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Abstract

The problem of variational data assimilation for a nonlinear coupled atmo-

sphere and ocean model is formulated as an optimization problem to find

the best initial condition. The input data includes errors of observations and

background. Therefore, the optimal solution involves error. The modelling of

the background error covariance matrix is important in any data assimilation

methods in the sense that it determines the spread of the errors. Therefore, in

this study we try to estimate the forecast (background) error covariance ma-

trix calculated by the idea of ensemble Kalman Filter (EnKF). To do this, we

use a method which is an ensemble of four dimensional variational (4DVar)

methods. We generate ensemble members by perturbing the background and

observations with different random numbers. Then, we set up different en-

sembles and investigate how many ensemble members can make the forecast

error covariance matrix convergence. We look at the convergence of each

component of the matrix with the ensemble size getting bigger, and want

to find a sufficient ensemble size which makes all components convergence.

Then, we look at the effects of the error correlations of model variables and,

the accuracy and frequency of observations on the convergence of forecast

error covariance matrix.
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Chapter 1

Introduction

In general, data assimilation (DA) combines all available information to esti-

mate the state of a system. It uses observations and prior information, which

is called the background, and combines them with a computer model to find

the analysis which is an approximation to the observed reality. Lawless (2013)

discusses the progress of data assimilation in more detail. Basically, it started

being used in the 1940s and with the development of data assimilation tech-

niques its usage has reached a wide spectrum of areas such as environmental

modelling, climate monitoring, traffic modelling and numerical weather pre-

diction (NWP). We are interested in its use in NWP. DA aims to provide the

most appropriate initial condition for a forecast. In the assimilation window,

we have an initial value problem. Thus to be able to make a good forecast,

we need to choose a model which represents the atmosphere or the ocean or

both as realistically as possible and to have an initial condition which should

be defined as accurately as possible.
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1.1 Motivation

For a long time, DA has been applied to the atmosphere and the ocean sepa-

rately. On the other hand, recent studies show that coupling them gives nu-

merically the most certain outcomes of climate change investigations (Sausen

and Voss, 1995). To simulate long-term climatic variations, the coupled at-

mosphere and ocean models need to be used. In practice, there are some

complications. For instance, it needs a lot of computational work because of

the big difference between the scales of atmosphere and ocean. The ocean is

much slower than the atmosphere because of the thermal inertia of the ocean

(Dubois et al., 1999).

Variational methods solve the assimilation by minimizing a function with

the ability of using future observations. These methods involve a background

error covariance matrix but they do not provide any information about this

matrix. Therefore, this matrix remains constant for different assimilations.

Ensemble methods, which are sequential so all things in sequence, provide

information about background error covariance matrix. It is expected that

DA methods should consider ’errors of the day’ (Cheng et al., 2010). This

can be implemented by using updated background error covariance matrix

in every assimilation window. The idea of hybrid methods is to take the best

features of variational and ensemble methods. These methods use updated

background information to capture the system dynamics and find a varia-

tional solution using future observations. Most hybrid methods are based on

the combination of ensemble Kalman Filter (EnKF) and incremental 4DVar,

for example in the cases of Fairbairn et al. (2014) and Liu et al. (2008).

Estimating the forecast error statistics is crucial to make more accurate
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assimilation, because those statistics become the background error statistics

for the next assimilation window.

In this project, the behaviour of the Molteni et al. (1993) coupled at-

mosphere and ocean model will be investigated with the ensembles of non-

incremental 4DVar methods. The ensemble members are generated by using

the idea of Isaksen et al. (2010). We perturb the background and observa-

tions with different random numbers to get a new ensemble member. Then,

we try to estimate the forecast error covariance matrix Pf generated by using

the idea of EnKF. We use different ensembles to be able to estimate Pf . In

this project, the research questions are:

(1) How many ensemble members are needed to capture the forecast co-

variances correctly?

(2) What are the effects of error correlations on the estimation of forecast

covariances?

(3) How these are affected by observation errors and frequencies?

To investigate these questions, first we try to estimate Pf with different

ensemble sizes then try to understand how many ensemble members make

the matrix Pf convergence. The convergence of each component of Pf is

investigated separately with the ensemble size getting bigger. Then, we look

at the effects of error correlations and the effects of the accuracies and the

numbers of observations on the convergence of Pf .
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1.2 Outline

This project is divided into six main chapters. In Chapter 2, we introduce

the 4DVar method in mathematical detail with the use of tangent linear and

adjoint model. The 4DVar is the foundation of the experiments. Then, as a

sequential method the Kalman Filter algorithm is presented to show the for-

mulation of analysis error covariance matrix Pa and forecast error covariance

matrix Pf . The idea of ensemble Kalman Filter (EnKF) is adopted to calcu-

late the ensemble based flow dependent background error covariance matrix

Pf . Then, we describe the process of Isaksen et al. (2010) for perturbing a

system to generate different ensemble members in the hybrid methods sec-

tion.

Chapter 3 gives the system of Molteni et al.(1993) coupled model, which

we use as the toy model in our experiments, and the second order Runge-

Kutta method, which we use to discretize this coupled model.

In Chapter 4, we describe the methodology we follow step by step. It

starts with generating truth state and continues with generating background

and observations, which we assimilate with 4DVar to find the best fit initial

state. Then, we perturb the system by using the idea of Isaksen et al. (2010)

to get different ensemble members. Thus, we have an ensemble of analyses

at the initial time. Then, we forecast each of them to get a forecast error

covariance matrix Pf .

Chapter 5 demonstrates our experiments and their results. In this chap-

ter, we try to investigate our research questions described in Section (1.1).
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In Chapter 6, we give a brief summary with conclusions of this project

and propose some ideas for future work.
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Chapter 2

Background

There are two types of data assimilation methods which are sequential and

variational. Sequential data assimilation only considers observations made

in the past until the time of analysis, while the variational one can use ob-

servations from the future. It can be seen from Figure (2.1)(b) that vari-

ational data assimilation methods produce a continuous analysis trajectory

(the black line) by using the background trajectory (the red line with the

initial value xb
0) and the observations yi, for i = 1, ..., k where k is the num-

ber of observations over the assimilation window [t0, tN ]. This gives the best

initial analysis state xa
0 which minimizes the cost function J , Section (2.1.1).

In variational assimilation, the correction to the analysed state is smoother

than the sequential one in time, which is more realistic in a physical sense

(Bouttier et al., 2002). The sequential assimilation process can be seen from

Figure (2.1)(a). There are forecast and analysis steps denoted by xb
i and

xa
i respectively and observations yi for i = 1, ..., k where k is the number

of analysis steps (xb
0 is the initial background state). For examples of the

sequential and variational assimilations, we can refer to the Kalman Filter

(Kalman, 1960) and 4DVar (Le Dimet and Talagrand, 1986) respectively.
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Figure 2.1: The processes of sequential (a) and variational (b) data assimi-
lation methods over the assimilation window with the range [t0, tN ].

Nowadays, the use of ensemble methods has a significant part in NWP.

Operational centres have started to seek different methods that consist of an

ensemble of data assimilation techniques. Many of these methods are gen-

erated from the theory of the Kalman Filter (Kalman, 1960). Isaksen et al.

(2010), described in Section (2.1.4), shows a way of producing ensemble data

assimilation methods. We can also refer the Ensemble Kalman Filter (EnKF)

method as an example of sequential ensemble data assimilation method de-

scribed in Section (2.1.3).

4DVar has been used for 20 years at the most advanced centre ECMWF,

while the EnKF is an upcoming method. They are competitive in skill.

Hence, combining them may work best. Therefore, the idea of hybrid tech-

niques comes to the surface. These data assimilation techniques are a mixture

of ensemble and variational methods. As a result, operational centres are now

exploring hybrid methods. Most of them are produced by a combination of

the 4DVar and the EnKF and called four dimensional ensemble variational

methods (its abbreviation shows some differences in the DA literature). For

example, Liu et al. (2008) combine the incremental 4DVar with the EnKF
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by trying to put their advantages together and call the method En4DVAR.

It uses flow-dependent background error covariance matrix P from EnKF

and tries to find variational solution likewise 4DVar. This method does not

use tangent linear and adjoint models to produce an analysis. In their ex-

periments, the method produces an analysis result which is similar to the

analysis produced with tangent linear and adjoint models, which need high

computational work. Fairbairn et al. (2014) call the same method the 4DEn-

Var. From now on we use the abbreviation 4DEnVar for this method not to

cause any confusion. By taking inspiration from the idea of 4DEnVar, in this

study we use the ensemble of non-incremental 4DVar methods and produce

the forecast error covariance matrix.

2.1 Assimilation Methods

2.1.1 The Four-Dimensional Variational Data Assimi-

lation (4DVar)

4DVar method produced by Le Dimet and Talagrand (1986) is an extension

of 3DVar with the consideration of observations in time. After the 2000s,

the method has the most use in operational centres (Fairbairn et al., 2013).

This method helps us get the best trajectory of the system by running the

numerical model over a time interval [t0, tN ] and putting the background and

observations into the model. Figure (2.1)(b) demonstrates the process in a

general diagram. Lawless (2013) and Nichols (2010) describe the method in

more detail. We present here a basic idea of the method. Assume we have a

background xb
0 at time t0

xb
0 = x0 + ε (2.1)
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where x0 is the state vector of the system at time t0 and ε is a vector of

random unbiased Gaussian errors with known covariance matrix B and we

have observations yk at time tk that satisfy

yk = Hk(xk) + ηk (2.2)

where xk is the state vector of the system at time tk for k = 0, ..., N , H

is the observation operator which maps the state vector to the observation

space and ηk are random unbiased Gaussian errors with known covariance

matrices Rk.

The purpose of this method is to find the best analysis state at the initial

time, which minimizes the cost function J .

J (x0) =
1

2
(x0− xb

0)
TB−1(x0− xb

0) +
1

2

N∑
k=0

(Hk(xk)− yk)TR−1k (Hk(xk)− yk)

(2.3)

subject to the nonlinear model M

xk =Mk−1(xk−1) (2.4)

where xk is the state vector of the system at time tk for k = 0, ..., N and

Mk−1 gives the evolution of the states from xk−1 to xk.

4DVar problem is a least square problem whose solution minimizes the

sum of the squares of the errors come from background and observations. The

method uses the same background error covariance matrix B for each cycle

of the assimilation. The method considers that the modelM is perfect. This

means that there is no error in the model (In the case of imperfect model,
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the right hand side (RHS) of Equation (2.4) has an error term). Equation

(2.4) can also be written as

xk = Mk−1Mk−2...M0(x0) (2.5)

= M0→k−1(x0) (2.6)

Therefore, 4DVar is a nonlinear constrained optimization problem so in

general it is hard to solve (Bouttier et al., 2002). To deal with this problem,

the tangent linear hypothesis is developed. Under the hypothesis, we assume

that the observation operator H can be made approximately linear as follows

H0(x
b
0)−H0(x0) ≈ H0(x

b
0)(x

b
0 − x0) (2.7)

where H0(x
b
0) is the differential of H0 at xb

0.

In addition, under this hypothesis it is assumed that the model operator

M can be linearised as

yk −HkM0→k−1(x0) ≈ yk −HkM0→k−1(x
b
0)−HkM0→k−1(x0 − xb

0) (2.8)

where M0→k−1 is the differential ofM0→k−1 and known as the tangent linear

model (TLM) in the DA literature. Then, the gradient of J is

∇J (x0) = B−1(x0−xb
0)−

N∑
k=0

(Mk−1Mk−2...M0)
THT

k R−1k (yk−Hkxk) (2.9)

where (Mk−1Mk−2...M0)
T = (M0)

T ...(Mk−2)
T (Mk−1)

T . The transpose of

TLM is called the adjoint model. The adjoint models MT
k represent the

gradient of the cost function with respect to the model variables. Then, the

15



analysis xa
0 satisfies ∇J (xa

0) = 0 at the initial time. The aim of 4DVar is to

find xa
0 by minimizing the cost function, J .

2.1.2 The Kalman Filter (KF)

The KF method was produced by Kalman (1960) as a data assimilation

(DA) method to estimate the current state. It is a sequential method and

its process is explained in Figure (2.1)(a). Basically, the filter works just

for linear systems. Jazwinski (1970) discusses the filter in detail. We just

present here a brief explanation of how the KF works. In the KF, the system

have a forecast step xf
k with a forecast error covariance matrix Pf

k and an

analysis step xa
k with an analysis error covariance matrix Pa

k at time tk. The

state forecasts are explained as follows

xf
k = Mk−1x

a
k−1 (2.10)

where M is a linear model. Then, the forecast error covariance matrices

Pf
k = Mk−1P

a
k−1M

T
k−1 + Qk−1 (2.11)

where Q represents the model error. In the case of a perfect model, Q can

be neglected. Then, the analysis steps

xa
k = xf

k + Kk(yk −Hkx
f
k) (2.12)

and the analysis error covariance matrices

Pa
k = (I−KkHk)Pf

k (2.13)
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where Kk are the Kalman gain computations given by

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)−1 (2.14)

where Hk are the linear observation operators and Rk are the observation

covariance matrices. As we mention before, this method is for linear systems.

The extended Kalman Filter (EKF) applies KF to nonlinear systems by us-

ing tangent linear and adjoint models.

2.1.3 The Ensemble Kalman Filter (EnKF)

The EnKF presented by Evensen (1994) is an ensemble method and approx-

imates the EKF for large systems. We do not give the whole algorithm of

the method, only we give here the part of producing the ensemble error co-

variance matrix. Assume, we have m ensemble members which are denoted

xi for i = 1, ...,m, where each xi is a state vector of the system, then the

mean of ensemble members is

x̄ =
1

m

m∑
i=1

xi (2.15)

The ensemble perturbation matrix X can be derived by

X =
1√
m− 1

(x1 − x̄,x2 − x̄, ...,xm − x̄) (2.16)

and the ensemble covariance matrix P is given by

P =
1

m− 1

m∑
i=1

(xi − x̄)(xi − x̄)T (2.17)
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which can be also written in terms of the ensemble perturbation matrix in

Equation(2.16) as follows

P = XXT (2.18)

The ensemble covariance matrix P is flow-dependent and using it as the

background error covariance matrix makes the system more realistic. P is a

symmetric and square matrix with the size of n×n where n is the size of the

state vectors xi. Hence, the form of P is

P =


V ar(e1) Cov(e1, e2) · · · Cov(e1, en)

Cov(e2, e1) V ar(e2)
. . .

...
...

. . . . . . Cov(en−1, en)

Cov(en, e1) · · · Cov(en, en−1) V ar(en)

 (2.19)

where ei for i = 1, ..., n denote each variable of the system which have n

variables.

In the EnKF, the smoothness of analysis depends highly on the ensemble

size m. It should be sufficiently large. If it is not, this leads P to be low

rank. To be able to make the system fully observable, the background error

covariance matrix should be full rank. To get rid of the problem caused by

low-rankness of P, besides choosing sufficient ensemble size, localization and

inflation techniques can be alternative solutions. The localization technique

was proposed by Hamill et al. (2001) and, Anderson and Anderson (1999)

introduce the idea of inflation technique. However, we do not cover these

techniques in this project.
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2.1.4 Hybrid Methods

Hybrid methods are combinations of variational and ensemble methods. They

try to apply the best features of both methods. These methods solve vari-

ational problems with the flow-dependent background error covariance ma-

trix P instead of fixed background error covariance matrix B. Ideally, the

background error covariance matrix should depend on the current flow. For

example, consider the pressure in the real atmosphere, sometimes high pres-

sure takes the place of low pressure quickly. This kind of alterations should

effect the background error covariance matrix. Additionally, variational so-

lutions use observations more efficiently than sequential ones, because se-

quential ones only use observations in the past, while variational ones can

also use observations from the future. Therefore, hybrid methods are cre-

ated. Most of them are produced by a combination of the EnKF and the

incremental 4DVar and called Four-Dimensional Ensemble Variational DA

referred as 4DEnVar in literature. In this project, we use an ensemble of

non-incremental 4DVar methods producing ensemble members by perturb-

ing the background and observations. We do these perturbations by choosing

different random numbers for each ensemble members similar to the idea of

Isaksen et al. (2010). They have perturbed observations by adding random

noise from the probability density function (pdf) of observation error, and

added further perturbations to account for model error during the forecasts.

There is no direct perturbations applied to the background. The Isaksen et

al. (2010) system can be described as follows:

Consider the following linear system:

xa
k = xb

k + Kk(yk −Hkx
b
k)

xb
k+1 = Mk(xa

k)
(2.20)
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where k denotes analysis cycle, yk is the vector of observations, xa
k is the

analysed state, xb
k, Kk and Mk are matrices, and Kk is a general gain matrix

(not specifically the Kalman gain). Then the covariance matrices for this

system are

Pa
k = (I−KkHk)Pb

k(I−KkHk)T + KkRkK
T
k

Pb
k+1 = MkP

k
aM

T
k + Qk

(2.21)

where Rk is the observation error covariance matrix and Qk is the model

error covariance matrix.

Then we perturb the system (2.20) as follows (denoted by ∼)

x̃a
k = x̃b

k + Kk(yk + ηk −Hkx̃
b
k)

x̃b
k+1 = Mk(x̃a

k) + ξk

(2.22)

where ηk and ξk are perturbations with covariance matrices Rk and Qk re-

spectively.

Then subtracting the perturbed (2.22) and unperturbed (2.20) systems

as follows:

εak = εbk + Kk(ηk −Hkε
b
k)

εbk+1 = Mkε
a
k + ξk

(2.23)

where εak = x̃a
k − xa

k and εbk = x̃b
k − xb

k. Then, from the system (2.23) the

covariance matrices can be formed as

εka(εka)T = (I−KkHk)εkb (εkb )T (I−KkHk)T + KkRkK
T
k

εk+1
b (εk+1

b )T = Mkεka(εka)TMT
k + Qk

(2.24)
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It can be seen from the comparison of the systems (2.21) and (2.24), if

εkb (εkb )T = Pb
k for some k, then εma (εma )T = Pa

m and εmb (εmb )T = Pb
m for

all m ≥ k. This means that the analyses and backgrounds perturbations

have equal covariances to the corresponding analysis and background error

covariances for all subsequent analysis cycle. In this paper, they also provide

another perturbed system by applying identical perturbations to observations

and model error. They only choose the initial perturbation to be different.
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Chapter 3

Models

3.1 The Molteni coupled model

As the toy model, we use the coupled atmosphere-ocean model described by

Molteni et al. (1993) which couples the chaotic Lorenz system (1963) with

the linear oscillatory system. The Lorenz system has three variables X,Y and

Z which represent the atmosphere, while the linear part has two variables W

and V which are the representation of the ocean. The system is coupled by

an arbitrary coupling parameter α. It is applied through the X, Y , W and V

variables. Molteni et al. (1993) have used the coupled model to examine the

interaction of tropical-midlatitute. They have conducted some experiments

by setting tropical forcing term W ∗ variously. The coupled system is also

used by Dubois and Yiou (1999). Additionally, they have coupled the chaotic

Lorenz system with the chaotic Rössler system. Molteni et al. (1993) system
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is the following: 

Ẋ = −σX + σY + αV

Ẏ = −XZ + ρX − Y + αW

Ż = XY − βZ

Ẇ = −ΩV − k(W −W ∗)− αY

V̇ = Ω(W −W ∗)− kV − αX

(3.1)

where σ = 10, β = 8/3, ρ = 28, Ω = 2π/20, k = 0.1 and W ∗ = 2. The

parameters σ, β and ρ are the Lorenz (1963) parameters (see Lorenz (1963)

for their meaning) and Ω, k and W ∗ are the parameters of linear oscillatory

system. Molteni et al. (1993) describe these parameters in detail.

In coupled models, experiments can be performed by coupling synchronously

or asynchronously. Synchronously coupling means that we substitute all val-

ues into the related part as soon as they are calculated. Therefore, at each

time step the coupled system always uses updated values. However, asyn-

chronously coupling can be made with different frequencies. For example, if

the coupling frequency is 2 then α terms are still applied on every time step

but only changing values of other variables in term every 2 steps. Dubois

and Yiou (1999) have done synchronous coupling (the coupling frequency is

one), and asynchronous coupling with different frequencies on the Molteni

et al.(1993) model and Rössler (1976) model. We can refer this paper to

compare the results of different coupling frequencies on the related system.

3.2 Second order Runge-Kutta Method (RK2)

In general, Runge-Kutta Methods are used to solve initial value problems

(IVPs) which we consider the first order ordinary differential equation (ODE)
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system

y′(t) = f(t, y(t)) (3.2)

with an initial condition y(0) = y0. By doing Taylor expansion, the RK2

method can be derived as

yn+1 = yn +
1

2
h(k1 + k2) (3.3)

with

k1 = f(tn, yn) (3.4)

k2 = f(tn + h, yn + hk1) (3.5)

where n represent the time step and h is the step size. The toy model is

discretized by using RK2. Lawless (2006) discretize the Lorenz (1963) model

with the method RK2.
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Chapter 4

Experimental Setup

In this project, we use identical twin experiments so we do data assimilation

(DA) pretending we do not know the truth state. In our experiments, we

investigate our research questions described in Section (1.1). We want to es-

timate the forecast error covariance matrix Pf with different ensemble sizes.

We look at the convergence of each component of Pf with the ensemble size

getting bigger. Then, we examine the effects of error correlations of model

variables on the convergence of Pf . Finally, we examine the effects of the

accuracies and the numbers of observations on the convergence of Pf . It is

important to estimate the forecast error covariance matrix in any DA system,

because it will be used as a background error covariance matrix for the next

assimilation. Better estimation we have better analysis for the next assim-

ilation cycle. In order to estimate this matrix, first we generate a method

which is an ensemble of 4DVar methods producing ensemble members by

using Isaksen et al. (2010) method described in Section (2.1.4). Thus, we

produce each ensemble members by perturbing background and observations

with different random numbers. Each random numbers for background and

observations are generated by the corresponding error covariance matrices B
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and R respectively (B is the background error covariance matrix while R is

the observation error covariance matrix). This method gives an ensemble of

analysis states at the initial time of the assimilation window and we forecast

each analysis state and find the forecast error covariance matrix calculated

by the idea of ensemble Kalman Filter (EnKF) described in Section (2.1.3).

We choose Molteni et al. (1993) coupled model described in Section

(3.1.1) as our toy model. Therefore, the size of state vectors xk are 5 con-

sisting of model variables X, Y, Z,W and V . Subscript k shows the time

step over the assimilation window. We transfer the continuous model into

a discrete model by using the RK2 method. This numerical method which

we use to generate the background, the truth and the analysis trajectories

through the assimilation window, can be chosen arbitrarily. For example,

Dubois and Yiou (1999) use a fourth order Runge-Kutta method (RK4) on

coupled atmosphere ocean models. In this project, the Polack-Ribiere flavour

of conjugate gradient method is used as the iteration method to minimize

the cost function, J . For this method, we set up the tolerance as 0.001 for

the stopping criteria as follows

‖∇J i(x0)‖
‖∇J 0(x0)‖

< 0.001 (4.1)

where ∇J is the gradient of cost function (see Equation (2.9)) and super-

script i denotes the iteration step. To avoid overwork, we set up the maximum

number of iterations as 200. Even if the tolerance is bigger than 0.001, the

iterations will stop at the number of 200.

In all experiments, we do synchronous coupling and so the coupling fre-

quency is one. This means that for each time step we use always updated
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values of each variable of the model. We only estimate the state not the

coupling parameter α so it is fixed as 1. We set up the number of time steps

as 20 and the step length as 0.05. Thus, the length of assimilation window

becomes 1.

4.1 Generating the truth

The truth state vectors are denoted as xk for k = 0, ..., 20. At the beginning,

we set up x0 as the column vector of [1, 1, 1, 1.1, 1.1] to determine the initial

truth state where each component of x0 represents the initial values of model

variables X, Y, Z,W and V respectively. This truth state is identical in all

experiments. Then, we run the RK2 method from x0 to generate the truth

trajectory over the assimilation window.

4.2 The 4DVar Algorithm

4.2.1 Generating the background

The background state vectors are denoted as xb
k for k = 0, ..., 20. The initial

background state xb
0 has errors and we assume that errors are uncorrelated

so the background error covariance matrix B becomes diagonal and its form

is

B =



(σX
b )2

(σY
b )2 0

(σZ
b )2

0 (σW
b )2

(σV
b )2


(4.2)
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where (σX
b )2, (σY

b )2, (σZ
b )2, (σW

b )2 and (σV
b )2 are the background variances of

the model variables X, Y, Z,W and V respectively.

Then, from Section (2.1.1) the initial background state xb
0 is generated

by adding random noise to the truth state x0 at time t0. Different random

noises are applied on each element of x0. Then, Equation (2.1) becomes

xb
0 = x0 + σbε (4.3)

where ε is a vector of random unbiased Gaussian errors and σb is the 5× 5

diagonal matrix whose diagonal terms are the standard deviations which are

the square roots of background variances of X, Y, Z,W and V . The matrix σb

allows us to specify how accurate the background is. If its diagonal elements

are too small, the additional term in the RHS of Equation (4.3) will become

too small and so the background will be quite close to the truth. Finally, we

run the RK2 method from xb
0 to generate the background trajectory over the

assimilation window.

4.2.2 Generating observations

The vectors of observations are denoted as yk for k = 1, ..., 20 (no obser-

vation at time t0). We assume all observations have errors and the errors

between observations at each time are uncorrelated. Thus, the observation

error covariance matrix R becomes diagonal and its form is
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R =



(σX
o )2

(σY
o )2 0

(σZ
o )2

0 (σW
o )2

(σV
o )2


(4.4)

where (σX
o )2, (σY

o )2, (σZ
o )2, (σW

o )2 and (σV
o )2 are the observation variances of

the model variables X, Y, Z,W and V respectively.

Then, from Section (2.1.1) the observations yk at time tk are generated

by adding random noises to the truth state xk at the same time. Then,

Equation (2.2) becomes

yk = xk + σoηk (4.5)

where ηk is the vector of random unbiased Gaussian errors at time tk and σo

is the 5×5 diagonal matrix whose diagonal terms are the standard deviations

which are the square roots of observation variances of X, Y, Z,W and V . The

matrix σo is identical for each time step.

The states of observations depend on the observation frequency and ac-

cordingly the number of time step over the assimilation window. For exam-

ple, assume the observation frequency is a vector of [2, 2, 2, 4, 4] where each

element represents observation frequencies of the model variables X, Y, Z,W

and V respectively, and assume there are 20 time steps on the assimilation

window. This means that we have observations every two time steps for

each variable of the atmosphere (X, Y, Z) and every four time steps for each

variable of the ocean (W,V ). Hence, this example determines X, Y and Z
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have 10 observations separately, in total 30 observations in the atmosphere,

and W and V have 5 observations separately, in total 10 observations in the

ocean. In our case, we assume that there is no observation at the initial time.

4.2.3 Determining the initial analysis state

We perform the assimilation by using the method 4DVar to find the best

analysis trajectory whose initial state xa
0 minimizes the cost function J (see

Equation (2.3)). We use Polack-Ribiere flavour of conjugate gradients as the

iteration method to minimize the cost function J . We use Equation (4.1) as

the stopping criteria with the maximum number of iterations 200. Finally,

we run the RK2 method from the generated initial analysis state xa
0 to make

a forecast. The effectiveness of the assimilation can be measured by how the

analysis is far from the truth. It gives the analysis error from the norm of

their difference, ‖x0 − xa
0‖.

4.3 Generating ensemble of 4DVar

The 4DVar assimilation process is being made several times by perturbing

the background and observations with different random numbers. The idea

of Isaksen et al. (2010) in Section (2.1.4) is used to produce each ensemble

members. In this project, m denotes the number of ensemble members.

4.3.1 Ensemble of backgrounds

The initial background states of each ensemble members are generated from

Equation (4.3). Each background state uses the same diagonal background
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error covariance matrix B. We use different vectors of errors denoted εi to

generate each background ensemble member xb,i
0 where i denotes the ensemble

members from 1 to m. Thus, we get certain number of background states

at the initial time. It is important to note that each analysis of ensemble

members uses the corresponding background state xb,i
0 .

4.3.2 Perturbed observations

The observations are generated from Equation (4.5) by choosing different ηi
k

for each observation yi
k for i = 1, ...,m. Isaksen et al. (2010) have done

this process by adding perturbations to the previous observation. Then, we

have certain observations for each background state. Note that each ensem-

ble member has the same number of observations with identical observation

frequency.

4.3.3 Generating ensemble of analysis states

We have the initial backgrounds with corresponding observations. Finally,

we run the 4DVar for each ensemble member to generate their initial analysis

states. Thus, we have m analysis states at the initial time. Then, we generate

their trajectories with the RK2 method over the assimilation window. Figure

(4.1) is just an example of the evolutions of 900 analysis ensemble members

with the truth state on the time length 4. This figure is plotted by our

program used in the experiments.

4.3.4 The ensemble based error covariance matrix

The analysis error covariance matrix Pa at the initial time and the forecast

error covariance matrix Pf at the final time of the assimilation window can
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Figure 4.1: The evolutions of 900 ensemble members for each model variable
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be derived from Section (2.1.3). The matrix Pa helps us to understand the

errors spread of model variables before doing forecast. Then, the matrix

Pf shows the effects of the model on the errors during forecast (consider

Equation (2.11) without the error term Qk−1, because we assume the model

is perfect). In our experiments, we try to estimate only the matrix Pf . In

the model, the error covariance matrix form in Equation (2.19) becomes

P =



var(X) cov(X, Y ) cov(X,Z) cov(X,W ) cov(X, V )

cov(Y,X) var(Y ) cov(Y, Z) cov(Y,W ) cov(Y, V )

cov(Z,X) cov(Z, Y ) var(Z) cov(Z,W ) cov(Z, V )

cov(W,X) cov(W,Y ) cov(W,Z) var(W ) cov(W,V )

cov(V,X) cov(V, Y ) cov(V, Z) cov(V,W ) var(V )


(4.6)

To understand the relationship between errors of the model variables, we

get the correlation matrix of P. The off-diagonal terms of the matrix P can

be transform into error correlations:

ρ(ei, ej) =
cov(ei, ej)√
var(ei)var(ej)

(4.7)

where ρ(ei, ej) is the general form of a correlation matrix. In this study, we

get the correlation matrix from the following process:

Assume P is a covariance matrix and D is the diagonal part of P, then the

correlation matrix C satisfies

P = D1/2CD1/2 (4.8)
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and C is calculated directly from

C = A−1PA−1 (4.9)

where A is the square root of D. The value of each component of C is in the

range of [−1, 1]. The value 1 shows variables are fully correlated (while one

variable is increasing the other also increases, and vice versa), while in the

case of−1 the values are fully anti-correlated (while one variable is increasing,

the other decreases, and vice versa). The closer the coefficient is to either

−1 or 1, the stronger the correlation between the variables. When the value

is getting close to 0, the variables are starting to become uncorrelated. The

value 0 shows that the variables are independent and so they are totally

uncorrelated.
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Chapter 5

Assimilation experiments

In the following three experiments, we try to investigate our research ques-

tions which are described in Section (1.1). Therefore, we try to estimate the

ensemble based forecast error covariance matrix Pf with different ensemble

sizes. To be able to do this, we look at the convergence of Pf components

separately as the ensemble size gets larger. Then, we investigate how they

are affected by the error correlations of model variables and, the accuracy

and the number of observations.

The stationary parameters are defined at the beginning of Chapter 4. In

addition, the background error variances of the model variables X, Y, Z,W

and V are also fixed as 10−2. Thus, the backgrounds of model variables

have same accuracy (the distance between background and truth state can

show small differences because of the random noise, see Equation (4.2)). We

generate our ensembles from size 6 to 1800. We define the minimum en-

semble size experimentally. We get the Pf full rank (rank(Pf ) = 5) with

the minimum ensemble size 6. Hence, all experiments start with 6 ensemble

members. Then, the next ensemble size is set up as 100 and it carries on as
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consecutive multiples of 100 up to 1800 ensemble members. Thus, we use 19

different ensemble sizes in each experiment. Then, we compare the values

of Pf components after each ensemble. To be able to estimate the matrix

Pf , it is expected that each component of the matrix converges to a num-

ber. Therefore, we try to get understanding of how many ensemble members

make the Pf matrix convergence. This can give approximate relationships

between error spreads in the model. Choosing a sufficient and appropriate

convergence condition provides a basis for our experiments.

Assume M and N are subsequent ensemble sizes where M < N . We

define the relative convergence condition as

|eM − eN |
|eM |

< λ (5.1)

where e denotes each component of Pf and λ called convergence condition

limit is an arbitrary number discussed in the experiments. This relative

condition seems appropriate for a convergence condition because some com-

ponents of Pf can have values with different orders of magnitude. Their

approximate values can be seen in Tables (5.2) and (5.5). In these tables,

each presented value is the mean of its values from ensemble size 6 to 1800.

In this project, there are three experiments. In the first one, we set up the

parameters arbitrarily. Then, with respect to these parameters we have an

idea about the convergence of Pf as the ensemble size gets larger. Its results

provide a basis for the parameters used in the other two experiments. We

only change the accuracy and the frequency of observations in Experiment-2

and Experiment-3 respectively.
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From now on when we say convergence behaviour of any component, it

represents a broken line which combines each value calculated by Equation

(5.1) from the ensemble size 6 to 1800. The closeness to the convergence

condition limit λ and the smoothness of this line will be compared in our

experiments.

5.1 Experiment-1

In this experiment, we try to investigate our first and second research ques-

tions (see Section (1.1)). We set up the observation error variances of X, Y, Z

as 10−4 and W,V as 10−2. In other words, we use more accurate observations

in the atmosphere than in the ocean according to the ranges of their error

spreads. Additionally, the observation frequency is [5, 5, 5, 5, 5] so we have

observations in every five time steps for each model variable. We set up the

number of time steps as 20. Hence, we have 4 observations for each variable

X, Y, Z,W and V at times t5, t10, t15 and t20 (we assume there is no obser-

vation at the initial time). This means that there are total 20 observations

in each assimilation period that 12 of them are in the atmosphere while 8 of

them are in the ocean.

Figure (5.1) shows the relative values of Pf components with the en-

semble sizes from 6 to 1800. The values of each component are plotted by

multiplying with an appropriate one of the multiples of 10 to make its evo-

lution in the range of [−1, 1]. For example, the values of V ar(X) in each

ensemble are between 10−5 and 10−4. We plot its values by multiplying 104.

If the value range is between 10−5 and 10−3, it will be plotted by multiplying
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(a) Atmosphere part (b) Ocean part

(c) Atmosphere-Ocean part

Figure 5.1: The relative values of each component of Pf for different ensemble
sizes

103. This way is one of the clearest ways to see their behaviour in the same

scale. Otherwise, it is hard to see their relative changes in different scales.

Their approximate values can be seen in the Experiment-1 part of Table

(5.2). In this table, the represented values are the average of the values of

Pf components from 6 to 1800 ensemble members.

We can see from Figure (5.1), after 1000 ensemble members the most of

Pf components are likely to converge. The significant fluctuations are seen

on Cov(W,V ) (Figure (5.1)(b)) and Cov(X,W ) (Figure (5.1)(c)) with the

ensemble size getting bigger. However, these figures are unsatisfactory in
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the sense of the convergence condition in Equation (5.1). To be able to get

a more clear idea of their convergences, we plot their relative changes with

respect to Equation (5.1) with the ensemble size getting bigger. The results

are seen in Figures (5.2), (5.3) and (5.4). Some peak values cannot be seen

in these figures because we fixed the scale of figures between −0.5 and 1 to

clarify their changes. On these figures, there are two dotted lines: red and

green. We will discuss them later as a limit of convergence condition λ in

Equation (5.1). As we expect from Figure (5.1), the remarkable jumps are

seen on the relative changes of Cov(W,V ) (Figure (5.4)(d)) and Cov(X,W )

(Figure (5.3)(a)) with the ensemble size getting larger.

To have a general idea about how the error in a component is correlated

with the error in another one, we calculate the correlation matrix of Pf rep-

resented in Section (4.3.4). Table (5.1) shows the average values of each

different component of correlation matrix C. We calculate their arithmetic

means from the results of each ensemble size from 6 to 1800. We do not

think plotting their values at each ensemble member necessary, because the

values of each component is quite close to the its mean value. From this

table, we can see there is almost no correlation between the errors of X and

W , and similarly between the errors of W and V . On the other hand, the

atmosphere itself has highly correlated errors.

If we consider the convergence behaviour of one component with its cor-

responding correlation mean value, we can see that they seem to be related.

For example, consider the case of Cov(X,W ) in Figure (5.3)(a), it has the

most spurious behaviour with the ensemble sizes and then we see in Table

(5.1) that the errors of W and V have the lowest correlation (−0.0151). On
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the other hand, the convergence behaviour of Cov(X, V ) in Figure (5.3)(b)

has much smoother behaviour than Cov(X,W ). Then, we look at the error

correlations of X and V in Table (5.1), they are almost fully correlated with

the correlation value 0.8558. Therefore, we can conclude that the less corre-

lation in errors the less convergence tendency in its convergence behaviour,

and vice versa. From this view, we can expect to see the best convergence

behaviour on the variances of X, Y, Z,W and V because they are fully cor-

related in their own right ( each diagonal term of correlation matrix C is 1).

This can determine the limit of convergence condition λ.

Now, we can focus on the limit of convergence condition λ. In the figures

showing relative conditions of each model variable, there are two specified

λs. The red dotted line is the line of 0.05 whereas the green one is that of

0.2. From Figure (5.2), to be able to make the variances of each component

always under the green dotted line after a certain ensemble size (i.e the size

of 300), we can define the limit of convergence condition as the line 0.2 (the

green dotted line). Otherwise, on the condition of 0.05 (the red dotted line)

we cannot generalize that these variances have always satisfied the conver-

gence condition after a certain ensemble size. Thus, from now on we define

the limit of convergence condition λ as 0.2.

The reason for significant jumps on the convergence behaviour of Cov(X,W )

can be because of the model system (see Equation (3.1)). There is no direct

relationship between X and W variables. This may indicate that more en-

semble members are needed to capture the information between their errors.

From this view, we can expect similar jumps on the convergence behaviours

of Cov(Y, V ) , Cov(Z,W ) and Cov(Z, V ), because there are also no direct
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Atmosphere Atmosphere-Ocean
Cor(X,Y) 0.7737 Cor(X,W) -0.0151
Cor(X,Z) -0.6748 Cor(X,V) 0.8558
Cor(Y,Z) -0.9596 Cor(Y,W) 0.5304

Cor(Y,V) 0.4471
Ocean Cor(Z,W) -0.5340

Cor(W,V) -0.1113 Cor(Z,V) -0.2847

Table 5.1: Averages of each error correlation from the ensemble size 6 to
1800 in Experiment-1

relationships between Y and V , Z and W , and Z and V . However, their

convergence behaviours are much smoother than that of Cov(X,W ) with

the ensemble size getting bigger. This can be because Y and Z have non-

linear formulas in the model system that can help the variables capture the

information more quickly than linear ones.

In Table (5.1), the error correlations of (Y, V ) , (Z,W ) and (Z, V ) are

0.4471, -0.5340 and -0.2847 respectively. From our hypothesis (the less

correlation in errors the less convergence tendency in its convergence be-

haviour, and vice versa), we expect that Cov(Z,W ) have the smoothest

convergence behaviour than Cov(Y, V ) and Cov(Z, V ) with respect to their

correlation magnitudes. Figures (5.3)(d), (e) and (f) show that their be-

haviour agrees with our hypothesis. However, when we look at the ensemble

size where the components satisfy the convergence condition first, Cov(Z,W )

converges with the highest ensemble size 300 among Cov(Y, V ) , Cov(Z,W )

and Cov(Z, V ). It is important to note that interpreting the results by just

considering a specific point in figures may not be realistic, because we do

only one experiment with each ensemble size. The next experiment with

exactly same parameters can show some differences because of the random
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numbers used in generating ensemble members. Therefore, considering the

convergence behaviours of the components of Pf from the ensemble size 6 to

1800 in figures can be more logical to compare the convergences of compo-

nents.

As the ensemble size getting bigger from 6 to 1800, the convergence be-

haviour of Cov(W,V ) shows significant fluctuations especially up to the size

800 in Figure (5.1)(b). In addition, it can be seen in Table (5.1) that there

is a small correlation in the errors of W and V (Cor(W,V)=-0.1113). These

results can be from the parameters we set up. In this experiment, we have

less accurate observations in the ocean (each variance of W and V is 10−2)

than in the atmosphere (each variance of X, Y and Z is 10−4), and the

number of observations in the ocean (8 observations) less than in the atmo-

sphere (12 observations). In the following two experiments, Experiment-2

and Experiment-3 we will examine the effects of the accuracy of ocean ob-

servations and the number of ocean observations on the convergence of Pf

respectively. The setup parameters used in this experiment will provide a

basis for the parameters used in other two. In the figures, the results of each

following experiment will be plotted with the results of this experiment to

notice their differences clearly.

5.2 Experiment-2

In this experiment, we examine the effects of the accuracy of ocean observa-

tions on the convergence of Pf , which is a part of our third research question

(see Section (1.1)). Thus, we do similar experiments as in Experiment-1 with

more accurate ocean observations. The only difference in the parameters set
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up in the previous experiment is that the observation error variance of W

and V becomes 10−4 from 10−2. By doing so, we make the observation vari-

ances of all variables (X, Y, Z,W and V ) the same. Table (5.2) shows the

approximate value of each component of Pf . This table is created by the

mean of the values of each Pf component as the ensemble size gets bigger

from 6 to 1800. We compare the results of Experiment-1 and 2 and see that

more accurate ocean observations lead the errors to spread less. Remarkable

decreases are seen in the ocean covariances and the cross-covariances between

the atmosphere and ocean. However, the convergence property becomes more

erratic in general that we can also expect from Table (5.3) according to our

hypothesis. In other words, when we get more accurate ocean observations

there are more fluctuations on the convergence behaviour of each component

of Pf . In this table, except the atmosphere part, the approximate error cor-

relations in the ocean and in the atmosphere-ocean part are almost zero so

we can expect significant fluctuations on their convergence behaviours. Then

to see whether or not our expectations are satisfied, the relative changes of

Pf components are plotted in Figures (5.5),(5.6) and (5.7). The figures also

include the results of the first experiment to see the differences between them

clearly. More accurate ocean observations cause significant jumps in conver-

gence behaviours of most Pf components.

In Figure (5.6), except the case of Cov(X,W ) the convergence behaviour

shows more fluctuations in overall when we compare the Experiment-1 re-

sult. For example, Cov(X, V ) does not satisfy the convergence condition

after 500 ensemble members although it always satisfies the convergence con-

dition after 300 ensemble members in Experiment-1. However, in the case

of Cov(X,W ) the overall convergence behaviour is better than in the first

43



experiment. When we compare the error correlations of both experiments

in Tables (5.1) and (5.3), it can be seen that while Cor(X,W ) increases

from -0.0151 to -0.1188 (consider the magnitudes of numbers), others in the

atmosphere-ocean part decrease remarkably.

In the variances figure (Figure (5.5)), all of them satisfy the converge con-

dition first with less ensemble size than that of Experiment-1. For example,

V ar(Z) (in Figure (5.5)(c)) satisfies the convergence condition first with the

ensemble size 200 in Experiment-1 whereas it needs 100 ensemble members

in Experiment-2.

As we can see in Figure (5.7), more accurate ocean observations make

the atmosphere covariances Cov(X, Y ), Cov(X,Z), Cov(Y, Z) convergence

with all ensemble sizes. If we look at their error correlations in Table (5.3),

they are almost fully correlated with the values 0.9915, −0.9758 and −0.9570

respectively. However, in the case of Cov(W,V ) there is an almost opposite

situation. While Cov(W,V ) converges with the 300 ensemble members in

Experiment-1, here it needs much more ensemble members than in the first

experiment to converge. A decrease from −0.1113 to 0.0233 in their error

correlations can also prove the convergence behaviour of Cov(W,V ). The

reason for this can be because we are less observations in the ocean than in

the atmosphere. The following experiment shows the results of the case with

more ocean observations than in Experiment-1.
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Atmosphere
Experiment-1 Experiment-2

Var (X) 0.00005324 0.00001426
Var (Y) 0.00004628 0.00002096
Var (Z) 0.00006124 0.00003629
Cov (X,Y) 0.00003841 0.00001714
Cov (X,Z) -0.00003864 -0.00002220
Cov (Y,Z) -0.00005113 -0.00002639

Ocean
Experiment-1 Experiment-2

Var (W) 0.00389633 0.00002497
Var (V) 0.00466764 0.00002583
Cov (W,V) -0.00046063 0.00000019

Atmosphere-Ocean
Experiment-1 Experiment-2

Cov(X,W) -0.00000321 -0.00000260
Cov(X,V) 0.00042373 -0.00000053
Cov(Y,W) 0.00022932 -0.00000174
Cov(Y,V) 0.00020299 -0.00000221
Cov(Z,W) -0.00026479 0.00000298
Cov(Z,V) -0.00014751 -0.00007084

Table 5.2: Average values of Pf components from the ensemble size 6 to 1800
in Experiment-1 and Experiment-2

5.3 Experiment-3

In this experiment, we examine the effects of the number of ocean obser-

vations on the convergence of Pf , which is another part of our third re-

search question (see Section (1.1)). Thus, we do similar experiments as in

Experiment-1 with more ocean observations. The only difference in the pa-

rameters is that we set up the number of ocean observations as 20 in total

(in Experiment-1 it was 8). In this case, we have more observations in the

ocean than in the atmosphere, which has 12 observations in total. We plot
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Atmosphere Atmosphere-Ocean
Cor(X,Y) 0.9915 Cor(X,W) -0.1188
Cor(X,Z) -0.9758 Cor(X,V) -0.0328
Cor(Y,Z) -0.9570 Cor(Y,W) -0.0621

Cor(Y,V) -0.0998
Ocean Cor(Z,W) 0.0758

Cor(W,V) 0.0233 Cor(Z,V) 0.1166

Table 5.3: Averages of each error correlation from the ensemble size 6 to
1800 in Experiment-2

their relative changes in Figures (5.8),(5.9) and (5.10) by comparing with the

first experiment. Table (5.5) shows the approximate values of each compo-

nent of Pf . This table is created by the mean of values of Pf components

from ensemble size 6 to 1800. We compare the results of Experiment-1 and

3 and see that more ocean observations lead the errors to spread slightly less.

In both experiments (Experiment-1 and 3), the convergence behaviours

of variances are quite similar (see Figure (5.8)). We can say more observa-

tions in the ocean make their convergence behaviours a bit better than in

Experiment-1 especially in the cases of V ar(Z). It seems always convergence

with all ensemble sizes from 6 to 1800 although it needs minimum 200 en-

semble members to converge in the Experiment-1.

In Figure (5.9), we can see again there is no big differences on conver-

gence behaviours of Pf components between two experiments. However,

Cov(X,W ) converge with less ensemble size than in Experiment-1. Here, it

seems convergence with 1000 ensemble members although in the first exper-

iment it needs 1200 ensemble members to converge. It would be important

to remember that we need to focus on general convergence behaviours from
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the ensemble size 6 to 1800 in the figures because at each ensemble size the

values can show some differences if we do same experiment with exactly same

parameters. Random numbers used generating ensemble members can cause

small differences in their values at the certain ensemble size. For the case of

Cov(X,W ), we can compare their correlation changes between Table (5.1)

and (5.4). The error correlation between X and W increase slightly in the

case of more ocean observations (in Experiment-1). It changes from −0.0151

to −0.0351. Even if an increase in error correlation of variables is too slight,

this can lead the corresponding covariance component to need less ensem-

ble members to converge. In general, when we compare Experiment-1 and

Experiment-3, we can see that the correlations of variables almost same in

both case (see Table (5.3) and (5.4)). Therefore, we should not expect big

differences in their convergence behaviours. Interestingly, more observations

in the ocean do not make noticeable changes on the convergence of Pf .

Atmosphere Atmosphere-Ocean
Cor(X,Y) 0.8062 Cor(X,W) -0.0351
Cor(X,Z) -0.7193 Cor(X,V) 0.7987
Cor(Y,Z) -0.9539 Cor(Y,W) 0.4394

Cor(Y,V) 0.3991
Ocean Cor(Z,W) -0.4194

Cor(W,V) -0.1279 Cor(Z,V) -0.2369

Table 5.4: Averages of each error correlation from the ensemble size 6 to
1800 in Experiment-3
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Atmosphere
Experiment-1 Experiment-3

Var (X) 0.00005324 0.00003756
Var (Y) 0.00004628 0.00003586
Var (Z) 0.00006124 0.00005154
Cov (X,Y) 0.00003841 0.00002915
Cov (X,Z) -0.00003864 -0.00003054
Cov (Y,Z) -0.00005113 -0.00004090

Ocean
Experiment-1 Experiment-3

Var (W) 0.00389633 0.00241492
Var (V) 0.00466764 0.00313906
Cov (W,V) -0.00046063 -0.00030320

Atmosphere-Ocean
Experiment-1 Experiment-3

Cov(X,W) -0.00000321 0.00000035
Cov(X,V) 0.00042373 0.00026814
Cov(Y,W) 0.00022932 0.00014535
Cov(Y,V) 0.00020299 0.00011811
Cov(Z,W) -0.00026479 -0.00016945
Cov(Z,V) -0.00014751 -0.00007084

Table 5.5: Average values of Pf components from the ensemble size 6 to 1800
in Experiment-1 and Experiment-3
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(a) Var(X)

(b) Var(Y) (c) Var(Z)

(d) Var(W) (e) Var(V)

Figure 5.2: The values of convergence condition of variances for different
ensemble sizes in Experiment-1
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(a) Cov(X,W) (b) Cov(X,V)

(c) Cov(Y,W) (d) Cov(Y,V)

(e) Cov(Z,W) (f) Cov(Z,V)

Figure 5.3: The values of convergence condition of cross-covariances for dif-
ferent ensemble sizes in Experiment-1
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(a) Cov(X,Y) (b) Cov(X,Z)

(c) Cov(Y,Z) (d) Cov(W,V)

Figure 5.4: The values of convergence condition of covariances for different
ensemble sizes in Experiment-1
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(a) Var(X)

(b) Var(Y) (c) Var(Z)

(d) Var(W) (e) Var(V)

Figure 5.5: The values of convergence condition of variances for different
ensemble sizes in Experiment-2 are compared with the results in Experiment-
1
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(a) Cov(X,W) (b) Cov(X,V)

(c) Cov(Y,W) (d) Cov(Y,V)

(e) Cov(Z,W) (f) Cov(Z,V)

Figure 5.6: The values of convergence condition of cross-covariances for
different ensemble sizes in Experiment-2 are compared with the results in
Experiment-1
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(a) Cov(X,Y) (b) Cov(X,Z)

(c) Cov(Y,Z) (d) Cov(W,V)

Figure 5.7: The values of convergence condition of covariances for different
ensemble sizes in Experiment-2 are compared with the results in Experiment-
1
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(a) Var(X)

(b) Var(Y) (c) Var(Z)

(d) Var(W) (e) Var(V)

Figure 5.8: The values of convergence condition of variances for different
ensemble sizes in Experiment-3 are compared with the results in Experiment-
1
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(a) Cov(X,W) (b) Cov(X,V)

(c) Cov(Y,W) (d) Cov(Y,V)

(e) Cov(Z,W) (f) Cov(Z,V)

Figure 5.9: The values of convergence condition of cross-covariances for
different ensemble sizes in Experiment-3 are compared with the results in
Experiment-1
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(a) Cov(X,Y) (b) Cov(X,Z)

(c) Cov(Y,Z) (d) Cov(W,V)

Figure 5.10: The values of convergence condition of covariances for different
ensemble sizes in Experiment-3 are compared with the results in Experiment-
1
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Chapter 6

Discussion

6.1 Summary and Conclusion

The aim of this project is to investigate following questions:

(1) How many ensemble members are needed to capture the forecast co-

variances correctly?

(2) What are the effects of error correlations on the estimation of forecast

covariances?

(3) How these are affected by observation errors and frequencies?

To do this, first we generate a method which is an ensemble of non-

incremental 4DVar methods. In this method, we generate ensemble members

by perturbing background and observations with different random numbers.

Then, we try to estimate the forecast error covariance matrix with different

ensemble sizes. We try to look at the convergence behaviour of Pf compo-
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nents as the ensemble size getting larger and demonstrate the effects of error

correlations on the convergence of Pf . Then, by changing the accuracies

and the number of ocean observations we try to show the differences in the

convergence behaviours of Pf components.

In our experiments, to be able to estimate Pf , we investigate the conver-

gence behaviour of its components as the ensemble size getting bigger. Each

components of Pf converges to different numbers which can have different

orders of magnitude. Thus, relative convergence condition is chosen to de-

termine their convergence. Every component of Pf is tested separately with

respect to the relative condition. We mostly focus on their convergence be-

haviour not the numbers they converge. We can also guess their convergence

behaviour by looking at the error correlations. From our experiment results,

we see that there are strong relationship between convergence behaviour of

one component of Pf and the error correlation of its corresponding variables.

The less correlation in errors the less convergence tendency in its convergence

behaviour, and vice versa. It is important to know that the experimental se-

tups used in this dissertation are not ideal ones. We use particular parameters

sets. It would be useful change the parameters and do similar experiments.

In the first experiment, we try to estimate the matrix Pf in the sys-

tem of more accurate observations with more observations in the atmosphere

than in the ocean. We see that there are significant jumps on the conver-

gence behaviour of Cov(X,W ) and Cov(W,V ). When we look at the error

correlations of (X and W ) and (W and V ) separately, there are almost

no correlation between them. The reason for the convergence behaviour of

Cov(X,W ) can be because of the model system. There is no direct con-
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nection between X and W . From this view, we expect similar convergence

behaviour for Cov(Y, V ), Cov(Z,W ) and Cov(Z, V ), because they have also

no direct connection between their corresponding variables in the model sys-

tem. However, they are more or less close to the convergence condition limit

even though they do not always satisfy the convergence condition from the

ensemble size 6 to 1800. As we expect, they have more error correlations

in their corresponding variables than Cov(X,W ). The differences can be

from Y and Z have nonlinear formulas in the model system, while X has

linear one. Nonlinear formulas can help the variables to capture the relation-

ship between them more quickly than linear ones. This can be a reason for

why Cov(X,W ) has higher fluctuations in its convergence behaviour than

Cov(Y, V ), Cov(Z,W ) and Cov(Z, V ). In the case of Cov(W,V ), the reason

for its convergence behaviour can be because of the parameters we set up.

In this experiment, there are less accurate and less observations in the ocean

than in the atmosphere. In the other experiments, the results are compared

with the first experiment results separately.

In the second experiment, we examine the effects of ocean observation

accuracies on the estimation of Pf . The only difference in the parameters

set up in the first experiment is that the ocean observations become more

accurate than in the first experiment. In this experiment, most components

of Pf show remarkable fluctuations in their convergence behaviours. It can

also be checked from their error correlations. Most errors become almost

uncorrelated. Interestingly, more accurate observations in ocean lead the

covariances of ocean variables to show less convergence tendency with each

ensemble size. As a result, estimating Pf becomes more difficult with more

accurate ocean observations than in the case of Experiment-1.
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In the third experiment, it is investigated that the effects of more ocean

observations on the estimation of Pf . We only make the number of ocean

observations more than in the case of Experiment-1. Even if we make the

number of ocean observations more than two times, the results are quite

similar in the both experiments (Experiment-1 and 3). We can also see this

result by comparing the error correlations. In both of these experiments,

the error correlations of each component are almost same. As a result, esti-

mating Pf are not be affected too much by the number of ocean observations.

In our experiments, we try to estimate the matrix Pf by investigating

the convergence behaviours of its components separately as the ensemble

size gets larger. Getting an exact conclusion is difficult in our case because

we set up different ensemble sizes and do the experiment once for each of

them. It would be useful to do same experiment more than once with the

same parameters to be able to generalize the results. However, it needs more

computational work in terms of time. If we do same experiments with exactly

same parameters, the results can show some differences from those presented

here. Random numbers can affect the results, because the ensemble members

are generated by using different random numbers.

6.2 Future Work

In this dissertation, we produce the ensemble of initial analysis states by

using the same background error covariance matrix B for one assimilation

window. Then, we forecast each analysis over the assimilation window by

61



discretizing the model step by step. At the final time, we have an ensemble

based forecast error covariance matrix Pf which we try to estimate in our

experiments. After the estimation of the matrix, it should be used for the

next assimilation window as a background error covariance matrix. Then, it

would be great to generate new analysis ensemble members by using Pf .

The matrix Pf includes the effects of the forecast. Investigating the con-

vergence of Pa, which is the analysis error covariance matrix at the initial

time, would be salient to eliminate the forecast effects on this matrix. We

would suggest to do same experiments for the estimation of Pa.

We only study on the assimilation time length 1. More time length can

lead the analysis trajectories spread more. Investigating the effects of the

different time length on the convergence of Pf can be useful.
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