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Abstract

In this dissertation, we study transition between coarse mesh and fine mesh. We introduce

a blend of the linear and the quadratic schemes which gives more accurate results than

just using linear scheme on non-uniform hexagonal icosahedral mesh. We have tested the

blend scheme using two tests of different complexity of Williamson [1], test case 2, the

global steady state geostrophically balanced flow and test case 5, zonal flow over an isolated

mountain.

We have run these two tests using a shallow-water equations solver called AtmosFOAM

[2, 4] on spherical meshes in cartesian co-ordinates using the finite volume method, with

the three schemes, the linear scheme, the quadratic and the blend scheme and we compare

the results. The blend scheme uses the linear scheme where the mesh is nearly uniform

and uses the quadratic elsewhere in order to improve accuracy over linear for minimal extra

cost.
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Chapter 1

Introduction

We study numerical modeling of the atmosphere using mesh adaptation, in particular the

transition between coarse and fine meshes. To obtain high resolution over the area of

interest operationally we run two atmospheric models, one global low resolution and the

other limited high resolution models. However, this is very expansive in regards to CPU

time cost. Also as time goes by global models get higher in resolution, which means extra

cost of CPU time. The need for adaptive and variable modeling increases to compete with

the same accuracy and efficiency as the uniform grids models. However, there are still a

number of challenges to be looked at before this technique can compete with the well known

global atmospheric models on uniform grids.

One of the challenges that we are going to concentrate on, is well described in the paper

[8], the authors show that spurious wave scattering do occurs on a nonuniform grid where the

hyperbolic equations are approximated with finite differences, when the grid size function

as compared to the position has a discontinuous first derivative, as in equation 1.1 below.

Then the authors derived the reflection ratio expression and verified it by experimental

data.
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1.1. GENERAL BACKGROUND 9

d (meshsize)
d (position)

(1.1)

In chapter 2, will be looking at testing the accuracy of the linear and the quadratic

approximations when applied to equally and non equally spaced grid.

In chapter 3, we will set a blend of both the linear and the quadratic schemes, and

test the blend scheme by looking at the maximum errors in calculating the gradients for

solutions of different order of polynomials, such as quadratic and cubic.

In chapter 4, we will focus on the behavior of uniform and nonuniform hexagonal icosa-

hedral meshes when applying the linear and quadratic schemes to the five terms occurring

in Shallow Water Equations (SWEs), on the sphere, as SWEs describe many of the atmo-

spheric phenomena in the horizontal with a special velocity generated by the geostrophic

approximation it is a good test tool for mostly any proposed numerical scheme before im-

plementing it on the more complex primitive equations. They will be described in sections

4.1 and 4.2 showing which one has the biggest impact on the global error. We will show

how accurate the results are and the CPU time cost. Also we are going to apply the blend

of both schemes (which is linear where the mesh is nearly uniform and quadratic elsewhere)

in order to improve the accuracy over the linear scheme for minimal extra cost. To do so,

we run two test cases of Williamson [1] using AtmosFOAM, which is an open source global

shallow water model written using OpenFOAM. We are going to describe AtmosFOAM set

up briefly in this chapter, but for more information about it and OpenFOAM please refer

to [2, 4].

1.1 General Background

First we make some general comments about models from the literature. In general, the

Operational Multiscale Environment Model with Grid Adaptivity (OMEGA) and its Atmo-

spheric Dispersion Model [7], counts as the first operational atmospheric flow system based
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on unstructured grid techniques for atmospheric simulation and real-time hazard produc-

tion. The grid resolution of the OMEGA unstructured grid can vary from 100 km to 1 km

horizontally and from a few tens of meters in the boundary layer to 1 km in the free atmo-

sphere vertically. The OMEGA unstructured grid permits additional grid elements at any

point in space and time, which made it naturally scale spanning. The OMEGA can easily

adapt its grid to any stationary or dynamic features in the developing weather pattern. To

know more about the OMEGA model and system please refer to [7].

1.2 Background to the Dissertation

In [5], the SWEs are spatially discretized using Osher’s scheme, as this scheme of upwind

type is better in solving a hyperbolic system of equations. To avoid the pole problem, the

Osher’s scheme was applied on the latitude-longitude grid on a stereographic grid (as in

stereographic coordinates the pole singularity does not exist). The Osher’s scheme was

applied across the sphere on a joined grid connecting the two grids at high latitude, as

the latitude-longitude grid is preferable on lower latitudes, which provides a good spatial

discretization for explicit integration methods. Therefore, it reduces the time step limitation

incurred by the pole singularity when using only latitude-longitude grid. If the time step

limitation is not significant, then the reduced latitude-longitude grid is used provided the

grid is kept sufficiently fine in the polar region to resolve flow over the pole.

In the paper, PV-Based Shallow-Water Model on a Hexagonal-Icosahedral Grid [6],

the author developed a new global shallow water model. The model uses a hexagonal-

icosahedral grid, potential vorticity as a prognostic variable, and a conservative, shape-

preserving scheme for the advection of mass, potential vorticity, and tracers. The time

scheme used is semi-implicit, where the maximum time step is limited by the advection

speed instead of gravity wave phase speed, which gives a stable scheme. The author has

used combination of above numerical methods to avoid problems of the traditional numerical

methods, such as pole problems, spurious oscillations and negatives in advected quantities.
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To illustrate the performance of the model, he presents a set of results from a standard set

of test cases. These show that overall accuracy of the model is comparable to the other grid

point models except in a pure advection test case where the model’s advection scheme shows

little diffusivity. Also, in these test cases two sources of errors were noticed, the dissipation

existing in the advection scheme and the grid structure led to easily seen symmetry errors,

as the hexagonal grid boxes are not perfectly regular in certain regions of the grid. Which

in turn, led to larger truncation errors in the edvection scheme in those regions.

In the paper [2], the authors introduce solutions of the SWEs for the case-5 of [1],

which is westerly flow over mid-latitude mountain from a finite-volume model written using

OpenFOAM, which has an advantage of handling any mesh structure. The authors applied a

second-/third-order scheme to three different meshes of the globe, a hexagonal-icosahedral

mesh and two of the reduced latitude-longitude meshes. To improve the accuracy, they

introduced a scheme to fit a 2D cubic polynomial approximately on the stencil around

each cell. The results they got are as accurate as the reference solution calculated using

equivalent resolution spectral model.

In the paper [4], the authors present AtmosFOAM, which is shallow water equation

solver written using OpenFOAM. OpenFOAM technique based on an implicit finite-volume

on three-dimensional polyhedral meshes. The authors describe AtmosFOAM as ”second or-

der on all meshes, free of spurious computational modes and conserves mass and divergence

exactly and momentum, energy, potential enstrophy and potential vorticity accurately”.

The authors claims that this combination of numerical methods has not been achieved

before on unstructured or block-structured meshes. Which was achieved by blending the

C-grid and the A-grid. The authors also present results of different test cases on different

type of meshes. There results shows that the hexagonal and locally refined cubed sphere

meshes give the most accurate results for the computational cost, followed by the cubed

sphere. Also they a new test case to excite grid-scale oscillations.

The tests used in this dissertation will be taken from Williamson et al [1]. Here the

authors have proposed a seven test cases for numerical methods that solve the shallow
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water equations in spherical geometry. These tests were made to evaluate and identify the

potential trade-offs of the proposed numerical methods before they been applied to a full

baroclinic atmospheric model and they were presented in order of complexity. They consist

of advection across the poles, steady state geostrophically balanced flow of both global

and local scales, forced nonlinear advection of an isolated low, zonal flow impinging on an

isolated mountain, Rossby-Haurwitz wave and observed atmospheric states.



Chapter 2

Discretization on Non-uniform

Grids

The objective of this chapter to test the accuracy of the linear and the quadratic approxi-

mations when applied to equal and non equal spaced grid.

The two-dimensional shallow-water equations on a rotating plane with constant Coriolis

and no diffusion consist of the momentums and continuity equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g∂h

∂x
(2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂h

∂y
(2.2)

∂h

∂t
+ h

∂u

∂x
+ h

∂v

∂y
= 0 (2.3)

where u and v are the velocity in x and y directions respectively, h is the height of the fluid

surface above the solid surface, f is the Coriolis force and g is the scalar acceleration due

to gravity. These equations may also be written in vector form:

∂V
∂t

+ fk×V +∇h = 0 (2.4)
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where V is the velocities (u, v) and k is the unit normal vector, If we do some scale analysis

to see which are the most important terms to help us in our test case. The scale values

are for V = 10ms−1, L = 102m, D = 102m, f ≈ 10−4s−1 and g = 10ms−2, where V the

velocity scales, D and L are the characteristic scales of the motion in the vertical (depth)

and horizontal (length) respectively. The magnitudes of the three terms are:

∂V
∂t

≈ V 2

L
; fk×V ≈ 2ΩV ; ∇h ≈ gD

L
.

1 10 10 ms−2

where vector Ω describe the rotation of a system. The acceleration is an order of magnitude

smaller than the remaining terms. The Coriolis term and the pressure gradient term are

of the same order of magnitude, which is called Geostrophic Balance. In this test case,

for simplicity, we are going to ignore the smaller term and concentrate on the velocity

component in the x-direction:

u = − g
f

∂h

∂x
. (2.5)

We will therefore, consider various discretization to estimate dh
dx at u points.

2.1 Non-uniform Grid

We consider the spatially staggered grid approach, which stores the numerically approx-

imated values of the velocity component in the x-direction, u and the height h over a

computational domain at different grid points in space on the x-axis. The heights (h) are

stored at the cell centers and the component of velocities (u) at x-faces of the cells in space

on the x-axis as in figure-2.1.
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u0 u200 u400 u600 u700 u800 u900 u1000 u1200 u1400 u1600

h100 h300 h500 h650 h750 h850 h950 h1100 h1300 h1500

∆x 1
2∆x

Figure 2.1: Showing the test setup domain of the staggered grid with a region of non-uniform
grid intervals.

The grid at figure-2.1 has three regions:

1. Region x < 600 with even ∆x.

2. Region 600 < x < 1000 even half spacing 1
2∆x.

3. Region x > 1000 with even ∆x again.

In order to solve the momentum equations, we need to estimate dh
dx at u points. Then we can

compare the exact solution for dh
dx with various discretization, such as linear and quadratic

approximations. We start with the simplest quadratic equation of the height (2.6):

h = h0(1−
x

3000
)2 (2.6)

where h0 = 10, 000m, and x is the horizontal distance. The exact solution for dh
dx is:

dh

dx
= − h0

1500
(1− x

3000
) (2.7)

and also we going to test with the slightly more complex cubic equation of the height

(2.8):

h = h0(1−
x

3000
)3 (2.8)

The exact solution for dh
dx is:

dh

dx
= − h0

1000
(1− x

3000
)2 (2.9)
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2.2 Numerical Method

2.2.1 Linear Approximation

We are going to use the Arakawa’s C-grid scheme to discretized the gradient equation using

linear differencing as in figure-2.2 and equation (2.10).

- -
ui− 1

2
ui+ 1

2
hihi−1 hi+1

∆x uu u

Figure 2.2: Illustrate how the discretization is done with Arakawa C-grid.

∂h

∂x

∣∣∣∣
i− 1

2

≈ hi − hi−1

∆x
(2.10)

We will compare the exact gradient calculated from equations (2.7) and (2.9) with the

discretized in the equation (2.10) with h values specified by the equations (2.7) and (2.9)

and compare the errors.

2.2.2 Quadratic Approximation

We approximate height (h) by using the quadratic equation:

h = a+ bx+ cx2 (2.11)

where a, b and c are unknown and can be found from three values of h at the h points

surrounding a u point. From a, b and c we can calculate the gradient at the u point. For

example, to estimate the height gradient at x = 600, we use the known values of h at
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x = 500, 650 and 750:

h500 = a+ b500 + c(500)2 (2.12)

h650 = a+ b650 + c(650)2 (2.13)

h750 = a+ b750 + c(750)2 (2.14)

The left hand side (h500, h650 and h750) is calculated from equation (2.6) or equation

(2.8). We find a, b and c and we find the approximation for the gradient by differentiating

equation (2.11) as below:

dh

dx
= b+ 2cx (2.15)

Then again we compare the exact gradient calculated from equations (2.7) and (2.9)

with the from discretized in the equation (2.15) with h values specified by the equations

(2.7) and (2.9) and compare the errors.
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2.2.3 Results

In figure-2.3a we see that using the height equation (2.6) the errors using linear approxima-

tion on uniform grids are zero, except at the two points where the grid spacing are changing

where it gives errors. Using the quadratic approximation gave also zero errors on the uni-

form grids and almost zero at the points where the grid spacing changes. In figure-2.3b

200 400 600 700 800 900 1000 1200 1400
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Grid Spacing

E
rr

o
rs

(a) For the quadratic height equation.

200 400 600 700 800 900 1,000 1,200 1400

−0.1

−0.05

0

0.05

0.1

0.15

Grid Spacing

E
rr

o
rs

(b) For the cubic height equation.

Figure 2.3: Plots showing the errors of using linear and quadratic approximation from
calculating the dh

dx at u points.

using the height equation (2.8) the errors using linear approximation on uniform grids are

almost zero, except at the two points where the grid spacing are changing it gives higher

errors. By using the quadratic approximation gave also almost zero errors on the uniform

grids and better but not zero at the points where the grid spacing changes.
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2.3 Least Squares Approach

Least squares approximation, which is often used when we have more equations then the

unknowns. This approximation approach occurs when a function is given explicitly and

we want to find a simpler type of function, such as a polynomial, which can be used to

determine the approximation values of the given function. Suppose that we have a function

h ∈ C[a, b] and the polynomial Pn(x) of degree required n that will minimize the error as

in equation (2.16).

Error2 =
∫ b

a
[h(x)− (Pn(x))]2 dx (2.16)

Now, back to our test case, the least squares approximation for the two height equations

(2.6 and 2.8) is of order n=2:

Error2 =
∫ b

a

[
(h(x))−

(
a+ bx+ cx2

)]2
dx (2.17)

For example to find dh
dx at x = 700m, we integrate the equations (2.17) using the values

of h at x = 500, 650, 750 and 850m, we fit a quadratic minimizing the error in a least

squares approach as in figure-2.4.

h500 h650 700

dh
dx

h750 h850

a b

Figure 2.4: Illustration of the grid points intervals which been tested using Least Square
method.

Then the minimum error is at the point where the partial derivatives of the error function

with respect to the coefficients are all zero. For equation (2.6), the resulting equation from
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evaluating the partial derivative with respect to a, ∂
∂a is:

− 2
(∫ 850

500

(
1000

(
1− x

3000

)2
)
dx−

∫ 850

500

(
a+ bx+ cx2

)
dx

)
(2.18)

The resulting equation from evaluating the partial derivative with respect to b, ∂
∂b is:

− 2
(∫ 850

500
x

(
1000

(
1− x

3000

)2
)
dx−

∫ 850

500

(
x

(
a+ bx+ cx2

))
dx

)
(2.19)

The resulting equation from evaluating the partial derivative with respect to c, ∂
∂c is:

− 2
(∫ 850

500
x2

(
1000

(
1− x

3000

)2
)
dx−

∫ 850

500

(
x2

(
a+ bx+ cx2

))
dx

)
(2.20)

Solving these three equations (2.18), (2.19) and (2.20) we get the values of a = 10000,

b = −20
3 and c = 1

900 . Therefor, the function h for the height (2.6) is:

h(x) = 10000− 20
3
x+

1
900

x2 (2.21)

Differentiating (2.21) we get the approximation for dh
dx :

dh

dx
= −20

3
+

2
900

x (2.22)

We do similar steps for the height equation (2.8) and we get the values of a = 158251
16 ,

b = −17101
1800 and c = 31

12000 . Therefor, the the approximation dh
dx for the height (2.8) is:

dh

dx
= −17101

1800
x+ c

31
12000

x2 (2.23)

Solving the equation (2.6) using least squares approximation with same polynomial of

degree reduce the errors to zero. While, solving the equation (2.8) using least squares

approximation with smaller polynomial of degree increases the errors.
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2.4 Error Analysis

Checking for the order of accuracy for the uniform and non-uniform staggered grids, if we

have three grid points with different h spacing h1 and h2 and a function f(x) is known at

points x0 and x2 and we want to find ∂f
∂x at x1 as in figure-2.5. Then to approximate the

x0 x1 x2

h1 h2

Figure 2.5: Illustration to calculate the accuracy of the non-uniform staggered grids.

derivative of the function f(x1) we use Taylor expansion over points f(x0) and f(x2):

f(x0) = f(x1)− h1f
′(x1) +

h2
1

2
f ′′(x1) +O(h3) (2.24)

f(x2) = f(x1) + h2f
′(x1) +

h2
2

2
f ′′(x1) +O(h3) (2.25)

If the distance were equal (h1 = h2 = h) then we get 2nd order accuracy:

f(x2)− f(x0) = 2hf ′(x1) +O(h3) (2.26)

f ′(x1) =
dh

dx
=
f(x2)− f(x1)

2h
+O(h2) (2.27)

If the distance were not equal (h1 6= h2) then we get 1st order accuracy:

f(x2)− f(x0) = (h2 + h1)f ′(x1) + (
h2

2 − h2
1

2
)f ′′(x1) +O(h3) (2.28)

f ′(x1) =
dh

dx
=
f(x2)− f(x0)

h2 + h1
+O(h) (2.29)

Using non-uniform grids we lose the accuracy of the approximation at the points of

interface at which spacing changes form 2nd to 1st order of accuracy when we are calculating

the gradients.
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2.5 Conclusion

Linear scheme are better for uniform grids and when it comes to non-uniform the scheme

gives errors at the points of interface at which spacing changes for any simple quadratic

equation. Using the quadratic scheme resolve this problem but not completely. Linear

scheme solving cubic equation gave higher errors at at the points of interface at which

spacing changes and with quadratic scheme it reduces the errors but not to that extend.

Applying finite difference approximations using non-uniform grids we loss the accuracy of

the approximation at the points of interface at which spacing changes form 2nd to 1st order

of accuracy.

In general, what ever order polynomial we use to discretized the gradients, on a uniform

grid the order of accuracy is one more than the order of the polynomial and on non-uniform

grids the order of accuracy is equal to the order of the polynomial.



Chapter 3

The Blending Scheme

As we going to see later, the quadratic scheme is more accurate than the linear scheme

but also more costly with regard to CPU time. Getting a scheme that is going to be more

accurate and almost as cheap as linear it is worth looking at a blending of both the linear

and the quadratic schemes.

3.0.1 Setting the Blend Scheme

The quadratic scheme will be used only where the meshes are changing and the linear

scheme elsewhere to reduce the errors that the linear scheme gives and the computational

cost of using the quadratic scheme alone. The blending scheme is set by a blending factor

between the linear and the quadratic schemes. The blend is linear when the factor is equal

to one and quadratic when it is equal to zero and uses a combination of both schemes when

it is in between, as in figure 3.1, which were linearized using equation 3.1.

linearBlend[i] = 10 ∗ w[i]− 4.4 (3.1)

where w is the linear weight for each face, calculated straightforward by a linear differencing

equation 3.2.

23
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Figure 3.1: graph illustrates the way the Blend factor were calculated, where w is the linear
weight for each face.

w =
xP − xf

|xP − xN |
(3.2)

where xP , xN are the centers of two neighbour cells and xf is the face center separating the

two cells.

0.0 0.2 0.4 0.6 0.8 1.0

(a) Using only quadratic scheme.

0.0 0.2 0.4 0.6 0.8 1.0

(b) Using linear and quadratic
schemes.

0.0 0.2 0.4 0.6 0.8 1.0

(c) Using quadratic where the
meshes are changing and linear
elsewhere.

Figure 3.2: Graphs showing the output of various values of w.

figure (3.2), shows using different values of the w, as when the equation (3.1) equal to

zero we will be only using the quadratic scheme, figure (3.2a). When using the more of the

linear than the quadratic schemes (3.2b) and finally when using the quadratic scheme only

where the meshes are changing and the linear scheme elsewhere (3.2c).

The blended scheme is not currently implemented efficiently since both the linear and the
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quadratic schemes differencing are calculated and then blended. If this blended schemes

appears to be beneficial it can be implemented so that it is almost as efficient as linear

(summing when the blending coefficient is mostly zero). We will therefore not discuss the

CPU time of using the blended scheme, only the accuracy.

3.1 Testing The Blend Scheme

In order to test the blend scheme we look at the maximum errors in calculating the gradients

for equations of different order of polynomials, such as quadratics and cubic. For the

quadratic equation on the sphere (3.3).

p = (x− y)(x− z) (3.3)

= x2 − xz − xy + yz

The gradient for p is:

∇p =


2x− z − y

−x+ z

−x+ y


and the magnitude of the gradient:

|∇p| =
√

(2x− z − y)2 + (z − x)2 + (y − x)2
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−0.16 −0.12 −0.08 −0.04 0.00 0.04 0.08 0.12 0.16

(a) Linear, ∇ error 1.0× 10−1.

−0.16 −0.12 −0.08 −0.04 0.00 0.04 0.08 0.12 0.16

(b) Blend, ∇ error 8.3× 10−2.

Figure 3.3: Graphs showing the errors from calculating the gradient of the quadratic equa-
tion using the linear and the blend schemes.

Figure 3.3a shows the errors for calculating the gradient of the quadratic equation using

the linear scheme and clearly the errors are maximum where the meshes are changing.

When applying the blend scheme figure 3.3b, the errors are reduced where the meshes are

changing.

For the cubic equation on the sphere equation (3.4).

p = (x− y)(x− z)(x− 1) (3.4)

= x3 − x2 − x2z + xz − x2y + xy + xyz − yz

The gradient for p is:

∇p =


3x2 − 2x− 2xz + z − 2xy + y + yz

−x2 + x+ xz − z

−x2 + x+ xy − y


and the magnitude of the gradient:

|∇p| =
√

(3x2 − 2x− 2xz + z − 2xy + y + yz)2 + (−x2 + x+ xz − z)2 + (−x2 + x+ xy − y)2
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−0.16 −0.12 −0.08 −0.04 0.00 0.04 0.08 0.12 0.16

(a) Linear, maximum ∇ error 1.6× 10−1.

−0.16 −0.12 −0.08 −0.04 0.00 0.04 0.08 0.12 0.16

(b) Blend, maximum ∇ error 9.5×−2.

Figure 3.4: Graphs showing the errors from calculating the gradient of the cubic equations
using the linear and the blend schemes.

Figure 3.4a shows the errors for calculating the gradient of the cubic equation using

the linear scheme and clearly it the errors are maximum where the meshes are changing.

When applying the blend scheme figure 3.4b, the errors are reduced where the meshes are

changing.



Chapter 4

Shallow-Water Equations Test

Cases

In this chapter we focus on two main objectives. Firstly, the behaviour of uniform and

nonuniform hexagonal icosahedral mesh when applying the linear and quadratic schemes to

SWEs on the sphere and how accurate the results are and the CPU time cost. Secondly,

applying a blend of both schemes which is linear where the mesh is nearly uniform and

quadratic elsewhere in order to improve accuracy over linear for minimal extra cost.

To do so, we run two test cases of [1] using AtmosFOAM, which is an open source global

shallow water model written using OpenFOAM. Both OpenFOAM and AtmosFOAM are

described in [2, 4]. As the Shallow Water Equations describe many of the atmosphere

phenomena in the horizontal dynamical aspects which makes it a good test tool for mostly

any proposed numerical scheme before implementing it on the more complex primitive

equations.

28
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4.1 AtmosFOAM

In this section we briefly describe AtmosFOAM which is described more fully in [2, 4].

AtmosFOAM solves the SWE’s on spherical meshes in Cartesian co-ordinates using the

finite-volume method with linear or quadratic differencing schemes.

The two-dimensional SWE’s consist of the momentum and continuity equations:

∂hU
∂t

+∇ • (hUU) = −2Ω× hU− gh∇(h+ h0) (4.1)

∂h

∂t
+∇ • (hU) = 0 (4.2)

where U is the horizontal vector velocity, the ∇ operator is the horizontal gradient operator,

the ∇• operator is the horizontal divergence operator, h is the fluid depth, h0 is the height

of the solid surface above a reference height, Ω is the angular vector velocity of the earth

and g is the scalar gravitational constant.

h

hU_N

Neighbour cell, N

cell centre

face centre

mass flux between cells

cell volume, V

vector, S

hU

Figure 4.1: Components of the cells in AtmosFOAM.

The prognostic variables are cell-average momentum (hU), height (h) and the mass flux

between the cells (φ) as in figure 4.1. This system is over specified and the method of

removing the possible inconsistency between (hU) and (φ) is described in [4].

The finite-volume discretization to calculate divergences, cell gradients and the Lapla-

cian were done using Gauss theorem, as from [4] for the cell centered scalar and vector
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quantities Ψ and Ψ:

∇ •Ψ ≈ 1
V

∫
V
∇ •ΨdV ≈ 1

V

∑
Ψf • S, (4.3)

∇cΨ ≈ 1
V

∫
V
∇ΨdV ≈ 1

V

∑
ΨfS, (4.4)

∇2Ψ ≈ 1
V

∫
V
∇2ΨdV ≈ 1

V

∑
∇fΨ |S| , (4.5)

where V is the cell volume,
∑

the sum over all the faces of a cell, subscript f means

interpolation from cell averages to face averages, ∇c the cell-average gradient and ∇f is the

gradient in direction S, discretized at the face.

Interpolations from cell average quantities to face average quantities (Ψ to Ψf ) are done

by assuming that average quantities are represented by cell centre or face centre quantities

and then using linear or bi-quadratic differencing. The simplest numerical solution is given

by the linear differencing where we calculate the face average by:

Ψf = λΨP + (1− λ)ΨN,

and the gradient at face average by:

∇fΨ =
ΨN −ΨP

|xN − xP|

where Ψ is the cell average at the face f between the neighboring cells P and N with

corresponding cells centres xP and xN with λ = |xN−xf |
|xN−xP| . which is only second-order

accurate on uniform regular mesh. For more accuracy, we use the quadratic differencing

that uses the bi-quadratic polynomial:

ψ = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2. (4.6)
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where, x and y are local co-ordinates of the system at each face center, in the plane of the

two-dimensional geometry with the x direction normal to the face. Then the interpolation

at the face will be given by:

Ψf = a0,

and the face-center gradient is given by:

∇f = a1.

The numerical solution obtained when using a bi-quadratic interpolation is more accu-

rate than the solution from the linear differencing on the uniform regular mesh. Moreover,

it is also second order where the mesh is non-uniform.

4.2 Main Setup

We run two test cases of Williamson [1] on two different meshes, one nearly uniform hexago-

nal icosahedral mesh and one mesh with local refinement using polygon. We apply different

schemes to the SWEs:

1. Linear scheme (l).

2. Quadratic scheme (q).

3. A blend of both schemes (b)

for these five numerical approximations terms respectively:

The gradient, the divergence, the Laplacian, the Interpolation method and the height gra-

dient. In order to evaluate those schemes used and to see which of the above terms have

the biggest impact on the global errors, we compare the:-
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1. The Time taken to run in seconds (CPU time).

2. The Normalized global errors of the height(l(h)).

The l(h) error norms of the height are defined as:

l1(h) =
∑

cells V (h− htrue)∑
cells V htrue

(4.7)

l2(h) =

√∑
cells V (h− htrue)2∑

cells V h
2
true

(4.8)

l∞(h) =
maxallV htrue

∑
cells |V (h− htrue)|

maxallV htrue

∑
cells |V htrue|

(4.9)

where htrue is the exact , reference solution.

4.3 Williamson etal test Case 2

Testing case 2 of the Williamson et al [1] global steady state nonlinear zonal geostrophic

flow. This case were done to observe the behavior of steady zonal flow with corresponding

geostrophic height field on the uniform and non-uniform meshes when applied different

scheme to it. The results after 5 days using time steps 20 minutes giving maximum C.F.L

number of 0.05 for the uniform and of 0.11 for the nonuniform were compared with the

initial conditions.

4.3.1 Results

In order to evaluate which of the five terms numerical approximation that were described

in sections 4.1 and 4.2 have the biggest impact on the global error, we plot the l2 error

norm as a function of the scheme used in those five terms respectively for both uniform and

nonuniform hexagonal icosahedral mesh in the figure 4.2. This shows that the gradient is

the most important term and as equally important as using quadratic on the divergence as
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(a) Uniform Meshes (b) Nonuniform Meshes

Figure 4.2: Height norm errors l2(h) against CPU time taken after 5 days after applying
different combination of linear and quadratic scheme to the five terms gradient, divergence,
Laplacian, Interpolation method and height gradient. Errors calculated as differences with
respect to the initial condition.

well. The combination of those two and the interpolation method gives the smallest errors

and is as good as using quadratic scheme for the all five terms with slightly better CPU

time. We going to test the blend scheme on these three terms and for the rest of the terms

we will use linear scheme.

The errors in figure 4.3 are calculated after 5 days in comparison to the initial conditions.

In general, we get large oscillations (symmetry errors), and that appear due to the hexagonal

grid are not completely uniform, they are nearly uniform as described in [6]. The errors

using just linear scheme for the five terms are much larger than just using the quadratic

scheme for both uniform and non-uniform meshes (figure 4.3 from a-d) as expected.
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−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

(a) Uniform, linear, l1 = 6.3× 10−4, l2 = 7.5× 10−4,
l∞ = 1.6× 10−3, CPU time = 16s

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

(b) Uniform, quadratic, l1 = 7.4 × 10−5, l2 = 8.9 ×
10−5, l∞ = 2.2× 10−4, CPU time =27s

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

(c) Non-uniform, linear, l1 = 5.6 × 10−4, l2 = 6.6 ×
10−4, l∞ = 3.0× 10−3, CPU time =19s

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

(d) Non-uniform, quadratic, l1 = 9.1 × 10−5, l2 =
1.2× 10−4, l∞ = 5.0× 10−4, CPU time =33s

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

(e) Non-uniform, Blend, l1 = 5.2 × 10−4, l2 =
6.2 × 10−4, l∞ = 2.2 × 10−3, CPU time =30 , us-
ing equation 3.1

Figure 4.3: Errors for the Uniform and Non-uniform hexagonal icosahedral mesh after 5
days. Errors calculated as differences with respect to the initial conditions. The errors rang
from -15 - 15
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Most of the errors around the refine area are at the region where the nearly uniform

hexagonal mesh. The errors when using the blend scheme for the non-uniform mesh figure

(4.3e) gives slightly smaller errors at the refine mesh than using only the linear scheme

figure (4.3c), and the oscillations also small.

When using different time steps we get different errors norms, as figure (4.4a) shows,

as we reduce the time steps the errors norms get smaller. But the CPU time and the

oscillations get bigger and the opposite is true. More oscillations were expected as we use

smaller time steps which resolves the gravity wave much better. But at time 600s the l∞ got

larger due to increase in oscillations. As an example, figure (4.4b) shows the non-uniform

mesh using the blend scheme at time step of 40 minutes and the C.F.L number 0.22, where

the errors increased and the oscillations decreased compared with figure (4.3e).

(a) Using the blend scheme

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

(b) Non-uniform, Blend, l1 = 7.7×10−4, l2 = 8.9×
10−4, l∞ = 2.3 × 10−3, CPU time=16s, time step
40 minutes.

Figure 4.4: (a) Time steps in seconds against height error norms. (b) Errors for the Non-
uniform hexagonal icosahedral mesh after 5 days. Errors calculated as differences with
respect to initial conditions. The errors rang from -15-15.

4.4 Williamson etal test Case 5

Testing Case 5 of the Williamson et al [1] Zonal flow over an isolated mountain. This case

were done to observe the behavior of steady zonal flow impinging on a mountain on the
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uniform and non-uniform meshes when applied different scheme to it. The results after 15

days using time steps 20 minutes giving maximum C.F.L number of 0.05 for the uniform

and of 0.11 for the nonuniform were compared with the given reference solution.

The reference solution was calculated using the Spectral transform (STSWM [9]) us-

ing T213 resolution. The version of STSWM has been revised by Pilar Ripodas from

Deutscher Wetterdienst [http : //www.icon.enes.org/swm/stswm]. The STSWM solu-

tion is interpolated onto the AtmosFOAM grid using bicubic interpolation, also from

[http : //www.icon.enes.org/swm/stswm].

4.4.1 Results

Again we evaluate which of five terms numerical approximation that were described in

sections 4.1 and 4.2 have the biggest impact on the global error by plotting the l2 error

norm as a function of the scheme used in those five terms respectively for both uniform

and nonuniform hexagonal icosahedral mesh in the figure 4.5. Looking at this two plots

(a) Uniform Meshes (b) Non-uniform Meshes

Figure 4.5: Height norm errors l2(h) against CPU time taken after 15 days after apply-
ing a combination of linear and quadratic scheme to the five terms gradient, divergence,
Laplacian, Interpolation method and height gradient. Errors calculated as differences with
respect to the given reference solutions.

we find that the divergence is the most important, than the gradient. While, in figure 4.3

the gradient were the opposite and that due to the flow as it hits the mountain it create
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divergence. Also as before the combination of the gradient and the divergence with the

quadratic scheme gives small errors. Also as before using combination of those two and

the interpolation method gave us the smallest errors and is as good as using the quadratic

scheme on all the five terms with slightly better CPU time. Again we are going to test

the blend scheme on these three terms and for the rest of the terms we will use the linear

scheme.

The errors in figure 4.6 are calculated after 15 days in comparison to the reference

solutions which were given. Due to large errors in this case the errors in the previous

case are there but too small to be visualized. The errors using just the linear scheme for

the five terms are much larger than just using the quadratic scheme for both uniform and

non-uniform meshes figure 4.6 from a - d.

The errors when using the blend scheme for the three terms on a non-uniform mesh

figure 4.6e gives smaller errors at the refine mesh than just using the linear scheme figure

4.6c.
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−160 −120 −80 −40 0 40 80 120 160

(a) Uniform, linear, l1 = 4.9× 10−3, l2 = 6.8× 10−3,
l∞ = 2.7× 10−2, CPU time = 49s

−160 −120 −80 −40 0 40 80 120 160

(b) Uniform, quadratic, l1 = 1.5 × 10−3, l2 = 2.1 ×
10−3, l∞ = 7.7× 10−3, CPU time = 82s

−160 −120 −80 −40 0 40 80 120 160

(c) Non-uniform, linear, l1 = 3.8 × 10−3, l2 = 5.5 ×
10−3, l∞ = 2.4× 10−2, CPU time = 60s

−160 −120 −80 −40 0 40 80 120 160

(d) Non-uniform, quadratic, l1 = 1.4 × 10−3, l2 =
1.9× 10−3, l∞ = 6.1× 10−3, CPU time = 99s

−160 −120 −80 −40 0 40 80 120 160

(e) Non-uniform, blend, l1 = 3.8 × 10−3, l2 = 5.3 ×
10−3, l∞ = 2.3× 10−2, CPU time =65s

Figure 4.6: Errors for the Uniform and Non-uniform hexagonal icosahedral mesh after 15
days. Errors calculated as differences with respect to the given reference solutions. The
errors rang from -160 - 160
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As before with different time steps we get different errors norms. As in figure 4.7a

shows as we reduce the time steps the errors norms get smaller. But the CPU time and the

oscillations get larger and the opposite is true. More oscillations were expected as we use

smaller time steps which resolve the gravity wave better. As an example figure 4.7b shows

the non-uniform mesh with the blend scheme at time step of 40 minutes and the C.F.L

number 0.22 errors increased and the oscillations decreased compared with figure 4.6e.

(a) Using blend scheme

−160 −120 −80 −40 0 40 80 120 160

(b) Non-uniform, Blend, l1 = 4.5×10−3, l2 = 6.1×
10−3, l∞ = 2.7× 10−2, CPU time = 49s, time step
40 minutes

Figure 4.7: (a) Time steps in seconds against height error norms. (b) Errors for the Non-
uniform hexagonal icosahedral mesh after 15 days. Errors calculated as differences with
respect to the given reference solutions. The errors rang from -160 - 160

4.5 Conclusion

We have shown that the gradient and the divergence are the most important terms to

approximate with. The combination of those two and the interpolation method helps to

minimize the errors. We have also shown that we do get errors with the uniform grids and

using the quadratic scheme gives much less errors than using the linear scheme but the

CPU costs are higher. Finally we shown by applying a blend of the linear and the quadratic

schemes it does improve the accuracy from just linear scheme.



Chapter 5

Conclusion

In this dissertation we have introduced a blend scheme, which calculates the gradients using

quadratic polynomials where the mesh is non-uniform (the transition between coarse and

fine meshes) and linear polynomials where the mesh is linear or nearly linear. We tested the

blend scheme by calculating the gradient with polynomials of different order and compared

these results with the ones obtained from the linear scheme. In chapter 2, we showed that

for any polynomial of order n used to discretize the gradients, the accuracy of the scheme

is of order n+ 1 on a uniform grid and of order n on a non-uniform grid. Thus, the blend

scheme scheme is expected to be more accurate than the linear scheme on a non-uniform

grid and as accurate as linear on uniform grid. This was affirmed by the numerical results

in chapter 3.

Later, we have evaluated the linear and the quadratic schemes on the full shallow water

equations solver AtmosFOAM [2, 4] using two different test cases of Williamson et al. [1],

test case 2, the global steady state nonlinear zonal geostrophic flow and test case 5, zonal

flow over an isolated mountain on uniform and non-uniform hexagonal icosahedral meshes.

40
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The results of these two test cases showed that:

1. The combination of numerical approximation terms of the gradient, the divergence

and the interpolation method have the biggest impact on the global error.

2. Using the linear scheme resulted in larger errors at the transition between coarse and

fine meshes but was less costly in CPU time.

3. Using the quadratic scheme resulted in smaller errors at the transition between coarse

and fine meshes but more costly in CPU time.

4. Using the blend of the both schemes improved the accuracy from the linear scheme

at the transition between coarse and fine meshes.

5.1 Future Work

More tests with different complexity need to be done on the blend scheme. As the blended

scheme is not currently implemented efficiently since both the linear and the quadratic

schemes differencing are calculated and then blended. It worth implementing so that it

is almost as efficient as linear (summing when the blending coefficient is mostly zero), to

compare the CPU cost with linear and quadratic schemes.
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