
Adaptive Mesh Refinement using Subdivision
of Unstructured Elements for Conservation

Laws1

Daniel B. Vollmer

1st September 2003

I confirm that this is my own work and the use of all material
from other sources has been properly and fully acknowledged.

1Submitted to the Department of Mathematics, University of Reading, in par-
tial fulfilment of the requirements for the Degree of Master of Science.

mailto:maven@maven.de

Abstract

An adaptive method based on recursive subdivision of unstructured elements
for the solution of conservation laws is presented. The refinement of cells is
based on regular subdivision into four children as indicated by a gradient-
detector and is carried out “Just-In-Time” before the actual computation on
that element takes place. In addition to spatial refinement, temporal refine-
ment is carried out in conjunction with “lock-step” time-stepping to guaran-
tee the availability of the proper states at the correct times across the mesh
on all scales. The approach uses standard slope-limited finite volume meth-
ods of MUSCL-Hancock type with slight modifications to cater for different
levels of subdivision in adjacent elements. We present some background to
AMR and the finite volume framework, the algorithm itself and conclude
with numerical examples of linear and non-linear scalar conservation laws in
two dimensions.

Contents

1 Introduction 5

2 Background 7
2.1 Adaptive Mesh Refinement . 7

2.1.1 Philosophy . 7
2.1.2 Implementations . 8
2.1.3 Consequences . 9

2.1.3.1 “Buffer Zones” 9
2.1.3.2 Clustering . 9
2.1.3.3 Overlaid Grids 9

2.2 The Finite Volume Framework 10
2.2.1 Derivation . 11
2.2.2 Control Volumes . 11
2.2.3 Numerical Fluxes . 12
2.2.4 Boundary Conditions and Source Terms 13
2.2.5 Higher-Order Accuracy 14

2.2.5.1 Limited Central Difference (LCD) 16
2.2.5.2 Maximum Limited Gradient (MLG) 16
2.2.5.3 Projected LCD (PLCD) 17

3 Using Subdivision for Refinement 18
3.1 Subdivision Strategy . 18
3.2 Data Structures . 19
3.3 Accuracy and Consequences 20
3.4 The Algorithm . 21

3.4.1 Set-Up . 21
3.4.1.1 Top-Level Mesh 21
3.4.1.2 Initial Conditions 22
3.4.1.3 Initial Mesh Adaption 22

3.4.2 Advancing Time . 23
3.4.2.1 Time Stepping 23

2

3.4.2.2 Stability and Temporal Refinement 24
3.4.3 Solution Update . 26

3.4.3.1 Edge Fluxes 27
3.4.3.2 Changes to Gradient Operators 29

3.4.4 Refinement / Subdivision 29
3.4.5 Derefinement . 31

4 Results 32
4.1 Linear Advection . 32

4.1.1 Estimating Order of Accuracy 33
4.1.2 Rotating Slotted Cylinder 35

4.1.2.1 Quality of Solution 35
4.1.2.2 Impact of Limiters 37
4.1.2.3 Cost of Refinement 38

4.2 Comparison to a Fixed Mesh 40
4.2.1 Estimating Cost . 41
4.2.2 Resulting Errors . 42

4.3 Nonlinear Problems . 42
4.3.1 Burger’s Equation . 43

5 Conclusions 47
5.1 Further Work . 48

A Acknowledgments 49

B Bibliography 50

3

List of Figures

2.1 Traditional AMR . 8
2.2 Overlaid Grids . 10
2.3 Conventions for the Flux Computation 13
2.4 Constant vs Piecewise Linear Reconstruction 14
2.5 Naming Convention for the Limiting Procedure 15

3.1 Subdivision vs Split of an Element 19
3.2 Quad-Tree Datastructure . 20
3.3 Adapted Top-Level Mesh . 23
3.4 A Mesh taken Apart . 25
3.5 Time-Stepping Procedure . 26
3.6 Flux Computation for Three Types of Neighbours 27
3.7 Normal and Implicit Subdivisions 30

4.1 Order of Accuracy . 33
4.2 Exact and MLG Solution of the Double Sine Wave 34
4.3 PLCD and LCD Solution of the Double Sine Wave 34
4.4 Comparison of Different Limiters 36
4.5 Workload during an AMR Computation 38
4.6 Cost per Refinement . 39
4.7 Adaptive vs Fixed Mesh . 42
4.8 Solution to Burger’s Equation 44
4.9 Workload for Burger’s Equation 45

4

Chapter 1

Introduction

This paper describes an adaptive finite volume scheme for computing solu-
tions to hyperbolic conservation laws on unstructured (triangular) meshes
in two dimensions. Solutions to this class of problems have a number of
features which distinguish them from other types of partial differential equa-
tions (PDEs) — for example elliptic problems. Hyperbolic PDEs often fea-
ture shocks and other forms of non-stationary discontinuities in some parts of
their domain, whereas other regions are very smooth and easily discretised.
This led to the development of adaptive methods for these problems that try
to concentrate the computational effort where it is needed most.

One particularly successful approach to this has been developed by Berger
and Oliger [4] and works on rectangular cartesian grids. Nevertheless, the
importance of unstructured meshes has soared as they are easier to align to
boundaries or other features of the problem. But very little work has been
done on adaptive methods on unstructured meshes. For example, Ahmadi
et al. [1] have used an adaptive method for solving the Euler equations, but
they only solve for steady-state problems and their “mesh adaption” is closer
to a partial remeshing than adaptive refinement. Similarly, Berzins et al. [5]
have developed a system that incorporates adaptive refinement; they apply
“static rezoning” (remeshing in disguise) if their error tolerance is exceeded.
Barth and Larson [2] mention an adaptive procedure in passing, but give
very little detail as their work is focused on error estimation.

The algorithm closest to the one described herein is most likely the one
used by Lou et al. [13] for their PYRAMID-package; it is essentially an
extension of Berger and Oliger’s to triangular / tetrahedral elements com-
bined with efficient partitioning for parallelism. If one were to grade the
above approaches to adaptivity from most coarse and static (e.g. complete
remeshing every N time-steps) to most fine-grained and dynamic, most of
them would be classified as rather static — with Berger and Oliger’s [4] (and

5

consequentially Lou et al.’s [13]) somewhere in the middle.
By contrast, the method we describe leans very much towards the dy-

namic end of the imaginary scale and even modifies the mesh geometry
during the computational phase. Thus, the distinction between adaption
/ refinement and traditional computation is no longer given — we refer to
this refinement strategy as “Just-In-Time”1. Furthermore, the whole domain
is (at least conceptually) covered by a single mesh instead of multiple overlaid
meshes at differing resolutions.

One of the central factors which makes our method different from many
others is that it is based on regular subdivision of elements instead of splits
(for example as described by Rivara [14]). Splitting has the advantage of
generating fewer elements than subdivision, but a split generally changes
the aspect-ratio of the element and thus requires continually monitoring its
anisotropy and taking proper counter-measures should it become too large.

The proposed scheme is general enough to work in conjunction with finite
volume methods of almost any type. An implementation of the subdivision
strategy described herein has been used to solve both linear and nonlinear
problems with high accuracy and efficiency using a traditional slope-limited
MUSCL-Hancock scheme [9].

1This term might be familiar to some readers from the methodology employed by many
JavaTM virtual machines.

6

Chapter 2

Background

2.1 Adaptive Mesh Refinement

2.1.1 Philosophy

Recently, methods incorporating adaptive mesh refinement (AMR) have be-
come recognised as a reliable and efficient means to compute numerical so-
lutions to large-scale problems involving (non-linear) hyperbolic partial dif-
ferential equations. The main idea behind AMR is to concentrate the com-
putational effort where it is needed most — e.g. using a high resolution near
“interesting” features of the solution and a lower resolution for its smooth
regions.

This is somewhat analogous to using mesh generation for steady-state
problems (most often in conjunction with finite elements). The better the
mesh is adapted to the geometry and features of the problem, the more
accurate the solution will be. Of course, for non-steady problems the updated
solution will reflect a slightly different state and the original mesh might no
longer be optimal. AMR remedies this by adapting the mesh to reflect the
updated solution.

The use of adaptive methods obviously requires different parts of the
computational domain to be represented at different resolutions, which in
turn drives a need for more complicated data structures to represent them
— usually some form of trees instead of simple arrays. These structures need
to be dynamic enough to support frequent changes which occur at least every
few time-steps.

7

2.1.2 Implementations

Most implementations of adaptive mesh refinement (e.g. [6] or [18]) are based
on the very general approach developed by Berger and Oliger [4]. Their
algorithm works on recursively embedded regular cartesian grids, although
some restrictions apply as to how this embedding can be done; usually rotated
grids with half the step-size are used.

The outline of their algorithm is as follows (see Figure 2.1 for an illustra-
tion):

1. Calculate the solution on the current grid.

2. Estimate the error for all points in the current grid and mark the ones
that exceed a predefined threshold. Also check that the resolution of
the current mesh is still needed.

3. Cluster the flagged points into new grids such that the unnecessarily
refined area is kept to a minimum — but without creating too many
small grids.

4. Up-sample the data from the current (coarser) grid onto the new grid(s).

5. Recursively apply the procedure to the newly created grids, reducing
the time-step to conform to stability requirements.

6. Down-sample from the more accurate finer grid(s) onto the current
(coarser) grid.

7. Repeat for the next time-step.

Steps 2–4 are generally only done every N time-steps. Typical values for
N would be somewhere between 4 and 8, depending on the problem.

Figure 2.1: The three main steps of Berger and Oliger’s [4] algorithm (from
left to right): Compute, Flag Errors, Cluster.

8

2.1.3 Consequences

From the previous description of the algorithm, we can make a out a few
problematic consequences of those above steps, which will be relevant in the
later comparison of our approach.

2.1.3.1 “Buffer Zones”

Unless error-estimation and the subsequent refinement are carried out every
time-step on every grid, the clustering algorithm needs to leave a “buffer
zone” around every refined grid as some solution features — which are only
properly resolved on the fine mesh — may move out of the refined region
in between those time-steps. The optimal size of this zone depends on the
problem and is difficult to estimate a priori.

If this “buffer zone” is small, only few points are unnecessarily refined
— thus making the computation of the solution on the refined mesh more
efficient — but the expensive regridding step has to be done more often to
catch any features leaving the high-resolution mesh. If on the other hand the
“buffer zone” is large, then the computation can become the bottleneck as
too many points are refined speculatively. But that in turn makes it possible
to do the regridding less often.

2.1.3.2 Clustering

The process of taking a point cloud and grouping these efficiently — accord-
ing to some metric — into shapes is called clustering. The point cloud in
question consists of the points on the current mesh that have been marked
as needing refinement and the shapes are rotated rectangles. The aim is to
calculate a set of bounding rectangles whose union encloses all the flagged
points while keeping the covered area as small as possible.

Clustering is a provably hard problem, and no optimal algorithm exists.
Most of the existing ones are either too slow to be used for this sort of
problem or use (fallible) heuristics. Most implementations use a fixed set of
rules for pattern recognition of the dominant cases and fall back to a more
complicated approach if the previous results are unsatisfactory.

2.1.3.3 Overlaid Grids

In the regions of a grid where refined child-meshes exist, the solution is
calculated effectively twice — once on the coarse and once on the fine grid,
with the coarse solution later being overwritten with the down-sampled fine
solution. Although one of these two computations is not done at the refined

9

Figure 2.2: Finer meshes overlaid onto a coarse mesh. Correctly up- and
down-sampling from one resolution to the other is rather difficult.

resolution it is still a considerable computational effort expended in vain.
Because refined grids are allowed to overlap, worst case behaviour can result
in major “overcomputation”.

The up- and down-sampling process can also become quite difficult —
in particular for the commonly used rotated meshes which allow for much
more efficient clustering — as can be seen in Figure 2.2. Expensive bilinear
or bicubic reconstructions may be necessary in order to achieve this.

Most of these points were already acknowledged by Berger and Oliger
[4], but as they are direct consequences of the method, they are difficult or
impossible to circumvent in general. In spite of these caveats, their general
approach to AMR has been so successful that it has become the de-facto
standard.

2.2 The Finite Volume Framework

Finite volume methods are widely used for computing numerical solutions of
non-linear systems of conservation laws. Depending on one’s viewpoint, they
can be regarded as either finite difference schemes or subdomain collocation
finite element methods. Furthermore, they can easily be defined on any type
of mesh, but are most widely used on regular cartesian grids as this allows
for an easy extension of 1D-schemes to higher dimensions via operator or
dimensional splitting [11].

10

The following sections gives a brief overview of finite volume methods
and is partly based on the material from [17]. For simplicity, u is treated as
a scalar quantity but the key points of the discussion hold true for the case
of u being a vector quantity as well. The biggest difference lies in how the
solution to the Riemann-problem is computed (see for example van Leer [10]
or Roe [15]).

2.2.1 Derivation

Consider the following two-dimensional homogeneous conservation law:

∂

∂t
u(x, y, t) +

∂

∂x
f(u(x, y, t)) +

∂

∂y
g(u(x, y, t)) = 0. (2.1)

If we now proceed to integrate Equation 2.1 over the discrete volume Ω with
boundary ∂Ω we obtain∫

Ω

(
∂

∂t
u +

∂

∂x
f(u) +

∂

∂y
g(u)

)
dΩ = 0,

which by application of the Divergence Theorem becomes

∂

∂t

∫
Ω

u dΩ +

∮
∂Ω

~f · d~n = 0,

where ~f = (f, g)T and ~n is the outward normal to ∂Ω. This can be applied
to a control volume Ωj that is then discretised to give

∂

∂t

(
uj VΩj

)
+

edges
of ∂Ωj∑
k=1

~f ∗k · ~nk = 0, (2.2)

in which uj is defined to be the average solution value within Ωj, VΩj
denotes

the area of the control volume Ωj, ~f ∗k is a numerical flux function (across
edge k) and ~nk is again the outward normal to edge k (scaled by the length
of the edge).

2.2.2 Control Volumes

Note that Equation 2.2 is independent of the number of edges of the con-
trol volume. This makes it possible for different control volumes to have a
different number of edges. But for the resulting finite volume method to be
conservative, they still have to satisfy a number of properties:

11

1.
N⋃

j=0

Ωj = Ω

(i.e. the union of all control volumes covers the whole domain Ω).

2. Adjacent volumes may overlap as long as each internal boundary is
common to an even number of control volumes (so that the correspond-
ing internal fluxes cancel out).

3. Fluxes along a volume boundary have to be computed independently
of the control volume in which they are considered.

As the control volumes need not coincide with the cells of the compu-
tational mesh, there are two distinct classes of finite volume methods. On
the one hand there are the so called cell-centred schemes where the control
volumes and mesh cells are one and the same and the ujs are thought of as
representative of some point within the cell — usually the centroid, and on
the other hand we have the cell-vertex schemes where they are not identical
and the ujs are associated with mesh nodes.

2.2.3 Numerical Fluxes

For the further discussion, we take the control volumes to coincide with the
mesh cells, resulting in a cell-centred scheme. Thus, ~f ∗k is effectively an
approximation to the flux through edge k of ∂Ωj and depends on the state
(i.e. value of the solution variable(s)) on both sides of the edge and (possibly)
on its position as well as time. This numerical flux is usually computed as
the solution to a standard Riemann-Problem with the two states separated
by a discontinuity.

For a numerical scheme to be conservative, the discretisation of the flux
integrals has to satisfy the above properties. Properties (1)–(2) are trivially
satisfied by a cell-centred scheme and Property (3) can be reduced to the
requirement that for each interior edge AB in the discretisation of Ω

~f ∗AB · ~nAB = −~f ∗BA · ~nBA

⇔ ~f ∗AB = ~f ∗BA.
(2.3)

If this so-called “telescoping” does not take place, spurious flux contributions
will be generated within the domain Ω and thus the total amount of conserved
quantity will be altered. Consequently, the only natural choice to evaluate

12

A

B

Figure 2.3: Conventions for the flux computation across edge AB (as seen
from the shaded element).

the numerical flux is at the mid-point of each edge as that guarantees that
Equation 2.3 holds true.

For example, the standard upwind flux — which is the one used by our
implementation — across edge AB (as shown in Figure 2.3) takes the form

~f ∗AB · ~nAB =

~fAB(uL) · ~nAB if ~λAB · ~nAB ≥ 0

~fAB(uR) · ~nAB otherwise
(2.4)

for the locally frozen wave-speed

~λAB =

~f(uR)−~f(uL)

uR−uL
if |uR − uL| > ε

∂ ~f
∂u

otherwise
. (2.5)

2.2.4 Boundary Conditions and Source Terms

Another strength of finite volume methods is the ease with which boundary
conditions can be incorporated. Periodic boundaries can be achieved by
transporting the flux leaving a boundary back into the opposite side — for an
unstructured mesh this is most easily achieved by modifying the connectivity
information of the mesh. No-flux conditions can handled by ignoring those
edges when summing the fluxes.

Source terms are slightly more complicated as they cannot simply be
accounted for by adding them onto the right-hand side of the equation.

13

Nonetheless they can be dealt with in exactly the same manner as for non-
adaptive methods, see for example van Leer [10] or LeVeque [12] for good
discussions of the problem.

2.2.5 Higher-Order Accuracy

Much effort has been invested to achieve better than first-order accuracy with
finite volume methods. The first hurdle is Godunov’s Theorem, which states
that non-oscillatory constant coefficient schemes can be at most first-order
accurate. This has been overcome by the introduction of non-linear schemes
such as MUSCL, ENO or Flux Corrected Transport (FCT).

One of the more popular ones is van Leer’s MUSCL [9] approach, which
stands for “Monotonic Upstream-Centered Scheme for Conservation Laws”.
It belongs to the class of Godunov-type methods, a class of non-oscillatory
finite volume schemes that incorporate the (exact or approximate) solution
to Riemann’s initial-value problem (or a generalisation thereof). Instead of
piecewise constant states within each cell, MUSCL uses piecewise linear ones
(cf. Figure 2.4) which are carefully constructed from neighbouring states to
both maintain conservation and not increase total variation (i.e. do not
create over- or undershoots).

a) b)

Figure 2.4: a) Constant reconstruction vs b) piecewise linear reconstruction.

This linear reconstruction u′ still has to be conservative in the sense that

1

VΩj

∫∫
Ωj

u′ dx dy = u. (2.6)

14

Equation 2.6 is satisfied if u′ is of the form

u′ = u + ~r · ~L

for ~r being a vector from the centroid of Ωj and a gradient operator ~L. Most
approaches follow Batten et al.’s [3] recommendation to construct a gradient
plane through three nearby centroids A, B and C with normal vector

~n = (PA − PB)× (PC − PB), with Pi =

 xi

yi

ui

and the subsequent gradient operator

~∇(4ABC) =

[
−nx / nu

−ny / nu

]
if nu > ε[

0

0

]
otherwise

. (2.7)

A

B

C
0

Figure 2.5: Naming Convention for the Limiting Procedure.

The gradient operator defined by Equation 2.7 is not yet limited and as
such may exhibit non-physical over- or undershoots at the points where the
operator is evaluated — usually at the midpoint of each edge (cf. Section

15

2.2.3). The limiting of the gradient operator therefore plays an important
role as it directly influences the character and accuracy of the solution.

We present a short overview of the limiters used in Chapter 4. The
labelling used relative to the “current” element 0 is shown in Figure 2.5; u0

refers to the value in the current cell whereas uk refers to the value of the
element on the other side of edge k. Similarly, ~r0k is the vector from the
centroid of 0 to the midpoint of edge k.

2.2.5.1 Limited Central Difference (LCD)

The LCD-limiter is one of the earliest (and still most widely used) limiters
in the context of MUSCL-schemes and is the most diffusive of the limiters
presented here — but still an improvement over first order schemes. This
limiter’s advantages lie in its simplicity and speed.

1. Construct the unlimited gradient operator

~L = ~∇(4ABC).

2. For each edge k calculate the scalar

αk =

max(uk,u0)−u0

~r0k · ~L
if (u0 + ~r0k · ~L) > max(uk, u0)

max(uk,u0)−u0

~r0k · ~L
if (u0 + ~r0k · ~L) < min(uk, u0)

1 otherwise

.

3. Set
~LLCD =

(
min
all k

αk
)

~L.

2.2.5.2 Maximum Limited Gradient (MLG)

Batten et al. [3] introduced the Maximum Limited Gradient operator in
1996 and they have shown that it reduces to Roe’s Superbee limiter in one
dimension, which is the most compressive limiter that still lies within Sweby’s
second order TVD1 region [16]. It is based on computing various gradient
operators in an LCD fashion and then retaining the steepest one of them as
follows.

1. Compute

~L0 = ~LLCD(4ABC), ~L1 = ~LLCD(4AB0),

~L2 = ~LLCD(4A0C), ~L3 = ~LLCD(40BC).

1Total Variation Diminishing.

16

2. Set
~LMLG = ~Li such that |~Li| = max

0≤k≤3
|~Lk|.

From this formulation, it is easy to see that the MLG-limiter is slightly
more than four times as expensive as the LCD-limiter.

2.2.5.3 Projected LCD (PLCD)

The most recent of the three limiters which have been applied in the con-
text of this paper is Hubbard’s [7] Projected LCD-limiter, which relies on
the construction of the “Maximum Principle” (MP) region. This region is
created from a set of inequalities — precisely one for each edge of the ele-
ment — around the centroid of the cell. All points lying within this region
satify the local maximum principle which in turn guarantees that no over-
or undershoots can occur in the linear reconstruction.

1. Construct the unlimited gradient operator

~L = ~∇(4ABC).

2. If ~L does not need to be limited, set

~LPLCD = ~L.

3. Otherwise construct the MP region defined by

min(uk, u0) ≤ u0 + ~r0k · ~L ≤ max(uk, u0)

⇔ min(uk − u0, 0) ≤ ~r0k · ~L ≤ max(uk − u0, 0)

for each edge k, and

4. Project ~L onto the closest point of the MP region so that

~LPLCD = proj
MP

(~L).

Although the numerical construction of the MP region is not as expen-
sive in terms of operation count, it is certainly more complicated than pro-
gramming the MLG-limiter, which is nearly trivial if built onto a working
implementation of the LCD-limiter.

17

Chapter 3

Using Subdivision for
Refinement

The proposed algorithm is based on an ordinary unstructured low-resolution
mesh which we will refer to as the “top-level” or “base” mesh. Such meshes
are easily obtained by either traditional mesh generation or it can be a regu-
larly constructed one (e.g. consisting of equilateral or right-angle triangles).
The elements in this base mesh will be labelled as belonging to “level 0”
(indicating no subdivision). They are then subdivided as necessary subject
to the constraint that neighbouring triangles can differ by at most one level
of subdivision.

3.1 Subdivision Strategy

The subdivision method employed is shown in Figure 3.1a. New vertices are
generated at the mid-points of the edges and used in conjunction with the
original vertices to create three of the the four new triangles. The fourth one
is situated in the centre and uses all three new vertices. This subdivision
scheme equi-distributes the original area so that each “child”-element has 1

4

the area of its parent. An advantage of this subdivision is its preservation
of the anisotropy (width to height ratio) of the original triangle. This is
important as it makes measures such as Lou et al.’s “Mesh Quality Control”
[13] unnecessary — as long as the base mesh is well-formed to begin with,
for example a Delaunay triangulation.

Nevertheless, subdivisions generate slightly more elements than would
have been generated by edge splits [14] which create two new triangles for a
single refined edge (Figure 3.1b) in contrast to four by subdivision. This is
offset by the fact that a simple edge split only refines a single edge whereas the

18

A C

B

1 3

2

4

A C

B

1 2

a) b)

Figure 3.1: a) Subdivision of an element vs a b) split of the edge CA.

subdivision refines all three — which reduces the need for further refinement
of that triangle.

3.2 Data Structures

The elements are kept in a constrained quad-tree data-structure with as
many roots as there are elements in the top-level mesh. A quad-tree is a tree
where each node in the tree has up to four children. The constraint for this
application is that each node of the tree either has four children or it is a
leaf (i.e. it does not have any). These four children are the four elements of
the subdivision as described in Section 3.1. A quad-tree — due to its highly
structured nature — is much more efficient than a fully dynamic mesh (which
generally requires hash-tables or other such mechanisms to locate neighbours,
vertices or edges) in terms of both run-time memory usage and speed of
access.

Although many entries in the tree cover the same area — for example a
triangle and its four children (or their 16 children) — only one set of them is
actively used for computations at any one time. That active level is always
the most refined one and therefore all computations take place with leafs
from the tree to give the highest possible accuracy.

Each triangle also contains information about who its neighbours are and
at which edge they meet. This is necessary for computing the fluxes through
its edges as well as an eventual subdivision or derefinement. It also contains
caches for the gradient operators and the half time-steps (cf. Equation 3.2) so
that their relatively expensive computation only occurs as often as necessary
(i.e. once each time-step).

19

Level 0: 4

����
��

��

�� ��6
66

66
6

$$HHH
HHH

HHH
HH

4 4

zzvvv
vvv

vvv
vv

����
��

��

�� ��6
66

66
6

Level 1: 4 4 4

�� �� �� $$

4 4 4 4 4

zz �� �� ��
Level 2: 4 4 4 4 4 4 4 4

Figure 3.2: Illustration of a (rather sparse) constrained quad-tree.

3.3 Accuracy and Consequences

As can be seen from Equation 2.2 in the discussion of finite volume methods,
the fluxes play a very important role for the accurate discretisation of a
conservation law. For solving any non-trivial equation, these fluxes depend
on the solution variable(s) (e.g. Burger’s equation) and / or location (e.g.
rotational problems). As these fluxes are always calculated across an edge,
the shorter it is the more accurate the flux across it will be — due to the fact
that smaller cells give higher accuracy of solution variables and that smaller
edges have a higher spatial resolution so that the conserved quantities can
be more accurately redistributed to the adjacent cells.

The decision whether an element is to be subdivided or not is therefore
closely related to the magnitude of the numerical fluxes through its edges.
These fluxes in turn depend largely on the states on either side of the edge.
As these fluxes are often only approximate (but conservative) solutions of the
Riemann-problem (e.g. [15]) — especially in the case of systems of equations
— we have decided to rely on the states as subdivision criterion, i.e. refine if
|uL−uR| > εr (where uL, uR are the states on either side of an edge and εr is
a given threshold for refinement) for any edge of the element. This approach
is also known as a gradient detector.

Unfortunately, any useful form of adaptive mesh refinement also needs
to concern itself with the derefinement of regions, particularly for hyperbolic
problems where shocks necessitating refinement can travel through the whole
region of interest leaving a massive amount of refined elements in their wake
which in turn slows the computation to a crawl. Fortunately, the above
choice of subdivision criterion allows for a very closely related test for the
derefinement of elements: Derefine if |uL − uR| < εd (where uL, uR are the
states on either side of an edge and εd is a given threshold for derefinement)

20

for all edges of the element.
This serves as a reminder that refinement is a necessary step of the algo-

rithm (to maintain accuracy) whereas derefinement is an optional step. This
becomes an important consideration when dealing with implicit subdivisions
in Section 3.4.4.

3.4 The Algorithm

This section describes the steps carried out for an adaptive computation
using our subdivision method. This process is governed by three user-defined
parameters (in addition to the other problem-dependent data such as the
mesh, the top-level time-step ∆T , the particular fluxes used — which in
turn describe the equation to be solved, and so on):

1. εr — The sensitivity of the gradient detector to refinement.

2. εd — The insensitivity of the gradient detector for derefinement.

3. N — The maximum level of subdivision carried out on the mesh.

Because we do not want to unnecessarily refine and derefine the same
elements over and over again, it is a requirement that εr is strictly less than
εd. As a rough guideline εd ≈ 2εr.

3.4.1 Set-Up

These tasks are only executed once before the computational loop and as
such are not quite as sensitive to optimisation as some of the other steps
that are carried out thousands of times for each time-step.

3.4.1.1 Top-Level Mesh

The first requirement is a top-level mesh on which the subsequent adaptive
mesh refinement can be carried out. This base mesh is never modified (al-
though it “acquires” many children) and its vertices never move. This mesh
can be produced using a traditional mesh generation package to take ad-
vantage of the geometry of the problem / boundaries or it can be a regular
triangle mesh. If no connectivity information (i.e. which triangles are neigh-
bours and at which edges do they meet) is available, it will also be generated
at this point from the list of vertices and triangle indices.

The elements of the top-level mesh should also have approximately the
same size because all elements within the same level of refinement use the

21

same time-step. In spite of all adaptivity, the base mesh also has to provide
enough initial resolution so that that the gradient detector will be able to
properly estimate where the mesh — due to the initial conditions — needs
subdivision.

3.4.1.2 Initial Conditions

The next step is to populate this mesh with initial conditions. These are
given as a function of x and y in the form u(x, y, 0). As the values within
each cell are area / volume averages, they cannot simply be sampled at the
centroid of the cell. To compute these volume averages analytically, one
would have calculate the area under an arbitrary triangular element placed
on top of the initial conditions. This is far from impossible but very much
dependent on the shape and storage of the initial data.

To facilitate conditions of a more general nature, we have adopted a
stochastic approach which samples the initial conditions at a fixed number
of (pseudo-)random points within the triangle and then averages these sam-
ples to give an estimate of the proper average. The points in the triangle
are generated in barycentric coordinates to guarantee a normal distribution
as presented by Turk [19] while the pseudo-random number sequences are
computed with Knuth’s method [8] for floating-point numbers.

This approach could be extended to use a variable number of samples
depending on the distribution of the initial data, but as this process is only
carried out once during the set-up stage, the subsequent savings are minimal.

3.4.1.3 Initial Mesh Adaption

The process of initial mesh adaption “teaches” the top-level mesh about the
shape (or more accurately the gradients) of the initial data. It uses exactly
the same gradient detector and subdivision strategy as normally employed
during “regular” time-stepping. This ensures that the main computation
code is presented with a valid and representative mesh to start with. The
major difference though is that upon subdivision of a triangle its children are
initialised with newly sampled initial conditions — thus representing them
with higher accuracy as shown in Figure 3.3.

The gradient detector is applied to each cell of the base mesh and — if
εr is exceeded — subdivides the cell in question to yield four new triangles.
These are then given the corrected initial conditions (as the cell average is
now over a smaller area / volume). Then the process is recursively applied to
the new triangles until either the maximum level of subdivision N has been
reached or until the all gradients are smaller than εr.

22

During the subdivision process the proper nesting has to be enforced so
that neighbours in the computational mesh will only differ by at most one
level of subdivision. This necessitates what we call implicit subdivisions (see
Section 3.4.4) which come from nesting rather than computational accuracy
requirements (i.e. the gradient detector).

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Initial Mesh

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Mesh adapted to Initial Conditions

Figure 3.3: A low-resolution base mesh and the same mesh adapted to the
initial condition of the rotating slotted cylinder problem with 5 levels of
subdivision.

3.4.2 Advancing Time

The order of operations is inherently more important for any algorithm that
operates on multiple scales than it is for their uniform brethren. This section
deals with this problem and others that need to be overcome in order to
make progress from one time-step to the next.

3.4.2.1 Time Stepping

The time-derivative has been left undiscretised in Equation 2.2 and can be
discretised using any of the standard approaches — for example Euler’s
method. The MUSCL-scheme with linear reconstruction gives second-order
accuracy in space so that it is only natural to look for second-order time ac-
curacy as well. One such second-order method is the following TVD Runge-

23

Kutta time-stepping defined by

u0 = un
0 −

∆t

VΩ0

edges
of ∂Ω0∑
k=1

~f ∗k (un
0 + ~r0k · ~Ln

0 , u
n
k + ~rk0 · ~Ln

k) · ~nk

un+1
0 =

un
0

2
+

u0

2
− ∆t

2VΩ0

edges
of ∂Ω0∑
k=1

~f ∗k (u0 + ~r0k · ~L0, uk + ~rk0 · ~Lk) · ~nk,

(3.1)

which is rather expensive as it computes the numerical fluxes — and thus
the solution to the Riemann-problem — twice.

An approximation to Equation 3.1 has been formulated by Hancock and
is described by van Leer in [10]. It is of the form

u
n+1/2
0 = un

0 −
∆t

2VΩ0

edges
of ∂Ω0∑
k=1

~f(un
0 + ~r0k · ~Ln

0) · ~nk

un+1
0 = un

0 −
∆t

VΩ0

edges
of ∂Ω0∑
k=1

~f ∗k (u
n+1/2
0 + ~r0k · ~Ln

0 , u
n+1/2
k + ~rk0 · ~Ln

k) · ~nk

(3.2)

and has the major advantage of solving only a single Riemann-problem as
well as constructing half as many gradient operators. It can be viewed as
extrapolating the cell-interface values half a time-step and then using those
as the arguments to the flux-computation. On the other hand, the scheme
is now only approximately TVD and may thus allow small-scale under- or
overshoots to appear in the solution.

3.4.2.2 Stability and Temporal Refinement

Batten et al. provide a CFL-like stability criterion for any of the limiters sat-
isfying Equation 2.6 on triangular grids which restricts the time-step within
each cell to

∆t ≤ V

3 maxk |~λ · ~nk|
(3.3)

for ~λ as defined in Equation 2.5.
This means that smaller cells require a smaller time-step than larger ones.

Therefore the solution in smaller cells needs to be computed more often as
more steps are needed. But the solution procedure needs information about
the states in the neighbouring elements which may or may not have a different

24

resolution — and thus might be updated at a different frequency than the
current cell.

To alleviate these complications, all top-level triangles are assumed to be
of similar size. If this is the case, then the subdivision of any of these base
elements will produce elements of roughly the same area. By induction this
is true for elements at any level of refinement. Therefore all elements which
belong to the same level of subdivision are treated as a unit and use the
same time-step (cf. Figure 3.4). Conceptually, all cells of a subdivision level
are updated in parallel and are therefore prone to the usual parallelisation /
partitioning strategies (e.g. [13]).

0 0.5 1
0

0.5

1
Level 0 Cells

0 0.5 1
0

0.5

1
Level 1 Cells

0 0.5 1
0

0.5

1
Level 2 Cells

0 0.5 1
0

0.5

1
Level 3 Cells

0 0.5 1
0

0.5

1
Level 4 Cells

0 0.5 1
0

0.5

1
Level 5 Cells

Figure 3.4: The 5 different levels of subdivision from Figure 3.3. Note that
their union covers the region exactly once (i.e. no overdraw) and that each
level’s elements need not be contiguous (e.g. levels 3 & 4).

Each subdivided cell has 1
4

the area of its parent and all the cells’ edges
are (approximately) 1

2
the original length. Substituting these into Equation

3.3 at some level M gives

∆t(M + 1) ≤
1
4
V

3 maxk |~λ ·
(

1
2
~nk

)
|

=
1

2

(
V

3 maxk |~λ · ~nk|

)
=

1

2
∆t(M).

25

Thus we need to (at least) halve the time-step for each additional level of
refinement, i.e.

∆t(M) = 2−M∆T,

where ∆T is the time-step used on the top-level mesh.
The formulation of Equation 3.2 implies that for the update of a par-

ticular cell one needs to access the states in the neighbouring cells. These
neighbouring cells — due to our nesting requirement — may be of a higher
(by one level), lower (again by one level) or of the same resolution. The
time-stepping of each level therefore has to be done with great care so that
the neighbouring elements from an adjacent level are also evolved to the
proper point in time. We refer to this as “lock-step” time-stepping and its
pyramid-structure is depicted in Figure 3.5.

level
��

time //

0.0
/.-,()*+1

// 1.0

0.0
��

OO

/.-,()*+2
// 0.5

�� /.-,()*+9
// 1.0

��

OO

0.0
��

OO

/.-,()*+3
// 0.25

�� /.-,()*+6
// 0.5

��

OO

7654012310
// 0.75

�� 7654012313
// 1.0

��

OO

0.0
��

OO

/.-,()*+4
// 0.125

�� /.-,()*+5
// 0.25

��

OO

/.-,()*+7
// 0.375

�� /.-,()*+8
// 0.5

��

OO

7654012311
// 0.675

�� 7654012312
// 0.75

��

OO

7654012314
// 0.875

�� 7654012315
// 1.0

��

OO

Figure 3.5: Lock-step time-stepping procedure with 3 levels of refinement.
Dotted arrows indicate which values are referenced from other levels. Circled
labels show the order of computations. Note that coarser levels are always
computed before their finer counterparts.

3.4.3 Solution Update

The update-step uses the aforementioned MUSCL-Hancock finite volume
scheme to compute the next state for all triangles of a particular level of

26

subdivision. We keep a list for each level of refinement that contains the
triangles of that level of subdivision. This allows us to efficiently iterate over
all the elements in a level without having to traverse the whole quad-tree
data structure. These lists are incrementally updated to reflect promotions
across levels as more and more elements are subdivided. The only time the
lists are reconstructed from scratch is after a derefinement operation has been
completed.

The only obstacle to the direct application of Equation 3.2 is the possibly
different resolution of the neighbours used for the numerical fluxes. The three
possibilities are depicted schematically in Figure 3.6.

a) b) c)

Figure 3.6: Flux Computation for a) a neighbour of the same resolution,
b) neighbours of higher resolution and c) a neighbour of lower resolution.
No other cases can occur because of the nesting requirement which does not
allow the level of subdivision of neighbours to differ by more than one.

3.4.3.1 Edge Fluxes

a) This is the only trivial case as it is identical to the application of a
finite volume scheme on a regular unstructured mesh. Therefore one
can directly compute the flux through edge k of element 0 as

~f ∗k (u
n+1/2
0 + ~r0k · ~Ln

0 , u
n+1/2
k + ~rk0 · ~Ln

k) · ~nk. (3.4)

b) The second case is treated as if edge k were two edges, k1 and k2, with
half the original length each. In Figure 3.6b, k1 would separate states
uL and uR1 whereas k2 would separate uL and uR2. This of course makes
changes to the limiting procedure necessary as the gradient operator
L0 is not evaluated at r0k (the midpoint of edge k) anymore but rather

27

at r0k1 and r0k2 . The numerical flux can then be written as

~f ∗k1
(u

n+1/2
0 + ~r0k1 · ~Ln

0 , u
n+1/2
k + ~rk10 · ~Ln

k1
) · ~nk1

+ ~f ∗k2
(u

n+1/2
0 + ~r0k2 · ~Ln

0 , u
n+1/2
k + ~rk20 · ~Ln

k2
) · ~nk2 .

(3.5)

Because these fluxes are written in terms of the “new” normal vectors
nk1 and nk2 , no averaging has to be done because the normal vectors
are scaled by the length of the respective interface.

c) This situation is in some sense the inverse of case b) and as such,
special care has to be taken while constructing and limiting the gradient
operator Lk because it is not evaluated at the midpoint of the whole
edge of the coarse neighbour — although it still is the midpoint of edge
k of the current element.

Another difficulty arises with cells whose coarser neighbours are evolved
too far ahead because of their coarser time-steps (e.g. steps 5, 6, 8, 9,
12, 13 and 15 in Figure 3.5). In this situation, we approximate the
coarse state at the current time by averaging its previous and its next
state. The next state is guaranteed to have been updated already as
coarser levels are always computed before the finer ones.

Consequently, the flux is identical to Equation 3.4 if the coarse cell is
at the correct time; otherwise it is

~f ∗k (u
n+1/2
0 + ~r0k · ~Ln

0 , ũk) · ~nk

for ũk =
1

2

([
u

n+1/2
k + ~rk0 · ~Ln

k

]
+
[
u

n−1/2
k + ~rk0 · ~Ln−1

k

])
.

(3.6)

The gradient detector — controlled by εr — is applied to the recon-
structed states (i.e. the arguments to f ∗k) at each edge to determine whether
further refinement is needed — as long as the maximum refinement level N
has not been reached. This process can naturally be done while the recon-
struction is carried out, so that the expensive Riemann-problem solutions
for the flux-computations need only be found if the cell is not to be refined.
If the detector decides that a subdivision is necessary, then the element is
subdivided, the level-lists are updated (i.e. the triangle is removed from the
list of the current level and its children are added to the list of the next-finer
level’s elements) and the computation proceeds with the next element in the
current level.

We refer to this subdivision strategy as “Just-In-Time” for the obvious
reason that it takes place just before the additional accuracy is deemed to be
necessary — in contrast to more traditional approaches which create (high

28

resolution) “buffer zones” to cope with events until the next remeshing step
takes place.

3.4.3.2 Changes to Gradient Operators

As alluded to in the previous section, the gradient operators need to be
modified so that the points where the fluxes are computed — which are not
restricted to the midpoint of the edges anymore — are properly limited.
These changes are two-fold. On the one hand, it is necessary to decide how
the unlimited gradient operator is constructed, given that there may be more
than three neighbouring states. And on the other hand, we need to make
sure that these are properly limited at the points where they are evaluated.

The only difficulty in the construction of the unlimited gradient operator
~∇(4ABC) occurs when any of the neighbours have a higher resolution than
the current triangle. If that is the case, we currently average all four further-
refined triangles belonging to the neighbour to give a representative value at
the current resolution. Other options, such as only averaging the two finer
triangles along edge k, are also possible.

Changing the limiting procedures for the LCD- and the PLCD-limiters is
straight-forward as these can easily be defined on polygons with any number
of edges. A triangle with a single subdivided edge is simply treated as having
four edges on which the limiting is carried out.

The MLG-limiter constructs
(
4
3

)
= 4 LCD-limiters for a traditional tri-

angle. For each refined edge this increases until the (unlikely but not im-
possible) worst-case behaviour of

(
7
3

)
= 35 is reached. As that many LCD

computations are clearly undesirable, we have resorted to the same averaging
procedure for finer neighbours as used in the unlimited gradient computation.

3.4.4 Refinement / Subdivision

Subdivisions are necessary for two distinct reasons: accuracy and nesting.
We call subdivisions that arise due to nesting requirements implicit subdi-
visions whereas accuracy-based ones will simply be referred to as “normal”
subdivisions. In spite of the different reasons for their execution, both of
them are carried out in entirely the same fashion.

A subdivision of either class is then achieved in the following way:

1. Check whether any neighbours are of lower resolution and force them to
subdivide if this is the case. These implicit subdivisions can recursively
cause further (again implicit) subdivisions of their neighbours and so
on. Nonetheless, this process is guaranteed to terminate.

29

a) b)

Figure 3.7: a) An accuracy based subdivision becomes necessary for the cur-
rent (shaded) triangle at the indicated edge and b) makes an implicit subdi-
vision (1) necessary which has to be completed before the original refinement
(2) can take place.

2. Allocate space for the children and generate their vertices.

3. Compute the states in the children. This is done by evaluating the
usual gradient operator of the parent at the children’s centroids. This
ensures proper conservation and retains more information than simply
duplicating the constant parent state to all children. As the gradient
operator is not necessarily correctly limited at the children’s centroids
this may cause under- or overshoots to appear. But these violations
of the maximum principle are unlikely in practice as the children’s
centroids are rather close to the parent’s centroid and therefore only
incur small changes from the constant state.

4. Lastly, compute (in the case of the newly generated children) or update
(for all neighbours of the parent) the connectivity information so that
all neighbour-pointers now refer to the more finely resolved children
instead of their parent.

After this process is completed, the parent effectively becomes dormant as
no more computations are carried out on it; it is only needed in the hierarchy
to provide information about its children.

It is essential that Step 1 takes place first so that all the implicit subdivi-
sions take place before the real ones. If, for example, the normal subdivision
labelled (2) in Figure 3.7 were to be executed first, then the mesh would end
up in an invalid state because the refinement levels of two adjacent triangles
would differ by two.

30

3.4.5 Derefinement

The derefinement process undoes all the refinement that is no longer neces-
sary — for example after a shock front has moved past. If one were to refine
only, there would be a large amount of highly refined triangles in otherwise
bland regions. These small triangles are also the most computationally ex-
pensive ones because they have a strong restriction on their time-step for
stability as given by Equation 3.3.

In a similar fashion to the traditional approaches to AMR, we need to
find the right frequency of derefinement that balances its cost against the
gain in computational efficiency because of the reduced number of elements.
Seemingly this is no better than the semi-arbitrary frequency of remeshing
used in those algorithms. On second look, it is an improvement because
it is a much cheaper process than a remeshing operation. For the results
in Chapter 4, derefinement has been carried out once after each top-level
time-step.

For consistency, the gradient detector used for derefinement is the same
as the one used for refinement — with two small changes. Firstly, it uses
a different, larger threshold (εd instead of εr) to prevent elements from flip-
ping back and forth incessantly between refinement and derefinement and
secondly, it measures the gradients on the piecewise constant states and not
the reconstructed linear ones. If an element is to be derefined — which is
used as a synonym for collapsing the four children1 of a triangle back to itself
— then it and its neighbours need to have states that lie very close together.
If that is the case, the linear reconstruction across the triangles involved is
nearly flat anyway, so that using it will not be of any advantage; it will even
be a disadvantage because of the extra computational cost involved.

If an element has determined that its children are no longer needed, they
cannot automatically be collapsed. This is true because of elements that act
as a “bridge” between different levels of refinement; in other words they are
needed to satisfy the nesting requirement. Thus the children can only be
removed if their neighbours are members of the same (or a lower) level of
subdivision as the parent will be joined to them later. In situations where this
criterion is not satisfied, the offending triangles can sometimes be derefined
themselves. One can therefore draw a parallel between the subdivision of
an element — which forces neighbours to execute an implicit subdivision in
order to fulfil the nesting rules — and its derefinement: The derefinement
asks its neighbours (if necessary) to collapse their children to be able to
remove its own.

1These children of course have to be childless.

31

Chapter 4

Results

To verify the validity of our approach, the proposed adaptive scheme has been
implemented in the C++ programming language, whose object-oriented ap-
proach seems to be favoured by many implementations of AMR (for example
Hornung and Trangenstein [6]) over the more traditional FORTRAN. The code
used to obtain these results allows for arbitrary unstructured meshes with
no-flux or periodic boundary conditions. The problem specification and the
associated fluxes are kept separate from the algorithm in order to facilitate
its use for different types of computations.

The computation of errors in the L1 norm against known solutions is
somewhat problematic on unstructured meshes. The approach we have
adopted is to interpolate from the irregular AMR mesh to a regularly spaced
grid and compute the norm from there. This introduces an additional inter-
polation error to those estimates; but as the size of the regular mesh increases,
the interpolation error tends to 0. On a regular grid with N points we thus
compute the L1 error as

1

N

∑
i,j

|ui,j − uexact(xi, yj)|.

4.1 Linear Advection

Problems of this type are rarely solved in practice as the analytic solution is
known for most advection profiles. Nevertheless, they are a valuable and well-
understood tool used for testing and comparing different numerical schemes.

32

4.1.1 Estimating Order of Accuracy

A similar set-up to Batten et al. [3] has been used to estimate the order of
accuracy of our scheme. The estimate is computed by solving

ut + ux + uy = 0

(i.e. linear advection with wave-speed (1, 1)T) with the initial data

u(x, y, 0) = sin(2πx) sin(2πy).

on a mesh consisting of right-angle triangles on the region [0, 1]× [0, 1] with
different levels of refinement and then comparing the respective L1-errors.

The given problem is not well-suited to adaptive computation at all. Most
— if not all — of the region is refined because of the smoothly changing nature
of the initial data. Furthermore, if the thresholds are chosen inappropriately,
many triangles will incessantly refine and derefine as their gradients fluctuate
around the thresholds. Therefore an adaptive method might spent much time
on its “adaptivity” without any computational benefit, making the fixed
mesh computation a faster alternative.

1 2 3 4 5
10−3

10−2

10−1

100

Level of Refinement

L 1 E
rr

or

1 2 3 4
0

0.5

1

1.5

2

2.5

Level of Refinement Ratio

lo
g 2(L

1(n
) /

 L
1(n

+1
))

1st Order
LCD
PLCD
MLG

1st Order
LCD
PLCD
MLG

Figure 4.1: The L1 error and the resulting estimate for the order of accuracy
for different types of limiters.

It is interesting to note that the PLCD-limiter actually becomes more ac-
curate than the MLG-limiter for high levels of subdivision; this could be at-
tributed to the “over-compression” of the MLG-limiter and was also observed
on an equilateral triangle mesh. One would not expect “real” (in contrast to
theoretical) second order accuracy in normal applications, though.

33

The contour plots in Figure 4.2 and 4.3 support the L1-results. Both the
MLG- and the LCD-limited solutions exhibit grid based distortion, although
it is far less pronounced with the MLG-limiter. The PLCD-limiter does very
well — the peaks have nearly the same magnitude as the highly compressive
MLG-scheme and no distortion is evident. This matches the observations
made by Batten et al. [3] and Hubbard [7].

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Initial (and exact) Solution u(x,y) = sin(2 π x) sin(2 π y)

0.90358

−0.90338

0.90358

−0.90338

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Solution using MLG−limiter at t = 1

0.88703

−0.88754

0.88703

−0.88754

Figure 4.2: Contours of the exact (left) double sine wave function and the
MLG-solution. The MLG-solution shows a directional bias which leads to a
subtle distortion in the lower-left quadrants vs the upper-right ones.

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Solution using PLCD−limiter at t = 1

−0.87062

0.87157

−0.87062

0.87157

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Solution using LCD−limiter at t = 1

0.79125

−0.79121

0.79125

−0.79121

Figure 4.3: Contours of the PLCD-solution (left) and the LCD-solution. Note
the smooth profile of the PLCD-limiter in contrast to the heavily distorted
LCD-solution.

34

4.1.2 Rotating Slotted Cylinder

Zalesak [21] first presented the slotted cylinder in 1979 and it is regarded as
one of the hardest benchmarks for advection schemes. The version used here
is scaled and shifted but otherwise identical. The problem is to solve

ut +

(
y − 1

2

)
ux −

(
x− 1

2

)
uy = 0 (4.1)

with initial condition

u(x, y, 0) =

{
1 if r > 0.15 ∨ (|x− 0.5| ≤ 0.025 ∧ y − 0.5 ≤ 0.1)

0 otherwise

for r =
√

(x− 0.5)2 + (y − 0.5)2. Equation 4.1 describes a clock-wise rota-
tion of the whole region about the point (0.5, 0.5)T. A whole revolution of
the region is completed at t = π so that the solution is periodic with period
π. This also means that the exact solution at t = π is equal to the initial
data.

The problem is solved in the region [0, 1] × [0, 1] with no-flux boundary
conditions on a top-level mesh with 48 equilateral triangles as seen in Figure
3.3. The time-step used is ∆t = 0.05 which upon initial observation is
outside the stability-region defined by Equation 3.3. This is no cause for
concern though as the advection-vector can safely be set to ~0 for r ≥ 0.3
where u(x, y, t) is identically zero. This extends the stable region to ∆t ≤
0.063927. For the results in Figure 4.4 a refinement threshold of εr = 0.025
and a derefinement limit of εd = 0.05 were used in conjunction with five
levels of refinement.

4.1.2.1 Quality of Solution

As one can see from the L1-errors in Figure 4.4 the limiters play a crucial
role: All of them1 limit correctly across the adaptive mesh; no oscillations
are present in the solution, which would certainly not be the case with more
traditional second order methods used on regular grids such as Lax-Wendroff,
Warming & Beam or — to a lesser extent — Fromm. If the limiting is re-
moved for any of the linear reconstructions then the solution grows unbound-
edly within a single top-level time-step due to the sharp discontinuities in
the initial data.

1Except for the first-order scheme which does not need any limiting due the fact that
no reconstruction / extrapolation is being done.

35

Figure 4.4: Graphs of the “Rotating Slotted Cylinder” problem at t = π for
different limiters (∆t = 0.05) with 5 levels of refinement.

36

From the first-order scheme to the MLG-operator each successive limiter
halves the error in this example, resulting in a ten times more accurate
solution with the MLG limiter than the first-order scheme. This stresses
the importance of a good reconstruction- / limiting-procedure over “raw”
resolution. Nevertheless, the MLG-limiter seems to introduce a very slight
distortion to the top-right of the slot and to the bottom-right “tip”. This
minuscule distortion is also evident in higher-resolution computations with
further subdivisions.

The Projected LCD-slope is slightly more diffusive than the Maximum
Limited Gradient — the edges of the “discontinuity” are now spread out over
four of the most-refined triangles in contrast to three on the MLG-limited
computation. But the projected limiter is less susceptible to grid based
distortion as the solution looks perfectly symmetric.

The widely used Limited Central Difference-approach is even more dif-
fusive but it manages preserves most of the original shape — although the
top of the cylinder is now smoothly rounded instead of flat and the slot is
beginning to close (or at least rise).

The solution produced by the first-order scheme is nearly unrecognisable.
It is not immediately apparent which side of the cylinder had the slot em-
bedded in it and which had not. Many triangles are refined due to the overly
diffusive nature of the method.

4.1.2.2 Impact of Limiters

But accuracy is not the only reason for which it is important to choose a
good reconstruction- / limiting-scheme. The compressiveness of the limiter
directly influences the cost of the adaptive computation. If the scheme used
is too dispersive, the discontinuities get spread out over a larger area which
then needs more refined triangles.

This is very well illustrated by Figure 4.5 which depicts the cost of each
top-level time-step (similar to the measure defined in Section 4.2.1 but only
for a single top-level time-step instead of the whole computation). The cost
for the Maximum Limited Gradient-limiter stays nearly constant during the
whole computation, which means that the information in the solution is well
retained and that the derefinement removes about as many “old” elements
as new ones are being refined.

The PLCD-solution is not quite as efficient as it causes slightly more
elements to be subdivided at a an additional cost of about 28% for each
time-step near the end of the computation. The number of elements only
seems to increase at a very low rate however.

Both the first-order upwind update and the LCD-scheme are not a very

37

0 0.5 1 1.5 2 2.5 3
0.6

0.8

1

1.2

1.4

1.6

1.8
x 105

Time

C
om

pu
ta

tio
na

l C
os

t

1st Order
LCD
PLCD
MLG

Figure 4.5: The workload / cost per top-level time-step during the 5-level
solution of the rotating slotted cylinder.

good choice for adaptive computations in general and problems that contain
discontinuities in particular. The use of the first-order method makes the
whole computation (i.e. the area under the respective graph) more than
twice as expensive as with the most compressive limiter. Nonetheless, they
are an important foundation on which to formulate more accurate methods
— the MLG-operator for example uses the steepest of four different LCD-
gradients.

Taken together, this implies that — particularly in the context of adaptive
methods — a more expensive but less diffusive limiter may well offset the
higher cost of its construction during a whole computation. If one takes the
cost of the computation of the Limited Central Difference as a base-line, then
the MLG-operator is slightly more than four times as expensive to construct
while the PLCD-limiter needs about two to three times as much. We have
found it essential to cache limited gradient-operators for each triangle to
avoid their recomputation as they are needed at least four times — once for
the computation in the current triangle and then once for each neighbour’s
computation.

4.1.2.3 Cost of Refinement

One major advantage of adaptive mesh refinement is that it allows for either
much larger simulations to be run than would have been possible with regular

38

meshes or solve existing problems with higher accuracy. It is an important
feature of good adaptive methods that they are not only more efficient with
computational resources but also with memory storage.

To show the trends that adaptive computing exhibits while refining so-
lutions further and further, the methodology from Section 4.1.1 is applied
to the slotted cylinder problem on the same equilateral triangle mesh with
48 base-triangles as used in Section 4.1.2 and repeatedly solved for different
levels of refinement. This time however, the cost is investigated as well as
the accuracy.

1 2 3 4 5
104

105

106

107

C
om

pu
ta

tio
na

l C
os

t (
tic

ks
)

Level of Refinement

1st Order
LCD
PLCD
MLG

Figure 4.6: The cost of each additional level of refinement for different limiters
on the rotating slotted cylinder.

The adaptive scheme needs between 4.2 and 5.6 times more ticks to halve
the mesh-spacing (i.e. increasing the maximum refinement by a level). Un-
surprisingly, the Maximum Limited Gradient fares best with an average in-
crease of about 4.5 per level and the first-order scheme at the bottom end of
the scale (figuratively speaking) needs more resources with an approximate
increase of 5.25. The other two limiters are spread in-between in the by now
familiar order: The Projected LCD scheme becomes 4.6 times as expensive
for each refinement — only a 0.1 difference to the MLG growth-rate — and
the LCD-limiter consumes 4.9 times as many ticks.

The equivalent of increasing the level of refinement by one for our method
on a non-adaptive mesh would be to halve the mesh-spacing of its elements.
This in turn would result in four times as many elements at half the time-
step, which would make the finer computation eight times as expensive in
terms of tick-count.

39

Level 1st Order LCD PLCD MLG

1 0.07699 0.06809 0.04460 0.03611
2 0.07021 0.05314 0.03695 0.02902
3 0.06534 0.04739 0.02673 0.01717
4 0.05564 0.03548 0.01699 0.00875
5 0.04477 0.02529 0.01091 0.00438

Table 4.1: L1 errors for different levels of refinement and limiters on the
“Rotating Slotted Cylinder”.

The convergence-rates implied by the L1-errors given in Table 4.1 look
rather worrying compared to the results from Section 4.1.1. The first-order
method barely manages to achieve O(0.3) on the highest refinements while
the MLG-operator approaches O(1) very closely. The LCD-limiter would
deserve the title of a not quite “half-order” method for this particular appli-
cation and the Projected LCD-gradient does a bit better at O(0.65) for the
finer meshes but is still quite a bit worse than the real first-order. For this
problem the wider choice of gradient operators available to the Maximum
Limited Gradient seems to be more useful than the projection of a single one
onto the MP region.

It may come as a relief that the theoretically attainable maximum order
of accuracy for this type of problem is O(1). This is due to the fact that
the initial data consists only of constant states separated by discontinuities.
Any higher order scheme relies on smoothness in the solution for its increased
accuracy and reverts to at most first-order near discontinuities.

Once more, the “rift” between the more recent and compressive limiters
(MLG and PLCD) and the older schemes on which they are based (LCD and
first-order upwind) becomes apparent.

4.2 Comparison to a Fixed Mesh

To construct a reasonably fair comparison to a fixed mesh computation, we
have defined a cost function for the rotating slotted cylinder problem with
the MLG-limiter. The unit in which this cost is given is the computation
carried out for a single time-step on a single element of the mesh — which
we have called a “tick”. Therefore refined cells use more ticks than top-level
ones as they need more time-steps to advance the same amount of time.

First, an AMR computation is carried out which keeps track of its cost.
After that, we construct an equally expensive fixed mesh and compute the

40

solution on there. The adaptive computation has to be used as the “baseline-
cost” to compare against because it is hard to predict the cost a priori due
to the variable number of cells.

4.2.1 Estimating Cost

The cost of the AMR computation is defined to be

CAMR =

⌈
T

∆t

⌉
·
∑

all tris

2M

where T is the final time and M represents the level of subdivision of each
triangle. For this particular example, T = π and ∆t = 0.063927 so that
CAMR = 3332216 ticks with five levels of subdivision.

We now seek to construct a fixed mesh — consisting of equilateral trian-
gles — that incurs a similar cost to compare the respective results. The cost
on the fixed mesh for a particular number of elements Ne is

CFXD =

⌈
T

∆t

⌉
· Ne. (4.2)

But ∆t depends on Ne for stability reasons. From before we know that

∆t =
V4

3 max |~n · ~λ|
=

VΩ

Ne3 max |~n · ~λ|
(4.3)

where VΩ is the area of the whole computational region Ω. Now it is necessary
to estimate

max |~n · ~λ| ≤ max(|nx||λx|+ |ny||λy|)
≤ max(|nx|, |ny|)(max |λx|+ max |λy|).

(4.4)

The length of any triangle edge in the mesh, say a, can be used to approxi-
mate max(|nx|, |ny|). Then it possible to calculate a from Ne via

V4 = a2 sin γ ⇔ a =

√
V4

2√
3

=

√
2VΩ√
3Ne

. (4.5)

Finally, combining Equations 4.2–4.5 yields the cost-estimate

CFXD ≤ 1

VΩ

(
3TN2

e

√
2VΩ√
3Ne

(max |λx|+ max |λy|)

)
. (4.6)

41

4.2.2 Resulting Errors

Using Equation 4.6 to estimate an equal cost fixed mesh gives Ne ≈ 6700.
This number of elements has a cost of 4909548 ticks due to the various
approximations used. The actual number of elements has consequently been
fixed at Ne = 5376 for which CFXD = 3404863 ticks with a time-step of
∆t = 0.00496.

0.3 0.4 0.5 0.6
0.3

0.4

0.5

0.6

0.7
AMR (base) ∆t = 0.063927

0.3 0.4 0.5 0.6
0.3

0.4

0.5

0.6

0.7
FXD ∆t = 0.004960

Figure 4.7: Magnification of the results of the AMR and fixed mesh compu-
tations at t = π for approximately equal cost.

The adaptive computation has an L1 error of 0.0043 whereas the fixed
mesh results in an L1 error of 0.0158. This means that the AMR method is
nearly four times more accurate (according to the L1 norm) for this particular
problem and for a similar amount of computational resources consumed. The
comparison is not entirely on equal grounds though as the cost of subdivisions
and derefinement are ignored for the AMR scheme. These are not particularly
large but hard to quantify in terms of the above-mentioned cost-metric and
have thus been omitted.

4.3 Nonlinear Problems

The solution of nonlinear hyperbolic partial differential equations is probably
one of the largest application areas for finite volume methods.

42

4.3.1 Burger’s Equation

The numerical solution of Burger’s equation is considerably more difficult
than the previous advection problems. Suddenly, one is confronted with
shocks appearing and disappearing, smooth initial data turning into discon-
tinuities and other difficulties. But it is also these features that make the
presented adaptive method worthwhile.

The inviscid Burger’s equation in two dimensions is defined as

ut + uux + uuy = 0 (4.7)

which implies that

f(u) = g(u) =
1

2
u2

when Equation 4.7 is written as

ut + f(u)x + g(u)y = 0

to match the definition of a conservation law in Equation 2.1.
The method itself stays exactly the same compared to earlier applications

— the only thing that needs to be adapted is the numerical fluxes in the prob-
lem description. These need to be defined carefully to ensure conservation
and thus correct shock speeds.

Equation 4.7 is solved on the region [0, 1]× [0, 1] with ∆t = 0.05 on the
previously used equilateral triangle mesh with five levels of subdivision and
the initial data

u(x, y, 0) =

1
2

if x < 1
2

and y < 1
2

−1
2

if x > 1
2

and y > 1
2

1
4

otherwise

. (4.8)

This is the same initial data as used by Berger and Oliger [4], although
we apply different — namely periodic — boundary conditions. Also, the
properly limited schemes implemented do not need numerical work-arounds
such as adding artificial viscosity to dampen oscillations that were employed
by them.

Due to the different boundary conditions used, no analytic solution to
compare against was available. Much progress has been made in recent
years in the classification and analytic solution of two-dimensional Riemann-
problems (for example Wagner’s paper [20]), but work remains to be done
until those solutions are easier to construct. In this particular example it

43

0

0.5

1

0

0.5

1

−0.5

0

0.5

t = 0.0 (MLG)

0

0.5

1

0

0.5

1

−0.5

0

0.5

t = 0.5 (MLG)

0

0.5

1

0

0.5

1

−0.5

0

0.5

t = 1.0 (MLG)
0

0.2

0.4

0.6

0.8

1
0 0.5 1

t = 1.0 (MLG)

0

0.5

1

0

0.5

1

−0.5

0

0.5

t = 1.5 (MLG)

0

0.5

1

0

0.5

1

−0.5

0

0.5

t = 2.0 (MLG)

Figure 4.8: Numerical solution to Burger’s equation with the MLG-limiter.
Note the shocks that are later overtaken by the respective expansion-waves.

44

was possible to verify that the general shape of the solution is correct. The
shocks and expansion-waves also seem to move with the correct speeds from
previous experience in the one-dimensional case.

As seen in Figure 4.8, the adaptive scheme with the MLG-operator gives
very good resolution of shock-fronts and chooses appropriate resolutions for
features at all levels: constant states use very little computational resources
as one would expect and expansion-wave gradients are properly resolved with-
out being overly fine. The other limiters (not shown) do surprisingly well
considering the difficult nature of the problem, although the expansion fans
seem to be slightly elongated when using the first-order scheme and (to a
lesser degree) the LCD-limiter. The stronger dispersion in those limiters is
the most likely cause for that.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

3
x 105

Time

C
om

pu
ta

tio
na

l C
os

t (
tic

ks
)

1st Order
LCD
PLCD
MLG

Figure 4.9: The workload / cost per top-level time-step during the 5-level
solution of Burger’s equation. The whole computation took less than 30
seconds on the author’s machine for the MLG-case.

The “adaptive” cost advantage shows up in a slightly different form. The
initial data given in Equation 4.8 has four plateaus separated by disconti-
nuities. The final solution at t = 2 only contains two distinct states and
therefore contains much fewer highly refined edges where those states meet.

From the computing cost displayed in Figure 4.9 it is immediately appar-
ent that the computation speeds up drastically towards the end. The time
needed per time-step near the end of the computation is reduced to nearly a
quarter of the time used during its early phase. This results in a noticeable
shortening of the computation-time after the 50%-mark. The different lim-
iters have a comparable cost to before; although there is not much separating
the MLG-operator from the PLCD-gradient this time around.

45

In regard to the solution of this problem, Berger and Oliger [4] have re-
marked that “this problem is a hard test for mesh refinement because such a
large fraction of the region is refined.” Due the ability of our subdivision-
based refinement to allow for locally higher resolution without affecting the
rest of the mesh (other than through implicit subdivisions of course), a weak-
ness of traditional adaptive mesh refinement has been turned into an advan-
tage.

46

Chapter 5

Conclusions

An adaptive algorithm for the efficient solution of hyperbolic conservation
laws on unstructured meshes has been introduced. The proposed scheme
is formulated in terms of standard finite volume methods on triangular el-
ements, although some extensions have been made to allow for inter-level
updates with those methods which involve polygons with more than three
edges. The simple quad-tree data-structure is essential to the performance of
the algorithm as it facilitates the atomic operations such as subdivision into
four children, derefinement and neighbour queries on which the method relies.
It also restricts neighbouring triangles to have a refinement-difference of at
most one level which ensures that there are no abrupt changes in resolution.
Another advantage of using subdivision of elements is that no monitoring
or adjustment of individual element’s anisotropy is necessary if the original
top-level mesh is well-formed (e.g. a Delaunay triangulation). Furthermore,
the introduction of “Just-In-Time” refinement makes it possible to defer any
decisions about the resolution at which computations are to be done until
they are actually about to happen. This is achieved by very fine-grained
adaptivity: The “adaptiveness” of the scheme is not something that is done
every now and then between traditional computations — it is an integral
part of the algorithm.

The mesh refinement method was implemented in two dimensions with
a variety of [9] slope-limiters and has been successfully used to solve both
traditional linear problems as well as non-linear ones. These numerical ex-
periments have shown the superior efficiency of the scheme compared to
computations on fixed meshes. They have also demonstrated the necessity of
high-quality finite volume methods of at least second order accuracy for ef-
ficient computations; the standard second-order Limited Central Difference
scheme is already too diffusive to make highly localised refinement feasi-
ble and makes the computations more expensive than necessary, although

47

the diffusive behaviour of any scheme is lessened by the use of our method
compared to fixed mesh computations. We have found Batten et al.’s [3]
Maximum Limited Gradient to be very good at resolving discontinuities or
shock fronts — although it is not immune to mesh distortion — and Hub-
bard’s [7] Projected LCD-operator excels on continuous problems and shows
no dependency on the underlying mesh geometry.

5.1 Further Work

There are quite a few distinct areas which may prompt further research.
Foremost would be the extension to non-linear systems of equations — for
example using Roe’s approximate Riemann-solver [15] in conjunction with
the proper averages. There are already quite a few reformulations of “pop-
ular” PDEs into conservation form for genuinely higher-dimensional finite
volume methods on unstructured grids, [7] for example shows how they can
be applied to the Shallow Water equations. This should be fairly straight-
forward to do as our adaptive method does rely on largely unmodified finite
volume schemes.

The extension of the scheme to three dimensions is another interesting
subject, although we do not foresee any new topological difficulties in the
process. The main changes would be to replace triangles with tetrahedra
and to modify the subdivision and data-structures accordingly.

It may very well be worthwhile to replace our rather crude threshold-based
gradient detector with something more sophisticated as the linear reconstruc-
tion of the second-order schemes allows us to compute accurate solutions for
linear data without the need for much refinement. The work of Barth and
Larson [2] on error estimates for finite volume methods may be relevant in
that regard.

The behaviour of different gradient-operators for particular types of data
prompts the question whether it may be appropriate to use different operators
at different levels of refinement or for exceeding different thresholds in the
gradient-detector. One could for example apply the PLCD-limiter on the
children of a triangle if the refinement was a “close call” (i.e. relatively
smooth states) and use the MLG-operator if the region was determined to
contain discontinuities — while still maintaining proper conservation.

48

Appendix A

Acknowledgments

Many thanks to my supervisor, Dr. P. K. Sweby, for many helpful
suggestions and hints as well as general guidance towards the topic of
this paper.

Prof. M. J. Baines has also been very generous in answering many of
my questions.

I am also grateful to the EPSRC for providing partial financial support.

Last but not least, I wish to thank my parents for putting up with me
for the past 24 years and making all this possible.

I would also like to thank the following for keeping me (remotely) sane
during all this time:

• Björk, Elton John, Lamb, Last Days of April, Mazzy Star, The Notwist,
The Prodigy and Yoko Kanno.

• The whole log0-crew for being there.

• My iPod for making the walks to campus that much more interesting.

• The Reading Anime Society — and in particular Chris — for making
Mondays something to look forward to.

49

http://www.log0.org

Appendix B

Bibliography

[1] M. Ahmadi and W. S. Ghaly: “A Finite Volume Method for the
Two-Dimensional Euler Equations with Solution Adaptation on Un-
structured Meshes”, 6th ASME International Congress on Fluid Dy-
namics and Propulsion, Egypt (1996)

[2] T. J. Barth and M. J. Larson: “A Posteriori Error Estimates
for Higher Order Godunov Finite Volume Methods on Unstructured
Meshes”, NASA Technical Report NAS-02-001 (2002)

[3] P. Batten, C. Lambert and D. M. Causon: “Positively Conserva-
tive High-Resolution Convection Schemes for Unstructured Elements”,
International Journal for Numerical Methods in Engineering 39 (1996)

[4] M. J. Berger and J. Oliger: “Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations”, Journal of Computational
Physics 53 (1984)

[5] M. Berzins, R. Fairlie, S. V. Pennington, J. M. Ware and
L. E. Scales: “SPRINT2D: Adaptive Software for PDEs”, ACM
Transactions on Mathematical Software 24-iv (1998)

[6] R. D. Hornung and J. A. Trangenstein: “Adaptive Mesh Re-
finement and Multilevel Iteration for Flow in Porous Media”, Journal
of Computational Physics 136-ii (1997)

[7] M. E. Hubbard: “Multidimensional Slope Limiters for MUSCL-Type
Finite Volume Schemes on Unstructured Grids”, Numerical Analysis
Report 8/98, Department of Mathematics, University of Reading (1998)

[8] D. E. Knuth: “Seminumerical Algorithms”, The Art of Computer
Programming (3rd Edition), Volume 2 (1997)

50

[9] B. van Leer: “Towards the Ultimate Conservative Difference Scheme
V. A Second-Order Sequel to Godunov’s Method”, Journal of Compu-
tational Physics 32 (1979)

[10] B. van Leer: “On the Relation between the Upwind-Differencing
Schemes of Godunov, Engquist-Osher and Roe”, SIAM Journal of Sci-
entific and Statistical Computing 5 (1984)

[11] R. J. LeVeque: “Numerical Methods for Conservation Laws”, Lectures
in Mathematics – ETH Zürich (1990)

[12] R. J. LeVeque: “Finite Volume Methods for Hyperbolic Problems”,
Cambridge Texts in Applied Mathematics (2002)

[13] J. Z. Lou, C. D. Norton and T. A. Cwik: “A Robust and Scal-
able Software Library for Parallel Adaptive Refinement on Unstructured
Meshes”, NASA HPCCP Computational Aerosciences Workshop (1999)

[14] M. C. Rivara: “Selective Refinement/Derefinement Algorithms for Se-
quences of Nested Triangulations”, International Journal of Numerical
Methods in Engineering 28 (1989)

[15] P. L. Roe: “Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes”, Journal of Computational Physics 43-ii (1981)

[16] P. K. Sweby: “High Resolution Schemes using Flux Limiters for
Hyperbolic Conservation Laws”, SIAM Journal of Numerical Analy-
sis 21-v (1984)

[17] P. K. Sweby: “Numerical Techniques for Conservation Laws”, Lecture
Notes, University of Reading (2003)

[18] J. A. Trangenstein and Zhuoxin Bi: “Multi-Scale Iterative Tech-
niques and Adaptive Mesh Refinement for Flow in Porous Media”,
http://www.math.duke.edu/∼johnt/multigrid.ps (Preprint 2002)

[19] G. Turk: “Generating Random Points in Triangles”, Graphic Gems I
(1990)

[20] D. H. Wagner: “The Riemann Problem in Two Space Dimensions
for a Single Conservation Law”, SIAM Journal of Mathematical Analy-
sis 14-iii (1983)

[21] S. T. Zalesak: “Fully Multidimensional Flux-Corrected Transport
Algorithms for Fluids”, Journal of Computational Physics 31 (1979)

51

http://www.math.duke.edu/~johnt/multigrid.ps

	Introduction
	Background
	Adaptive Mesh Refinement
	Philosophy
	Implementations
	Consequences
	``Buffer Zones''
	Clustering
	Overlaid Grids

	The Finite Volume Framework
	Derivation
	Control Volumes
	Numerical Fluxes
	Boundary Conditions and Source Terms
	Higher-Order Accuracy
	Limited Central Difference (LCD)
	Maximum Limited Gradient (MLG)
	Projected LCD (PLCD)

	Using Subdivision for Refinement
	Subdivision Strategy
	Data Structures
	Accuracy and Consequences
	The Algorithm
	Set-Up
	Top-Level Mesh
	Initial Conditions
	Initial Mesh Adaption

	Advancing Time
	Time Stepping
	Stability and Temporal Refinement

	Solution Update
	Edge Fluxes
	Changes to Gradient Operators

	Refinement / Subdivision
	Derefinement

	Results
	Linear Advection
	Estimating Order of Accuracy
	Rotating Slotted Cylinder
	Quality of Solution
	Impact of Limiters
	Cost of Refinement

	Comparison to a Fixed Mesh
	Estimating Cost
	Resulting Errors

	Nonlinear Problems
	Burger's Equation

	Conclusions
	Further Work

	Acknowledgments
	Bibliography

