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Abstract

In this dissertation we are concerned with the study of glaciers, and analysing

a simple model that determines the basis for the glacier to flow. We set up

a PDE model with diffusion and source terms in one-dimension. From this

model we define a nodal velocity associated with mass conservation, leading

to the movement of a grid.

We assess the velocity using two methods, the first by assuming that a sub-

domain will hold the same properties as the whole domain, and the second

by assuming the normalised ice volume remains constant in time. The ana-

lytical and computational benefits of each is considered.

Next we allow for surface elevation, using the subdomain assumption. In

addition the velocity will be changed to allow for the effect of basal sliding.

The velocity satisfies a Burgers-like equation, and the theory of character-

istics and shocks is used to try and determine our aim of finding out the

movement time.

Finally, consideration will be given to where this work can be taken next.
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Chapter 1

Introduction

Glaciers and Ice Sheets are a hot topic at the moment with global warming

causing the considerable retreat of ice. Sometimes in order to understand

them better we need to take a step back and look at what drives the move-

ment and sliding of the glacier in the first place. This is the basis for this

dissertation.

To do this we start by looking at glaciers from a physical point of view with

no mathematics involved. Then in Chapter 3 we consider a standard simple

PDE model of glacier movement. We then define a velocity, which can be

achieved in a number of ways. Chapter 3 will therefore act as a hub to the

next few chapters.

The ultimate goal of this dissertation will be to uncover the conditions the

glacier needs to meet before it begins to move, where we note that glaciers ex-

perience a waiting time, (see Stojsavljevic[10]), as with other non-linear diffu-

sion equation solutions. Over the subsequent chapters two different methods

1



2 CHAPTER 1. INTRODUCTION

for estimating the velocity on a moving grid will be analysed and computed,

with results and comments as to the benefits of each.

Next we shall look at the impact of making the model more complex, with

the addition of surface elevation and basal sliding, using the first velocity

method.

In Chapter 7 we derive a Burgers-like equation for the velocity. We then

examine the application of characteristics theory and the potential benefits

such results could supply, with the aim of estimating a shock, leading to

movement at the boundary of the glacier. Finally, consideration is given to

ways the model may be extended, and the impacts these extensions may have

on the results we have concluded, leading the way to potential further work

to be undertaken in the topic.

For most of the project we are not concerned with physical values for the

variables, but more with the methodology and the theory behind why we

might see a certain behaviour. Hence computation will be performed with

initial conditions chosen purely because they meet the required boundary

conditions, and ran for a sufficient length of time.



Chapter 2

The Physics of Glaciers

The term glacier is well known, though most only know that it has something

to do with ice, so what exactly is one? The official definition from the AMS

glossary [14] says:

”‘A glacier is a mass of land ice, formed by the further recrys-

tallisation of firn, flowing continuously from higher to lower ele-

vations.”’

So according to the definition, a glacier is essentially a river of ice flowing

down a mountain, where the ice is made up from firn (German for old snow)

recrystallising. Knowing how they form is important if we are interested in

how they move. In order for glaciers to form they first need enough snow

over the winter period to be able to survive through the summer, i.e. more

accumulation of snow than is lost through melting and evaporation. This

needs to be repeated over a number of succesive years, and as more snow

3



4 CHAPTER 2. THE PHYSICS OF GLACIERS

builds up, the weight increases and pressure compresses the firn into ice.

Once this ice is thick enough, gravity, amongst other forces, causes the ice

to flow down the mountain. This is a long, complex process which takes less

time in regions where temperature changes quicker, such as the Alps and

North America.

On a global scale, ice quantities vary considerably. At present glaciers

make up around 2% of the Earths water, but during an ice age this vastly

increases. Either way they have a large impact on the climate system, and

are becoming increasingly affected by climate change. If all this ice melted

into the oceans, there would be a sea level rise of around 70m. We are inter-

ested in glaciers for more than just the climate change reasons, as they can

have a large effect on the local terrain, causing events such as landslides and

flash floods.

One of the main things we need to take into consideration when modelling

glaciers is the idea of mass balance, and where on the glacier mass is gained

or lost. In the top zone of Figure 2.1 the accumulation of snow is greater than

the ablation (melting/evaporation), so the mass increases. Further down the

mountain the ablation becomes greater than the accumulation, and the mass

decreases. However ice can build up in the lower zone due to ice flow coming

from the glacier’s upper zone.

The front-most end of the glacier is known as the snout, which rarely

moves straight away; it waits until the velocity behind it is great enough to
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push it down the mountain. It is this feature which is of special interest in

this dissertation.

Figure 2.1: Glacier Zones

Each individual glacier tends to have reasonably steady flow, but be-

tween glaciers this flow can vary considerably. Some glaciers are even prone

to surges, where they barely move for years before advancing very quickly;

generally a few kilometres over a few months.

One of the nice things about glaciers is that they move similarly to a

viscous fluid, though with a very high viscosity of around 1012Pa.s, and for

comparison this is roughly 1015 times that of water [8]. However we cannot

use viscous theory to measure flow, since glaciers are unique in experiencing

something called basal sliding. As the ice is flowing down the mountain,

friction is generated, melting the ice which makes contact with the surface,

causing the base to slide. This can also be caused by geothermal heat below

the surface. These factors can be used to set up a mathematical model.



Chapter 3

A One-Dimensional Model

Consider a glacier on a flat bed occupying the region [0, b(t)] as shown in

Fig.3.1. Let H be the thickness of the ice. At the ends of this domain we

have two boundary conditions, H = 0 at x = b(t) and ∂H
∂x

= 0 at x = 0.

Figure 3.1: One-Dimensional Domain

6



3.1. MODEL DERIVATION 7

As a starting point we are going to derive a simple model for glaciers.

This takes the form

∂H(x, t)

∂t
=

∂

∂x

[
cH(x, t)5Hx(x, t)

3
]

+ s(x) (3.1)

= (D(H,Hx))x + s(x)

where we define H(x, t) as the thickness of the ice and s(x) as a source term

(in our case we shall call this the snow term). The constant c is a parame-

ter taken to be 0.000022765 (from derivation). This model was proposed by

Oerlemans [2] in 1984.

3.1 Model Derivation

In one dimension the continuity equation for ice can be written as

∂H

∂t
= −∂(Hu)

∂x
+ s− sb, (3.2)

where H is the ice thickness, s is the accumulation rate of snow, sb is the

basal melting rate and u is the vertical mean velocity. Initially we shall

assume that the basal melting rate is zero.

The vertical mean velocity u is given by [1]

u =
2AH

n+ 2
τndx,

with τdx the stress term, and parameters A and n taken from Glen’s flow

law, which is an established general law for steady state ice deformation [3].
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From Van Der Veen[4] the driving stress is given by

τdx = −ρgH ∂h

∂x
,

with ρ the ice density, g representing gravity, and h representing the ice

thickness plus the surface elevation. On a flat bed there is no surface elevation

so we may put h = H. Putting all of these terms together we get an equation

for the vertical mean velocity

u = − 2AH

n+ 2
ρngnHn∂H

∂x

n

.

Most of the parameters in the model may be set as constant to simplify the

model as much as possible, giving us

u = cHn+1∂H

∂x

n

.

From Roberts [1] we set c = 0.000022765. Putting the velocity back in to

equation 3.2 we get the model equation

∂H

∂t
=

∂

∂x

[
cH5H3

x

]
+ s(x), (3.3)

which incorporates non-linear diffusion and a source term.

3.2 Initial Conditions

Initially, x ∈ [0, 1], (i.e. b(0) = 1), and the ice thickness is defined as

H = (1− x2)α, (3.4)

where α here is set to 1 in the first instance, but will come into play later

on. The form (3.4) is chosen since it satisfies the boundary conditions, but
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it is clearly not unique. The snow term will be approximated for all time by

a linear function

s = e(1− dx), (3.5)

where d & e are the snow parameters, typically set to be 0.5 [1]. This results

in a positive snow term up until x = 2, after which ablation takes over and

the snow term becomes negative, making it harder for the glacier to survive

further down the mountain.

An interesting physical concept to begin with is to look at what happens

to the integral of the ice thickness over the whole domain (the volume) i.e.∫ b(t)

0

H(x, t)dx = θ(t), say. (3.6)

and see how this changes over time.

Using Leibniz’s integral rule, and applying our boundary conditions we see

that

d

dt

∫ b(t)

0

H(x, t)dx =

∫ b(t)

0

∂H

∂t
dx+H(b(t), t)

db(t)

dt
− 0

=

∫ b(t)

0

∂

∂x

[
cH5H3

x

]
dx+

∫ b(t)

0

s(x)dx

=
[
cH5H3

x

]b(t)
0

+

∫ b(t)

0

s(x)dx

=

∫ b(t)

0

s(x)dx. (3.7)

The physical equivalent says that any change in the integral of ice thickness

over the whole glacier, or equivalently any change in the ice volume, is due



10 CHAPTER 3. A ONE-DIMENSIONAL MODEL

only to the snow term, which represents the net accumulation/ablation of

snow over the whole glacier.

3.3 Velocity

In order to use a moving grid we need be able to define a velocity, v, at

any arbitrary point. As with most of the variables this velocity is vertically

averaged through the ice thickness. To define this velocity we need to make

some form of assumption, of which there are two that will be considered here,

then computationally analysed over the next few chapters.

The first method (in section 3.3.1) is to assume equation 3.7 in any mov-

ing subdomain [0, x̂(t)] of [0, b(t)], holds with x̂(t) instead of b(t). In physical

terms this velocity is such that the ice volume changes only due to accumula-

tion/ablation of snow locally. The second method (in section 3.3.2) assumes

that the normalised volume 1
θ

∫ x̂(t)
0

H(x, t)dx remains constant in time, i.e.

the ice volume fraction remains constant as the glacier moves.

There are other assumptions that have been made in generating a velocity,

and could be made here, such as assuming that each point in the domain is

connected to its neighbours via ’springs’, but they are not considered here.

3.3.1 Method 1 - Subdomain Assumption

In the first method assume that

d

dt

∫ x̂(t)

0

H(x, t)dx =

∫ x̂(t)

0

s(x)dx, (3.8)
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for each subdomain (0, x̂(t)). Then using Leibniz’s integral rule again on the

LHS of (3.8) we get

d

dt

∫ x̂(t)

0

H(x, t)dx =

∫ x̂(t)

0

∂H

∂t
dx+H(x̂(t), t)

dx̂(t)

dt
|x̂0

=

∫ x̂(t)

0

∂

∂x
[D(H,Hx)]dx+

∫ x̂(t)

0

s(x)dx+H(x̂(t), t)
dx̂(t)

dt

= [D(H,Hx)]
x̂(t)
0 +

∫ x̂(t)

0

s(x)dx+H(x̂(t), t)
dx̂(t)

dt

= D(H,Hx)|x̂ +

∫ x̂(t)

0

s(x)dx+H(x̂(t), t)
dx̂(t)

dt
,

since H = D = 0 at x = 0. Our assumption (3.8) means that

D(H,Hx) +H(x̂(t), t)
dx̂(t)

dt
= 0,

so the velocity v = dx̂/dt is driven only by the diffusion term and we get

v =
dx̂(t)

dt
= −D(H,Hx)

H
= −cH4H3

x. (3.9)

Expressing the velocity in this manner apparently presents problems when

dealing with the boundary condition H = 0 at x = b, giving a zero velocity

at the right boundary, resulting in a glacier that will never move, which we

know physically is not the case. However it is perfectly possible for v to be

non-zero as long as Hx is infinite.
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3.3.2 Method 2 - Normalisation Assumption

Method 2 assumes that an ice volume fraction remains constant in time, i.e.

d

dt

(
1

θ(t)

∫ x̂(t)

0

H(x, t)dx

)
= 0 (3.10)

⇒ 1

θ(t)

∫ x̂(t)

0

H(x, t)dx = µ, say, (3.11)

where we define θ(t) to be the total volume of the ice, equation (3.6).

Differentiating 3.10, we get

− θ
′

θ2

∫ x̂(t)

0

H(x, t)dx+
1

θ

d

dt

∫ x̂(t)

0

H(x, t)dx = 0,

and then by applying by Leibniz’s integral rule and our boundary conditions

− θ′

θ2

∫ x̂(t)

0

H(x, t)dx+
1

θ

[
D +

∫ x̂

0

sdx+H(x̂, t)
dx̂

dt

]
= 0, (3.12)

where θ′ = dθ
dt

. From here we can then rearrange to get the velocity.

dx̂

dt
=

θ′

Hθ

∫ x̂(t)

0

H(x, t)dx− D

H
− 1

H

∫ x̂

0

sdx

=
µθ′

H
− cH4H3

x −
1

H

∫ x̂

0

sdx

=
1

H

[
µθ′ −

∫ x̂

0

sdx

]
− cH4H3

x

(3.13)

Note that we have substituted the constant µ from Equation 3.11, and

that the final term in the equation is the same as the velocity in method

one. Note also that when x̂ = b(t), at the snout of the glacier, the first term
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disappears and the velocity reduces to the same as in method 1.

Equation (3.16) requires θ′ (= dθ
dt

), from 3.7

θ′ =
d

dt

∫ b

0

Hdx

=

∫ b

0

sdx. (3.14)

The analysis of this method will be carried out in Chapter 5.

3.4 Snout Profile

From (3.9) we have the useful form

v =
dx̂

dt
= −c(H4/3Hx)

3

= −c
[

3

7
(H7/3)x

]3

= − 27

343
c
[
(H7/3)x

]3
. (3.15)

Which shows that v does not have this problem at the right hand boundary,

since it is perfectly possible for (H7/3)x to be non-zero, as long as Hx is

infinite. Hence this is the velocity for method 1, and method 2 becomes

v =
1

H

[
µθ′ −

∫ x̂

0

sdx

]
− 27

343
c
[
(H7/3)x

]3
. (3.16)

This point will be examined further in Chapter 4.
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When expressing the velocity in this manner it is worth considering what

will happen when we substitute the initial expression for H, from equation

(3.4).

H
7
3 = (1− x2)

7α
3

(H7/3)x = 2x.
7α

3
(1− x2)

7α
3
−1. (3.17)

This has some interesting properties as x→ 1, depending on the value of α.

Case 1:
7α

3
> 1,⇒ (H7/3)x is zero

Case 2:
7α

3
< 1,⇒ (H7/3)x is infinite

Case 3:
7α

3
= 1,⇒ (H7/3)x is finite

In case 1, from equation (3.15), the initial velocity of the snout of the glacier

is zero, and it is stationary; the chosen setting of α = 1 satisfies this, as shown

in Fig.3.2(a). In case 2, we get an infinite velocity, which is not physical and

the model is incorrect. In case 3 we get a finite initial velocity value at the

snout when α = 3
7
, which would be the point when the right hand boundary

starts to move, as observed in Fig.3.2(b). From this analysis we can expect

H to be of this form asymptotically at the moment of initial movement. Note

that Hx is infinite at the boundary. This point will be considered again when

we seek an estimate of the time that the glacier will start to move.

For a glacier under case 1, we would expect the changing shape of H over

time to be due to the snow term. If it asymptotically reaches case 3 at the

snout then the end point will move.
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(a) Initial V under case 1 (α = 1) (b) Initial V under case 3 (α = 3/7)

(c) Initial Ice Thickness under different α

Figure 3.2: Analysis of initial velocity
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3.4.1 Surface Elevation

A flat bed model can be limiting when considering physical examples. For

glaciers that are situated in the mountains the bed will almost certainly be

sloped. Consider now the domain in Fig.3.3, where we have a linear slope. H

is still defined as the thickness of the ice, but we have an additional variable

h which is adds the surface elevation to the thickness of the ice.

With the addition of h, the initial equation (3.1) is slightly different, and

Figure 3.3: Domain with surface elevation

becomes the following:

∂H(x, t)

∂t
=

∂

∂x

[
cH(x, t)5hx(x, t)

3
]

+ s(x) (3.18)

= (D(H, hx))x + s(x)

where c is defined as in 3.1. Similar boundary conditions apply, as before we

have H = 0 at x = b(t) and now ∂h
∂x

= 0 at x = 0.
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To calculate the grid velocity we are going to use the same assumption that

is made in method 1 (section 3.3.1). Following through we end up with a

similar equation

(v =)
dx̂(t)

dt
= −D(H,Hx)

H
= −cH4h3

x. (3.19)

For the velocity to be finite at the snout where H = 0, we must have hx =∞.

Since we cannot express equation (3.19) in the same form that we did before

the problem at the right hand boundary still occurs.

In addition we also need to define the slope, Γ. This will be set to

Γ = −x+ 5, (3.20)

chosen so that the glacier is initially small in comparison with the slope.

We now use these model descriptions to analyse and compute glacier be-

haviour.



Chapter 4

Computation from Method 1:

Subdomain Assumption

4.1 Numerical Grid

Equation 3.1 is non-linear and thus difficult to solve analytically, so we seek

a numerical approximation via a grid. As a 1D problem, the domain only

needs to be divided up along the x-direction. Since the problem involves a

moving boundary, a natural description is to use a moving grid. The grid

points will need to be updated every time step, since as the glacier moves we

expect the grid to follow, giving a moving grid problem.

The initial grid is chosen to be evenly spaced at the initial time, although

there is potential to introduce a non-evenly spaced grid, particularly near

the right hand boundary to give more information about the velocity and

movement at the snout of the glacier.

18
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4.2 Numerical Approximation

For the velocity in equation (3.15) we can use our grid from above to form

an approximation using an upwind difference

vi = − 27

343
c

(
H

7/3
i −H7/3

i−1

xi − xi−1

)3

. (4.1)

At each time step the velocity can be calculated, from which we can then

use equation (4.1) to update the x and H values. For the new x values we

approximate Equation 3.15 using forward Euler time stepping,

dx̂(t)

dt
= v

x̂n+1 − x̂n

∆t
= v

x̂n+1 = x̂n + v.∆t. (4.2)

To determine H we go back to the assumption we made in equation (3.8),

and use the same time-stepping scheme. Note that the limits in (3.8) have

been changed to allow the midpoint rule to be applied for computational

simplicity. ∫ j+1

j−1
Hn+1dx−

∫ j+1

j−1
Hndx

∆t
=

∫ j+1

j−1

sdx.

Then, using the midpoint rule we get

(xn+1
j+1 − xn+1

j−1 )Hn+1
j − (xnj+1 − xnj−1)H

n
j = ∆t(xnj+1 − xnj−1)s

n
j ,

giving

Hn+1
j =

(xnj+1 − xnj−1)

(xn+1
j+1 − xn+1

j−1 )
(Hn

j + ∆tsnj ). (4.3)
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4.3 Results

What does the velocity do over time under the assumption in equation (3.8)?

From Fig.4.1 we can see that the velocity builds up into a dome shape be-

fore the peak begins to move towards the right hand boundary, eventually

reaching it and pushing the boundary of the glacier into movement. This

resembles the solution of a non-linear differential equation that generates a

shock, something which we consider further in Section 7.

How does the ice thickness behave under this velocity profile? From

Fig.4.2(a), we can see that the glacier does not move past its initial endpoint

until t = 10000, after the time that it has been reached by the shock. The

change in ice thickness appears to be initially dominated by the build up of

snow rather than the diffusion term, hence why the glacier appears to grow

high before some of the snow term becomes negative and the diffusion can

take over, pulling the glacier back down to a more reasonable shape. From

a physical perspective this perhaps is not the most realistic of movements.
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Figure 4.1: Velocity under method 1

(a) Change in ice thickness (b) Comparison with α = 3/7

Figure 4.2: Results of the subdomain assumption

Up until now, the results have come from an initial H with α = 1, so let us

compare these results with those in Section 3.4. As you can see in Fig.4.2(b),

the gradients at the snout are very similar, which is as we expected. Though

we expect to see an infinite gradient at the boundary, we note that this is
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not possible numerically, due to the grid spacing.

4.4 Non-Evenly Spaced Grid

Since it is clear that the important area is the snout perhaps it might be an

idea to focus the grid on this point to improve accuracy there. To do this

we declare a new space variable, ψ, which takes on the role of the existing

evenly spaced grid. Then we define x =
√
ψ. As you can see in Fig. 4.3(a),

the region close to the snout at 1 is covered by more points under x. The

main question is does this have an impact on the other variables. Looking at

Fig.4.3, it would appear that the general shape is very similar, though the

lack of information near the left hand boundary does cause a bit of inaccuracy,

which is to be expected since this area is less well resolved. Perhaps the most

interesting fact is that it appears that the increased resolution of the non-

even grid, Fig.4.3(c) starts moving before the evenly spaced grid, judging

by the location of the line t = 100. This might lead to an underestimated

waiting time if calculated on the evenly spaced grid.
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(a) Difference in grid spacing variables

(b) Even spaced grid (c) Non-Even grid

Figure 4.3: Computation using the non-evenly spaced grid



Chapter 5

Computation from Method 2:

Normalisation Assumption

Calculating the velocity by method 2 from section 3.3.2 requires a little more

work than for the subdomain assumption. Recalling equation 3.16, we now

have more terms to handle. To start with, the constant µ, which will be a

vector, can be defined at the outset since this will not need to be updated.

Any integrals can be estimated numerically by the trapezium rule via a sum,

firstly approximating θ by

θ =
b∑

j=0

0.5(Hj +Hj−1)(xj − xj−1)

and then the integral up to each x̂i by

∫ x̂i

0

Hdx =
i∑

j=0

0.5(Hj +Hj−1)(xj − xj−1).

24
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This leads us to define µ numerically as

µi =

∑i
j=0 0.5(Hj +Hj−1)(xj − xj−1)∑b
j=0 0.5(Hj +Hj−1)(xj − xj−1)

We can use a similar approximation to determine the integrals of the snow

term, giving us

θ′ =

∫ b

0

sdx =
b∑

j=0

0.5(sj + sj−1)(xj − xj−1), and

∫ x̂i

0

sdx =
i∑

j=0

0.5(sj + sj−1)(xj − xj−1).

Putting this all together gives us a numerical expression for the velocity

vi =
1

Hi

[∑i
j=0 0.5(Hj +Hj−1)(xj − xj−1)∑b
j=0 0.5(Hj +Hj−1)(xj − xj−1)

b∑
j=0

0.5(sj + sj−1)(xj − xj−1)

−
i∑

j=0

0.5(sj + sj−1)(xj − xj−1)

]
− 27

343
c
[
(H

7/3
i )x

]3
(5.1)

As with method 1 we need to update the x and H values, but additionally

for method 2 the new value of θ also needs to be calculated. Note that x can

be updated in the same way as in Equation 4.2, since that equation is the

same. θ can be calculated using Equation 3.14,

θn+1 − θn
∆t

=

∫ b

0

sdx

θn+1 = θn + ∆t

∫ b

0

sdx. (5.2)
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To update H, we note that since µ is constant in time, then it follows that

at any time n

1

θ(tn)

∫ x̂n

0

Hndx =
1

θ(0)

∫ x̂0

0

H0dx

1

θ(tn)

∫ xni+1

xni−1

Hndx =
1

θ(0)

∫ x0
i+1

x0
i−1

H0dx

1

θ(tn)
Hn
i (xni+1 − xni−1) =

1

θ(0)
Hn
i (x0

i+1 − x0
i−1)

Hn
i =

θ(tn)

θ(0)
H0
i

(x0
i+1 − x0

i−1)

(xni+1 − xni−1)
. (5.3)

However when running this program, it became unstable very quickly,

which turned out to be caused by the snow term. Reducing the coefficients

in equation 3.5 to 0.0005 fixed the problem, the consequences being that

movement was not as quick as in method 1. As you can see from Fig.5.1(a),

this actually yields more realistic results in that the glacier reaches the re-

quired gradient at the end point and begins to move without a large build

up of snow. Reducing the snow coefficient did not have the same effect in

method 1, since this method is more dependent on the snow. In Fig.5.1(b)

we again see evidence of a shock occurring, but unfortunately because the

velocity (5.1) is considerably more complex, it does not lend itself to the

shock theory described in Chapter 7 like the subdomain assumption.
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(a) Ice Thickness

(b) Velocity

Figure 5.1: Results from the normalisation assumption



Chapter 6

Surface Elevation Model

For the most part the theory for the surface elevation model is similar to

Chapter 4, as we are making the same assumption for a different domain.

The slope is defined as in equation (3.20), the ice thickness H will be the

same as before, and h is defined as

h = H + Γ.

As we would expect, the slope increases the velocity and causes the glacier

to move quicker down the mountain, something which is clearly evident in

Fig.6.1(a). However once the glacier is off the slope it seems to grind to a

halt, which we see in the velocity plot, Fig.6.1(b). This is due to the linear

snow term, since once x gets past the value 2 we see a negative contribution

of snow (ablation), which becomes increasingly negative the further down we

go.

Once the glacier has left the slope, the gradient decreases, so the diffusion

term has less effect and from Chapter 4 we saw that the snow term is domi-

28



29

nant under the subdomain assumptions.

(a) Ice Thickness

(b) Velocity

Figure 6.1: Results with surface elevation
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6.1 Basal Sliding

At the end of chapter 2 we mentioned the concept of basal sliding. Depending

on the characteristics of a glacier, this can account for a significant part of

its movement. Since the models we have been using involve a vertically

averaged velocity, the concept of basal sliding need only be considered as

an additional velocity rather than a velocity at the base. Van Der Veen [4]

proposed including the basal sliding as an additional part of the diffusion

term. From 3.1

∂H(x, t)

∂t
=

∂

∂x

[
cH(x, t)5Hx(x, t)

3 +H(x, t)Vbs(x, t)
]

+ s(x) (6.1)

where Vbs is the additional term for basal sliding. Working through as in

3.3.1 we find that the velocity term becomes

(v =)
dx̂(t)

dt
= −cH4H3

x − Vbs. (6.2)

Now all we need is a suitable value to set the basal sliding velocity; Hutter

[6] suggests a maximum of 0.005, which we shall use here.

Fig.6.2(a) shows what happens when we add this term into the equation. We

can see that not much is different while the glacier is still on the slope besides

a slight increase in how far down the slope the snout is. It is when the glacier

reaches the bottom that things get a little more interesting. Where as before

the glacier appeared to grind to a halt, the basal sliding causes the end to

keep moving, pulling the rest of the glacier with it. This has some physical

implications in that we see glaciers spreading out when they reach a valley

at the bottom, usually known as Piedmont Glaciers.

From Fig.6.2(b) we note that with the addition of basal sliding the velocity
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never slows down to zero, and if left long enough the glacier would keep

moving and stretching out until it becomes a thin sheet.

(a) Ice Thickness

(b) Velocity

Figure 6.2: Results with surface elevation and Basal Sliding



Chapter 7

A Shock Equation

From equation 3.9 recall that under the subdomain assumption, the velocity

is given by v = −cH4H3
x. Although v is given explicitly it is useful to look

at an equation satisfied by v. To derive such an equation we are interested

in the time and space derivative; so differentiating v we get

vx = −3cH4H2
xHxx − 4cH3H4

x (7.1)

vt = −3cH4H2
xHxt − 4cH3H3

xHt (7.2)

In equations (7.1) and (7.2) we have the functions Ht and Hxt that we do not

know. To deal with this, and keep the equations in terms of space derivatives,

we can substitute equation (3.9) into the original equation (3.1).

Ht = s− (Hv)x

= s−Hxv −Hvx, (7.3)

which we can differentiate to get

Htx = sx −Hxxv − 2Hxvx −Hvxx. (7.4)

32
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These can be substituted into 7.2 to give

vt = −3cH4H2
x(sx −Hxxv − 2Hxvx −Hvxx)− 4cH3H3

x(s−Hxv −Hvx)

= 3cH5H2
xvxx + (10cH4H3

x)vx + (3cH4H2
xHxx+ 4cH3H4

x)v − 3cH4H2
xsx − 4cH3H3

xs

= 3cH5H2
xvxx − 10vvx − vxv − 3cH4H2

xsx − 4cH3H3
xs,

and finally rearranged in the form of a Burgers-like equation with extra source

terms.

vt + 11vvx = 3cH5H2
xvxx − 3cH4H2

xsx − 4cH3H3
xs. (7.5)

We shall use this equation to characterise the evolution of v and estimate a

waiting time.

7.1 Numerical Approximation to a Burgers

equation

With equation 7.5 we can form an approximation to the change in velocity

over time. We expect this to reflect the change of velocity that we see in Fig.

4.1.

Each of the velocity derivative terms have been numerically approximated,

again using an upwind difference,

vt =
vn+1
i − vni

∆t
(7.6)

vvx =
1

2

(vni )2 − (vni−1)
2

∆x
(7.7)

vxx =
vni+1 − 2vni + vni−1

(∆x)2
. (7.8)
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The snow derivative term also appears in equation (7.5), but since s is a

linear function (equation (3.5)), the derivative is constant, in our case

sx = −0.25.

Substituting all of this into equation 7.5,

vn+1
i − vni

∆t
+

11

2

(vni )2 − (vni−1)
2

∆x
= 3cH5H2

x

vni+1 − 2vni + vni−1

(∆x)2
+

3

4
cH4H2

x−4cH3H3
xs,

(7.9)

which can be rearranged to give an explicit equation for vn+1
i .

In order to implement 7.9 we need an initial state for velocity, which we can

approximate from 4.1, by

v0
i = − 27

343
c

(
H

7/3
i −H7/3

i−1

xi − xi−1

)3

. (7.10)

Note that since equation (7.5) depends on H (and as a result x), these vari-

ables will also need to be updated every time loop, which can be done using

the same methods as we used in Chapter 4.

Plotting the solution to this equation, Fig. 7.1, it is encouraging to see that

the velocity changes in a similar manner to what we saw in Fig. 4.1.

7.2 Characteristics

Using equation (7.5) as a check that our method produces the correct results

is useful, but we can also use the equation to estimate when the shock occurs.

To do this we use characteristics theory to observe that by the chain rule

vt +
dx

dt
vx =

dv

dt
.
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Figure 7.1: Numerical solution to Burgers equation

Comparing this with 7.5, we deduce that on characteristics

dx

dt
= 11v (7.11)

dv

dt
= 3cH5H2

xvxx − 3cH4H2
xsx − 4cH3H3

xs. (7.12)

7.2.1 Homogeneous Case

Now we have a system of ODEs, but before we try to solve the full equation,

we can look at the homogeneous case,

vt + 11vvx = 0, (7.13)

to get an idea of what a pure shock might do. For this equation

dx

dt
= 11v, (7.14)

dv

dt
= 0. (7.15)
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Under this condition we see that

v = v0, say, (7.16)

which, when substituted into equation (7.14) implies that

x = v0t+ x0. (7.17)

This gives us the set of characteristics which we plot in Fig.7.3(a), and we

can see that the characteristics cross towards the right. In a characteristics

plot for a conservation law of the form of equation (7.13), any time lines cross

a shock is generated, which moves forward in time. It is interesting to note

that the shock occurs where the gradient of initial velocity was steepest, (see

Fig.3.2(a)). This is in accordance with conservation law theory which says

that the shock occurs when v′0(x) is a maximum. In addition, we can plot x

against v, Fig.7.3(b), where we see the velocity overturning.

From here we would like to know the point of first crossing, since this is where

the shock begins and can help us predict the waiting time we are looking for.

We consider the envelope of the equations taken from equation (7.17), with

x0 as the parameter,

F (x, t, x0) = x− v0t− x0 = 0. (7.18)

On the envelope

∂F

∂x0

= −∂v0(x0)

∂x0

t− x0 = 0. (7.19)

which leads us to

t = − 1

v′0(x0)
. (7.20)
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The envelope forms, and the shock appears at the earliest possible time

satisfying (7.20), i.e.

tmin =
1

max[−v′0(x0)]
. (7.21)

Now we have a time that the shock will occur in the homogeneous case, but

we are also interested in the shock speed since this will help us predict the

time the shock arrives at the boundary.

One way of calculating the shock speed is to look at the conservation property

(Whitham, 1974). This work was used by C.P. Reeves, and states that we

can replace the overturned part of the curve by a vertical line such that the

areas A and B are the same, see Fig.7.2[11]. When the vertical line reaches

the boundary, it is equivalent to saying that the shock has also reached the

boundary. It is at this point that the boundary will begin to move. The

theory is hard to put into practice though, as we normally visualise the

equal areas, making this difficult to compute.

Figure 7.2: Equal Area Construction

We can also get a decent idea of what is going on through a 3D plot of

x, v and t. The first of these, Fig.7.4(a) plots the same curves as in the 2D
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(a) Characteristic plot

(b) Shock through characteristics

Figure 7.3: 2D plots of Characteristics
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Fig.7.3(b), but it is interesting to see with the added dimension the overturn

developing. In addition Fig.7.4(b) shows how each individual point moves

through time, and while the shape is the same, we can see which points move

the most.

7.2.2 Inhomogeneous Case

Now to try an find a solution to the general case. Firstly, the right hand side

involves H(x, t), an unknown quantity which changes with time, so an extra

equation needs to be added to cope with this. Again by the chain rule

dH

dt
= Ht +

dx

dt
Hx.

We can substitute in the terms we know from 7.14 and 3.1, giving

dH

dt
=
[
cH5H3

x

]
x

+ s+ 11vHx. (7.22)

Along with equations 7.14 and 7.15 we have a system of ODEs that we can

compute. However when computing the system appeared to blow up, which

we could fix by scaling the ice thickness H by a small factor p = 0.000000002,

found by trial and error. Fig.7.5(a) shows the characteristics plot with

curved characteristics leading to a shock. The corresponding velocity plot,

Fig.7.5(b), show a much larger overturn, as well as a significant increase in

velocity. Instead of falling to the right, as we see in Fig.7.3(b), the velocity

grows at the same time as toppling over. We can also look at the 3D plot,

Fig.7.5(c), where we can clearly see the increase in velocity through time.

The equal area construction method would also work for the overturn in this
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(a) Progression of shock through time

(b) Progression of shock points through time

Figure 7.4: 3D plots of Characteristics
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case. Due to the scaling the results here are speculative, and their value

needs to be investigated.

(a) Characteristics Plot (b) Velocity Plot

(c) Progression of shock through time

Figure 7.5: Computation solutions to the inhomogeneous case



Chapter 8

Conclusions and Further Work

8.1 Summary

This dissertation has looked at a number of techniques for modelling a one-

dimensional glacier model using a moving grid. In addition we observed that

glaciers experienced a waiting time and required certain circumstances before

they began to move. As such we looked at combining the work of Roberts

[1] on the 1D model, and Stojsavljevic [10] on waiting times for PDEs.

Firstly we took the flat bed model and used two methods of extracting

the grid velocity. The first was a simpler solution, assuming a subdomain

held the same properties as the whole domain. This was a physical approach,

which gave results that appeared to be dominated by the snow term, some-

thing mentioned to look at as further work.

At this point we examined the effect of a non-evenly spaced grid, which gave

42
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very slight different results. This was put to one side as something to con-

sider later. It is suspected that on a model with more grid points this will

not matter, but for a sparse grid there are benefits, if small.

The second method was a more mathematical approach, normalising the

volume of ice to estimate a grid velocity. Unfortunately this method became

unstable, probably due to the Euler time step which depends on ∆t. Efforts

to achieve stability were hampered by computational power. This method

also did not admit the formation of a Burgers equation as in method 1. We

decided that while this method worked in theory, the results only worked

for a small amount of snow, so for our linear snow term the normalisation

assumption was not the most beneficial. Once the source term has been

readdressed the method could be reassessed.

Next we looked at changing the grid from a flat bed to a linear slope.

We used the subdomain assumption, so the methodology was already set in

place. The results were as expected with an increased velocity on the slope

before slowing down once the glacier reaches the flat plane. We introduced

the concept of basal sliding to this model, which increased the velocity, and

once off the slope the glacier kept sliding. The effects of basal sliding in our

model are limited due to the vertically averaged velocity.

Finally, we applied characteristics theory to the subdomain methods on a

flat bed. First we formed and solved a Burgers Equation with source terms
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numerically and we saw similar results, which acted as a reinforcement on the

work we had already done. Then we applied the method of characteristics to

get a system of ODEs that we solved using Matlab’s inbuilt solver. Firstly

the homogeneous case gave good results that we were able to use to get an

explicit formula for the shock formula. The inhomogeneous problem gave

some output, but only after scaling down the ice thickness to avoid blow up.

We noticed that the velocity increases while overturning, which was not seen

in the homogeneous case. These results are dubious.

8.2 Further Work

Throughout this dissertation there were many considerations as to which

areas to look at, most of which had to be put to one side. First of all

there was the issue of the computational problems encountered in chapter

5. Continuation on the non-evenly spaced grid could also help give more

information at the snout.

Some of the further work that takes the model a step further has been listed

here as a potential for anyone interested in this area of research.

8.2.1 Snow Term

The snow term has shown all sorts of differences between methods. In Chap-

ter 4 we observed that the snow term was completely dominant, in Chapter

5 we saw that it made the computation unstable and had to be turned down,
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and in chapter 6 we saw that the snow term ground the ice to a halt as soon

as it left the slope. This is something which should be addressed before any

of the other pieces of work, particularly as it appears to have a large effect

on results. Possible solutions would be to find a different set of coefficients

to give a more realistic quantity of snow, use a non-linear function, which

would stop the snow getting increasingly negative, or another option is to

have seperate terms for snow accumulation and ablation.

8.2.2 Maritime Boundary Conditions

Payne’s paper [5] considers different boundary conditions at the snout of the

glacier, steering away from H = 0. Physically this occurs when a glacier

reaches the edge of a cliff or enters the ocean, and for cases where the glacier

mostly sits on the water there is the added problem of buoyancy. Payne

proposes a maritime boundary condition of the form

∂v

∂x
|shelffront = A

[
1

4
ρig

(
1− ρi

ρw

)]n
hn, (8.1)

where ρw is an additional variable introduced for the density of the water.

8.2.3 Retreat and Break-up

Our model works well for glaciers that are advancing, but what happens

when the melting increases and the glacier retreats, something that we are

seeing more and more under global warming. This would require a negative

velocity, so care needs to be taken that the grid points do not overlap one

another.
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In addition glaciers can also break-up, where large sections of ice completly

break off from the main part and drift away or melt. This presents all sorts of

problems with the ice thickness vanishing at points other than the boundary,

and also we might see a positive Hx gradient in certain areas, which would

affect the velocity. One method of avoiding points overlapping would be to

remove some points when bits of the glacier break off.

8.2.4 Two Dimensional Model

The model we have been analysing throughout was only a 1D model, so a

logical next step would be to take the model into 2D. This could mean one

of two things;

The first is that we consider velocity throughout the height of the glacier

instead of vertically averaging. When velocity varies in height we might see

quite different movement, This would require grid points in height in addition

to the x direction. We would expect the top and bottom to be moving quicker

than the middle section, as such the impact of basal sliding can be analysed

more effectively. This would also allow the uneven surface of the ground to

be taken into consideration, and how much loose debris there is. Fig.8.1 from

K.A. Lemke[12] shows her thoughts from a geology prospective, where there

is a maximum sliding velocity depending on the quantity of debris, so being

able to translate this into mathematical form would yield interesting results.

Alternatively we could keep the velocity averaged vertically and consider

the domain in the y-plane, as opposed to a cross section in the x-plane as we

have currently. This does require the addition of boundary conditions at the
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Figure 8.1: Effect of Abrasion on Basal Sliding

sides of the glacier, and the type would depend on if the sides meet a wall

(no flux condition) or if they just curve to the ground, (H = 0). The model

itself will take the form

Ht(x, y, t) = ∇.(H(x, y, t)5∇H(x, y, t)3) + s(x, y). (8.2)

The results of such a model are expected to be of a similar form to the 1D

model, and results such as equation (3.7) are believed to still hold.

For a particularly adventurous project a full blown 3D model is also possible,

combining both the vertical velocity and the y-plane.
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