∂t
+ U

∂u′

∂x
+ V

∂u′

∂y
+ w′

∂U

∂z
− fv = − ∂

∂x

(
∂p′

ρr

)
(1.12a)

∂v′

∂t
+ U

∂v′

∂x
+ V

∂v′

∂y
+ w′

∂V

∂z
+ fu = − ∂

∂y

(
∂p′

ρr

)
(1.12b)

∂w′

∂t
+ U

∂w′

∂x
+ V

∂w′

∂y
= − 1

ρr

∂p′

∂z
+
θ′

θ̄
g (1.12c)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0 (1.12d)

∂θ′

∂t
+ U

∂θ′

∂x
+ V

∂θ′

∂y
+ w′

∂θ̄

∂z
= 0, (1.12e)

1.3.2 The Taylor-Goldstein equation

We are now at the right point to derive the Taylor-Goldstein equation, which is the main target

we aim to solve in this study. Note that equation (1.12) includes the effect of rotation of the

Earth, which affects only large-scale motions. However, the scale of gravity waves that we are

interested in is small, so the Coriolis terms do not play an important role, and can be neglected.

Together with this assumption, we take the Fourier transform (see appendix B for the definition

of the pair of Fourier integrals) of equation (1.12) about its x, y and t dimensions, which is

equivalent to assuming that all the perturbation variables are of the form q′ = q̂(z)ei(k1x+k2y−ωt),

−iωû+ iUk1û+ iV k2û+
dU

dz
ŵ = −ik1

ρr
p̂ (1.13a)

−iωv̂ + iUk1v̂ + iV k2v̂ +
dv

dz
ŵ = −ik2

ρr
p̂ (1.13b)

−iωŵ + iUk1ŵ + iV k2ŵ = − 1

ρr

dp̂

dz
+
θ̂

θ̄
g (1.13c)

ik1û+ ik2v̂ +
dŵ

dz
= 0 (1.13d)

−iωθ̂ + iUk1θ̂ + iV k2θ̂ +
dθ̄

dz
ŵ = 0, (1.13e)

For simplicity, we assume the mean density ρr is constant. Then, it is possible to express all

other quantities in terms of ŵ only. This yields the Taylor-Goldstein equation

d2ŵ

dz2
+

(
N2κ2

Ω2
+
U ′′k1 + V ′′k2

Ω
− (k21 + k22)

)
ŵ = 0, (1.14)

where Ω = ω −U · k is the so-called ‘Doppler-shifted intrinsic frequency’ of the wave, which

is in fact the frequency of the wave measured in the frame of reference of the mean wind (Lin

(2007); Nappo (2012)). The above equation is important because it contains only one unknown

variable ŵ, and relations of ŵ with all other quantities are known from equation (1.13). In

other words, equation (1.14) together with equation (1.13) is sufficient to determine the motion

of the atmosphere under the assumptions of linear theory. The remaining chapters will focus

8



on solving equation (1.14) subject to various situations such as different mountain width and

wind profiles.

Next, an important equation determining the direction of propagation of wave energy will be

derived. Recall that the propagation of energy is represented by the group velocity, so the

vertical component of the group velocity, i.e. vgz, will give the direction of energy propagation

along the vertical z-axis. Now, consider the case of a constant background wind. Then the

terms in the bracket of equation (1.14) are all constant, and hence (1.14) becomes the well

known Helmholtz equation, which admits wave-like solutions, i.e.

ŵ = C1e
imz + C2e

−imz, (1.15)

where C1 and C2 are arbitrary constants, and m takes the following form

m = ±

√
N2(k21 + k22)

(ω −U · k)2
− (k21 + k22). (1.16)

Rearranging the above equation for ω gives

ω = U · k±

√
N2(k21 + k22)

k21 + k22 +m2
. (1.17)

First, the horizontal phase speed c can be calculated as

c =
ω√

k21 + k22
=

U · k√
k21 + k22

± N√
k21 + k22 +m2

. (1.18)

Second, the vertical group velocity vgz given by ∂ω/∂m is calculated to be

vgz = ∓N
√
k21 + k22

m

(k21 + k22 +m2)3/2

= −m
√
k21 + k22
N2

(
c− U · k√

k21 + k22

)3

. (1.19)

The last equality in (1.19) used equation (1.18). In fact, terrain-generated gravity waves are

stationary relative to the orography, which means that the phase speed c is in fact 0. Thus,

(1.19) can be rewritten as

vgz =
m
√
k21 + k22
N2

(
U · k√
k21 + k22

)3

. (1.20)

Hence, we can see that vgz is positive, i.e. waves have upward propagating energy, if and only if

m takes the same sign as U ·k. This result will often be used in the discussion of later chapters.

For the sake of convenience, in those chapters, the direction of wave propagation is meant to

be the propagation direction of the wave energy, rather than the phases of the wave, unless

otherwise specified.
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Chapter 2

Flow over a 2-D isolated mountain

In this chapter, we are going to investigate mathematically the formulation of terrain gen-

erated gravity waves and some relevant physical quantities, by illustrating an example of a

two-dimensional mountain ridge with a constant basic wind profile. Terrain generated gravity

waves affect the atmospheric circulation by transporting energy and momentum of the mean

flow from the lower atmosphere to the upper atmosphere and hence contribute to modify the

global circulation (McFarlane 1987). Several important quantities, such as the surface drag,

wave momentum flux, and the critical level will be formulated mathematically to facilitate the

discussion in later chapters, which will extend the investigation to 3-dimensional space.

As will be shown in the 2-D example, the flow may exhibit different behaviors for different

horizontal wave numbers k. In the case where the atmosphere is well stratified and the moun-

tain is broad and gentle, gravity waves can be supported by the buoyancy force and are capable

to propagate vertically in the atmosphere. However, if the atmosphere is weakly stratified, or

with strong basic wind, gravity waves may not be able to propagate vertically and have to be

decaying throughout the atmosphere (Nappo 2012). Such different types of flow can be clas-

sified into different regimes of the wave solution. The exploration of different solution regimes

enable us to distinguish the criteria supporting the propagation of gravity waves.

2.1 Mountain profile

In this section, we consider a bell-shaped mountain (or the so called Witch of Agnesi mountain

profile),

h(x) =
hma

2

x2 + a2
(2.1)

where hm is the mountain height and a is the horizontal scale of the mountain. This mountain

form had been widely used in many published books and papers (Lin (2007); Nappo (2012) and
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Teixeira and Miranda (2009)), because of the simple form of its Fourier transform,

ĥ(k) =
hma

2
e−|k|a, (2.2)

which will greatly facilitate the calculation of the wave solution. It turns out that the Fourier

transform of the orography profile plays an important role in the process of generating gravity

waves (Lin 2007). By Fourier analysis, we know that a periodic function on a real axis takes a

discrete wave spectrum, i.e. the constituent wave numbers are discrete. However, if the function

is not periodic, such as an isolated mountain profile in this case, the function is then composited

of a continuous band of wave numbers k (Nappo 2012). Hence, the steady state Taylor-Goldstein

equation has to be solved for each of these wave numbers in order to compute those relevant

quantities, such as the pressure perturbation, surface drag and vertical momentum fluxes, etc.

Figure (2.1(a)(b)) shows the distribution of the bell-shaped mountain and the product of k and

ĥ(k). The importance of the function kĥ(k) will be discussed in the coming section.

!40 !20 0 20 40

0.2

0.4

0.6

0.8

1.0

1.2

(a) h(x)

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

(b) kĥ(k)

Figure 2.1: (a) shows an isolated bell-shaped mountain located at the origin, with mountain

height hm equal 1 unit (or equivalently the scale is normalized by the height of the mountain),

while its scale width is a = 10 hm. (b) shows the distribution of kĥ(k), which has its maximum

at the wave number 1/a = 0.1.

2.2 Different regimes of solution

In chapter 1, by taking the Fourier transform of equation (1.12), we have derived the Taylor-

Goldstein equation. In this subsection, a detailed solving process of equation (1.14) for ŵ(k),

which is the Fourier transform of the vertical velocity perturbation w′, will be presented. The

procedure follows the idea in the book by Lin (2007).

Consider now the 2D steady-state form of the Taylor-Goldstein equation (1.14):

ŵ′′(z) + (l(z)2 − k2)ŵ(z) = 0 (2.3)
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where the function l(z) is the Scorer parameter

l2(z) =
N2

U(z)2
− U ′′(z)

U(z)
. (2.4)

The lower boundary condition for the total velocity u = (U(z) + u′(x, z), w′(x, z)) is the ‘no-

normal-flow’ boundary condition, which, after linearization, requires that

U(z = 0)
dh(x)

dx
− w′(x, 0) = 0. (2.5)

By taking the Fourier transform of (2.5), we have

ŵ(0) = ikU(0)ĥ(k). (2.6)

If we assume the Scorer parameter l is constant w.r.t z, e.g. a constant background wind profile

U and static stability N , then equation (2.3) becomes the famous Helmholtz equation, which

exhibits wave-like solutions. In fact, equation (2.3) has solution of the following form

ŵ(z) = ŵ(0)ei
√
l2−k2z if l2 > k2 and (2.7a)

ŵ(z) = ŵ(0)e−
√
k2−l2z if l2 < k2. (2.7b)

By the above equations, the wave solution exhibits different behaviors in the two cases l2 > k2

and k2 > l2. For the first case (l2 > k2), oscillatory waves can be observed, while for the latter

case (l2 < k2), the wave becomes evanescent, i.e. the wave amplitude is exponentially decaying.

A nice explanation described in the book by Nappo (2012) is helpful to see the physical picture

in these two cases. Suppose now that k is fixed and neglect for the moment the second term

in equation (2.4). Then l2/k2 can be written as N2

U2k2
= N2

1/t2adv
, where tadv is the time for the

flow to complete one single oscillation by the means of advection. Thus, the criteria that an

oscillatory wave can only exist when l2/k2 > 1 implies that the advection time tadv of this

wave has to be larger than the period of oscillation at the natural oscillation frequency N , i.e.

we have to allow enough time for the air parcel to oscillate by the means of buoyancy. If this

criterion cannot be met, then the wave oscillation cannot be completed, and hence the wave

amplitude must be decaying. This leads to the appearance of evanescent waves.

Recall that an isolated mountain profile is composited of a continuous band of wave num-

bers k, so we have to consider all these wave numbers in order to solve for w′(x, z). With the

two simple analytic members of the solution basis in equation (2.7), the solution for w′(z) can

be found easily by performing an inverse Fourier transform back to physical space, which yields

w′(x, z) = 2Re

[∫ l

0
iU kĥ(k)ei

√
l2−k2zeikxdk +

∫ ∞
l

iU kĥ(k)e−
√
k2−l2zeikxdk

]
. (2.8)

The above integral is split into two parts according to the different expressions in (2.7). The

real part taken in equation (2.8) is due to the symmetry property of the integral, and also

because w′(x, z) is a real quantity.
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With the above equation, now it is an appropriate time to distinguish the different regimes of

the solution w′(z). From equation (2.8), given a particular value of k, the contribution of the

corresponding wave component eikx is weighted by the factor kĥ(k), which is equation (2.2)

multiplied by k. This implies that the total budget of a particular horizontal wave number k is

governed by the Fourier transform of the orography profile. Thus, if most of the k contributed

from the orography is bigger than l, then the second integral in equation (2.8) dominates. This

is referred to as the irrotational (potential) flow limit. Conversely, if the k contributed from

the orography is mostly smaller than l, then the first integral in equation (2.8) dominates: this

is the hydrostatic flow limit. Figure (2.1(b)) shows the distribution of kĥ(k) as a function of k,

which has a maximum value of hm/(2e) at k = 1/a and decays exponentially afterwards. Thus,

the value of 1/a defines the scale of the horizontal wave number. Therefore, a condition for the

flow to be hydrostatic is

1

a
� l ∼ N

|U |
or equivalently,

Na

|U |
� 1 (2.9)

And we define the non-dimensional constant â = Na/|U |. Therefore, the hydrostatic assump-

tion is generally valid if â� 1 (Teixeira et al. (2004); Teixeira and Miranda (2004)).

It turns out in these two limits the vertical streamline displacement of the flow η(x, z) can

be integrated exactly. First, we investigate the behavior of the flow when it is in the irrota-

tional flow regime by assuming l � k. In this limit, we can assume the first integral can be

neglected and l = 0.

w′(x, z) ≈ 2Re

[
U

∫ ∞
0

ikĥ(k)e−kzeikxdk

]
= (hma) Re

[
U

∫ ∞
0

ike−kzeikxe−kadk

]
(2.10)

The vertical streamline displacement η(x, z) is defined by the equation w′ = U ∂η
∂x (Lin (2007);

Nappo (2012)). The corresponding Fourier transform gives

η̂(k, z) =
ŵ(k, z)

ikU
(2.11)

By using the above relation, η(x, z) can be calculated as (Lin (2007); Nappo (2012))

η(x, z) = hmaRe

[∫ ∞
0

e−k(z+a−ix)dk

]
=

hma(z + a)

x2 + (z + a)2
. (2.12)

All other perturbation quantities, such as the perturbation of pressure p′ and of potential

temperature θ′ can be calculated by using the 2D version of equations (1.13).

On the other hand, in the hydrostatic limit â � 1, we can assume the second integral in
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equation (2.8) can be neglected. Thus, w′(x, z) and η(x, z) can be integrated as

w′(x, z) ≈ 2Re

[
U

∫ ∞
0

ik

(
hma

2

)
e−kaeilzeikxdk

]
(2.13)

η(x, z) ≈ hmaRe

[∫ ∞
0

eilze−k(a−ix)dk

]
=
hma cos lz − x sin lz

x2 + (z + a)2
. (2.14)

Figure(2.2) shows the flow trajectories and pressure perturbation under different regimes.

2.3 The surface drag and momentum fluxes: conceptually

Figure 2.2 shows the streamlines η(x, z) and the pressure perturbation p′(x, z) in the differ-

ent flow regimes described in the previous section. As shown in figure (2.2(a)), a important

difference between the irrotational flow and the other two types of flow is that the pressure

distribution of irrotational flow is symmetric on both upstream and downstream sides of the

mountain, while the pressure distribution is mostly asymmetric in the hydrostatic limit. It

turns out that this asymmetric distribution of pressure plays a crucial role in the generation of

the surface drag force and wave momentum fluxes.

The formation of the drag force can be understood by using some basic mechanics (Teixeira

et al. (2004); Teixeira and Miranda (2004); Nappo (2012)). The uneven distribution of pressure

on two sides of the mountain contributes to a pressure-gradient force exerted to the obstacle

by the flow (Lin (2007); Teixeira et al. (2004)). Then the famous Newton’s third law of motion

states that,

For any force exerted by an object A on an object B, there is a reaction force

exerted by object B on object A at the same time, with the same magnitude

but opposite direction.

Therefore, the existence of a surface pressure gradient force on the mountain means that there

is a reaction drag force exerted on the flow by the mountain. This drag force creates flow

perturbation patterns which carry mean flow horizontal momentum and propagate upwards

(Nappo 2012). The stronger the drag force the flow experiences, the greater the upward propa-

gating momentum flux is. As a result, the drag force represents the total amount of horizontal

momentum being able to be transported vertically to the upper atmosphere in the form of

gravity waves (Teixeira and Miranda 2009). As we can see from figure(2.2(a)), gravity waves

do not appear (the flow amplitude decays exponentially with height) in the case of irrotational

potential flow due to the absence of the pressure difference on the two sides of the mountain

(and hence the drag force). For the other two types of flow, wavy patterns of the streamlines

and pressure can be clearly observed in the vertical direction. Associated with them are strong

surface pressure gradients and surface drag forces, which are consistent with the above analysis.

These can be verified easily in figure 2.2(b) and 2.2(c).
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(a) Irrotational flow: a = hm = 1km, N = 0.01, U = 100ms−1
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(b) Intermediate: a = hm = 1km, N = 0.01, U = 10ms−1
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(c) Hydrostatic flow: a = 10km, hm = 1km, N = 0.01, U = 10ms−1

Figure 2.2: (a) shows a contour plot of the pressure perturbation (colored lines), and trajectories

of the flow (black lines) in the irrotational potential flow. The flow is evanescent above the

mountain. (b)(c) show filled contour plots of the pressure perturbation and trajectories of the

flow (white lines) in the intermediate and hydrostatic regimes, respectively. The mountain

profiles are depicted by brown dashed lines. Both the x-and y- axes are scaled by the height of

mountain hm. It is clear that the wave pattern is vertically aligned in hydrostatic limit, while

the wave pattern tilts downstream of the mountain in the intermediate limit.
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Mathematically, since the quantity l is actually the total wave number, while k is the

horizontal wave number, the assumption that l � k implies immediately that the total wave

vector is almost vertically orientated. Moreover, the stationary nature of the mountain wave

can be explained by the fact that the existence of a drag force arises from the surface orography,

so the gravity wave patterns have to remain attached to the orography (which is their source).

2.4 The surface drag and momentum fluxes: mathematically

With the conceptual discussion of the surface drag and momentum fluxes in the previous section,

in this section the mathematical formulation of these quantities will be illustrated. The approach

follows books by Lin (2007) and Nappo (2012).

Recall that the surface drag D is created due to the net pressure gradient force resulting from

the asymmetric pressure distribution on the orographic profile. One equation directly related

with the pressure gradient force is the horizontal momentum equation, i.e. the 2D version of

equation (1.12a)

U
∂u

∂x
+ w′

∂U

∂z
+

1

ρr

∂p′

∂x
= 0 (2.15)

For an isolated mountain profile, h(x) → 0 as z → ±∞. So we multiply equation (2.15) at

z = 0 by h(x) and integrate over the entire x-axis.∫ +∞

−∞
h(x)U

∂u′

∂x
dx+

∫ +∞

−∞
h(x)w′

dU

dz
dx+

∫ +∞

−∞
h(x)

1

ρr

∂p′

∂x
dx = 0 (2.16)

By using integration by parts, the first integral I1 can be evaluated as

I1 = −
∫ +∞

−∞
Uu′

dh

dx
dx = −

∫ +∞

−∞
u′w′(0)dx (2.17)

The last equality has used equation (2.5). Moreover, also by using equation (2.5), the second

integral I2 vanish.

I2 =

∫ +∞

−∞
h(x)w′

dU

dz
dx = U

dU

dz

∫ +∞

−∞
h(x)

dh

dx
dx

= U
dU

dz

∫ +∞

−∞

1

2

dh2

dx
dx

= 0 (2.18)

The same approach is applied to the integral I3

I3 =

∫ +∞

−∞
h(x)

1

ρr

∂p′

∂x
dx = −

∫ +∞

−∞

p′

ρr

dh

dx
dx (2.19)

Adding the three integrals, equation (2.16) can be rewritten as

−ρr
∫ +∞

−∞
u′w′(0)dx =

∫ +∞

−∞
p′
dh

dx
dx (2.20)
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In the above equation (2.20), the R.H.S is the integral of the product of the pressure and the

elevation gradient, which is the net pressure gradient force experienced by the orography; while

the L.H.S is the integral of the product of the horizontal momentum and vertical velocity, which

is the stress force experienced by the mean flow. Therefore, we can see that equation(2.20) is

in fact a statement of Newton’s third law, as explained in the previous section.

Thus, the formal surface drag force (at z = 0) is defined as

D = −
∫ ∞
−∞

ρru
′w′dx =

∫ ∞
−∞

p′
dh

dx
dx, (2.21)

which is actually equation (2.20).

Equation (2.20) defines the surface drag in terms of the pressure gradient force at the surface.

Despite the fact that the R.H.S loses its meaning above the surface, the quantity on the left

hand side the L.H.S does not. However, this limitation can be avoided by replacing h by η,

i.e. the vertical streamline displacement of the flow. Moreover, the product of ρru
′ and w′

has the physical meaning of vertical advection of horizontal momentum. Thus, integrating this

quantity over the entire real axis at any level describes the momentum flux at that level. Thus

the momentum flux can be formulated as

M = −
∫ ∞
−∞

ρru
′w′dx (2.22)

From this definition we can see immediately that the momentum flux at the surface gives exactly

the surface drag. In other words, this again demonstrates that the drag force gives the total

amount the horizontal momentum flux that can be produced by the flow over the orography

(Teixeira and Miranda 2009).

2.5 Height dependent Scorer Parameter

In the previous sections, we only focused on the situation when both the basic wind profile U(z)

and the Brunt-Väisälä frequency N are constant with respect to height, i.e. a constant Scorer

parameter. However, reality is not always that simple. The basic wind profile can be easily

altered by a lot of factors, such as variations of the surface temperature, or orographic distri-

bution. In this situation, the Taylor-Goldstein equation (2.3) cannot be solved analytically in

general for arbitrary wind profiles. Hence, numerical calculations are necessary for investigating

the behavior of the atmospheric motions (Grisogono (1994); Shutts (1995); Shutts and Gadian

(1999)).

Despite this difficulty, the behavior can still be analyzed using reasonable simplifications and

assumptions. A common approach is to assume that the variations of the Scorer parameter

(2.4) in the vertical direction are slow. Recall that when the Scorer parameter l is constant with
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height, equation (2.3) admits wave solutions (2.7), in which the wave number is m =
√
l2 − k2.

If now the Scorer parameter is slowly-varying, this means that m is slowly varying as well.

Therefore, it is reasonable to assume that the solution is still oscillatory in sinusoidal form,

thus the solution is approximated as

ŵ(k, z) ≈ A(k, z) exp(iφ(k, z)), (2.23)

where A(k, z) is the height dependent amplitude and φ(k, z) is the height dependent phase

for the wave solution. In fact, the above idea gives the motivation for the WKB (Wentzel,

Kramers, Brillouin) method, which has been used and discussed in a wide range of papers

(Shutts (1995); Teixeira and Miranda (2004); Teixeira and Miranda (2006)). The discussion of

the WKB approximation will be continued in chapter 3, in which this method will be applied

to two different wind profiles, and its validity will be analyzed and compared with numerical

calculations.

2.5.1 The critical level

In the previous example of gravity wave behavior over 2-D orography, we aimed at solving the

Taylor-Goldstein equation (2.3). One may note that the Scorer parameter (2.4) may suffer

from singularities if the denominator U(z) (in the 3D case is U · k instead) becomes zero at

some level zc. This level zc is defined to be the critical level. By the second-order nature of the

Taylor-Goldstein equation, the first order derivative of the solution ŵ(z) is no longer continuous

at critical levels.

The study of critical levels began early in the 1960s. At that time meteorologists mainly

focused on critical levels occuring in a sheared 2D flow over an isolated mountain ridge. Many

studies (Bretherton (1966); Booker and Bretherton (1967); Breeding (1971)) showed that the

wave energy would be absorbed and wave magnitude would be attenuated by a factor of

exp(π
√
R̃i− 0.25) (definition for R̃i is in appendix A) as the waves approach and cross the

critical level. A more physical picture of this effect is that any wave packet will not reach

the critical level in any finite amount of time and its vertical group velocity wg approaches 0

as it moves towards the critical level (Bretherton 1966). The mathematical derivation of the

asymptotic behavior of gravity waves near a critical level is provided in appendix A, and the

over-all result is expressed by equation (A.24),

ŵ(z) =
√

(z − zc)
(
C↑ei(sgn) ln (z−zc)µ + C↓e−i(sgn) ln (z−zc)µ

)
for z > zc

ŵ(z) = −i(sgn)
√

(zc − z)
(
C↑eπµei(sgn) ln (zc−z)µ + C↓e−πµe−i(sgn) ln (zc−z)µ

)
for z < zc

where the terms with coefficient C↑ represent waves with upward propagating energy, while

terms with coefficient C↓ represent waves with downward propagating energy. The behavior

across the critical level is shown in figure (2.3).

It is important to note that there is a difference in the meaning of critical levels between
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2-D and 3-D cases. In a 2-D situation, a critical level appears only when the basic wind U(z)

is zero at some height zc, while in the 3-D case, it refers to the levels where the vector U is

perpendicular to the horizontal wave vector number k. In fact, the definition of a critical level in

the 3-D case is more general, in the sense that the 2-D definition can be viewed as a restriction

by reduction of dimensions. Following this point of view, it should be noted that the critical

level in a 2-D situation is k-independent since the horizontal dimension contains only the x

direction, so the dot product U · k can be zero if and only if U(z) = 0. But in a 3D situation,

the critical level zc is k-dependent, except when U(z) = 0. Thus, Broad (1995) designates the

critical level zc at which U(z) = 0 as a ‘total critical levels’ in the 3-D situation. Moreover,

with 3D orography, at any height z, there is always some wave vector k perpendicular to the

basic wind U(z). This means that every level in the atmosphere is the critical level for a certain

wave vector k. So this contributes to the so-called ‘critical layer’, as opposed to discrete critical

levels. Moreover, the k-dependent property of the critical levels contributes to a directional

filtering effect of critical layers (Broad (1995); Shutts (1995)). In chapter 3, a more detailed

discussion about the effect of critical levels in a 3-D situation will be presented.
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Figure 2.3: shows the behavior of the real (blue) and imaginary (green) parts of ŵ(z) around

a critical level zc for a particular wave vector k in a 3D situation. The wave becomes highly

oscillatory as it approaches zc (in fact its frequency approaches infinity), and the amplitude of

the wave shows a shape drop (by a factor of e−πµ, with µ = 1.4234 and R̃i = 2.276 in this

figure) once it passes through zc. Both the units for the x and y-axis in this figure are arbitrary.
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Chapter 3

Flow Over a 3-D Isolated Mountain

in the Hydrostatic Regime

In this chapter, we are going to investigate mountain waves generated by flow over a 3-D isolated

mountain in the hydrostatic limit. Two simple height-dependent wind profiles will be examined:

a linear wind profile with directional shear and a turning wind profile. Reasons for choosing

these wind profiles are that, first, they are simple and can be described easily by elementary

functions, and second, the directionality of the wind profile allows the existence of a critical

layer, i.e. a layer of the atmosphere in which any level is a critical level for a certain wave

vector k. Two methods, namely the WKB approximation and a numerical method developed

by Siversten (1972), will be adopted to solve the Taylor-Goldstein equation, and their results

will be presented and compared.

3.1 Setting of the problem

An inviscid, irrotational, steady flow can be captured by the steady-state version of the lin-

earized 3-D Boussinesq equations (1.12), which can be used to derive the steady-state Taylor-

Goldstein equation,

ŵ′′(z) +

[
N2k212

(Uk1 + V k2)2
− U ′′k1 + V ′′k2

Uk1 + V k2
− k212

]
ŵ(z) = 0, (3.1)

where k1 and k2 are wave vectors associated with x and y directions, and k12 :=
√
k21 + k22. In

the 3D case, the Scorer parameter l(z) is then defined by the following equation

l2(z) =
N2k212

(Uk1 + V k2)2
− U ′′k1 + V ′′k2

Uk1 + V k2
(3.2)

Recall that in the hydrostatic limit, the magnitude k12 of the horizontal wave vectors k con-

tributing to the orographic profile is much smaller than that of the total wave number l, so that

the term −k212 in equation (3.1) can be neglected. Thus, equation (3.1) becomes

ŵ′′(z) +

[
N2k212

(Uk1 + V k2)2
− U ′′k1 + V ′′k2

Uk1 + V k2

]
ŵ(z) = 0. (3.3)
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If the static stability coefficient N is real and varies gently with height as well as U, then the

consequence of this assumption is that any wave being considered can freely propagate vertically

in the atmosphere, i.e. the associated solution of ŵ(z) must be in the form of a propagating

wave at any level of the atmosphere. Therefore, wave reflection phenomenon does not occur.

With this observation, it is possible to include only waves with upward propagating energy.

The full atmospheric setting will be discussed next together with consideration of the critical

layer and the wind profile.

3.1.1 The critical layer

For flow over a 3-D isolated mountain, given a certain wave vector, the associated critical level is

defined as the altitude where the basic flow U is perpendicular to the horizontal wave vector k.

The effect of the critical level is that the wave energy and momentum is effectively attenuated

and absorbed by a factor of e−πµ into the mean wind without being reflected (Grubǐsic and

Smolarkiewicz 1997), as discussed in chapter 2. Therefore, if the direction of the basic wind

profile turns with height, then it induces a continuous region in the atmosphere, in which each

level is a critical level for a certain horizontal wave vector k (Shutts 1998). This region is

the critical layer, as explained in chapter 2. Thus, the existence of a directional shear will

be a necessary condition for the occurrence of such a layer. The effect of such a layer is well

summarized in the paper by Broad (1995), where it is shown

U(z) · dτ (z)

dz
= 0, (3.4)

where τ (z) = (τx(z), τy(z), 0) is the wave stress vector, which is a generalized 3D version of the

wave stress defined inside the integral of equation (2.22).

Equation (3.4) states that the vertical gradient of the wave stress vector (and hence that of the

vertical momentum flux vector) must be perpendicular to the mean wind U(z). This means that

there is a filtering effect of vertical momentum flux occurring along the direction perpendicular

to the mean wind, which is the so-called ‘directional filtering effect’ of the critical layer. Such a

filtering effect throughout the critical layer is the interaction between the gravity waves and the

mean wind (i.e. the deposition of wave energy and momentum) (Miranda and James (1992);

Hines (1988); Shutts (1998)). For simplicity, we will only consider the situation where each

horizontal wave vector k can have at most one critical level in the atmosphere, which means

that the turning angle of the mean wind cannot exceed 180◦.

3.1.2 The wind profiles

As mentioned previously, two wind profiles will be examined in this chapter. The first one is a

linear wind profile with directional shear, which can be formulated as

Ulinear(z) = (U(z), V (z)) = (U0 − αz, U0), (3.5)

where α is the shear strength and U0 is the surface wind magnitude for each component. Since

Ulinear(0) at the surface has both x and y components equal to U0, this basic wind makes an
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angle of π/4 relative to the x-axis at the surface, and this angle approaches π at infinity. But

due to computational limitations, the domain being considered must be finite, and hence the

wind can only turn by a certain angle θmax at the top of the domain zmax, as shown in fig-

ure (3.1(a)). Nevertheless, regardless of computational limitations, the atmosphere can still be

considered as an infinitely extended troposphere with a height-independent stability constantN .

The second wind profile being considered is the turning wind profile,

Uturning(z) = (U(z), V (z)) = (U0 cos (βz), U0 sin(βz)), (3.6)

where β is the rate of turning of the basic wind with respect to height and U0 is the wind

magnitude. As required, the wind can at most turn by an angle of π from 0 at the surface to

π at the top of the computational domain zmax, as shown in figure (3.1(b)).

(a) Linear wind profile (b) Turning wind profile

Figure 3.1: (a) shows a schematic diagram of the linear wind profile. (b) shows a schematic diagram

of the turning wind profile.

3.1.3 The mountain profile

Similar to the case of a 2-D isolated mountain, the mountain being considered in this chapter

is a 3-D circular bell-shaped mountain (i.e.Witch of Agnesi mountain profile),

h(x, y) =
hm

(1 + (x/a)2 + (y/a)2)3/2
(3.7)

where hm is the height of the mountain, and a is the width (both in the x and y directions).

The associated Fourier transform is

ĥ(k1, k2) =
hma

2

2π
e−ak12 . (3.8)

As usual, two boundary conditions are required to solve the Taylor-Goldstein equation (3.3).

With the above choices for the atmospheric and orographic profiles, the linearized boundary

condition at the surface analogous to equation (2.5) is formulated as

ŵ(z = 0) = iĥ [U(z = 0)k1 + V (z = 0)k2] for z = 0, (3.9)
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which is the ‘no-normal-flow’ boundary condition. Another boundary condition is employed at

z → +∞, requiring that only waves with upward propagating energy are included. This is the

so-called radiation boundary condition. Its implementation will be discussed separately in each

of the methods being used.

3.2 Methodology

In this section, we are going to investigate two methods to solve equation (3.3). The first one

is a numerical method proposed by Siversten (1972), which has been adopted in Teixeira and

Miranda (2006) to investigate the effect of sheared flow over elliptical mountains. The other one

is a popular asymptotic method, the WKB (Wentzel-Kramers-Brillouin) approximation, which

has been briefly mentioned in chapter 2. The advantage of the WKB approximation is that it

provides an approximated analytic expression, which is helpful for the analysis and calculation

of some important quantities, such as the surface drag, momentum fluxes and their divergence

(Teixeira et al. (2004); Teixeira and Miranda (2009)).

However, before introducing the formulation of these two methods, it is worth noting that the

steady-state Taylor-Goldstein equation (3.1), in fact, admits an exact solution for the linear

wind profile (3.5) in both the hydrostatic and the non-hydrostatic limits. The hydrostatic exact

solution, which has been adopted by Teixeira et al. (2008), can be written in terms of simple

elementary functions, whilst the non-hydrostatic solution has to be expressed in terms of special

functions, more specifically Bessel functions. The details for the non-hydrostatic solution will

be discussed in chapter 4. With the aid of the exact solution for the linear wind profile in

the hydrostatic limit, the accuracy of the numerical method by Siversten (1972) can first be

demonstrated, so that it can be safely applied to calculate ŵ for the turning wind profile.

3.2.1 Exact solution for linear wind profile in hydrostatic limit

By using equation (3.5), equation (3.3) can be simplified as

ŵ′′(z) +

(
N2k212

(U0(k1 + k2)− αk1z)2

)
ŵ(z) = 0. (3.10)

The general solution of the above equation is (Teixeira et al. 2008)

ŵ(z) = C↑
(

1− αk1z

U0(k1 + k2)

)1/2+i(sgn)µ

+ C↓
(

1− αk1z

U0(k1 + k2)

)1/2−i(sgn)µ
, (3.11)

where sgn = sign(−αk1) is the sign of the derivative of U · k at the critical level zc and µ =√
N2k212/(αk1)

2 − 0.25. It will be shown in the following that the first term is associated with

upward propagating waves, whilst the second term represents downward propagating waves.
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The corresponding vertical wave number m can be calculated as

m = −iw
′

w

= (sgn)µ
1

z − U0(k1+k2)
αk1

− i

2

1

z − U0(k1+k2)
αk1

. (3.12)

In fact, given a horizontal wave vector k = (k1, k2), the associated critical level for this linear

wind profile is U0(k1+k2)
αk1

. Therefore, the real part of m is

Re(m) = (sgn)µ
1

z − zc
. (3.13)

If sgn > 0, then U ·k is positive above zc, and negative below zc. And 1/(z−zc) is also positive

above zc and negative below zc. Thus, Re(m) always takes the same sign as U · k. The same

result can be reached if sgn < 0. Thus, the first term is associated with upward propagating

waves, according to the conclusion in equation (1.20). Since in the hydrostatic limit, we are

only concerned about upward propagating waves, only the first term is relevant to the following

investigation.

3.2.2 A Linear numerical model

In this section, we are going to investigate a numerical method proposed by Siversten (1972),

and the discussion follows the idea of the paper by Teixeira and Miranda (2006). Solving

the 2nd-order Taylor-Goldstein equation as a boundary value problem requires two boundary

conditions. One of those is at the surface and assumes no normal flow. However, the radiation

boundary condition at the upper boundary is less trival to apply. This may pose challenges if

one attempts to solve the problem using methods such as finite differences or finite elements.

The advantages of the method by Siversten are that, first, it allows us to choose the desired

branch of the wave (in terms of direction of energy propagation), so that the radiation boundary

condition can be easily imposed. Second, it enables an accurate implementation of the lower

boundary condition by embedding this boundary condition in the solution form (Teixeira and

Miranda 2006).

Mathematical formulation

In general, the solution to (3.3) can be written in the following form

ŵ(z) = ŵ(0) exp

{
i

∫ z

0
m(ζ)dζ

}
, (3.14)

where m is the vertical wave number. By substituting (3.14) into (3.3), then (3.3) is reduced

to a 1-st order non-linear differential equation for m (Teixeira and Miranda 2006).

im′ −m2 +
N2k212

(Uk1 + V k2)2
− U ′′k1 + V ′′k2

Uk1 + V k2
= 0 (3.15)
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The lower boundary condition is implicitly included in the solution form (3.14), so the boundary

condition for (3.15) must be consistent with the upper radiation boundary condition.

Boundary condition

In fact, the correct boundary condition for (3.15) depends on the existence of the critical level.

Fixing a particular wave number k, if a critical level does not exist, or it exists far away from the

calculation domain, then we may assume that m reaches a constant at the top of the calculation

domain, and the curvature of U is basically 0, so that m′ = 0 and the curvature term of (3.15)

can be dropped. Thus,

m(zmax) =
Nk12

U(zmax)k1 + V (zmax)k2
(3.16)

On the other hand, if a critical level appears within the domain or near the top of the domain,

then the asymptotic behavior of m must be used. From appendix A, we know that ŵ becomes

highly oscillatory as z approaches zc, which means that m → ∞ as z → zc. However, infinity

is not a numerically favorable quantity, so a good way to tackle this problem is to solve for the

inverse of m. Define L = 1/m, then (3.15) can be converted into a differential equation for L

L′ = i

[
1−

{
N2k212

(Uk1 + V k2)2
− U ′′k1 + V ′′k2

Uk1 + V k2

}
L2

]
(3.17)

The dominant behavior of L near the zc can be obtained by using a Frobenius expansion,

following a similar approach to that in appendix A, we have

L±(z) =
z − zc

− i
2 ±

Nk12
U ′(zc)k1+V ′(zc)k2

√
1− 1

4
(U ′(zc)k1+V ′(zc)k2)2

N2k212

= ±(U ′(zc)k1 + V ′(zc)k2)(z − zc)
Nk12

√
1− 1

4

(U ′(zc)k1 + V ′(zc)k2)2

N2k212

+ i(z − zc)
(U ′(zc)k1 + V ′(zc)k2)

2

2N2k212
for z near zc (3.18)

For a wave with upward propagating energy, we require that Re(m) takes the same sign as

Uk1 + V k2. This is true for L as well, since L = 1/m, so we require that the real part of L

takes the same sign as (U ′(zc)k1 + V ′(zc)k2)(z − zc). Thus, we see in (3.18) that the positive

branch L+ is associated with upward propagating energy. Therefore, (3.18) allows us to select

the correct branch of the wave solution to satisfy the radiation boundary condition.

With the positive branch L+ in equation (3.18), the behavior of m near the critical level is

determined, and m in other regions can be solved by either (3.15) or (3.17) using a numerical

method. The Runge-Kutta 4th-order method is adopted for this purpose.
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Error analysis

Since this numerical method solves for the vertical wave number m, instead of ŵ, the error

analysis will be based on the error associated with m. A wave vector k with its critical level zc

located near the surface is chosen. The integration of m is carried out above zc from a certain

grid point near zc to the top of the calculation domain. Exact value of m is used at the first

grid point near zc as the initial value for the numerical method. By doing this, the numerical

solution of m will not be affected by the error in the initial value. The error of m at the top

of the domain is calculated and analyzed. The reason for choosing this point for error analysis

is that due to the large integration distance, if the solution of m at the top of the domain is

convergent with a certain order, then it is safe to conclude that this method is convergent and

of the same order of accuracy.

Denote the true value of m at z by m(z), and the numerical solution of m at the n-th grid point

by mn. Assuming that the global error ezmax of m at the top of the domain is O(∆zN ), i.e.

ezmax = |m(zmax)−mnmax| ∼ ∆zN , (3.19)

where zmax denotes the top of the calculation domain, nmax denotes the corresponding grid

point and ∆z is the grid spacing. A geometric sequence of ∆z: {∆zi = ∆z1 × γi−1, i =

1, 2, 3, ...,M}, where γ < 1 is a certain positive common ratio and M > 1 is a natural number,

is chosen to compute a sequence of global error {ezmax(i), i = 1, 2, 3, ...,M}. Then we have

ln

(
ezmax(i)

ezmax(1)

)
= ln

((
∆zi
∆z1

)N)
= N(i− 1) ln (γ) (3.20)

Thus, by calculating ln
(
ezmax (i)
ezmax (1)

)
/ ln (γ) as a function of i, we should obtain a straight line

with slope N . Figure (3.2(a)) shows the calculation result of equation (3.20), with γ = 0.75, M

= 6, zc
zmax

= 0.08497 (so that the critical level is close to the surface). The value of γ is chosen

so that a large enough M is allowed before the round-off error become dominant.

The distribution of all the data points is linear, and a linear fit with slope equal to 4.0563

is obtained. The R2 value is 0.99883, which means that the trend of variation is reliable.

Therefore, we can conclude that this method is convergent with order of accuracy equal to

4, which is consistent with the order of the numerical scheme used (4th-order Runge-Kutta

method). Due to its high order of accuracy, this method can be safely applied to the turning

wind profile. In the results and discussion section, the results obtained using this numerical

method will be taken as a reference to investigate the accuracy of the WKB method.

3.2.3 The WKB approximation

In chapter 2, a brief idea of the WKB approximation had been sketched. In this subsection, a

more mathematical formulation of the method will be provided, and its validity, especially near

the critical level, will be investigated in the next subsection.
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Generally speaking, the WKB method is an asymptotic series expansion for solving linear differ-

ential equations with spatially-dependent coefficients, e.g. a height-dependent Scorer parameter

l(z). This method is widely used in many different areas, such as wave mechanics, quantum

mechanics, etc. In meteorology, applications of this method are well-known in the investigation

of Rossby waves and mountain waves (Grisogono (1994); Broad (1995); Shutts and Gadian

(1999); Teixeira et al. (2004)).

	  

y = 4.0563x - 0.1453 
R² = 0.99883

-‐5	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

-‐1	   0	   1	   2	   3	   4	   5	   6	  

Normalized 
ln(e(i))/ln(e(1)) 

(a) Trend of error variation

0 100 200 300 400 500 600 700 800 900 1000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

grid points zi

R
e(

m
), 

Im
(m

)
 

 

Re(m)
Im(m)

(b) Real and imaginary parts of m

Figure 3.2: (a) shows the calculation result of equation (3.20). Six data points are plotted, and a linear

best fit line is drawn, with a slope equal 4.0563. The x-axis is the data number i− 1, with i = 1, 2, .., 6,

whilst the y-axis is the value of ln
(

ezmax (i)
ezmax (1)

)
normalized by ln γ. (b) shows a plot of the real and

imaginary parts of m. The critical level is located around grid point zi = 100, with a corresponding a

height value of zc = 849.7 in a calculation domain of height zmax = 10000.

Mathematical formulation

Consider a general form of linear homogeneous differential equation

ε
dny

dzn
+

n∑
i=1

ai(z)
dn−iy

dzn−i
= 0, (3.21)

where ε is assumed to be small, i.e. ε � 1, and ai(z) are spatially varying coefficients. Then

the WKB method assumes an asymptotic expansion for y(z) of the form

y(z) = y(z0) exp

1

δ

∞∑
j=0

i

∫ z

z0

δjmj(ζ)dζ

, (3.22)

where δ � 1, mi(z) are functions to be determined, z0 is a point of reference. The above form

of solution has been employed in papers by Teixeira et al. (2004), Teixeira et al. (2005) and

Teixeira and Miranda (2006), because it is favorable for the implementation of the radiation

boundary condition.

To strictly follow the above formulation, we first apply a change of variable to equation (3.3)
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by defining Z = εz and so d/dz = εd/dZ (Teixeira et al. 2004), which then yields

ε2 ¨̂w +

[
N2k212

(Uk1 + V k2)2
− ε2 Ük1 + V̈ k2

Uk1 + V k2

]
ŵ = 0, (3.23)

where d/dZ is denoted by a dot over the variable. Assume the solution of ŵ(z) takes the form

of equation (3.22)

ŵ(Z) = ŵ(0) exp

1

δ

∞∑
j=0

i

∫ Z

0
δjmj(ζ)dζ

, (3.24)

where the point of reference is taken to be at the surface z = 0, so that the lower boundary

condition can be naturally included. Substitute equation (3.24) into equation (3.23) and group

terms of different powers of δ and ε. As both δ, ε→ 0, the dominant behavior is

−ε
2

δ2
m2

0(z) +
N2k212

(Uk1 + V k2)2
= 0. (3.25)

We assume that the term
N2k212

(Uk1+V k2)2
is large compared with ε and δ within the calculation

domain. Then equation (3.25) is valid if and only if ε and δ are of the same order. Thus, we

may set δ = ε, which then yields

m±0 = ± Nk12
Uk1 + V k2

. (3.26)

This is the 0th-order WKB approximation. By comparing higher powers of ε, a set of equations

for higher-order corrections can be obtained. First and second-order corrections (Teixeira and

Miranda 2009) are illustrated as follows,

iṁ0 − 2m0m1 = 0 (3.27a)

iṁ1 − 2m0m2 −m2
1 −

Ük1 + V̈ k2
Uk1 + V k2

= 0 (3.27b)

which can be solved for m1 and m2, with the use of (3.26)

m±1 = ∓1

2
i
U̇k1 + V̇ k2
Uk1 + V k2

(3.28a)

m±2 =
Uk1 + V k2

2Nk12

 Ük1 + V̈ k2
Uk1 + V k2

(
1

2
∓ 1

)
+

(
U̇k1 + V̇ k2
Uk1 + V k2

)2(
−1

2
± 1

4

) (3.28b)

Recall from equation (1.20) in chapter 1 that, waves with upward propagating energy always

have wave number m taking the same sign of Uk1 + V k2. Thus, we can see from (3.26) that

the positive branch of m+
0 (which is the dominant term of m) is always associated with upward
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propagating energy. Therefore, the desired branch mi is chosen as

m0 =
Nk12

Uk1 + V k2
(3.29a)

m1 = −1

2
i
U̇k1 + V̇ k2
Uk1 + V k2

(3.29b)

m2 = −1

8

Uk1 + V k2
Nk12

2
Ük1 + V̈ k2
Uk1 + V k2

+

(
U̇k1 + V̇ k2
Uk1 + V k2

)2
 , (3.29c)

which is consistent with the result of papers by Teixeira et al. (2004), Teixeira and Miranda

(2009). Thus the WKB solution for ŵ(Z) valid up to 2-nd order is

ŵ(Z) = ŵ(0) exp

(
i

ε

∫ Z

0

(
m0(ζ) + εm1(ζ) + ε2m2(ζ)

)
dζ

)
, (3.30)

Transforming back to the z coordinate by absorbing the ε coefficients, we have

ŵ(z) = ŵ(0) exp

(
i

∫ z

0

(
m0(ζ) +m1(ζ) +m2(ζ)

)
dζ

)
, (3.31)

In this form, the ε is implicitly embedded in the m1 and m2 terms, and therefore equation

(3.31) is valid when the ratio |m1/m0| � 1. A reasonable estimation of ε (Teixeira et al. 2004)

is

ε ≈ |m1/m0|

∼ U ′k1 + V ′k2
Nk12

∼ Ri(−0.5), (3.32)

where the Richardson number Ri is defined as

Ri =
N2

U ′2 + V ′2
. (3.33)

The definition of this non-dimensional parameter is important and used often in later discussion.

By using (1.13) together with (3.31), the WKB solution for other quantities, such as pressure

and potential temperature, can also be obtained. One quantity particularly worth illustrating

is the surface pressure perturbation, so its expression will be derived here.

Following the approach in paper by Teixeira et al. (2004), and using equations (1.13a), (1.13b),

(1.13d), we can obtain an equation for the Fourier transform of the pressure p,

p̂ = i
ρ0
k212

[(U ′k1 + V ′k2)ŵ − (Uk1 + V k2)ŵ
′]. (3.34)

Note that a relation between ŵ and ŵ′ can be derived easily by differentiating (3.31) or (3.14),

ŵ′ = imŵ, (3.35)
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where m(z) = m0(z) +m1(z) +m2(z) up to second order. Thus, p̂(z = 0) can be calculated as

p̂(z = 0) = i
ρ0
k212

{
(U ′0k1 + V ′0k2)− i(U0k1 + V0k2)m

}
ŵ(z = 0)

= − ρ0
k212

{
(U ′0k1 + V ′0k2)− i(U0k1 + V0k2)m

}
(U0k1 + V0k2)ĥ, (3.36)

where U0 and V0 are the values of U(z) and V (z) at the surface z = 0, and the surface boundary

condition was used in the last equality. With equation (3.36), the surface pressure distribution

can be obtained by taking the inverse Fourier transform back to the physical space.

p(z = 0) =

∫ ∞
−∞

∫ ∞
−∞

p̂(z = 0)ei(k1x+k2y)dk1dk2 (3.37)

Figure (3.3) shows the surface pressure p(z = 0) for the two wind profiles with Richardson

number Ri = 0.5 using the WKB approximation. An obvious difference between the two

figures is that the upstream high pressure in figure (3.3(a)) moves a little southward along the

negative y-direction, while the pressure in figure (3.3(b)) is antisymmetric about the x = 0 axis.

This is because the surface wind U(z = 0) makes an angle of π/4 to the x-axis in the linear

wind profile, while the surface wind is along the x-axis in the turning wind profile. Hence,

the pressure distribution in the case of the linear wind profile has no symmetry about the line

x = 0.
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Figure 3.3: shows the distribution of normalized surface pressure p/(ρ0(U2
0 +V 2

0 )h̃) over the orography,

where h̃ = Nh0/|U(z = 0)| is the non-dimensional height. Both figures have Ri = 0.5. (3.3(a))

corresponds to a linear wind profile which makes an angle of 45◦ with the x-axis at the surface and turns

by an angle of 120◦, while (3.3(b)) corresponds to a turning wind profile which turns by an angle of

180◦. Black contours denote a height of 0.5 h0. These figures are reproduced from paper by Teixeira

et al. (2004).
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Treatment of the WKB solution across the critical level

Equation (3.31) gives the WKB solution for ŵ(z) over a region where l2(z) is larger compared

with ŵ′′. However, a natural question may arise about the validity of equation (3.31) as z

approaches the critical level, at which the Scorer parameter l2 →∞. In fact, studies have shown

that in the vicinity of a critical level zc the WKB method becomes most accurate (Whitten and

Riegel (1973); Satyanaryanan and Sachdev (1980)). So, the WKB approximation is reliable

across the critical level. However, in addition to equations (3.29) and (3.31) obtained from the

WKB solution, special treatment is needed in order to include the attenuation effect to the

wave amplitude in the WKB method as ŵ(z) crosses the critical level. In this subsection, such

a treatment will be discussed in detail.

Recall from equation (A.24) of appendix A, that for waves with upward propagating energy, a

factor of e−πµ is multiplied to the amplitude of the wave solution as it crosses the critical level

from below. In fact, the WKB solution can capture this amplification factor by introducing

some slight modifications to the integration path of the integral in (3.31).

In appendix A, due the existence of the singularity at zc, the path of the integral over z must go

under or above the singularity depending on the sign of G′(zc). In fact, for the WKB solution,

this can be done in exactly the same manner, such that the integral of (3.31) is no longer on

the real axis (z-axis), but becomes a complex contour integral. The path of the integration is

shown in figure (3.4).
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Figure 3.4: shows the complex contours C for the integral of equation (3.31), which is divided into

three parts, namely, C1, C2 and C3. C1 and C3 are on the real z-axis, while C2 is a small semi-circular

complex contour, with radius δ. The blue contour which goes below the singularity is for G′(zc) > 0,

while the red contour which goes above the singularity is for G′(zc) < 0.

The definition of G(z) is recalled to be G(z) = U(z) · k. Now, assume that G′(zc) > 0 ,

so that the blue integration curve in figure (3.4) will be used. Now, consider only |ŵ(z)| of

equation (3.31). Denote the integration of mj in the exponent of (3.31) by Ij , j = 0, 1, 2, ....

For illustrative purposes, the contribution of I0 will be exemplified here. It turns out that I0

will have an imaginary terms due to the small complex contour C2 as z goes across zc.

Im(I0) = Im

[∫
C
m0(ζ)dζ

]
= Im

[∫
C2

m0(ζ)dζ

]
= Im

[∫ 2π

π

Nk12
G′(zc)δeiθ

iδeiθdθ

]
= π

Nk12
G′(zc)

(3.38)
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where δ is assumed to be arbitrarily small, so the dominant behavior of m0 has been used in

the second last equality (G(ζ) ≈ G′(zc)δeiθ for ζ on C2). It turns out that this integral over C2

is independent of the radius δ. Similarly, if G′(zc) < 0, the contour goes above the singularity

(i.e. the red curve must be used), and hence the integral value becomes −π Nk12
G′(zc)

. Therefore,

we can conclude that as z goes across zc

Im(I0) = π
Nk12
|G′(zc)|

= πR̃i
0.5
, (3.39)

where R̃i (defined in appendix A) has the same scale as the Richardson number Ri.

Besides, expanding the exact factor obtained in appendix A using the Binomial theorem yields

πµ = π
√
R̃i− 0.25 = π

(
R̃i

0.5 − 1

8R̃i
0.5 + ...

)
(3.40)

Thus the contribution of m2 in the contour integral will give the factor − π

8R̃i
0.5 (see the paper by

Teixeira and Miranda (2009)), which is the same as the second term in (3.40). In fact, higher-

order corrections to the amplitude factor can be obtained by the even-order terms of mi, i.e.

m0,m2,m4, .... Moreover, (3.40) implies that a finite truncation will be a good approximation

if R̃i � 1/8 (see the paper by Whitten and Riegel (1973)). In general, we are only interested

in R̃i > 1/4, since otherwise there would be dynamical instability and the mountain waves

would break down. Therefore, the above analysis shows that the WKB approximation is able

to capture the behavior of the magnitude modification due to the filtering effect of critical

levels. Hence, the validity of this method across zc is ensured.
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3.3 Results and comparison

With the two methods described in the last section, we are now ready to solve equation (3.3).

The numerical results are assumed to be more accurate than the WKB method, and will serve

as a reference for the comparison with the WKB approximation. In this section, calculation

results of the following quantities for different wind profiles will be discussed and compared,

namely the surface drag D = (Dx, Dy) and the wave momentum fluxes M = (Mx,My). The

numerical integrations of these quantities are approximated by using the composite trapezoidal

rule over the polar coordinate, with ∆θ = 2π/1007.

• Surface drag D

Similar to the definition of the surface drag in the 2-D case (2.21), the surface drag for

flow over a 3-D isolated mountain is also defined as the integral of the pressure gradient

force over the orography. However, it becomes a vector instead of a scalar.

D =

∫ ∞
−∞

∫ ∞
−∞

p(z = 0)∇hh(x, y)dxdy, (3.41)

where ∇h is the horizontal gradient operator. By Parseval’s theorem (see Appendix B),

the above integral can be evaluated over the k-space, instead of the physical space (Teixeira

et al. 2004).

D = 4π2i

∫ ∞
−∞

∫ ∞
−∞

kp̂∗(z = 0)ĥ(k1, k2)dk1dk2, (3.42)

where p̂∗ is the complex conjugate of p̂. Equation (3.42) is more favorable since p̂(z = 0)

is readily obtained from (3.36). For the WKB approximation, (3.42) can be further

simplified by using (3.29a), (3.29b) and (3.29c), and finialy D can be expressed as a

function of the Richardson number Ri. The detailed derivations are omitted here and one

may refer to the paper by Teixeira et al. (2004). The results are listed as follows,

Dx

Dx0
=

[
1− 1

32

(
3
U ′20
N2

+
V ′20
N2

+ 2
V0
U0

U ′0V
′
0

N2

)
− 1

16

(
3
U ′′0U0

N2
+
V0
U0

U ′′0 V0
N2

+ 2
V ′′0 V0
N2

)]
,

(3.43a)

Dy

Dy0
=

[
1− 1

32

(
3
V ′20
N2

+
U ′20
N2

+ 2
U0

V0

U ′0V
′
0

N2

)
− 1

16

(
3
V ′′0 V0
N2

+
U0

V0

V ′′0 U0

N2
+ 2

U ′′0U0

N2

)]
.

(3.43b)

And more specifically for the two wind profiles considered here,

Dx

Dx0
=

(
1− 3

32Ri

)
,

Dy

Dy0
=

(
1− 1

32Ri

)
for the linearing wind profile. (3.44)

Dx = Dx0

(
1 +

5

32Ri

)
, Dy = 0 for the turning wind profile, (3.45)

which, in fact, are both linear approximations around the point Ri−1 = 0. Note the Ri

has different expression in the above two equations, with Ri = N2/α2 for the linear wind

profile and Ri = N2/U2
0β

2 for the turning wind profile.
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• Momentum fluxes M
Using Parseval’s theorem, the 3-D momentum fluxes can be calculated as,

Mx = −4π2ρ0

∫ ∞
−∞

∫ ∞
−∞

û∗ŵ dk1dk2 (3.46a)

My = −4π2ρ0

∫ ∞
−∞

∫ ∞
−∞

v̂∗ŵ dk1dk2 (3.46b)

Then by using equation (1.13a), (1.13b), relations for û and v̂ as a function of ŵ can be

obtained.

û =
i

k212

(
ik1m− k2

V ′k1 − U ′k2
Uk1 + V k2

)
ŵ (3.47a)

v̂ =
i

k212

(
ik2m+ k1

V ′k1 − U ′k2
Uk1 + V k2

)
ŵ (3.47b)

Since M is a real quantity, using (3.47a), (3.47b) and taking the real part of (3.46a) and

(3.46b), expressions for the momentum fluxes can be rewritten as

Mx = 4π2ρ0

∫ ∞
−∞

∫ ∞
−∞

k1
k212

Re(m)|ŵ|2 dk1dk2 (3.48a)

My = 4π2ρ0

∫ ∞
−∞

∫ ∞
−∞

k2
k212

Re(m)|ŵ|2 dk1dk2 (3.48b)

Following the approach in the paper by Teixeira and Miranda (2009), the above equations

can be further simplified using the WKB expressions for w (3.31) and m (3.29), but the

lengthy details will not be shown here.
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3.3.1 Linear wind profile
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Figure 3.5: shows the variation of the surface drag as a function of Ri−1 in the case of the linear wind

profile (3.5). Solid lines are the WKB solution (blue for the x-component, red for the y-component),

while symbols are from the numerical model of Siversten (blue circles for the x-component, red triangles

for the y-component). Drag values are normalized by D0, i.e. the surface drag without shear (i.e. α = 0).

When Ri < 0.25, Kelvin-Helmholtz instability occurs and the system becomes dynamically unstable,

and cannot be described by linear theory (Lin (2007); Breeding (1971)). Therefore the range of Ri−1 is

only plotted in the interval (0, 4).

As shown in figure (3.5), both drag components decrease with Ri−1, which means that as the

wind shear α increases from 0, the surface drag D shows a decrease in magnitude. This is

due to the absence of wind-curvature terms in the linear wind profile (Teixeira et al. (2004);

Teixeira and Miranda (2004)). In fact, in equation (3.43), it can be shown by scale analysis

that the curvature terms in the second brackets are of the same order as the shear terms in

the first bracket. This is the primary reason why the surface drag behaviors of the two wind

profiles considered here are completely different, as will be seen in the next section.

When Ri is large, the WKB solution (3.44) provides an accurate linear approximation. How-

ever, as Ri decreases to below 0.5 (i.e. Ri−1 > 2), both x and y components of the drag in the

numerical solution show a more rapid rate of decrease, and hence the variation becomes more

non-linear. Hence, the error of the WKB solution becomes larger at small Ri. In the derivation

of the WKB solution (3.30), ε can be estimated by the value of Ri−0.5 (3.32). Thus, in theory,

as Ri−1 becomes large, i.e. ε > 1, the WKB method breaks down, since the asymptotic series

used in the WKB approximation fails to converges to the true solution. Fortunately, in the

case of the linear wind profile, the overall variation of the surface drag is quite linear, so the

WKB solution for the surface drag is able to provide a good approximation even when Ri−1 is

relatively large (Teixeira et al. (2004); Teixeira and Miranda (2004)).
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(a) x-momentum flux (Linear wind) : Ri = 1
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(b) y-momentum flux (Linear wind): Ri = 1
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(c) x-momentum flux (Linear wind): Ri = 0.35
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(d) y-momentum flux (Linear wind): Ri = 0.35

Figure 3.6: shows the x (left column) and y (right column) components of the momentum flux for the

linear wind profile with Ri = 1 on the first row and Ri = 0.35 on the second row. The blue solid lines

are WKB solutions, while the green dashed lines are numerical solutions. The WKB solution for ŵ is

extended to 3rd-order in ε to achieve 2nd-order accuracy in the momentum fluxes.

As shown in the above figures, the momentum fluxes in the case of a linear wind profile show a

general decaying trend with z. This is definitely due to the effect of critical levels, at which a

large portion of the wave energy of a certain wave number is attenuated and absorbed, hence

causing a large drop of wave amplitude by a factor of e−πµ. As the wind direction turns with

height, a greater and greater fraction of the wave numbers have been directionally filtered and

hence the total momentum fluxes drop significantly as z increases.

Both normalized flux components take values slightly lower than 1 at the surface. This is

also explained by the fact that the wind shear acts to reduce the surface drag in the case of a

linear wind profile. Thus, the smaller Ri is, the smaller the momentum fluxes at the surface,

as shown clearly in figure (3.6(a)) and (3.6(c)).

For the linear wind profile, the WKB method provides a accurate solution for the momentum

flux, even when Ri−1 is not too small, e.g. Ri−1 = 1 in the first row of figure (3.6). When

Ri = 0.35, the surface drag computed with the numerical solution becomes lower than that

computed with the WKB method. This is consistent with the difference in surface drag variation
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shown in figure (3.5).

3.3.2 Turning wind profile

For the turning wind profile, formulated by equation (3.6), the variation of the surface drag

with Ri behaves in an opposite way compared with the linear wind profile, in which both com-

ponents increase with Ri−1. This is due to the existence of wind profile curvature, contributed

by the terms inside the second brackets in (3.43). In fact, for the turning wind profile, the

curvature terms always provide a positive contribution to the drag. Hence the variation of the

surface drag with Ri is modified significantly. This also corroborates the previous statement

about the same order of magnitude of the curvature and shear terms made in the last section.

Concerning the accuracy of the WKB method, when Ri−1 is small, i.e. Ri� 1, the WKB

solution provides a good linear approximation. However, as Ri decreases below 1, both the

x and y components of the numerical solution increase more rapidly. Hence, the discrepancy

between the two methods becomes larger. The error is large especially in the y-component, due

to the fact that the surface drag is constantly 0 when Ri−1 � 1, and the linear approximation

provided by the WKB approximation cannot capture any variation of the surface drag when

Ri−1 is large.

The general variation of the surface drag with Ri is more non-linear in the case of the

turning wind profile compared to the linear wind profile, so the validity of the WKB approxi-

mation becomes relatively poor, in the sense that the underestimation of surface drag becomes

significant in the low Richardson number regime .
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Figure 3.7: shows the variation of the surface drag as a function of Ri−1 in the case of the

turning wind profile (3.6). Solid lines are the WKB solution (blue for the x-component, red for

the y-component), while symbols are from the numerical model of Siversten (blue circles for

the x-component, red triangles for the y-component). Both x and y components of the surface

drag are normalized by Dx0 due to the fact that Dy0 = 0.
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For the momentum fluxes, the overall distribution of the x-component is similar to that of the

linear wind profile, while the y-component is closed to 0 at the surface and reaches a maximum

in about the middle of the calculation domain. This is due to the fact that the surface mean

wind is along the x-direction, so the y-component of the momentum flux is small (but not

necessarily 0, as shown by the numerical solution). As z increases, the wind direction turns and

becomes along the y-axis in the middle of the domain, which then contributes to the maximum

of the y-momentum flux.

However, underestimations of both the x and y components of the momentum flux by the

WKB approximation occur when Ri < 1 near the surface, and are especially serious for the

y-component. This is closely related to the underestimation of the surface drag shown in figure

(3.7), when the WKB method fails to capture the variation of the surface drag for smalll Ri. In

fact, the y-component of the momentum flux from the WKB solution always takes the 0 value

at z = 0, as shown in figures (3.8(b)) and (3.8(d)), which is consistent with the horizontal line

in figure (3.7).
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(a) x-momentum flux (Turning wind) : Ri = 1
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(b) y-momentum flux (Turning wind) : Ri = 1
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(c) x-momentum flux (Turning wind) : Ri = 0.5
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(d) y-momentum flux (Turning wind) : Ri = 0.5

Figure 3.8: shows the x (left column) and y (right column) components of the momentum fluxes for

the turning wind profile with Ri = 1 on the first row and Ri = 0.5 on the second row. The blue solid

lines are WKB solutions, while the green dashed lines are numerical solutions. The WKB solution for

ŵ is extended to 3rd-order to achieve 2nd-order accuracy in the momentum fluxes.
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Chapter 4

Flow Over a 3-D Isolated Mountain

in the Non-hydrostatic Regime

In the last chapter, an investigation was carried out in the hydrostatic framework, in which the

magnitude of wave numbers forming the orography profile were much smaller than the Scorer

parameter l(z). This condition is formally valid when the non-dimensional parameter â satisfies

â = Na
|U0| � 1, which means that the width of the mountain a is large and(or) the mean flow

velocity |U0| is slow. The consequence is that the term −k212 can be dropped in (3.1) and waves

can freely propagate in the atmosphere without being reflected. In this chapter, this condition

will be relaxed by considering narrower mountains or faster mean winds. Hence the −k212 term

is not negligible in (3.1). This creates regions where vertical wave propagation is prohibited and

only evanescent waves exist, and at the same time wave reflection effects have to be considered.

The associated difficulty is that both the WKB approximation and the numerical method

proposed by Siversten (1972) face technical problems in solving for ŵ(z). The WKB method

fails in the vicinity of classical turning points, where propagating waves become evanescent, due

to the fact that l2(z)− k212 becomes zero and changes its sign, and hence its magnitude cannot

be regarded as slowly varying, which clearly conflicts with the typical assumption of the WKB

approximation. Solution to this problem up to first-order is possible by using the so-called

connection formulas, which involve the use of Airy functions (related with the modified Bessel

function of order 1/3). However, due to the fact that extension of this method to higher orders

must be required for the calculation of the momentum fluxes with the required accuracy, this

approach is not investigated in this study.

Again, the same two wind profiles will be studied, which are the linear and the turning wind

profile. In fact, an exact solution for the linear wind profile in the case of a 2D mountain ridge

had been studied by Wurtele et al. (1987), which can actually be easily extended to the situa-

tion of a linear wind profile in flow over a 3D orography with directional shear. The derivation

will be illustrated in detail in this chapter.

For the turning wind profile, due to the phenomenon of wave reflection, the inclusion of a
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second layer of atmosphere (e.g. the stratosphere), where the wind shear and curvature are

assumed to be zero, will be important for the well-posedness of the problem. The detailed

reasoning and treatment of this modification will be illustrated in section (4.3.1).

4.1 Identification of the non-hydrostatic regime

In the previous chapter, the discussion was limited to the hydrostatic assumption whereby

the magnitude of the horizontal wave vector is small and does not have any effect on the

solution ŵ(z). The validity of this assumption can be verified easily in terms of the non-

dimensional parameter â by requiring that â = Na
|U0| � 1. This condition is clear and makes

the regime of interest well defined. However, the boundary for the non-hydrostatic regime is

more ambiguous, as it should refer to all regimes where the condition of â = Na
|U0| � 1 fails.

However, it turns out that if the system is highly non-hydrostatic, i.e. â � 1, such as when

the flow becomes an irrotational potential flow, the surface pressure becomes symmetric over

the orography, and hence, the surface drag becomes almost zero and the momentum fluxes are

also insignificant. Such a situation clearly lacks interest for investigation, since most relevant

quantities become negligible. Thus, we are only interested in non-hydrostatic flows that still

exhibit some sufficiently hydrostatic characteristics. The regime of interest can be delimited

more specifically by restricting attention to the case where â = Na
|U0| ∼ 1, i.e. we are not

interested in flow with â� 1.

4.2 The linear wind profile with directional shear - Analytic

solution

In this section, an analytic solution for the linear directionally sheared wind profile in the non-

hydrostatic regime will be derived. The formulation follows the work by Wurtele et al. (1987),

which was originally developed for the case of an unidirectional wind profile over a 2D mountain

ridge without critical levels. Their formulation of the solution was not based on the direction of

energy propagation, which is not convenient if critical layers exist. It will be shown that due to

the directional filtering effect of critical levels, it is necessary to reconstruct the solution basis so

that they represent waves with different directions of energy propagation across the critical level.

Recall from chapter 3 that the linear wind profile with directional shear is defined as

Ulinear(z) = (U(z), V (z)) = (U0 − αz, U0), (4.1)

where the atmosphere is assumed to extend to infinity, and the wind makes an angle of π/4 to

the x-axis at the surface and turns to θmax at the top of calculation domain, as shown in figure

3.1(a). Using (4.1), the non-hydrostatic, steady-state Taylor-Goldstein equation becomes

ŵ′′(z) +

[
N2k212

(U0(k1 + k2)− αk1z)2
− k212

]
ŵ(z) = 0. (4.2)
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Following the approach by Wurtele et al., first, we restrict our attention on one side of the

critical level. Without loss of generality, we consider z > zc. Then, we transform the point of

reference to the critical level by letting ξ = z − U0(k1+k2)
αk1

> 0. Hence, above the zc, equation

(4.1) can be rewritten as

d2ŵ

dz2
+

 N2k212
(αk1)2(

U0(k1+k2)
αk1

− z
)2 − k212

ŵ = 0

d2ŵ

dξ2
+

(
R̃i

ξ2
− k212

)
ŵ =0, (4.3)

where R̃i =
N2k212
(αk1)2

follows the same definition as (A.5) in appendix A. Equation (4.3) in fact

takes the same form as equation (2) in the paper by Wurtele et al. (1987), which has a general

solution of the form

ŵ(ξ > 0) = C1

√
ξLiµ(k12ξ) + C2

√
ξKiµ(k12ξ), (4.4)

where C1, C2 are constants to be determined, µ =
√
R̃i− 0.25, and Kiµ and Liµ are related

to the modified Bessel function of imaginary order Iiµ, with a definition that follows from the

paper by Wurtele et al. (1987). The behavior of these functions is shown in figure (4.1)

Kiµ(ξ) =
iπ

2

Iiµ(ξ)− Iiµ(ξ)

sinh(µπ)
(4.5a)

Liµ(ξ) =
π

2

Iiµ(ξ) + Iiµ(ξ)

sinh(µπ)
(4.5b)
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0.0015

0.0020
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BesselK

Figure 4.1: shows the behavior of the two Bessel functions Kiµ(blue) and Liµ(red) over the

interval of the interval (0, 8), with µ = 5. Near ξ = 0, the frequency of oscillation of the Bessel

functions approaches infinity, so they are highly oscillatory, while they become exponentially

decaying (Kiµ) or growing (Liµ) as the value of ξ gets around 4, which is comparable to µ = 5.

Note that the argument of the Bessel functions must be non-negative, this means that (4.4)

is only valid on one side of the critical level, which is consistent with the previous assumption
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that we only consider z > zc. For z < zc, we have ξ = −|ξ| < 0. Then, equation (4.3) for ξ < 0

can be written as
d2ŵ(−|ξ|)
d|ξ|2

+

(
R̃i

|ξ|2
− k212

)
ŵ(−|ξ|) = 0. (4.6)

This means that the set of solution basis for ŵ(ξ < 0) is still the same, which can be written as

ŵ(ξ < 0) = C̃1

√
|ξ|Liµ(k12|ξ|) + C̃2

√
|ξ|Kiµ(k12|ξ|), (4.7)

where C̃1 and C̃2 are constant. The reason of introducing these two new constants, rathering

than using the previous constants C1 and C2 in equation (4.3), is that as the solution for ŵ

goes across zc, both the amplitude of upward and downward propagating waves are modified.

Therefore, the solution for the entire calculation domain can be completed by joining the

solution on the two sides with an appropriate amplitude factor due to the filtering effect of the

critical level.

As discussed in appendix A and chapter 3, amplitude factors are multiplied to waves according

to their direction of energy propagation. Therefore, it is necessary to analyze how the two

basis members of the solution for ŵ form waves with a single direction of energy propagation.

This can be achieved by comparing the asymptotic behavior of the two basis members with the

asymptotic behavior of the upward (or downward) propagating wave near the critical level.

As stated by equation (A.24) in appendix A, for z − zc →> 0+ (i.e. ξ → 0+)

ŵ(ξ) = C↑ ŵ↑(ξ) + C↓ ŵ↓(ξ)

=
√
ξ
(
C↑ei(sgn)µ ln ξ + C↓e−i(sgn)µ ln ξ

)
, (4.8)

where sgn = sign(U ′ck + V ′c l) and the branch with coefficient C↑ corresponds to the wave with

upward propagating energy, while C↓ corresponds to the wave with downward propagating

energy. On the other hand, the asymptotic behavior of the Bessel functions can be summarized

as

Liµ(k12ξ) =

√
π

µ sinh (µπ)
cos

(
µ ln

(
k12
2
|ξ|
)
− γµ

)
=

√
π

µ sinh (µπ)
cos

(
µ ln |ξ|+ µ ln

(
k12
2

)
− γµ

)
(4.9a)

Kiµ(k12ξ) = −
√

π

µ sinh (µπ)
sin

(
µ ln

(
k12
2
|ξ|
)
− γµ

)
= −

√
π

µ sinh (µπ)
sin

(
µ ln |ξ|+ µ ln

(
k12
2

)
− γµ

)
, (4.9b)

where the phase γµ is defined as,

eiγµ =
Γ(1 + iµ)√

πµ
sinhπµ

, (4.10)
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and Γ is the Gamma function. Thus, by comparing (4.9) with (4.8), ŵ↑(ξ) in (4.8) can be

rewritten as

ŵ↑(ξ) =
√
ξei(sgn)µ ln ξ

=
√
ξei(sgn)γµe−i(sgn)µ ln | k12

2
|{

cos

(
µ ln ξ + µ ln

∣∣∣∣k122

∣∣∣∣− γµ)+ i(sgn) sin

(
µ ln ξ + µ ln

∣∣∣∣k122

∣∣∣∣− γµ)}
=
√
ξ ei(sgn)γµ e−i(sgn)µ ln |k12/2|

√
µ sinh (µπ)

π

[
Liµ(k12ξ)− i(sgn)Kiµ(k12ξ)

]
(4.11)

Similarly, ŵ↓(ξ) can be rewritten in terms of Liµ and Kiµ

ŵ↓(ξ) =
√
ξ e−i(sgn)γµ ei(sgn)µ ln |k12/2|

√
µ sinh (µπ)

π

[
Liµ(k12ξ) + i(sgn)Kiµ(k12ξ)

]
(4.12)

Equations (4.11) and (4.12) are written based on the direction of energy propagation and are

only valid for ξ > 0. When ξ < 0, by using (4.7), we can see that it suffices to use |ξ| at

those square roots and argument of Bessel functions, instead of ξ. One interesting point to

note is that a wave with upward (downward) propagating energy must consist of both Bessel

functions Liµ and Kiµ. This property will be important for understanding the wave reflection

phenomenon, as discussed later.

With equations (4.11) and (4.12), we are now ready to go across the critical level to z < zc (or

ξ < 0). Recall from equation (A.24) in appendix A, that amplitude factors are multiplied to ŵ

for z > zc as the solution goes across zc from below, which can be formulated as

factor↑ = (sgn)i exp (−πλ) (4.13)

factor↓ = (sgn)i exp (πλ) (4.14)

Hence, the general solution to (4.2) can be written as

ŵ(z > zc) = C↑ factor↑ ŵ↑(ξ) + C↓ factor↓ ŵ↓(ξ) (4.15a)

ŵ(z < zc) = C↑ ŵ↑(ξ) + C↓ ŵ↓(ξ), (4.15b)

where ξ = z − zc (by equation (4.7), ŵ, ŵ↑ and ŵ↓ are now all well defined for both positive

and negative ξ, with |ξ| being used when ξ < 0), and factor↑↓ are given by (4.13) and (4.14).

In fact, assuming an infinitely extended atmosphere in the non-hydrostatic regime, waves will

eventually become always evanescent above a certain high level, since the wave-propagating

region is only located near the critical level. Thus, the upper boundary condition must be the

boundedness condition, instead of the usual radiation condition, due to the fact that the wave

becomes exponentially growing or decaying, instead of oscillating. Moreover, the asymptotic

behavior of Liµ for large argument is exponentially growing, while that of Kiµ is exponen-

tially decaying. This means that in order to fulfill the boundedness condition as z → ∞, the
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component of Liµ has to be killed off for z > zc. However, as we noted previously an up-

ward(downward) propagating wave must consist of both Liµ and Kiµ. That means that the

boundedness condition can only be satisfied when both upward and downward propagating

waves exist and are combined in a certain ratio, so that the contribution of Liµ is 0. This,

in fact, implies the existence of wave reflection. The ratio between these two waves can be

obtained by grouping the terms with Liµ and setting their coefficient to 0, which then yields

an equation relating the coefficients C↑↓

C↑(sgn)ie−πµei(sgn)γµe−i(sgn)µ ln |k12/2| + C↓(sgn)ieπµe−i(sgn)γµei(sgn)µ ln |k12/2| = 0, (4.16)

which gives

C↓

C↑
= − exp (−2πµ) exp {2i(sgn)γµ} exp {−2i(sgn)µ ln |k12/2|}. (4.17)

And we can easily see that the ratio of C↓ to C↑ in terms of magnitude is in fact∣∣∣∣C↓C↑
∣∣∣∣ = exp (−2πµ). (4.18)

Although this ratio is small when the Richardson number Ri is large, due to the fact that

the Liµ function is exponentially growing and has to be cancelled out, the contribution of the

downward propagating wave cannot be neglected. Moreover, by expressing C↓ in terms of C↑,

the overall solution can be rewritten as

ŵ(z > zc) = 2C↑
√
µ sinh (πµ)

π
e
i(sgn)

(
γµ−µ ln

k12
2

)
e−πµ

√
ξKiµ(k12ξ) for z > zc

(4.19a)

ŵ(z < zc) = C↑
√
µ sinh (πµ)

π
e
i(sgn)

(
γµ−µ ln

k12
2

)√
|ξ|{

Liµ(k12|ξ|)
(
1− e−2πµ

)
− iKiµ(k12|ξ|)(sgn)

(
1 + e−2πµ

)}
for z < zc

(4.19b)

The remaining C↑ in (4.19) is fixed by using the lower boundary condition. Figure (4.2) shows

the distribution with height of the normalized ŵ and the corresponding Scorer parameter l(z).

Some Implications of the analytic solution

In fact, equation (4.19) has several important implications. Firstly, recall from the expression

of the momentum flux (3.48), that the integrand of each component of this quantity is multi-

plied with a weight of Re(m), and m = −iŵ′/ŵ. If we write the solution for ŵ in exponential

form, i.e. ŵ(z) = A(z)eiψ(z) with A(z) being the amplitude of the complex function and ψ(z)

being the complex phase. With this expression, Re(m) can be calculated to be ψ′(z). Now,

note that equation (4.19a), which is for z > zc, is written in the form of a complex constant

multiplied by a real function Kiµ. This means that ψ(z) is simply a constant function. Hence,
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Re(m) = ψ′(z) = 0 for z > zc. In fact, Re(m) = ψ′(z) means that the vertical momentum

flux can be non-zero only when there is some phase variation of the complex argument of ŵ(z)

with respect to z, as shown by the real and imaginary parts of ŵ in the region z < zc in figure

(4.2(b)). Thus, fixing a particular wave number k, above the corresponding critical level zc, its

contribution to the momentum flux is 0. This is, in fact, due to the reflection of waves in the

upper atmosphere z > zc, which kills off the term including of Liµ and balances out the upward

transport of horizontal momentum. In other words, this is the result of wave interference.
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Figure 4.2: (a) shows the distribution of the square of the Scorer parameter l2(z). The vertical black

solid line indicates the critical level, the red horizontal line indicates the value of k212. The two vertical

dashed lines are the levels where transitions from the wave propagating regime to the evanescent regime

occur (a broad wave propagating zone is located at the centre of the figure, while two narrow evanescent

zones are located on the two sides of the figure). (b) shows the real (blue) and imaginary (green) parts

of ŵ(z). The function is normalized by its value at z = 0. Beyond the critical level, a significant drop of

magnitude is observed. Both figures have k12 = 0.0015 and Ri = 12.4.

Secondly, with the existence of a critical level, the effect of this wave reflection in the region

below the critical level is negligible if the Richardson number Ri is large. This can be easily

seen from equation (4.19b) where the effect of the reflected wave is only contained in the two

factors (1 − e−2πµ) and (1 + e−2πµ), and has a tiny impact since e−2πµ is small if Ri is large.

Hence, below the critical level, upward propagating waves are dominant due to the filtering

effect of the critical level. Indeed, this implies that the existence of a critical level acts as a

shield for the upward propagating waves and allows the transport of horizontal momentum to

occur below the critical level.

Thirdly, and most importantly, we should bear in mind that for the linear wind profile, not

every wave vector k has a critical level within the atmosphere. As shown in figure (4.3), the

plane of horizontal wave vectors is divided into 3 regions. The wave number indicated by the

orange arrow has its critical level (indicated by orange dashed line) below the surface, which

means that the atmosphere is all above the critical level. Thus, for such a wave number, no

momentum fluxes can be produced, since the upward transport of horizontal momentum asso-
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ciated with this wave number is all reflected by the upper atmosphere due to non-hydrostatic

effects. In fact, this effect has a large impact on the surface drag and the momentum fluxes, as

will be discussed in a later section.
!

!,!!!

!, !! !

0 < !! < !!"#!

!! < 0!

!! > !!"#!

Figure 4.3: shows the plane of horizontal wave numbers k, which is divided into three different regions

according to the height of the critical level. For the blue region, if a certain wave vector has its critical

level located in this region, then the associated zc must be within the calculation domain, as shown by

the blue arrow (which indicates the wave number) and the blue dashed line (which indicates the wind

direction perpendicular to the wave number). For the green region, if a certain wave number has its

associated zc in this region, then zc must be above the calculation domain. Similarly, if some wave

numbers have their perpendicular direction lying within the orange region, then their critical levels will

be below the surface, as shown by the orange arrow and dashed line.
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4.2.1 Results and discussion

Recall from chapter 3, that the surface drag and momentum flux had been expressed by (3.42)

and (3.48) respectively. With the aid of the analytic formula for ŵ(z) (4.19), numerical inte-

gration of these two quantities is much facilitated. The Bessel functions is calculated by using

the algorithm developed by Gil et al. (2004). Interested reader may also approach papers by

Thompson and Barnett (1985), Gil et al. (2002) for more details.

Surface drag as a function of Ri−1
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Figure 4.4: (a) shows the normalized surface drag as a function of Ri−1 close to the hydrostatic limit

with â = 8 (dashed lines) and â = 4 (solid lines) respectively, while (b) is more non-hydrostatic, with

â = 2 (dashed lines) and â = 1.25 (solid lines). The surface drag is normalized by the drag value in

hydrostatic conditions and for Ri−1 = 0. In both figures, blue curves represent the x-component, while

green curves represent the y-component.

For the linear wind profile with directional shear in an infinitely extended atmosphere, the

following significant differences in the surface drag as a function of Ri−1 should be noted.

Firstly, the variation of drag with Ri−1 becomes â-dependent. Secondly, there is a small drag
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enhancement in the x-component and a strong drag reduction in the y-component. Thirdly, both

x and y components show strong drag reduction as the system becomes more non-hydrostatic.

Fourthly, as the system becomes more non-hydrostatic, the surface drag varies with Ri−1 more

non-linearly, especially near Ri−1 = 0.

In the hydrostatic regime, the surface drag was independent of â, which means that the variation

of the drag does not depend much on the width of the orography (provided that a is large

enough). However, in the non-hydrostatic limit, the regime of interest is defined by the condition

â ∼ 1, and the surface drag as a function of Ri−1 now becomes more sensitive to the value of â.

The smaller â is, the more non-hydrostatic characteristics the system exhibits. The following

investigation will focus on two ranges of â, which are 4 < â < 8 and 1 < â < 2.

When â is not too small, e.g. 4 < â < 8, the system displays more hydrostatic features. For

example, a linear decreasing trend of the surface drag with Ri−1 can be observed when Ri−1

exceeds 0.5, as shown in figure 4.5(a), which is consistent with figure (3.5). However, one

significant difference is the drag value near Ri−1 = 0. Even if â increases further, the drag

values near Ri−1 = 0 cannot recover the value in the hydrostatic limit, as shown in figure

(3.5). This is, in fact, due to the effect of strong wave reflections for wave numbers with critical

levels zc < 0, as indicated in the orange region of figure (4.3). This wave reflection kills off

the momentum fluxes in the orange regions, which mostly contain wave numbers with a large

y-component. Hence, a strong drag reduction in the y-component is observed. The reduction

is by around a factor of 1/
√

2 if â is close to the hydrostatic limit.

When â decreases to a value of 2, the system is in the transition to become more non-hydrostatic.

Stronger reductions of both x and y-components of the surface drag near Ri−1 = 0 are observed

as â decreases. This is expected, as discussed in chapter 2, since the surface pressure becomes

less anti-symmetric as the system becomes more non-hydrostatic, and hence the surface drag

decreases. Moreover, the increasingly non-linear drag behavior near Ri−1 = 0 is more persistent

and reaches a balance with the linearly decaying tendency at large Ri−1, so the overall variation

of the surface drag becomes less marked (e.g. green dashed line in figure 4.5(d)). When â further

decreases to a value of 1.25, the system does not show many hydrostatic features and the non-

linear drag increasement near Ri−1 = 0 spreads over the entire range of Ri−1. The linearly

decaying drag variation basically disappears, especially for the y-component (green solid line

in figure 4.5(d)), but the drag keeps increasing instead and does not reach a maximum within

the displayed range of Ri−1.
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Momentum fluxes
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(a) Mx/Mx0, Ri = 1 with different â
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(b) My/My0, Ri = 1 with different â
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(c) Mx/Mx0, Ri = 0.5 with different â
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Figure 4.5: shows the two components of the normalized momentum flux as a function of αz/|U0|.
All values are normalized by the surface drag in the hydrostatic case, with Ri = ∞. The left column

((a), (c)) shows the distribution of the x-component with different values of â, while the right column

((b), (d)) shows the y-component instead. The first row assumes a Richardson number Ri =1, while

the second row assumes Ri = 0.5. Symbols are used to denote different values of â, i.e. circles indicate

â = 1.25, which shows mostly non-hydrostatic properties; triangles indicate â = 2, for which the system

is near the point of transition; while diamonds indicate â = 4, which exhibits more hydrostatic features.

Red dashed curves in each figure denote the distribution of momentum fluxes in the hydrostatic limit

at corresponding values of Ri, which serves as a reference to show the changes due to non-hydrostatic

effects.

In the non-hydrostatic limit, the momentum fluxes also show some important differences con-

sistent with the changes in the surface drag. First, comparied with the hydrostatic limit, the

x-component shows a slight enhancement near the surface when â is not too small, e.g. around

â = 4, as shown by the diamonds in the left column of figure (4.6), where the momentum flux

is higher than in the red dashed curves corresponding to the hydrostatic limit. But as â further

decreases, the x-component of the momentum flux quickly decreases to values below the red
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dashed line, while the y-component shows a significant reduction when â = 4 (which is actually

still true for even larger â), and the reduction is further enhanced when â gets smaller. This

significant drop in the momentum fluxes follows the same reasoning as the drop in the surface

drag, which is due to the substantial reflection of upward propagating waves for wave vector k

whose zc is below the ground. This leads to a large reduction of the total amount of momentum

available for upward transport. That effect is due to the assumption of an infinitely extended

atmosphere with linearly increasing wind magnitude.

Secondly, a comparison between curves for the x-component of the momentum flux at dif-

ferent Richardson numbers Ri shows a slight decrease for each value of â as Ri decreases from

1 to 0.5, but the drop is small. In contrast, the y-component even shows a slight increase when

Ri decreases from 1 to 0.5. This is consistent with the surface drag in figure (4.5(d)) where the

y-component of the drag increases slowly with Ri−1.

4.3 The turning wind profile

In this section, the turning wind profile, as stated by equation (3.6), will be studied in the

non-hydrostatic regime. In contrast with the linear wind profile, an analytic solution for the

turning wind profile is hard to derive, so a numerical solution must be used as an alternative.

However, several difficulties have to be tackled.

Firstly, the turning wind profile turns by an angle of π within a finite region. If the atmo-

sphere is still assumed to extend indefinitely, then for each wave number k, multiple critical

levels appear. This leads to multiple filtering effects by the the critical levels. Moreover, due to

the existence of the evanescent regime, wave reflection is expected, but the way in which those

upward and downward-propagating waves combine to form the appropriate solution is unclear.

This is different from the hydrostatic situation, where we assume that wave reflection does not

occur, and we are only concerned about the upward propagating wave. One possible way to

solve these two problems is by including a second layer of atmosphere, with constant basic wind

U and stability coefficient N .

Secondly, the numerical method used in the previous chapter, which was proposed by Siversten

(1972), fails here due to the fact that m blows up to infinity at the levels where the waves change

from being evanescent to vertically propagating or vice-versa. Therefore, in the non-hydrostatic

limit, solving for m is clearly not a good idea. But bear in mind that we solve for m in order to

integrate for ŵ. So, how about directly solving the Taylor-Goldstein equation (3.1) for ŵ? This,

in fact, is feasible and the numerical approach will be presented in the coming subsections.

4.3.1 A two-layer atmosphere

Equation (3.6) expresses the turning wind profile using trigonometric functions, and therefore

the Scorer parameter l(z) becomes periodic. This implies that if the atmosphere is infinitely

thick, then multiple critical levels would appear, as shown in figure (4.6(a)). This figure shows
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that, in the example illustrated, one critical level appears near the surface, while another critical

level is about to appear at the top of the calculation domain. Therefore, to avoid the appearance

of multiple critical levels, it is necessary to include another layer of atmosphere, in which the

basic wind stops turning. The simplest choice is a profile with constant wind. To guarantee

continuity of the basic wind, the basic wind U(z > H) in the second layer is set to be equal

to the wind at the top of the first layer (z = H), as shown in figure(4.6(b)). Additionally, for

simplicity, it is assumed that the stability coefficient N is the same in both layers.
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(b) 3D schematic diagram of wind profile

Figure 4.6: (a) shows the periodic nature of the square of the Scorer parameter l2(z). The black vertical

line on the left denotes the bottom of the domain, while the one on the right denotes the top of the

domain. A critical level is located near the bottom of the domain (indicated by the vertical red dashed

line), while another critical level is about to appear at the top of the domain (indicated by the vertical

blue dashed line). (b) shows a 3D schematic diagram of the wind profile in the two-layer atmosphere. In

the second layer, the wind is constant and equals the wind at the top of the first layer, so that continuity

of the basic wind is guaranteed.

4.3.2 Numerical method

As mentioned above, in the non-hydrostatic limit, the vertical wave number of the waves m suf-

fers from severe blow-up behaviors as the wave solution ŵ changes from evanestent to vertically-

propagating or vice-versa. Such blow-up behaviors makes the numerical method proposed by

Siversten (1972) hard to implement. Therefore, an alternative numerical method must be used.

Here, a numerical method will be proposed to solve the 3D Taylor-Goldstein equation (3.1)

directly for ŵ(z).

This is facilitated by the fact that if the basic wind turns by an angle of π within the cal-

culation domain, then any horizontal wave number k will have exactly one critical level within

the domain. Then, with the aid of the asymptotic expressions for ŵ and their derivatives near

the critical level, as derived in appendix A, we are able to solve the Taylor-Goldstein equation

as an initial-value problem, starting from the critical level.

Using the formula for the wind profile (3.6), the non-hydrostatic steady-state Taylor-Goldstein
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equation can be simplified as,

ŵ′′(z) +

[
N2

U2
0 cos2(βz − θ)

+ β2 − k212
]
ŵ(z) = 0, (4.20)

where the curvature term becomes −β2 and θ is the angle the wave number k makes with

the x-axis. This second-order linear differential equation can be reduced to a set of first-order

differential equations in matrix form by letting v = (ŵ, ŵ′). Then (4.20) becomes

v′ =

(
0 1

−
[

N2

U2
0 cos2(βz−θ) + β2 − k212

]
0

)
v (4.21)

The above equation is solved as an initial-value problem with the use of an appropriate numerical

scheme. The Runge Kutta 4th-order method is adopted here for this purpose. By equation

(A.24) in appendix A, the expressions for ŵ close to the critical level are known up to two

degrees of freedom, and are restated here

ŵ(z) =
√

(z − zc)
(
Aei(sgn) ln (z−zc)µ +Be−i(sgn) ln (z−zc)µ

)
for z > zc

(4.22a)

ŵ(z) = −i(sgn)
√

(zc − z)
(
Aeπµei(sgn) ln (zc−z)µ +Be−πµe−i(sgn) ln (zc−z)µ

)
for z < zc,

(4.22b)

where coefficients A and B are used instead of C↑ and C↓ for convenience, and correspond to

the two branches of the solution ŵ↑ and ŵ↓. The derivative ŵ′ can also be obtained easily from

(4.22). So, for grid points close to the critical level, (4.22) and the corresponding expressions

for ŵ′ are used, which also give the initial conditions for the numerical scheme.

4.3.3 Boundary conditions

With the definition of the wind profile presented previously, we are now at the right point to

investigate how the upward and downward-propagating waves combine to form the solution.

In the first layer of the atmosphere, solutions of ŵ(z)(either upward or downward propagat-

ing waves) are solved numerically, while in the second layer of the atmosphere, solutions are in

wave form (albeit including also evanescent waves), since the wind profile and the corresponding

Scorer parameter are constant. Define U(z > H) = U1 = (−U0, 0) for the upper atmospheric

layer, where U0 is the magnitude of basic wind in the lower layer. Then the solution in the

upper layer is

ŵ = Ceimz, (4.23)
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where C is some constant to be determined and m is defined as

m =


sign(−U0k1)

√
N2k212

(−U0k1)2
− k212 if

N2k212
(−U0k1)2

− k212 > 0

i

√
k212 −

N2k212
(−U0k1)2

if
N2k212

(−U0k1)2
− k212 < 0

(4.24)

This is because if N2k212/(−U0k1)
2 − k212 > 0, then ŵ is propagating in the upper atmosphere

so it must satisfy the radiation boundary condition, hence m takes the same sign as −U0k1. On

the other hand, if N2k212/(−U0k1)
2 − k212 < 0, then ŵ is evanescent in the upper atmosphere,

so we require the boundedness condition, and thus the imaginary part of m must be positive.

Next, assume that the solutions for ŵ in the lower atmosphere can be successfully calculated,

and denote the two branches as Aŵ↑ and Bŵ↓ for upward and downward propagating waves

respectively, where A and B are the constants in (4.22). So, there are, in total, three degrees

of freedom, namely A, B and C, and we require three boundary conditions to determined all of

them. Typically, those are the ‘no-normal-flow’ boundary condition at the surface, continuity

of the vertical velocity (or equivalently continuity of ŵ) and pressure at the interface between

the two layers. The first two conditions are particularly simple.

The‘no-normal-flow’ boundary condition is expressed as:

Aŵ↑(0) +Bŵ↓(0) = iĥ(U0k1) (4.25)

The continuity of ŵ can be written as:

Aŵ↑(H) +Bŵ↓(H)− CeimH = 0 (4.26)

For the third condition, recall from equation (3.34) that the Fourier transform of the pressure

perturbation is

p̂ = i
ρ0
k212

[(U ′k1 + V ′k2)ŵ − (Uk1 + V k2)ŵ
′]. (4.27)

Assuming that density is the same in both layers, then continuity of the pressure at z = H

yields

A
(

(U′0(H) · k)ŵ↑(H)− (U0(H) · k)(ŵ↑)′(H)
)

+ B
(

(U′0(H) · k)ŵ↓(H)− (U0(H) · k)(ŵ↓)′(H)
)

+ C
(
U1(H) · k

)
im eimH = 0 (4.28)
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On solving, the three coefficients are

A = iĥU0k1
1

ŵ↑0 − γŵ
↓
0

(4.29a)

B = iĥU0k1
−γ

ŵ↑0 − γŵ
↓
0

(4.29b)

C = iĥU0k1
Γ
(

(ŵ↑H)′ŵ↓H − (ŵ↓H)′ŵ↑H

)
e−imH{

ŵ↑0
(
ŵ↓H(Γ im+ Γ′)− (ŵ↓H)′Γ

)
− ŵ↓0

(
ŵ↑H(Γ im+ Γ′)− (ŵ↑H)′Γ

)} , (4.29c)

where ŵ↑↓0 and ŵ↑↓H denote that the functions ŵ↑↓ evaluated at z = 0 and z = H respectively,

Γ = U′0(H) · k, and

γ =
ŵ↑H [Γ im+ Γ′]− (ŵ↑H)′Γ

ŵ↓H [Γ im+ Γ′]− (ŵ↓H)′Γ
.
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4.3.4 Results and discussion

Surface drag
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Figure 4.7: shows the two components of the normalized surface drag as a function of Ri−1. All

values are normalized by the surface drag in the hydrostatic limit, with Ri = ∞. Figure (a) shows the

distribution of the x-component for different values of â, while figure (b) shows the y-component instead.

Symbols are used to denote different values of â, i.e. circles indicate â = 1.25; triangles indicate â = 2;

while diamonds indicate â = 4. Red dashed curves in each figure give the distribution of drag in the

hydrostatic limit, which serves as a reference to assess non-hydrostatic effects.

Non-hydrostatic effects modify the surface drag of the turning wind profile in a similar way as

the linear wind profile. For the x-component, as the system becomes more non-hydrostatic, the

surface drag value shows a decrease by a significant amount. Especially, when â = 1.25 the

normalized drag is only about 0.4 when Ri is large, while its maximum value is just about 0.8.

Moreover, the overall variation of the x-component of the surface drag as a function of Ri−1

is less linear compared to the hydrostatic case, particularly when Ri is getting close to 0.25,

as shown by the blue symbols and the red dotted line in figure (4.7(a)). This is because when

Ri gets close to 1/4, the filtering effect of critical levels become weaker, and hence downward

propagating waves due to reflections, which occur in the vicinity of evanescent regions and at

the interface between the two layers, can reach lower levels and interfere at the surface.

For the y-component of the drag, similar modifications can be observed. Moreover, when Ri−1

is close to 0, this y-component of the surface drag even becomes slightly negative due to its

decrease, an effect which cannot be observed in the hydrostatic limit. The drag increases as

Ri−1 and eventually becomes positive when Ri−1 gets close to 4. Nevertheless, the variation of

the y-component of the drag is relatively linear for small Ri compared to that in the hydrostatic

limit, as shown by the red dotted line in figure (4.7(b)).
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Momentum fluxes
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(c) Mx/Mx0 for Ri = 0.5 with different â
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Figure 4.8: show the two components of the normalized momentum flux as a function of βz/π. All

values are normalized by the surface drag in the hydrostatic limit, with Ri =∞. The left column ((a),

(c)) shows the distribution of the x-component with for values of â, while the right column ((b), (d))

shows the y-component instead. The first row has a Richardson number Ri =1, while the second row

has Ri = 0.5. Symbols are used to denote different values of â, i.e. circles indicate â = 1.25; triangles

indicate â = 2; while diamonds indicate â = 4. The red dashed curve in each figure is the distribution

of the momentum flux in the hydrostatic limit for the same values of Ri, which serves as a reference to

assess non-hydrostatic effects.

For the turning wind profile, non-hydrostatic effects have a large impact on the two components

of the momentum flux profiles, showing a significant reduction of the surface drag as â increases.

For the x-component, the changes are mainly in the momentum flux values near the surface,

while the entire distribution retains its shape. The fractional decrease in magnitude is similar

for the two values of Ri, being in both cases around 55%. Compared to the case of a linear

wind profile with directional shear, the slight surface drag enhancements that were observed

when â = 4 are absent here for both Ri values.
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However, for the y-component, besides the drop in the surface drag, non-hydrostatic effects

lead to a significant modification in the distribution of the momentum flux. When Ri = 1,

the y-component of the surface drag in the hydrostatic limit is about 0. So, the decrease

of the drag due to non-hydrostatic effects (when â becomes small, e.g 2 or 1.25) leads to a

negative y-component of the momentum flux near the surface. The y-momentum flux value

then increases with z and reaches a positive maximum at around the middle of the calculation

domain, as shown in figure (4.8(b)). However, when Ri = 0.5, since the y-component of the

surface drag increases to a larger positive value in the hydrostatic limit, then the decrease of

the drag value due to non-hydrostatic effects cannot bring its value down to below 0. So, the

overall y-component of the momentum flux remains positive throughout the atmosphere.

Moreover, compared to the corresponding result for the linear wind profile, the y-component

of the momentum flux does not show a significant drop by a factor of about 1/
√

2. This is

because the turning wind profile turns by an angle of π within the first layer of the atmosphere,

so any wave number k has one critical level within the domain, which protects the upward-

propagating waves from the interference due to downward propagating waves. Hence, if â is

large, e.g. â ∼ 4, then the momentum flux profile tends to the hydrostatic limit, indicated by

the red dashed curves in figures (4.8(b)) and (4.8(d)). This also corroborates that the significant

reduction in the y-component of the momentum flux in the case of the linear wind profile is due

to the critical-level-free zone in the wave number plane, i.e. the orange region in figure (4.3),

in which all of the y-component momentum flux is reflected back to the surface by downward

propagating waves.
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Chapter 5

Concluding remarks and future work

This dissertation explored the behaviors of two important quantities, namely the momentum

flux and surface drag associated with mountain waves generated by an isolated mountain, in

both the hydrostatic and non-hydrostatic regimes. In this chapter, the main findings will be

summarized in separate sections, and then followed by a description of possible future works.

5.1 Analysis of methods

Various approaches have been investigated and successfully applied. Assuming non-rotating,

linearized flow with the Boussinesq approximation, the exact solution to the mountain wave

problem for a linear wind profile with directional shear in the non-hydrostatic limit has been

successfully derived, which in theory is also valid in the hydrostatic regime by assuming that

the magnitude of the horizontal wave vector k12 is small. The exact solution is based on the

fundamental work by McFarlane (1987). The WKB approximation, which is only valid in hy-

drostatic limit, has been examined following the approach by Teixeira and Miranda (2004), and

similar results were successfully reproduced. The numerical method developed by Siversten

(1972) was also successfully manipulated and the results showed excellent agreement with the

WKB approximation in the case of a linear wind profile. With the aid of the exact solution for

the linear wind profile, the accuracy of the numerical method has been demonstrated, and hence

this method could be safely applied to the turning wind profile case. In the non-hydrostatic

limit, an alternative numerical method has been proposed and applied to calculate the wave

solutions for the turning wind profile. Both quantities of interest (the surface drag and the

wave momentum flux) have also been calculated using this alternative numerical approach.
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5.2 Calculation results

5.2.1 Hydrostatic regime

In the hydrostatic limit, variations of the surface drag as a function of Ri−1 for the two wind

profiles exhibit different behaviors. For the linear wind profile, both components of the surface

drag keep decreasing throughout the range of Ri−1 from 0 to 4; while for the turning wind

profile the surface drag shows an increasing trend as Ri−1 increases. This difference is in fact

due to the absence of curvature in the linear wind profile. This conclusion can be reached by

analyzing the analytic drag formula obtained using the WKB approximation. However, the

WKB approximation fails to capture any variation of the y-component of the surface drag in

the turning wind profile. This is because the WKB approximation valid up to second order

can only provide a linear fit for the surface drag as a function of Ri−1 near Ri−1 = 0. But the

y-component of the drag near Ri−1 = 0 basically shows no variation, hence the WKB solution

predicts a constant value of 0 for this component.

Concerning the normalized momentum fluxes, for both wind profiles, a general decreasing trend

with height in the x-component can be observed, and the variations are similar, while the y-

components of the momentum flux for the two wind profiles take different values near the

surface and reach a maximum at different heights. Nevertheless, initial increasing trends can

be observed for the two wind profiles. For the linear wind case, the y-component of the momen-

tum flux takes a value close to 1 and a maximum occurs near the surface. But for the turning

wind profile, the y-component of the momentum flux takes small values near the surface, and

a maximum occurs in the middle of the calculation domain.

5.2.2 Non-hydrostatic regime

In the non-hydrostatic limit, the overall variation of the surface drag and momentum fluxes

becomes â-dependent, which means that the system becomes sensitive to the degree of non-

hydrostaticity. Moreover, due to the occurrence of wave reflection, both surface drag and

momentum fluxes show different behaviors. For the linear wind profile, the surface drag as a

function of Ri−1 shows a trend of non-linear increase when Ri is large, which corresponds in-

stead to a decrease in the hydrostatic limit. That non-linear behavior becomes more pronounced

when the system is more non-hydrostatic. Moreover, the surface drag values are significantly

reduced. That reduction is due to the effect of wave reflections occurring in the vicinity of

evanescent wave regions. This is more obvious in the y-component of the drag or momentum

flux, for which severe wave reflections occur for wave numbers which have their corresponding

critical levels below the surface. The substantial drop in surface drag is also associated with a

significant reduction in the momentum flux near the surface. But this effect does not modify

much the trend of variation of the momentum flux with height.
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For the turning wind profile, a second layer of atmosphere is added on top of the original

calculation domain, which has constant static stability, density and basic wind. The basic wind

velocity in this additional layer takes the same value as at the top of the first layer so that con-

tinuity of the wind profile is guaranteed. Due to the periodicity of occurrence of critical levels

with height in the turning wind profile, the second layer avoids the complications arising from

the effects of multiple critical levels and wave reflections. In this atmospheric configuration, the

increasing trend of the surface drag as a function of Ri−1 which was observed in the hydrostatic

regime is suppressed when Ri−1 gets close to 4. This is caused by the stronger wave reflection

effect that occurs when Ri is small. This is also the reason why the variation of the surface

drag becomes more non-linear as the system becomes more non-hydrostatic. Concerning the

momentum fluxes, both components of this quantity show a large drop in magnitude near the

surface when the system becomes more non-hydrostatic. Besides this change, when Ri is large,

the y-component of the momentum flux near the surface takes negative values but changes its

sign to positive as z increases.

5.3 Overall effect of non-hydrostaticity

From the changes found in the investigation of the non-hydrostatic mountain wave system, the

general effect of non-hydrostaticity is that of causing a significant reduction to both the surface

drag and the momentum fluxes near the surface. Such a reduction is crucial, since current drag

parametrization schemes are mainly based on the hydrostatic assumption, which may thus over-

estimate the momentum and energy transport by terrain-generated gravity waves.

All the derivations and calculations carried out here assumed a non-rotating, inviscid, adiabatic,

linearized flow with the Boussinesq approximation. Diabatic and non-linear effects have all been

neglected for simplicity, since these effects may cause unnecessary complications in the adopted

conceptual model.

5.4 Future work

In the investigation carried out in this dissertation, there are three main lines of further work

that can be pursued. Firstly, the atmospheric setting for the linear wind profile in non-

hydrostatic conditions is in fact unrealistic due to the fact that in reality the basic wind mag-

nitude cannot keep increasing with z indefinitely. Typically, as the stratosphere is reached,

the atmosphere becomes much more stable and hence more favourable for wave propagation.

Hence, a two layer model for such a linear wind profile in non-hydrostatic conditions is worth

being considered to obtain a more realistic representation of the wave reflection effect due to

non-hydrostaticity. One significant modification relative to the present results should be that

the pronounced wave reflections for wave numbers with critical levels below the surface would

not occur anymore. Hence, the corresponding severe reduction of the surface drag and momen-

tum fluxes should also be suppressed.
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Secondly, the maximum turning angle of the turning wind profile may also play an impor-

tant role in modifying the variation of the surface drag and momentum fluxes. When the basic

wind turns by an angle of π, all wave numbers have exactly one critical level within the domain.

However, this is clearly not always true for the real atmosphere. If the turning angle is less

than π, then some wave numbers will not have a critical level within the atmosphere, and hence

wave reflection may strongly affect those wave numbers. Therefore, the dependence of the drag

and momentum fluxes on the turning angle would be an interesting problem for investigation.

Thirdly, non-hydrostaticity can also be studied more thoroughly. Since a non-hydrostatic sys-

tem is â-dependent, quantities like the surface drag become dependent on both Ri and â. Hence,

accurate parametrization schemes for surface drag must capture that dependence as well, which

justifies investigating it in more detail.
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Appendix A

Behavior of gravity waves near a

critical level

In this section, we will examine the behavior of gravity waves near a critical level by using the

approach of Frobenius expansion. This analysis follows the treatment presented in the book by

Nappo (2012) and we extend the idea a bit further to the case of a three-dimensional isolated

mountain.

In the Taylor-Goldstein equation (A.1), the critical level is defined to be the height zc at which

the denominator, U · k = U(z)k1 + V (z)k2, is zero. This means that at the critical level,

the unperturbed wind U(z) is perpendicular to the horizontal wave vector k. This produces

a singularity (a second-order pole) in the Scorer parameter in equation (A.1), and hence the

first-order derivative of ŵ(z) is not continuous at the height zc. Moreover, note that the square

of the Scorer parameter l2 is proportional to the square of the vertical wave number m of the

gravity waves. As z approaches zc, the Scorer parameter blows up to infinity. This implies that

the gravity waves becomes highly oscillatory, as will be shown in the following discussion.

d2ŵ

dz2
+
(
l(z)2 − k212

)
ŵ = 0 (A.1)

where l(z)2 is the square of the Scorer parameter, defined to be

l(z)2 =
N2

(U · k)2
+

U′′ · k
U · k

(A.2)

Assume that we approach the critical level from above: then near the critical level, we write

z = zc + ξ, where ξ is assumed to be a small positive distance from the critical level zc. For

convenience, define G(z) := U(z) ·k. We expand the function G(z) near zc by Taylor expansion

G(zc + ξ) = 0 +G′(zc)ξ +
1

2
G′′(zc)ξ

2 +O(ξ3) (A.3)
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Then, the square-root of the denominator in equation(A.2) can be approximated as

1

G(zc + ξ)
≈ 1

G′(zc)ξ + 1
2G
′′(zc)ξ2

=
1

G′(zc)ξ(1 + G′′(zc)
2G′(zc)

ξ)

≈
1− G′′(zc)

2G′(zc)
ξ

G′(zc)ξ
(A.4)

Since we only consider simple linear and turning wind profiles, and the curvature term−G′′(z)/G(z)

is constant in both cases, we use β2 to denote this term. Thus, the square of the vertical

wavenumber (or l2 − k212) of the waves becomes

N2k212

(
1− G′′(zc)

2G′(zc)
ξ
)2

ξ2(G′(zc))2
+ β2 − k212

=
N2k212

(G′(zc))2

(
1

ξ2
+

(
G′′(zc)

2G′(zc)

)2

− G′′(zc)

G′(zc)

1

ξ

)
+ β2 − k212

=
R̃i

ξ2
− α

ξ
+ γ (A.5)

where R̃i =
N2k212

(G′(zc))2
actually has the same scale as the Richardson number Ri, α = R̃i

(
G′′(zc)
G′(zc)

)
and γ = R̃i

(
G′′(zc)2

4G′(zc)2

)
+ β2 − k212.

Rewriting equation(A.1), we have

d2ŵ

dz2
+

[
R̃i

ξ2
− α

ξ
+ γ

]
ŵ = 0. (A.6)

The asymptotic behavior of ŵ(z) near the critical level zc can be solved using a Frobenius

expansion, by assuming ŵ(zc + ξ) can be written as

ŵ(zc + ξ) =
∞∑
n=0

Cnξ
n+λ (A.7)

Substitute equation (A.7) into equation (A.6), expand and group the coefficients of powers of

ξ.

[λ(λ− 1) + R̃i]C0ξ
λ−2+

{[λ(λ+ 1) + R̃i]C1 − αC0}ξλ−1+

{[(λ+ 1)(λ+ 2) + R̃i]C2 − αC1 + γC0}ξλ + ... = 0 (A.8)
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Thus, we require all the coefficients to be zero, and this yields the following relations

C1 =

(
α

λ(λ+ 1) + R̃i

)
C0, (A.9)

C2 =

(
α2[λ(λ+ 1)]−1 − γ
(λ+ 1)(λ+ 2) + R̃i

)
C0 (A.10)

and importantly

λ2 − λ+ R̃i = 0 (A.11)

Actually, for both the two considered wind profiles, α is 0, since the linear wind profile has no

curvature, and the simple turning wind profile has ŵ′′(zc) = −β2ŵ(zc) = 0, so some further

simplifications can be achieved, but this will not be presented here.

Equation (A.11) gives,

λ± =
1

2
± iµ (A.12)

where µ =
√
R̃i− 0.25. These two branches of λ correspond to the two members of the solution

basis, and the general solution near zc (up to second-order) can be written as

ŵ(zc + ξ) = C+
0 ξ

λ+A(ξ) + C−0 ξ
λ−A∗(ξ) (A.13)

where A(ξ) = 1 + C1
C0
ξ + C2

C0
ξ2.

Thus, equation (A.13) gives the asymptotic behavior of ŵ just above the critical level. The fac-

tor ξλ± can be written as
√
ξe±iπ ln ξ, which is highly oscillatory due to the fact that ln ξ → −∞

as ξ → 0. Figure(A.1) shows this behavior of ŵ(z) near the critical level.

 
Real part of w(z)
imaginary part of w(z)

Figure A.1: Behavior of the real and imaginary parts of ŵ(z) on one side of the critical level, which is

indicated by the vertical red dotted line.

We are now at the right point to extend this solution, i.e. equation(A.13), to below the

critical level, but this is not as simple as it seems. For z just below zc, we may write z = zc− ξ,
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and rewrite equation (A.13), just by replacing ξ with −ξ, that is

ŵ(zc − ξ) = C+
0 (−ξ)λ+A(−ξ) + C−0 (−ξ)λ−A∗(−ξ) (A.14)

However, a tricky point comes from the terms (−ξ)λ± . This is because Re(λ±) = 1
2 , but −ξ is

now negative. This will lead to two branches of possible solutions, due to the fact that (−1)1/2

can be either i or −i, and we have to decide which branch to choose. This ambiguity can be

solved by introducing an artificial damping term to the original Taylor-Goldstein equation, and

let the damping magnitude tend to zero, to see how the solution approaches this limit.

Now, we introduce a small imaginary phase speed ici, where ci is a small positive quantity.

Then zc is no longer a singularity, but this can be recovered by letting ci → 0. By doing this,

the Taylor-Goldstein equation becomes

d2ŵ

dz2
+

[
N2

(ici −G(z))2
+ β2 − k212

]
ŵ = 0 (A.15)

Assuming again that we approach the critical level from above, so that z = zc+ξ, the dominant

behavior of equation (A.15) is

d2ŵ

dz2
+

[
R̃i

(z − zc − ici/G′(zc))2

]
ŵ = 0 (A.16)

Then, by equation(A.13), the asymptotic behavior of ŵ(z) (up to zeroth-order) is

ŵ(ξ) = A(ξ − i ci
G′(zc)

)1/2+iµ +B(ξ − i ci
G′(zc)

)1/2−iµ (A.17)

Now, we go across the critical level to z < zc, and examine the behavior of (−ξ − i ci
G′(zc)

)1/2±iµ

as ci → 0. We can see that, fixing −ξ, if G′(zc) > 0, then (−ξ− i ci
G′(zc)

)→ e−iπ as ci → 0. This

is because in this case (−ξ − i ci
G′(zc)

) would always stay in the third quadrant of the complex

plane and move towards the real axis as ci → 0, as shown in figure (A.2).
	  

!𝑧! − 𝜉 ,−
𝑐!

𝐺!(𝑧!)
!	  

𝑧!	  

−
𝑐!

𝐺!(𝑧!)
  	   −𝜉	   	  

𝜃	  
0 

𝑅𝑒  

𝐼𝑚  

Figure A.2: Location of (−ξ− i ci
G′(zc)

) in the complex plane (indicated by the blue dot) and the

critical level zc (indicated by the red dot on the real axis).
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Thus, for G′(zc) > 0

(−ξ)λ± = e−iπλ±ξλ±

= e−i
π
2 e±πµξλ±

= −ie±πµξλ± (A.18)

Similarly, for G′(zc) < 0, we have (−ξ − i ci
G′(zc)

)→ eiπ as ci → 0

(−ξ)λ± = eiπλ±ξλ±

= ei
π
2 e∓πµξλ±

= ie∓πµξλ± (A.19)

In general, by letting sgn = sign(G′(zc)), we can write (−ξ)λ± as

(−ξ)λ± = −i(sgn) e±(sgn)πµξλ± (A.20)

And therefore the overall solution ŵ(z) for the entire positive z axis can be summarized as

follows

ŵ(z) =
√

(z − zc)
(
Aeiµ ln (z−zc) +Be−iµ ln (z−zc)

)
for z > zc

(A.21)

ŵ(z) = −i(sgn)
√

(zc − z)
(
Ae(sgn)πµei ln (zc−z)µ +Be−(sgn)πµe−i ln (zc−z)µ

)
for z < zc

(A.22)

Both parts of the solution are linear combinations of the two basis members (with coefficients

A and B multiplied). However, the behavior of the two basis members across the critical level

is different: one is amplified by a factor of eµπ, while the other is reduced by a factor of e−πµ,

depending on the value of sgn. It can be proved by determining the direction of the group

velocity that the branch with amplitude factor of eπµ multiplied for z < zc is always associated

with upward propagating energy, while the other branch is always associated with downward

energy propagation.

In chapter 1, we had shown that a gravity wave has upward propagating energy if and only if

the vertical wave number m has the same sign of Uk1 + V k2. For upward propagating energy,

consider now sgn > 0 and the term with coefficient A, near the critical level. The vertical wave

number m can be approximated as

m = −i ŵ
′

ŵ
∼ 1

z − zc

(
µ− i

2

)
for both z > zc and z < zc (A.23)

So it can be seen that Re(m) has the same sign as z− zc for the term with coefficient A. Now,

since sgn > 0, so Uk1 + V k2 > 0 above zc, and Uk1 + V k2 < 0 below zc, thus Uk1 + V k2 also

has same sign as z − zc. Therefore, Re(m) has the same sign as Uk1 + V k2 for the term with
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coefficient A if sgn > 0, thus it is associated with upward propagating energy. Similarly, it can

be proved that if sgn < 0, the term with coefficient B is associated with upward propagating

energy. Therefore, we see that the terms with eπµ multiplied for z < zc always have upward

propagating energy. The proof follows the same reasoning for waves with downward propagat-

ing energy.

This is a significant result, since it means that the critical level always filters the wave by

multiplying it with a factor of e−πµ as it crosses the critical level in the direction of energy

propagation. In other words, it is possible to write the solution as a better combination of

the basis members such that sgn is not multiplied with eπµ, so that the direction of energy

propagation can be seen more clearly.

ŵ+(z) =
√

(z − zc)
(
C↑ei(sgn) ln (z−zc)µ + C↓e−i(sgn) ln (z−zc)µ

)
for z > zc

(A.24a)

ŵ−(z) = −i(sgn)
√

(zc − z)
(
C↑eπµei(sgn) ln (zc−z)µ + C↓e−πµe−i(sgn) ln (zc−z)µ

)
for z < zc

(A.24b)

In this way form, the term with coefficient C↑ in (A.24b) is always multiplied by the factor eπµ,

thus it is associated with upward propagating wave energy, while the term with coefficient C↓

is always multiplied by the factor e−πµ, which is associated with downward propagating wave

energy.
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Appendix B

Definition of Fourier integrals and

the Parseval Theorem

The following definition of Fourier transform of an integrable function f(x) in (−∞,∞) is

adopted in the discussions of all the chapters,

f̂(k) =
1

2π

∫ ∞
−∞

f(x)e−ikxdx and (B.1a)

f(x) =

∫ ∞
−∞

f̂(k)eikxdk, (B.1b)

where f̂(k) is the Fourier transform of f(x) and k is the wave number. With the above definition

of Fourier integrals, the Parseval theorem can be formulated as follows

1

2π

∫ ∞
−∞

f(x)g∗(x)dx =

∫ ∞
−∞

f̂(k)ĝ∗(k)dk, (B.2)

where g(x) is also an integrable function in (−∞,∞), ĝ(k) is the Fourier transform of g(x)

and the superscript ∗ denotes the complex conjugate. The proof of the theorem is sketched

as follows. By using equation (B.1b) for f and g, the left-hand side of equation (B.2) can be

written as

1

2π

∫ ∞
−∞

f(x)g∗(x)dx =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f̂(k1)e
ik1xdk1

)(∫ ∞
−∞

ĝ∗(k2)e
−ik2xdk2

)
dx (B.3)

Rearranging the integrals by moving the integral of x, we have

1

2π

∫ ∞
−∞

f(x)g∗(x)dx =

∫ ∞
−∞

∫ ∞
−∞

f̂(k1)ĝ
∗(k2)

(
1

2π

∫ ∞
−∞

ei(k1−k2)xdx

)
dk1dk2

=

∫ ∞
−∞

∫ ∞
−∞

f̂(k1)ĝ
∗(k2)δ(k1 − k2)dk1dk2, (B.4)
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where the last equality uses the definition of the Dirac delta function. Then,

1

2π

∫ ∞
−∞

f(x)g∗(x)dx =

∫ ∞
−∞

f̂(k1)

(∫ ∞
−∞

ĝ∗(k2)δ(k1 − k2)dk2
)
dk1

=

∫ ∞
−∞

f̂(k)ĝ∗(k)dk, (B.5)

where the last equality uses the integration property of Dirac delta function. Hence, result

(B.2) follows.
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